1
|
Rodriguez-Iglesias N, Paris I, Valero J, Cañas-Zabala L, Carretero A, Hatje K, Zhang JD, Patsch C, Britschgi M, Gutbier S, Sierra A. A bottom-up approach identifies the antipsychotic and antineoplastic trifluoperazine and the ribose derivative deoxytubercidin as novel microglial phagocytosis inhibitors. Glia 2025; 73:330-351. [PMID: 39495090 DOI: 10.1002/glia.24637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
Phagocytosis is an indispensable function of microglia, the brain professional phagocytes. Microglia is particularly efficient phagocytosing cells that undergo programmed cell death (apoptosis) in physiological conditions. However, mounting evidence suggests microglial phagocytosis dysfunction in multiple brain disorders. These observations prompted us to search for phagocytosis modulators (enhancers or inhibitors) with therapeutic potential. We used a bottom-up strategy that consisted on the identification of phagocytosis modulators using phenotypic high throughput screenings (HTSs) in cell culture and validation in organotypic cultures and in vivo. We performed two complementary HTS campagnes: at Achucarro, we used primary cultures of mouse microglia and compounds of the Prestwick Chemical Library; at Roche, we used human iPSC derived macrophage-like cells and a proprietary chemo-genomic library with 2200 compounds with known mechanism-of-action. Next, we validated the more robust compounds using hippocampal organotypic cultures and identified two phagocytosis inhibitors: trifluoperazine, a dopaminergic and adrenergic antagonist used as an antipsychotic and antineoplastic; and deoxytubercidin, a ribose derivative. Finally, we tested whether these compounds were able to modulate phagocytosis of apoptotic newborn cells in the adult hippocampal neurogenic niche in vivo by administering them into the mouse hippocampus using osmotic minipumps. We confirmed that both trifluoperazine and deoxytubercidin have anti-phagocytic activity in vivo, and validated our bottom-up strategy to identify novel phagocytosis modulators. These results show that chemical libraries with annotated mechanism of action are an starting point for the pharmacological modulation of microglia in drug discovery projects aiming at the therapeutic manipulation of phagocytosis in brain diseases.
Collapse
Affiliation(s)
- Noelia Rodriguez-Iglesias
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain
| | - Iñaki Paris
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jorge Valero
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
| | - Lorena Cañas-Zabala
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain
| | - Alejandro Carretero
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Klas Hatje
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jitao David Zhang
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Christoph Patsch
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Markus Britschgi
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Simon Gutbier
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Amanda Sierra
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country EHU/UPV, Leioa, Spain
| |
Collapse
|
2
|
Ardanaz CG, de la Cruz A, Minhas PS, Hernández-Martín N, Pozo MÁ, Valdecantos MP, Valverde ÁM, Villa-Valverde P, Elizalde-Horcada M, Puerta E, Ramírez MJ, Ortega JE, Urbiola A, Ederra C, Ariz M, Ortiz-de-Solórzano C, Fernández-Irigoyen J, Santamaría E, Karsenty G, Brüning JC, Solas M. Astrocytic GLUT1 reduction paradoxically improves central and peripheral glucose homeostasis. SCIENCE ADVANCES 2024; 10:eadp1115. [PMID: 39423276 PMCID: PMC11488540 DOI: 10.1126/sciadv.adp1115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Astrocytes are considered an essential source of blood-borne glucose or its metabolites to neurons. Nonetheless, the necessity of the main astrocyte glucose transporter, i.e., GLUT1, for brain glucose metabolism has not been defined. Unexpectedly, we found that brain glucose metabolism was paradoxically augmented in mice with astrocytic GLUT1 reduction (GLUT1ΔGFAP mice). These mice also exhibited improved peripheral glucose metabolism especially in obesity, rendering them metabolically healthier. Mechanistically, we observed that GLUT1-deficient astrocytes exhibited increased insulin receptor-dependent ATP release, and that both astrocyte insulin signaling and brain purinergic signaling are essential for improved brain function and systemic glucose metabolism. Collectively, we demonstrate that astrocytic GLUT1 is central to the regulation of brain energetics, yet its depletion triggers a reprogramming of brain metabolism sufficient to sustain energy requirements, peripheral glucose homeostasis, and cognitive function.
Collapse
Affiliation(s)
- Carlos G. Ardanaz
- Department of Pharmaceutical Sciences, Division of Pharmacology, University of Navarra, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Aida de la Cruz
- Laboratory of Local Translation in Neurons and Glia, Achucarro Basque Centre for Neuroscience, 48940 Leioa, Spain
| | - Paras S. Minhas
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nira Hernández-Martín
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Miguel Ángel Pozo
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Unidad de Cartografía Cerebral, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - M. Pilar Valdecantos
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid 28029, Spain
- Universidad Francisco de Vitoria, Faculty of Experimental Sciences, Pozuelo de Alarcon, Madrid, Spain
| | - Ángela M. Valverde
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid 28029, Spain
| | | | | | - Elena Puerta
- Department of Pharmaceutical Sciences, Division of Pharmacology, University of Navarra, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - María J. Ramírez
- Department of Pharmaceutical Sciences, Division of Pharmacology, University of Navarra, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Jorge E. Ortega
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Department of Pharmacology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Ainhoa Urbiola
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Imaging Platform, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), 31008 Pamplona, Spain
| | - Cristina Ederra
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Imaging Platform, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), 31008 Pamplona, Spain
| | - Mikel Ariz
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Imaging Platform, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), 31008 Pamplona, Spain
- Department of Electrical, Electronic and Communications Engineering, Public University of Navarra, 31006 Pamplona, Spain
| | - Carlos Ortiz-de-Solórzano
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Imaging Platform, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), 31008 Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain
| | - Gerard Karsenty
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York, NY, USA
| | - Jens C. Brüning
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, 50931 Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50924 Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- National Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Maite Solas
- Department of Pharmaceutical Sciences, Division of Pharmacology, University of Navarra, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
3
|
Narvaiz DA, Blandin KJ, Sullens DG, Womble PD, Pilcher JB, O'Neill G, Wiley TA, Kwok EM, Chilukuri SV, Lugo JN. NS-Pten knockout mice exhibit sex and hippocampal subregion-specific increases in microglia/macrophage density. Epilepsy Res 2024; 206:107440. [PMID: 39213710 DOI: 10.1016/j.eplepsyres.2024.107440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Seizures induce hippocampal subregion dependent enhancements in microglia/macrophage phagocytosis and cytokine release that may contribute to the development of epilepsy. As a model of hyperactive mTOR induced epilepsy, neuronal subset specific phosphatase and tensin homolog (NS-Pten) knockout (KO) mice exhibit hyperactive mTOR signaling in the hippocampus, seizures that progress with age, and enhanced hippocampal microglia/macrophage activation. However, it is unknown where microglia/macrophages are most active within the hippocampus of NS-Pten KO mice. We quantified the density of IBA1 positive microglia/macrophages in the CA1, CA2/3, and dentate gyrus of NS-Pten KO and wildtype (WT) male and female mice at 4, 10, and 15 weeks of age. NS-Pten KO mice exhibited an overall increase in the number of IBA1 positive microglia/macrophages in each subregion and in the entire hippocampus. After accounting for differences in size, the whole hippocampus of NS-Pten KO mice still exhibited an increased density of IBA1 positive microglia/macrophages. Subregion analyses showed that this increase was restricted to the dentate gyrus of both male and female NS-Pten KO mice and to the CA1 of male NS-Pten KO mice. These data suggest enhanced microglia/macrophage activity may occur in the NS-Pten KO mice in a hippocampal subregion and sex-dependent manner. Future work should seek to determine whether these region-specific increases in microgliosis play a role in the progression of epilepsy in this model.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Joaquin N Lugo
- Department of Psychology and Neuroscience, USA; Department of Biology, USA; Institute of Biomedical Studies, USA; Baylor University, Baylor Center for Developmental Disabilities, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
4
|
Balena T, Staley K. Neuronal Death: Now You See It, Now You Don't. Neuroscientist 2024:10738584241282632. [PMID: 39316584 DOI: 10.1177/10738584241282632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Fatally injured neurons may necrose and rupture immediately, or they may initiate a programmed cell death pathway and then wait for microglial phagocytosis. Biochemical and histopathologic assays of neuronal death assess the numbers of neurons awaiting phagocytosis at a particular time point after injury. This number varies with the fraction of neurons that have necrosed vs initiated programmed cell death, the time elapsed since injury, the rate of phagocytosis, and the assay's ability to detect neurons at different stages of programmed cell death. Many of these variables can be altered by putatively neurotoxic and neuroprotective interventions independent of the effects on neuronal death. This complicates analyses of neurotoxicity and neuroprotection and has likely contributed to difficulties with clinical translation of neuroprotective strategies after brain injury. Time-resolved assays of neuronal health, such as ongoing expression of transgenic fluorescent proteins, are a useful means of avoiding these problems.
Collapse
Affiliation(s)
- Trevor Balena
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Kevin Staley
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
5
|
Shen FS, Liu C, Sun HZ, Chen XY, Xue Y, Chen L. Emerging evidence of context-dependent synapse elimination by phagocytes in the CNS. J Leukoc Biol 2024; 116:511-522. [PMID: 38700080 DOI: 10.1093/jleuko/qiae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/09/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Precise synapse elimination is essential for the establishment of a fully developed neural circuit during brain development and higher function in adult brain. Beyond immune and nutrition support, recent groundbreaking studies have revealed that phagocytic microglia and astrocytes can actively and selectively eliminate synapses in normal and diseased brains, thereby mediating synapse loss and maintaining circuit homeostasis. Multiple lines of evidence indicate that the mechanisms of synapse elimination by phagocytic glia are not universal but rather depend on specific contexts and detailed neuron-glia interactions. The mechanism of synapse elimination by phagocytic glia is dependent on neuron-intrinsic factors and many innate immune and local apoptosis-related molecules. During development, microglial synapse engulfment in the visual thalamus is primarily influenced by the classic complement pathway, whereas in the barrel cortex, the fractalkine pathway is dominant. In Alzheimer's disease, microglia employ complement-dependent mechanisms for synapse engulfment in tauopathy and early β-amyloid pathology, but microglia are not involved in synapse loss at late β-amyloid stages. Phagocytic microglia also engulf synapses in a complement-dependent way in schizophrenia, anxiety, and stress. In addition, phagocytic astrocytes engulf synapses in a MEGF10-dependent way during visual development, memory, and stroke. Furthermore, the mechanism of a phenomenon that phagocytes selectively eliminate excitatory and inhibitory synapses is also emphasized in this review. We hypothesize that elucidating context-dependent synapse elimination by phagocytic microglia and astrocytes may reveal the molecular basis of synapse loss in neural disorders and provide a rationale for developing novel candidate therapies that target synapse loss and circuit homeostasis.
Collapse
Affiliation(s)
- Fang-Shuai Shen
- Department of Physiology and Pathophysiology, School of Basic Medicine, No. 308 Ningxia Road, Shinan District, Qingdao University 266071, Qingdao, China
| | - Cui Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, No. 308 Ningxia Road, Shinan District, Qingdao University 266071, Qingdao, China
| | - Hui-Zhe Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, No. 308 Ningxia Road, Shinan District, Qingdao University 266071, Qingdao, China
| | - Xin-Yi Chen
- Department of International Medicine, No. 16 Jiangsu Road, Shinan District, Affiliated Hospital of Qingdao University 266000, Qingdao, China
| | - Yan Xue
- Department of Physiology and Pathophysiology, School of Basic Medicine, No. 308 Ningxia Road, Shinan District, Qingdao University 266071, Qingdao, China
| | - Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, No. 308 Ningxia Road, Shinan District, Qingdao University 266071, Qingdao, China
| |
Collapse
|
6
|
Yu T, Chen J, Wang Y, Xu J. The embryonic zebrafish brain is exclusively colonized by pu.1-dependent and lymphatic-independent population of microglia. SCIENCE ADVANCES 2024; 10:eado0519. [PMID: 39196933 PMCID: PMC11352844 DOI: 10.1126/sciadv.ado0519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
Microglia, the crucial immune cells inhabiting the central nervous system (CNS), perform a range of vital functions, encompassing immune defense and neuronal regulation. Microglia subsets with diverse functions and distinct developmental regulations have been identified recently. It is generally accepted that all microglia originate from hematopoiesis and depend on the myeloid transcription factor PU.1. However, a recent study reported the existence of mrc1+ microglia in zebrafish embryos, which are seemingly independent of Pu.1 and reliant on lymphatic vessels, sparking great interest in the possibility of lymphatic-originated microglia. To address this, we took advantage of a pu.1 knock-in zebrafish allele for a detailed investigation. Our results conclusively showed that almost all zebrafish embryonic microglia (~95% on average) express pu.1. Further, lineage tracing and mutant analysis revealed that these microglia neither emerged from nor depended on lymphatic vessels. In essence, our study refutes the presence of pu.1-independent but lymphatic-dependent microglia.
Collapse
Affiliation(s)
- Tao Yu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University–The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Jiahao Chen
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Yuexin Wang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Jin Xu
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Hatch K, Lischka F, Wang M, Xu X, Stimpson CD, Barvir T, Cramer NP, Perl DP, Yu G, Browne CA, Dickstein DL, Galdzicki Z. The role of microglia in neuronal and cognitive function during high altitude acclimatization. Sci Rep 2024; 14:18981. [PMID: 39152179 PMCID: PMC11329659 DOI: 10.1038/s41598-024-69694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Due to their interactions with the neurovasculature, microglia are implicated in maladaptive responses to hypobaric hypoxia at high altitude (HA). To explore these interactions at HA, pharmacological depletion of microglia with the colony-stimulating factor-1 receptor inhibitor, PLX5622, was employed in male C57BL/6J mice maintained at HA or sea level (SL) for 3-weeks, followed by assessment of ex-vivo hippocampal long-term potentiation (LTP), fear memory recall and microglial dynamics/physiology. Our findings revealed that microglia depletion decreased LTP and reduced glucose levels by 25% at SL but did not affect fear memory recall. At HA, the absence of microglia did not significantly alter HA associated deficits in fear memory or HA mediated decreases in peripheral glucose levels. In regard to microglial dynamics in the cortex, HA enhanced microglial surveillance activity, ablation of microglia resulted in increased chemotactic responses and decreased microglia tip proliferation during ball formation. In contrast, vessel ablation increased cortical microglia tip path tortuosity. In the hippocampus, changes in microglial dynamics were only observed in response to vessel ablation following HA. As the hippocampus is critical for learning and memory, poor hippocampal microglial context-dependent adaptation may be responsible for some of the enduring neurological deficits associated with HA.
Collapse
Affiliation(s)
- Kathleen Hatch
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Fritz Lischka
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Mengfan Wang
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, USA
| | - Xiufen Xu
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Cheryl D Stimpson
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Tara Barvir
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Nathan P Cramer
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Daniel P Perl
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Guoqiang Yu
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, USA
| | - Caroline A Browne
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Dara L Dickstein
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Zygmunt Galdzicki
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
8
|
Sierra A, Miron VE, Paolicelli RC, Ransohoff RM. Microglia in Health and Diseases: Integrative Hubs of the Central Nervous System (CNS). Cold Spring Harb Perspect Biol 2024; 16:a041366. [PMID: 38438189 PMCID: PMC11293550 DOI: 10.1101/cshperspect.a041366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Microglia are usually referred to as "the innate immune cells of the brain," "the resident macrophages of the central nervous system" (CNS), or "CNS parenchymal macrophages." These labels allude to their inherent immune function, related to their macrophage lineage. However, beyond their classic innate immune responses, microglia also play physiological roles crucial for proper brain development and maintenance of adult brain homeostasis. Microglia sense both external and local stimuli through a variety of surface receptors. Thus, they might serve as integrative hubs at the interface between the external environment and the CNS, able to decode, filter, and buffer cues from outside, with the aim of preserving and maintaining brain homeostasis. In this perspective, we will cast a critical look at how these multiple microglial functions are acquired and coordinated, and we will speculate on their impact on human brain physiology and pathology.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro Basque Center for Neuroscience, Glial Cell Biology Laboratory, Science Park of UPV/EHU, E-48940 Leioa, Bizkaia, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country EHU/UPV, 48940 Leioa, Spain
- Ikerbasque Foundation, Bilbao 48009, Spain
| | - Veronique E Miron
- BARLO Multiple Sclerosis Centre, Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto M5B 1T8, Canada
- Department of Immunology, University of Toronto, Toronto M5S 1A8, Canada
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4TJ, United Kingdom
| | - Rosa C Paolicelli
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland
| | | |
Collapse
|
9
|
Kim J, Pavlidis P, Ciernia AV. Development of a High-Throughput Pipeline to Characterize Microglia Morphological States at a Single-Cell Resolution. eNeuro 2024; 11:ENEURO.0014-24.2024. [PMID: 39029952 PMCID: PMC11289588 DOI: 10.1523/eneuro.0014-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 07/21/2024] Open
Abstract
As rapid responders to their environments, microglia engage in functions that are mirrored by their cellular morphology. Microglia are classically thought to exhibit a ramified morphology under homeostatic conditions which switches to an ameboid form during inflammatory conditions. However, microglia display a wide spectrum of morphologies outside of this dichotomy, including rod-like, ramified, ameboid, and hypertrophic states, which have been observed across brain regions, neurodevelopmental timepoints, and various pathological contexts. We applied dimensionality reduction and clustering to consider contributions of multiple morphology measures together to define a spectrum of microglial morphological states in a mouse dataset that we used to demonstrate the utility of our toolset. Using ImageJ, we first developed a semiautomated approach to characterize 27 morphology features from hundreds to thousands of individual microglial cells in a brain region-specific manner. Within this pool of features, we defined distinct sets of highly correlated features that describe different aspects of morphology, including branch length, branching complexity, territory span, and circularity. When considered together, these sets of features drove different morphological clusters. Our tools captured morphological states similarly and robustly when applied to independent datasets and using different immunofluorescent markers for microglia. We have compiled our morphology analysis pipeline into an accessible, easy-to-use, and fully open-source ImageJ macro and R package that the neuroscience community can expand upon and directly apply to their own analyses. Outcomes from this work will supply the field with new tools to systematically evaluate the heterogeneity of microglia morphological states across various experimental models and research questions.
Collapse
Affiliation(s)
- Jennifer Kim
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia V6T 1Z3, Canada
| | - Paul Pavlidis
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Michael Smith Laboratories, Vancouver, British Columbia V6T 1Z4, Canada
| | - Annie Vogel Ciernia
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
10
|
Häussler U, Neres J, Vandenplas C, Eykens C, Kadiu I, Schramm C, Fleurance R, Stanley P, Godard P, de Mot L, van Eyll J, Knobeloch KP, Haas CA, Dedeurwaerdere S. Downregulation of Ubiquitin-Specific Protease 15 (USP15) Does Not Provide Therapeutic Benefit in Experimental Mesial Temporal Lobe Epilepsy. Mol Neurobiol 2024; 61:2367-2389. [PMID: 37874479 PMCID: PMC10973041 DOI: 10.1007/s12035-023-03692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
Structural epilepsies display complex immune activation signatures. However, it is unclear which neuroinflammatory pathways drive pathobiology. Transcriptome studies of brain resections from mesial temporal lobe epilepsy (mTLE) patients revealed a dysregulation of transforming growth factor β, interferon α/β, and nuclear factor erythroid 2-related factor 2 pathways. Since these pathways are regulated by ubiquitin-specific proteases (USP), in particular USP15, we hypothesized that USP15 blockade may provide therapeutic relief in treatment-resistant epilepsies. For validation, transgenic mice which either constitutively or inducibly lack Usp15 gene expression underwent intrahippocampal kainate injections to induce mTLE. We show that the severity of status epilepticus is unaltered in mice constitutively lacking Usp15 compared to wild types. Cell death, reactive gliosis, and changes in the inflammatory transcriptome were pronounced at 4 days after kainate injection. However, these brain inflammation signatures did not differ between genotypes. Likewise, induced deletion of Usp15 in chronic epilepsy did not affect seizure generation, cell death, gliosis, or the transcriptome. Concordantly, siRNA-mediated knockdown of Usp15 in a microglial cell line did not impact inflammatory responses in the form of cytokine release. Our data show that a lack of USP15 is insufficient to modulate the expression of relevant neuroinflammatory pathways in an mTLE mouse model and do not support targeting USP15 as a therapeutic approach for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany.
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 201, 79110, Freiburg, Germany.
| | - João Neres
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Catherine Vandenplas
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Caroline Eykens
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Irena Kadiu
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Carolin Schramm
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Renaud Fleurance
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Phil Stanley
- Early Development Statistics, UCB Celltech, 208 Bath Road, Slough, Berkshire, SL1 3WE, UK
| | - Patrice Godard
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Laurane de Mot
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Jonathan van Eyll
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Klaus-Peter Knobeloch
- Institute for Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, Freiburg, Germany.
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 201, 79110, Freiburg, Germany
- Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Hansastr. 9a, 79104, Freiburg, Germany
| | | |
Collapse
|
11
|
Araki T, Hiragi T, Kuga N, Luo C, Andoh M, Sugao K, Nagata H, Sasaki T, Ikegaya Y, Koyama R. Microglia induce auditory dysfunction after status epilepticus in mice. Glia 2024; 72:274-288. [PMID: 37746760 DOI: 10.1002/glia.24472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Auditory dysfunction and increased neuronal activity in the auditory pathways have been reported in patients with temporal lobe epilepsy, but the cellular mechanisms involved are unknown. Here, we report that microglia play a role in the disinhibition of auditory pathways after status epilepticus in mice. We found that neuronal activity in the auditory pathways, including the primary auditory cortex and the medial geniculate body (MGB), was increased and auditory discrimination was impaired after status epilepticus. We further demonstrated that microglia reduced inhibitory synapses on MGB relay neurons over an 8-week period after status epilepticus, resulting in auditory pathway hyperactivity. In addition, we found that local removal of microglia from the MGB attenuated the increase in c-Fos+ relay neurons and improved auditory discrimination. These findings reveal that thalamic microglia are involved in auditory dysfunction in epilepsy.
Collapse
Affiliation(s)
- Tasuku Araki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshimitsu Hiragi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Nahoko Kuga
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Cong Luo
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Megumi Andoh
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Fernández-Albarral JA, Ramírez AI, de Hoz R, Matamoros JA, Salobrar-García E, Elvira-Hurtado L, López-Cuenca I, Sánchez-Puebla L, Salazar JJ, Ramírez JM. Glaucoma: from pathogenic mechanisms to retinal glial cell response to damage. Front Cell Neurosci 2024; 18:1354569. [PMID: 38333055 PMCID: PMC10850296 DOI: 10.3389/fncel.2024.1354569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Glaucoma is a neurodegenerative disease of the retina characterized by the irreversible loss of retinal ganglion cells (RGCs) leading to visual loss. Degeneration of RGCs and loss of their axons, as well as damage and remodeling of the lamina cribrosa are the main events in the pathogenesis of glaucoma. Different molecular pathways are involved in RGC death, which are triggered and exacerbated as a consequence of a number of risk factors such as elevated intraocular pressure (IOP), age, ocular biomechanics, or low ocular perfusion pressure. Increased IOP is one of the most important risk factors associated with this pathology and the only one for which treatment is currently available, nevertheless, on many cases the progression of the disease continues, despite IOP control. Thus, the IOP elevation is not the only trigger of glaucomatous damage, showing the evidence that other factors can induce RGCs death in this pathology, would be involved in the advance of glaucomatous neurodegeneration. The underlying mechanisms driving the neurodegenerative process in glaucoma include ischemia/hypoxia, mitochondrial dysfunction, oxidative stress and neuroinflammation. In glaucoma, like as other neurodegenerative disorders, the immune system is involved and immunoregulation is conducted mainly by glial cells, microglia, astrocytes, and Müller cells. The increase in IOP produces the activation of glial cells in the retinal tissue. Chronic activation of glial cells in glaucoma may provoke a proinflammatory state at the retinal level inducing blood retinal barrier disruption and RGCs death. The modulation of the immune response in glaucoma as well as the activation of glial cells constitute an interesting new approach in the treatment of glaucoma.
Collapse
Affiliation(s)
- Jose A. Fernández-Albarral
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Ana I. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José A. Matamoros
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Juan J. Salazar
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
13
|
Lankhuijzen LM, Ridler T. Opioids, microglia, and temporal lobe epilepsy. Front Neurol 2024; 14:1298489. [PMID: 38249734 PMCID: PMC10796828 DOI: 10.3389/fneur.2023.1298489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
A lack of treatment options for temporal lobe epilepsy (TLE) demands an urgent quest for new therapies to recover neuronal damage and reduce seizures, potentially interrupting the neurotoxic cascades that fuel hyper-excitability. Endogenous opioids, along with their respective receptors, particularly dynorphin and kappa-opioid-receptor, present as attractive candidates for controlling neuronal excitability and therapeutics in epilepsy. We perform a critical review of the literature to evaluate the role of opioids in modulating microglial function and morphology in epilepsy. We find that, in accordance with anticonvulsant effects, acute opioid receptor activation has unique abilities to modulate microglial activation through toll-like 4 receptors, regulating downstream secretion of cytokines. Abnormal activation of microglia is a dominant feature of neuroinflammation, and inflammatory cytokines are found to aggravate TLE, inspiring the challenge to alter microglial activation by opioids to suppress seizures. We further evaluate how opioids can modulate microglial activation in epilepsy to enhance neuroprotection and reduce seizures. With controlled application, opioids may interrupt inflammatory cycles in epilepsy, to protect neuronal function and reduce seizures. Research on opioid-microglia interactions has important implications for epilepsy and healthcare approaches. However, preclinical research on opioid modulation of microglia supports a new therapeutic pathway for TLE.
Collapse
Affiliation(s)
| | - Thomas Ridler
- Hatherly Laboratories, Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
14
|
Marín-Teva JL, Sepúlveda MR, Neubrand VE, Cuadros MA. Microglial Phagocytosis During Embryonic and Postnatal Development. ADVANCES IN NEUROBIOLOGY 2024; 37:151-161. [PMID: 39207691 DOI: 10.1007/978-3-031-55529-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia play decisive roles during the development of the central nervous system (CNS). Phagocytosis is one of the classical functions attributed to microglia, being involved in nearly all phases of the embryonic and postnatal development of the brain, such as rapid clearance of cell debris to avoid an inflammatory response, controlling the number of neuronal and glial cells or their precursors, contribution to axon guidance and to refinement of synaptic connections. To carry out all these tasks, microglial cells are equipped with a panoply of receptors, that convert microglia to the "professional phagocytes" of the nervous parenchyma. These receptors are modulated by spatiotemporal cues that adapt the properties of microglia to the needs of the developing CNS. Thus, in this chapter, we will discuss the role of microglial phagocytosis in all the aforementioned processes. First, we will explain the general phagocytic process, to describe afterward the performance of microglial cells in detail.
Collapse
Affiliation(s)
- José L Marín-Teva
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain.
| | - M Rosario Sepúlveda
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Veronika E Neubrand
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Miguel A Cuadros
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| |
Collapse
|
15
|
Hlauschek G, Lossius MI, Schwartz DL, Silbert LC, Hicks AJ, Ponsford JL, Vivash L, Sinclair B, Kwan P, O'Brien TJ, Shultz SR, Law M, Spitz G. Reduced total number of enlarged perivascular spaces in post-traumatic epilepsy patients with unilateral lesions - a feasibility study. Seizure 2023; 113:1-5. [PMID: 37847935 DOI: 10.1016/j.seizure.2023.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND We investigated the value of automated enlarged perivascular spaces (ePVS) quantification to distinguish chronic traumatic brain injury (TBI) patients with post-traumatic epilepsy (PTE+) from chronic TBI patients without PTE (PTE-) in a feasibility study. METHODS Patients with and without PTE were recruited and underwent an MRI post-TBI. Multimodal auto identification of ePVS algorithm was applied to T1-weighted MRIs to segment ePVS. The total number of ePVS was calculated and corrected for white matter volume, and an asymmetry index (AI) derived. RESULTS PTE was diagnosed in 7 out of the 99 participants (male=69) after a median time of less than one year since injury (range 10-22). Brain lesions were observed in all 7 PTE+ cases (unilateral=4, 57%; bilateral=3, 43%) as compared to 40 PTE- cases (total 44%; unilateral=17, 42%; bilateral=23, 58%). There was a significant difference between PTE+ (M=1.21e-4, IQR [8.89e-5]) and PTE- cases (M=2.79e-4, IQR [6.25e-5]) in total corrected numbers of ePVS in patients with unilateral lesions (p=0.024). No differences in AI, trauma severity and lesion volume were seen between groups. CONCLUSION This study has shown that automated quantification of ePVS is feasible and provided initial evidence that individuals with PTE with unilateral lesions may have fewer ePVS compared to TBI patients without epilepsy. Further studies with larger sample sizes should be conducted to determine the value of ePVS quantification as a PTE-biomarker.
Collapse
Affiliation(s)
- Gernot Hlauschek
- Division of Clinical Neuroscience, National Centre for Epilepsy, Oslo University Hospital, Oslo, Norway; The University of Oslo, Oslo, Norway; Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia.
| | - Morten I Lossius
- Division of Clinical Neuroscience, National Centre for Epilepsy, Oslo University Hospital, Oslo, Norway; The University of Oslo, Oslo, Norway.
| | - Daniel L Schwartz
- Oregon Health & Science University, Oregon Alzheimer's Disease Research Center, Neurology, Advanced Imaging Research Center, USA.
| | - Lisa C Silbert
- Oregon Health & Science University, Oregon Alzheimer's Disease Research Center, Neurology, Advanced Imaging Research Center, USA.
| | - Amelia J Hicks
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia.
| | - Jennie L Ponsford
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia.
| | - Lucy Vivash
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Alfred, Melbourne, Australia,; Departments of Medicine and Neurology, The University of Melbourne, Royal Melbourne Hospital, Parkville, Australia.
| | - Benjamin Sinclair
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Alfred, Melbourne, Australia,.
| | - Patrick Kwan
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Alfred, Melbourne, Australia,; Departments of Medicine and Neurology, The University of Melbourne, Royal Melbourne Hospital, Parkville, Australia.
| | - Terrence J O'Brien
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Alfred, Melbourne, Australia,; Departments of Medicine and Neurology, The University of Melbourne, Royal Melbourne Hospital, Parkville, Australia.
| | - Sandy R Shultz
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Alfred, Melbourne, Australia,; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences, Vancouver Island University, Nanaimo, Canada.
| | - Meng Law
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia; Department of Radiology, The Alfred, Melbourne, Australia.
| | - Gershon Spitz
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia; Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia.
| |
Collapse
|
16
|
Palpagama T, Mills AR, Ferguson MW, Vikas Ankeal P, Turner C, Tippett L, van der Werf B, Waldvogel HJ, Faull RLM, Kwakowsky A. Microglial and Astrocytic Responses in the Human Midcingulate Cortex in Huntington's Disease. Ann Neurol 2023; 94:895-910. [PMID: 37528539 DOI: 10.1002/ana.26753] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVE Patients with Huntington's disease can present with variable difficulties of motor functioning, mood, and cognition. Neurodegeneration occurs in the anterior cingulate cortex of some patients with Huntington's disease and is linked to the presentation of mood symptomatology. Neuroinflammation, perpetrated by activated microglia and astrocytes, has been reported in Huntington's disease and may contribute to disease progression and presentation. This study sought to quantify the density of mutant huntingtin protein and neuroinflammatory glial changes in the midcingulate cortex of postmortem patients with Huntington's disease and determine if either correlates with the presentation of mood, motor, or mixed symptomatology. METHODS Free-floating immunohistochemistry quantified 1C2 immunolabeling density as an indicative marker of mutant huntingtin protein, and protein and morphological markers of astrocyte (EAAT2, Cx43, and GFAP), and microglial (Iba1 and HLA-DP/DQ/DR) activation. Relationships among the level of microglial activation, mutant huntingtin burden, and case characteristics were explored using correlative analysis. RESULTS We report alterations in activated microglia number and morphology in the midcingulate cortex of Huntington's disease cases with predominant mood symptomatology. An increased proportion of activated microglia was observed in the midcingulate of all Huntington's disease cases and positively correlated with 1C2 burden. Alterations in the astrocytic glutamate transporter EAAT2 were observed in the midcingulate cortex of patients associated with mood symptoms. INTERPRETATION This study presents pathological changes in microglia and astrocytes in the midcingulate cortex in Huntington's disease, which coincide with mood symptom presentation. These findings further the understanding of neuroinflammation in Huntington's disease, a necessary step for developing inflammation-targeted therapeutics. ANN NEUROL 2023;94:895-910.
Collapse
Affiliation(s)
- Thulani Palpagama
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Aimee Rose Mills
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Mackenzie Wendy Ferguson
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | - Clinton Turner
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Lynette Tippett
- Centre for Brain Research and School of Psychology, Faculty of Sciences, University of Auckland, Auckland, New Zealand
| | - Bert van der Werf
- Department of Epidemiology and Biostatistics, Faculty of Medical and Health Sciences, School of Population Health, University of Auckland, Auckland, New Zealand
| | - Henry John Waldvogel
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Lewis Maxwell Faull
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| |
Collapse
|
17
|
Deivasigamani S, Miteva MT, Natale S, Gutierrez-Barragan D, Basilico B, Di Angelantonio S, Weinhard L, Molotkov D, Deb S, Pape C, Bolasco G, Galbusera A, Asari H, Gozzi A, Ragozzino D, Gross CT. Microglia complement signaling promotes neuronal elimination and normal brain functional connectivity. Cereb Cortex 2023; 33:10750-10760. [PMID: 37718159 PMCID: PMC10629900 DOI: 10.1093/cercor/bhad313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023] Open
Abstract
Complement signaling is thought to serve as an opsonization signal to promote the phagocytosis of synapses by microglia. However, while its role in synaptic remodeling has been demonstrated in the retino-thalamic system, it remains unclear whether complement signaling mediates synaptic pruning in the brain more generally. Here we found that mice lacking the Complement receptor 3, the major microglia complement receptor, failed to show a deficit in either synaptic pruning or axon elimination in the developing mouse cortex. Instead, mice lacking Complement receptor 3 exhibited a deficit in the perinatal elimination of neurons in the cortex, a deficit that is associated with increased cortical thickness and enhanced functional connectivity in these regions in adulthood. These data demonstrate a role for complement in promoting neuronal elimination in the developing cortex.
Collapse
Affiliation(s)
- Senthilkumar Deivasigamani
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Mariya T Miteva
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
- Neuroscience Masters Programme, Sapienza University, Piazza Aldo Moro 1, 00185 Roma, Italy
| | - Silvia Natale
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Daniel Gutierrez-Barragan
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ UNITN, 38068 Rovereto, Italy
| | - Bernadette Basilico
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Laetitia Weinhard
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Dmitry Molotkov
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Sukrita Deb
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Constantin Pape
- Cell Biology and Biophysics Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Giulia Bolasco
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ UNITN, 38068 Rovereto, Italy
| | - Hiroki Asari
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ UNITN, 38068 Rovereto, Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Via Ardeatina, 00179 Rome, Italy
| | - Cornelius T Gross
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
| |
Collapse
|
18
|
Yu C, Deng XJ, Xu D. Microglia in epilepsy. Neurobiol Dis 2023; 185:106249. [PMID: 37536386 DOI: 10.1016/j.nbd.2023.106249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Epilepsy is one of most common chronic neurological disorders, and the antiseizure medications developed by targeting neurocentric mechanisms have not effectively reduced the proportion of patients with drug-resistant epilepsy. Further exploration of the cellular or molecular mechanism of epilepsy is expected to provide new options for treatment. Recently, more and more researches focus on brain network components other than neurons, among which microglia have attracted much attention for their diverse biological functions. As the resident immune cells of the central nervous system, microglia have highly plastic transcription, morphology and functional characteristics, which can change dynamically in a context-dependent manner during the progression of epilepsy. In the pathogenesis of epilepsy, highly reactive microglia interact with other components in the epileptogenic network by performing crucial functions such as secretion of soluble factors and phagocytosis, thus continuously reshaping the landscape of the epileptic brain microenvironment. Indeed, microglia appear to be both pro-epileptic and anti-epileptic under the different spatiotemporal contexts of disease, rendering interventions targeting microglia biologically complex and challenging. This comprehensive review critically summarizes the pathophysiological role of microglia in epileptic brain homeostasis alterations and explores potential therapeutic or modulatory targets for epilepsy targeting microglia.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Xue-Jun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
19
|
Balena T, Lillis K, Rahmati N, Bahari F, Dzhala V, Berdichevsky E, Staley K. A Dynamic Balance between Neuronal Death and Clearance in an in Vitro Model of Acute Brain Injury. J Neurosci 2023; 43:6084-6107. [PMID: 37527922 PMCID: PMC10451151 DOI: 10.1523/jneurosci.0436-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/15/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
In in vitro models of acute brain injury, neuronal death may overwhelm the capacity for microglial phagocytosis, creating a queue of dying neurons awaiting clearance. Neurons undergoing programmed cell death are in this queue, and are the most visible and frequently quantified measure of neuronal death after injury. However, the size of this queue should be equally sensitive to changes in neuronal death and the rate of phagocytosis. Using rodent organotypic hippocampal slice cultures as a model of acute perinatal brain injury, serial imaging demonstrated that the capacity for microglial phagocytosis of dying neurons was overwhelmed for 2 weeks. Altering phagocytosis rates (e.g., by changing the number of microglia) dramatically changed the number of visibly dying neurons. Similar effects were generated when the visibility of dying neurons was altered by changing the membrane permeability for stains that label dying neurons. Canonically neuroprotective interventions, such as seizure blockade, and neurotoxic maneuvers, such as perinatal ethanol exposure, were mediated by effects on microglial activity and the membrane permeability of neurons undergoing programmed cell death. These canonically neuroprotective and neurotoxic interventions had either no or opposing effects on healthy surviving neurons identified by the ongoing expression of transgenic fluorescent proteins.SIGNIFICANCE STATEMENT In in vitro models of acute brain injury, microglial phagocytosis is overwhelmed by the number of dying cells. Under these conditions, the assumptions on which assays for neuroprotective and neurotoxic effects are based are no longer valid. Thus, longitudinal assays of healthy cells, such as serial assessment of the fluorescence emission of transgenically expressed proteins, provide more accurate estimates of cell death than do single-time point anatomic or biochemical assays of the number of dying neurons. More accurate estimates of death rates in vitro will increase the translatability of preclinical studies of neuroprotection and neurotoxicity.
Collapse
Affiliation(s)
- Trevor Balena
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Kyle Lillis
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Negah Rahmati
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Fatemeh Bahari
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Volodymyr Dzhala
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Eugene Berdichevsky
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
| | - Kevin Staley
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| |
Collapse
|
20
|
Yang X, Cao Q, Guo Y, He J, Xu D, Lin A. GSDMD knockdown attenuates phagocytic activity of microglia and exacerbates seizure susceptibility in TLE mice. J Neuroinflammation 2023; 20:193. [PMID: 37612735 PMCID: PMC10464294 DOI: 10.1186/s12974-023-02876-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Temporal lobe epilepsy (TLE) is often characterized pathologically by severe neuronal loss in the hippocampus. Phagocytic activity of microglia is essential for clearing apoptotic neuronal debris, allowing for repair and regeneration. Our previous research has shown that gasdermin D (GSDMD)-mediated pyroptosis is involved in the pathogenesis of TLE. However, whether GSDMD-mediated pyroptosis influences the accumulation of apoptotic neurons remains unclear. Therefore, the present study was designed to investigate whether phagocytic activity of microglia is involved in GSDMD-mediated pyroptosis and the pathogenesis of TLE. METHODS To establish a TLE model, an intra-amygdala injection of kainic acid (KA) was performed. The Racine score and local field potential (LFP) recordings were used to assess seizure severity. Neuronal death in the bilateral hippocampus was assessed by Nissl staining and TUNEL staining. Microglial morphology and phagocytic activity were detected by immunofluorescence and verified by lipopolysaccharide (LPS) and the P2Y12R agonist 2MeSADP. RESULTS GSDMD knockdown augmented the accumulation of apoptotic neurons and seizure susceptibility in TLE mice. Microglia activated and transition to the M1 type with increased pro-inflammatory cytokines. Furthermore, GSDMD knockdown attenuated the migration and phagocytic activity of microglia. Of note, LPS-activated microglia attenuated seizure susceptibility and the accumulation of apoptotic neurons in TLE after GSDMD knockdown. A P2Y12R selective agonist, 2MeSADP, enhanced the migration and phagocytic activity of microglia. CONCLUSIONS Our results demonstrate that GSDMD knockdown exacerbates seizure susceptibility and the accumulation of apoptotic neurons by attenuating phagocytic activity of microglia. These findings suggest that GSDMD plays a protective role against KA-induced seizure susceptibility.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China
| | - Qingqing Cao
- Department of Neurology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, No. 9 Shuangxing Road, Chongqing, 402760, China
| | - Yi Guo
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2, 1st Ring Rd, Chengdu, 610072, Sichuan, China
| | - Jingchuan He
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin Huanhu Hospital, No.6 Jizhao Road Jinnan District, Tianjin, 300350, China
| | - Demei Xu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1Youyi Road, Chongqing, 400016, China
| | - Aolei Lin
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China.
| |
Collapse
|
21
|
Kobayashi M, Moro N, Yoshino A, Kumagawa T, Shijo K, Maeda T, Oshima H. Inhibition of P2X4 and P2X7 receptors improves histological and behavioral outcomes after experimental traumatic brain injury in rats. Exp Ther Med 2023; 26:378. [PMID: 37456165 PMCID: PMC10347371 DOI: 10.3892/etm.2023.12077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Release of large amounts of adenosine triphosphate (ATP), a gliotransmitter, into the extracellular space by traumatic brain injury (TBI) is considered to activate the microglia followed by release of inflammatory cytokines resulting in excessive inflammatory response that induces secondary brain injury. The present study investigated whether antagonists of ATP receptors (P2X4 and/or P2X7) on microglia are beneficial for reducing the post-injury inflammatory response that leads to secondary injury, a prognostic aggravation factor of TBI. Adult male Sprague-Dawley rats were subjected to cortical contusion injury (CCI) and randomly assigned to injury and drug treatment conditions, as follows: i) No surgical intervention (naïve group); ii) dimethyl sulfoxide treatment after CCI (CCI-control group); iii) 5-BDBD (antagonist of P2X4 receptor) treatment after CCI (CCI-5-BDBD group); iv) CCI-AZ11645373 (antagonist of P2X7 receptor) treatment after CCI (CCI-AZ11645373 group); v) or 5-BDBD and AZ11645373 treatment after CCI (CCI-5-BDBD + AZ11645373 group). In the CCI-5-BDBD, CCI-AZ11645373, and CCI-5-BDBD + AZ11645373 groups, expression of activated microglia was suppressed in the ipsilateral cortex and hippocampus 3 days after the CCI. Western blotting with ionized calcium-binding adaptor molecule 1 antibody revealed that administration of CCI-5-BDBD and/or CCI-AZ11645373 suppressed expression of microglia and reduced expression of inflammatory cytokine mRNA 3 days after the CCI. Furthermore, the plus maze test, which reflects the spatial memory function and involves the hippocampal function, showed improvement 28 days after secondary injury to the hippocampus. These findings confirmed that blocking the P2X4 and P2X7 receptors, which are ATP receptors central in gliotransmission, suppresses microglial activation and subsequent cytokine expression after brain injury, and demonstrates the potential as an effective treatment for reducing secondary brain injury.
Collapse
Affiliation(s)
- Masato Kobayashi
- Division of Neurosurgery, Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Nobuhiro Moro
- Division of Neurosurgery, Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
- Department of Neurological Surgery, Honjo-General Hospital, Saitama 367-0031, Japan
| | - Atsuo Yoshino
- Division of Neurosurgery, Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Takahiro Kumagawa
- Division of Neurosurgery, Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Katsunori Shijo
- Division of Neurosurgery, Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Takeshi Maeda
- Division of Neurosurgery, Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hideki Oshima
- Division of Neurosurgery, Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
22
|
Ruiz-Clavijo L, Martín-Suárez S. The differential response to neuronal hyperexcitation and neuroinflammation of the hippocampal neurogenic niche. Front Neurosci 2023; 17:1186256. [PMID: 37496737 PMCID: PMC10366379 DOI: 10.3389/fnins.2023.1186256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Hippocampal neurogenesis is a tightly regulated process in which neural stem cells (NSCs) get activated, enter in the cell cycle and give rise to neurons after a multistep process. Quiescent and activated NSCs, neural precursors, immature and mature neurons and newborn astrocytes coexist in the neurogenic niche in a strictly controlled environment which maintains the correct functioning of neurogenesis. NSCs are the first step in the neurogenic process and are a finite and, mostly, non-renewable resource, therefore any alteration of the intrinsic properties of NSCs will impact the total neurogenic output. Neuronal hyperexcitation is a strong activator of NSCs prompting them to divide and therefore increasing neurogenesis. However, neuronal hyperactivity is not an isolated process but often also involves excitotoxicity which is subsequently accompanied by neuroinflammation. Neuroinflammation normally reduces the activation of NSCs. It is technically difficult to isolate the effect of neuronal hyperexcitation alone, but neuroinflammation without neuronal hyperexcitation can be studied in a variety of models. In order to shed light on how the balance of neuronal hyperexcitation and neuroinflammation affect NSCs we analyzed proliferation and morphology of NSCs. We used two models of neuronal hyperactivity [an epilepsy model induced by KA, and a model of traumatic brain injury (TBI)] and different models of inflammation (LPS, Poly I:C, IFN-α and IL-6). We observed that only those models that induce neuronal hyperactivity induce NSCs activation but neuroinflammation causes the opposite effect. We also analyzed the response of other cell types in the neurogenic niche, focusing on astrocytes.
Collapse
|
23
|
Wijesinghe P, Whitmore CA, Campbell M, Li C, Tsuyuki M, To E, Haynes J, Pham W, Matsubara JA. Ergothioneine, a dietary antioxidant improves amyloid beta clearance in the neuroretina of a mouse model of Alzheimer’s disease. Front Neurosci 2023; 17:1107436. [PMID: 36998724 PMCID: PMC10043244 DOI: 10.3389/fnins.2023.1107436] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/02/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionErgothioneine (Ergo) is a naturally occurring dietary antioxidant. Ergo uptake is dependent on the transporter, organic cation transporter novel-type 1 (OCTN1) distribution. OCTN1 is highly expressed in blood cells (myeloid lineage cells), brain and ocular tissues that are likely predisposed to oxidative stress. Ergo may protect the brain and eye against oxidative damage and inflammation, however, the underlying mechanism remains unclear. Amyloid beta (Aβ) clearance is a complex process mediated by various systems and cell types including vascular transport across the blood–brain barrier, glymphatic drainage, and engulfment and degradation by resident microglia and infiltrating innate immune cells. Impaired Aβ clearance is a major cause for Alzheimer’s disease (AD). Here we investigated neuroretinas to explore the neuroprotective effect of Ergo in a transgenic AD mouse model.MethodsAge-matched groups of Ergo-treated 5XFAD, non-treated 5XFAD, and C57BL/6J wildtype (WT controls) were used to assess Ergo transporter OCTN1 expression and Aβ load along with microglia/macrophage (IBA1) and astrocyte (GFAP) markers in wholemount neuroretinas (n = 26) and eye cross-sections (n = 18). Immunoreactivity was quantified by fluorescence or by semi-quantitative assessments.Results and discussionOCTN1 immunoreactivity was significantly low in the eye cross-sections of Ergo-treated and non-treated 5XFAD vs. WT controls. Strong Aβ labeling, detected in the superficial layers in the wholemounts of Ergo-treated 5XFAD vs. non-treated 5XFAD reflects the existence of an effective Aβ clearance system. This was supported by imaging of cross-sections where Aβ immunoreactivity was significantly low in the neuroretina of Ergo-treated 5XFAD vs. non-treated 5XFAD. Moreover, semi-quantitative analysis in wholemounts identified a significantly reduced number of large Aβ deposits or plaques, and a significantly increased number of IBA1(+)ve blood-derived phagocytic macrophages in Ergo-treated 5XFAD vs. non-treated 5XFAD. In sum, enhanced Aβ clearance in Ergo-treated 5XFAD suggests that Ergo uptake may promote Aβ clearance possibly by blood-derived phagocytic macrophages and via perivascular drainage.
Collapse
Affiliation(s)
- Printha Wijesinghe
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Eye Care Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Clayton A. Whitmore
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Matthew Campbell
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Eye Care Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Charles Li
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Eye Care Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Miranda Tsuyuki
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Eye Care Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Eleanor To
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Eye Care Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Justin Haynes
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Wellington Pham
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Joanne A. Matsubara
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Eye Care Centre, The University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Joanne A. Matsubara,
| |
Collapse
|
24
|
Balena T, Lillis K, Rahmati N, Bahari F, Dzhala V, Berdichevsky E, Staley K. A dynamic balance between neuronal death and clearance after acute brain injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528332. [PMID: 36824708 PMCID: PMC9948967 DOI: 10.1101/2023.02.14.528332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
After acute brain injury, neuronal apoptosis may overwhelm the capacity for microglial phagocytosis, creating a queue of dying neurons awaiting clearance. The size of this queue should be equally sensitive to changes in neuronal death and the rate of phagocytosis. Using rodent organotypic hippocampal slice cultures as a model of acute perinatal brain injury, serial imaging demonstrated that the capacity for microglial phagocytosis of dying neurons was overwhelmed for two weeks. Altering phagocytosis rates, e.g. by changing the number of microglia, dramatically changed the number of visibly dying neurons. Similar effects were generated when the visibility of dying neurons was altered by changing the membrane permeability for vital stains. Canonically neuroprotective interventions such as seizure blockade and neurotoxic maneuvers such as perinatal ethanol exposure were mediated by effects on microglial activity and the membrane permeability of apoptotic neurons, and had either no or opposing effects on healthy surviving neurons. Significance After acute brain injury, microglial phagocytosis is overwhelmed by the number of dying cells. Under these conditions, the assumptions on which assays for neuroprotective and neurotoxic effects are based are no longer valid. Thus longitudinal assays of healthy cells, such as assessment of the fluorescence emission of transgenically-expressed proteins, provide more accurate estimates of cell death than do single-time-point anatomical or biochemical assays. More accurate estimates of death rates will increase the translatability of preclinical studies of neuroprotection and neurotoxicity.
Collapse
|
25
|
Beccari S, Sierra-Torre V, Valero J, Pereira-Iglesias M, García-Zaballa M, Soria FN, De Las Heras-Garcia L, Carretero-Guillen A, Capetillo-Zarate E, Domercq M, Huguet PR, Ramonet D, Osman A, Han W, Dominguez C, Faust TE, Touzani O, Pampliega O, Boya P, Schafer D, Mariño G, Canet-Soulas E, Blomgren K, Plaza-Zabala A, Sierra A. Microglial phagocytosis dysfunction in stroke is driven by energy depletion and induction of autophagy. Autophagy 2023:1-30. [PMID: 36622892 DOI: 10.1080/15548627.2023.2165313] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Microglial phagocytosis of apoptotic debris prevents buildup damage of neighbor neurons and inflammatory responses. Whereas microglia are very competent phagocytes under physiological conditions, we report their dysfunction in mouse and preclinical monkey models of stroke (macaques and marmosets) by transient occlusion of the medial cerebral artery (tMCAo). By analyzing recently published bulk and single cell RNA sequencing databases, we show that the phagocytosis dysfunction was not explained by transcriptional changes. In contrast, we demonstrate that the impairment of both engulfment and degradation was related to energy depletion triggered by oxygen and nutrient deprivation (OND), which led to reduced process motility, lysosomal exhaustion, and the induction of a protective macroautophagy/autophagy response in microglia. Basal autophagy, in charge of removing and recycling intracellular elements, was critical to maintain microglial physiology, including survival and phagocytosis, as we determined both in vivo and in vitro using pharmacological and transgenic approaches. Notably, the autophagy inducer rapamycin partially prevented the phagocytosis impairment induced by tMCAo in vivo but not by OND in vitro, where it even had a detrimental effect on microglia, suggesting that modulating microglial autophagy to optimal levels may be a hard to achieve goal. Nonetheless, our results show that pharmacological interventions, acting directly on microglia or indirectly on the brain environment, have the potential to recover phagocytosis efficiency in the diseased brain. We propose that phagocytosis is a therapeutic target yet to be explored in stroke and other brain disorders and provide evidence that it can be modulated in vivo using rapamycin.Abbreviations: AIF1/IBA1: allograft inflammatory factor 1; AMBRA1: autophagy/beclin 1 regulator 1; ATG4B: autophagy related 4B, cysteine peptidase; ATP: adenosine triphosphate; BECN1: beclin 1, autophagy related; CASP3: caspase 3; CBF: cerebral blood flow; CCA: common carotid artery; CCR2: chemokine (C-C motif) receptor 2; CIR: cranial irradiation; Csf1r/v-fms: colony stimulating factor 1 receptor; CX3CR1: chemokine (C-X3-C motif) receptor 1; DAPI: 4',6-diamidino-2-phenylindole; DG: dentate gyrus; GO: Gene Ontology; HBSS: Hanks' balanced salt solution; HI: hypoxia-ischemia; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MCA: medial cerebral artery; MTOR: mechanistic target of rapamycin kinase; OND: oxygen and nutrient deprivation; Ph/A coupling: phagocytosis-apoptosis coupling; Ph capacity: phagocytic capacity; Ph index: phagocytic index; SQSTM1: sequestosome 1; RNA-Seq: RNA sequencing; TEM: transmission electron microscopy; tMCAo: transient medial cerebral artery occlusion; ULK1: unc-51 like kinase 1.
Collapse
Affiliation(s)
- Sol Beccari
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Virginia Sierra-Torre
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Jorge Valero
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain.,Neural Plasticity and Neurorepair Group, Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León (INCyL), and Institute for Biomedical Research of Salamanca, University of Salamanca, 37007, Salamanca, Spain
| | - Marta Pereira-Iglesias
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Mikel García-Zaballa
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Federico N Soria
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain.,Ikerbasque Foundation, 48009, Bilbao, Bizkaia, Spain
| | - Laura De Las Heras-Garcia
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Alejandro Carretero-Guillen
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain
| | - Estibaliz Capetillo-Zarate
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain.,Ikerbasque Foundation, 48009, Bilbao, Bizkaia, Spain.,Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Maria Domercq
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Paloma R Huguet
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - David Ramonet
- INSERM U1060 CarMeN, Université Claude Bernard Lyon 1 - IRIS team, CarMeN, bat. B13, gpt hosp. Est, 59 bld Pinel, 69500, Bron, Auvergne-Rhône-Alpes, France
| | - Ahmed Osman
- Department of Women and Children´s Health, Karolisnka Institute, 17164, Stockholm, Södermanland and Uppland, Sweden
| | - Wei Han
- Department of Women and Children´s Health, Karolisnka Institute, 17164, Stockholm, Södermanland and Uppland, Sweden
| | - Cecilia Dominguez
- Department of Women and Children´s Health, Karolisnka Institute, 17164, Stockholm, Södermanland and Uppland, Sweden
| | - Travis E Faust
- Department of Neurobiology, University of Massachusetts Medical School, 01605, Worcester, MA, USA
| | - Omar Touzani
- Normandie-Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, 14000, Caen, Normandie, France
| | - Olatz Pampliega
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Patricia Boya
- Laboratory of Autophagy, Centro de Investigaciones Biológicas Margarita Salas, Madrid 28040, Spain.,Department of Medicine, University of Fribourg, 1700, Freiburg, Switzerland
| | - Dorothy Schafer
- Department of Neurobiology, University of Massachusetts Medical School, 01605, Worcester, MA, USA
| | - Guillermo Mariño
- Department of Medicine, University of Fribourg, 1700, Freiburg, Switzerland.,Department of Functional Biology, University of Oviedo, 33003, Oviedo, Asturias, Spain
| | - Emmanuelle Canet-Soulas
- INSERM U1060 CarMeN, Université Claude Bernard Lyon 1 - IRIS team, CarMeN, bat. B13, gpt hosp. Est, 59 bld Pinel, 69500, Bron, Auvergne-Rhône-Alpes, France
| | - Klas Blomgren
- Department of Women and Children´s Health, Karolisnka Institute, 17164, Stockholm, Södermanland and Uppland, Sweden.,Department of Pediatric Oncology, Karolinska University Hospital, 171 64, Stockholm, Södermanland and Uppland, Sweden
| | - Ainhoa Plaza-Zabala
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Pharmacology, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Amanda Sierra
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain.,Ikerbasque Foundation, 48009, Bilbao, Bizkaia, Spain
| |
Collapse
|
26
|
Nguyen P, Brewster AL. Who Dunnit? Angiotensin, Inflammation, or Complement: Unresolved. Epilepsy Curr 2023; 23:133-135. [PMID: 37122407 PMCID: PMC10131566 DOI: 10.1177/15357597221150057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
[Box: see text]
Collapse
Affiliation(s)
- Phuoc Nguyen
- Biological Sciences, Southern Methodist University Ringgold Standard Institution
| | - Amy L. Brewster
- Biological Sciences, Southern Methodist University Ringgold Standard Institution
| |
Collapse
|
27
|
Wang Z, Wang Q, Li S, Li XJ, Yang W, He D. Microglial autophagy in Alzheimer's disease and Parkinson's disease. Front Aging Neurosci 2023; 14:1065183. [PMID: 36704504 PMCID: PMC9872664 DOI: 10.3389/fnagi.2022.1065183] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases, characterized by gradual and selective loss of neurons in the central nervous system. They affect more than 50 million people worldwide, and their incidence increases with age. Although most cases of AD and PD are sporadic, some are caused by genetic mutations that are inherited. Both sporadic and familial cases display complex neuropathology and represent the most perplexing neurological disorders. Because of the undefined pathogenesis and complex clinical manifestations, there is still no effective treatment for both AD and PD. Understanding the pathogenesis of these important neurodegenerative diseases is important for developing successful therapies. Increasing evidence suggests that microglial autophagy is associated with the pathogenesis of AD and PD, and its dysfunction has been implicated in disease progression. In this review, we focus on the autophagy function in microglia and its dysfunction in AD and PD disease models in an attempt to help our understanding of the pathogenesis and identifying new therapeutic targets of AD and PD.
Collapse
Affiliation(s)
| | | | | | | | | | - Dajian He
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
28
|
Lu K, Hong Y, Tao M, Shen L, Zheng Z, Fang K, Yuan F, Xu M, Wang C, Zhu D, Guo X, Liu Y. Depressive patient-derived GABA interneurons reveal abnormal neural activity associated with HTR2C. EMBO Mol Med 2022; 15:e16364. [PMID: 36373384 PMCID: PMC9832822 DOI: 10.15252/emmm.202216364] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Major depressive disorder with suicide behavior (sMDD) is a server mood disorder, bringing tremendous burden to family and society. Although reduced gamma amino butyric acid (GABA) level has been observed in postmortem tissues of sMDD patients, the molecular mechanism by which GABA levels are altered remains elusive. In this study, we generated induced pluripotent stem cells (iPSC) from five sMDD patients and differentiated the iPSCs to GABAergic interneurons (GINs) and ventral forebrain organoids. sMDD GINs exhibited altered neuronal morphology and increased neural firing, as well as weakened calcium signaling propagation, compared with controls. Transcriptomic sequencing revealed that a decreased expression of serotoninergic receptor 2C (5-HT2C) may cause the defected neuronal activity in sMDD. Furthermore, targeting 5-HT2C receptor, using a small molecule agonist or genetic approach, restored neuronal activity deficits in sMDD GINs. Our findings provide a human cellular model for studying the molecular mechanisms and drug discoveries for sMDD.
Collapse
Affiliation(s)
- Kaiqin Lu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Yuan Hong
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Mengdan Tao
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Luping Shen
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Zhilong Zheng
- Department of NeurobiologyKey Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| | - Kaiheng Fang
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Fang Yuan
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Min Xu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Dongya Zhu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Xing Guo
- Department of NeurobiologyKey Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina,Co‐innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| |
Collapse
|
29
|
Marinelli S, Marrone MC, Di Domenico M, Marinelli S. Endocannabinoid signaling in microglia. Glia 2022; 71:71-90. [PMID: 36222019 DOI: 10.1002/glia.24281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Microglia, the innate immune cells of the central nervous system (CNS), execute their sentinel, housekeeping and defense functions through a panoply of genes, receptors and released cytokines, chemokines and neurotrophic factors. Moreover, microglia functions are closely linked to the constant communication with other cell types, among them neurons. Depending on the signaling pathway and type of stimuli involved, the outcome of microglia operation can be neuroprotective or neurodegenerative. Accordingly, microglia are increasingly becoming considered cellular targets for therapeutic intervention. Among signals controlling microglia activity, the endocannabinoid (EC) system has been shown to exert a neuroprotective role in many neurological diseases. Like neurons, microglia express functional EC receptors and can produce and degrade ECs. Interestingly, boosting EC signaling leads to an anti-inflammatory and neuroprotective microglia phenotype. Nonetheless, little evidence is available on the microglia-mediated therapeutic effects of EC compounds. This review focuses on the EC signals acting on the CNS microglia in physiological and pathological conditions, namely on the CB1R, CB2R and TRPV1-mediated regulation of microglia properties. It also provides new evidence, which strengthens the understanding of mechanisms underlying the control of microglia functions by ECs. Given the broad expression of the EC system in glial and neuronal cells, the resulting picture is the need for in vivo studies in transgenic mouse models to dissect the contribution of EC microglia signaling in the neuroprotective effects of EC-derived compounds.
Collapse
Affiliation(s)
- Sara Marinelli
- CNR-National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Maria Cristina Marrone
- EBRI-Fondazione Rita Levi Montalcini, Rome, Italy.,Ministry of University and Research, Mission Unity for Recovery and Resilience Plan, Rome, Italy
| | - Marina Di Domenico
- EBRI-Fondazione Rita Levi Montalcini, Rome, Italy.,Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| | | |
Collapse
|
30
|
Hemati-Gourabi M, Cao T, Romprey MK, Chen M. Capacity of astrocytes to promote axon growth in the injured mammalian central nervous system. Front Neurosci 2022; 16:955598. [PMID: 36203815 PMCID: PMC9530187 DOI: 10.3389/fnins.2022.955598] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/15/2022] [Indexed: 01/02/2023] Open
Abstract
Understanding the regulation of axon growth after injury to the adult central nervous system (CNS) is crucial to improve neural repair. Following acute focal CNS injury, astrocytes are one cellular component of the scar tissue at the primary lesion that is traditionally associated with inhibition of axon regeneration. Advances in genetic models and experimental approaches have broadened knowledge of the capacity of astrocytes to facilitate injury-induced axon growth. This review summarizes findings that support a positive role of astrocytes in axon regeneration and axon sprouting in the mature mammalian CNS, along with potential underlying mechanisms. It is important to recognize that astrocytic functions, including modulation of axon growth, are context-dependent. Evidence suggests that the local injury environment, neuron-intrinsic regenerative potential, and astrocytes’ reactive states determine the astrocytic capacity to support axon growth. An integrated understanding of these factors will optimize therapeutic potential of astrocyte-targeted strategies for neural repair.
Collapse
Affiliation(s)
| | - Tuoxin Cao
- Spinal Cord and Brain Injury Research Center, Lexington, KY, United States
| | - Megan K. Romprey
- Spinal Cord and Brain Injury Research Center, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Meifan Chen
- Spinal Cord and Brain Injury Research Center, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- *Correspondence: Meifan Chen,
| |
Collapse
|
31
|
Gabrielli M, Raffaele S, Fumagalli M, Verderio C. The multiple faces of extracellular vesicles released by microglia: Where are we 10 years after? Front Cell Neurosci 2022; 16:984690. [PMID: 36176630 PMCID: PMC9514840 DOI: 10.3389/fncel.2022.984690] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
As resident component of the innate immunity in the central nervous system (CNS), microglia are key players in pathology. However, they also exert fundamental roles in brain development and homeostasis maintenance. They are extremely sensitive and plastic, as they assiduously monitor the environment, adapting their function in response to stimuli. On consequence, microglia may be defined a heterogeneous community of cells in a dynamic equilibrium. Extracellular vesicles (EVs) released by microglia mirror the dynamic nature of their donor cells, exerting important and versatile functions in the CNS as unbounded conveyors of bioactive signals. In this review, we summarize the current knowledge on EVs released by microglia, highlighting their heterogeneous properties and multifaceted effects.
Collapse
Affiliation(s)
- Martina Gabrielli
- CNR Institute of Neuroscience, Vedano al Lambro, Italy
- *Correspondence: Martina Gabrielli,
| | - Stefano Raffaele
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Claudia Verderio
- CNR Institute of Neuroscience, Vedano al Lambro, Italy
- Claudia Verderio,
| |
Collapse
|
32
|
Chen W, Zhang Y, Zhai X, Xie L, Guo Y, Chen C, Li Y, Wang F, Zhu Z, Zheng L, Wan J, Li P. Microglial phagocytosis and regulatory mechanisms after stroke. J Cereb Blood Flow Metab 2022; 42:1579-1596. [PMID: 35491825 PMCID: PMC9441720 DOI: 10.1177/0271678x221098841] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stroke, including ischemic stroke and hemorrhagic stroke can cause massive neuronal death and disruption of brain structure, which is followed by secondary inflammatory injury initiated by pro-inflammatory molecules and cellular debris. Phagocytic clearance of cellular debris by microglia, the brain's scavenger cells, is pivotal for neuroinflammation resolution and neurorestoration. However, microglia can also exacerbate neuronal loss by phagocytosing stressed-but-viable neurons in the penumbra, thereby expanding the injury area and hindering neurofunctional recovery. Microglia constantly patrol the central nervous system using their processes to scour the cellular environment and start or cease the phagocytosis progress depending on the "eat me" or "don't eat me'' signals on cellular surface. An optimal immune response requires a delicate balance between different phenotypic states to regulate neuro-inflammation and facilitate reconstruction after stroke. Here, we examine the literature and discuss the molecular mechanisms and cellular pathways regulating microglial phagocytosis, their resulting effects in brain injury and neural regeneration, as well as the potential therapeutic targets that might modulate microglial phagocytic activity to improve neurological function after stroke.
Collapse
Affiliation(s)
- Weijie Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueman Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaozhu Zhai
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lv Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunlu Guo
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fajun Wang
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ziyu Zhu
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zheng
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieqing Wan
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Liao S, Luo Y, Chunchai T, Singhanat K, Arunsak B, Benjanuwattra J, Apaijai N, Chattipakorn N, Chattipakorn SC. An apoptosis inhibitor suppresses microglial and astrocytic activation after cardiac ischemia/reperfusion injury. Inflamm Res 2022; 71:861-872. [PMID: 35655102 DOI: 10.1007/s00011-022-01590-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Microglial hyperactivation and apoptosis were observed following myocardial infarction and ischemia reperfusion (I/R) injury. This study aimed to test the hypothesis that the apoptosis inhibitor, Z-VAD, attenuates microglial and astrocytic hyperactivation and brain inflammation in rats with cardiac I/R injury. MATERIALS AND METHODS Rats were subjected to either sham or cardiac I/R operation (30 min-ischemia followed by 120-min reperfusion), rats in the cardiac I/R group were given either normal saline solution or Z-VAD at 3.3 mg/kg via intravenous injection 15 min prior to cardiac ischemia. Left ventricular ejection fraction (% LVEF) was determined during the cardiac I/R protocol. The brain tissues were removed and used to determine brain apoptosis, brain inflammation, microglial and astrocyte morphology. RESULTS Cardiac dysfunction was observed in rats with cardiac I/R injury as indicated by decreased %LVEF. In the brain, we found brain apoptosis, brain inflammation, microglia hyperactivation, and reactive astrogliosis occurred following cardiac I/R injury. Pretreatment with Z-VAD effectively increased %LVEF, reduced brain apoptosis, attenuated brain inflammation by decreasing IL-1β mRNA levels, suppressed microglial and astrocytic hyperactivation and proliferation after cardiac I/R injury. CONCLUSION Z-VAD exerts neuroprotective effects against cardiac I/R injury not only targeting apoptosis but also microglial and astrocyte activation.
Collapse
Affiliation(s)
- Suchan Liao
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ying Luo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kodchanan Singhanat
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Busarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Juthipong Benjanuwattra
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
34
|
Thiel WA, Blume ZI, Mitchell DM. Compensatory engulfment and Müller glia reactivity in the absence of microglia. Glia 2022; 70:1402-1425. [PMID: 35451181 DOI: 10.1002/glia.24182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 01/25/2023]
Abstract
Microglia are known for important phagocytic functions in the vertebrate retina. Reports also suggest that Müller glia have phagocytic capacity, though the relative levels and contexts in which this occurs remain to be thoroughly examined. Here, we investigate Müller glial engulfment of dying cells in the developing zebrafish retina in the presence and absence of microglia, using a genetic mutant in which microglia do not develop. We show that in normal conditions clearance of dying cells is dominated by microglia; however, Müller glia do have a limited clearance role. In retinas lacking intact microglial populations, we found a striking increase in the engulfment load assumed by the Müller glia, which displayed prominent cellular compartments containing apoptotic cells, several of which localized with the early phagosome/endosome marker Rab5. Consistent with increased engulfment, lysosomal staining was also increased in Müller glia in the absence of microglia. Increased engulfment load led to evidence of Müller glia reactivity including upregulation of gfap but did not trigger cell cycle re-entry by differentiated Müller glia. Our work provides important insight into the phagocytic capacity of Müller glia and the ability for compensatory functions and downstream effects. Therefore, effects of microglial deficiency or depletion on other glial cell types should be well-considered in experimental manipulations, in neurodegenerative disease, and in therapeutic approaches that target microglia. Our findings further justify future work to understand differential mechanisms and contexts of phagocytosis by glial cells in the central nervous system, and the significance of these mechanisms in health and disease.
Collapse
Affiliation(s)
- Whitney A Thiel
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Zachary I Blume
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Diana M Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
35
|
Thuraisingham RA. A kinetic scheme to examine the role of glial cells in the pathogenesis of Alzheimer's disease. Metab Brain Dis 2022; 37:801-805. [PMID: 35032278 DOI: 10.1007/s11011-022-00902-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/03/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that leads to severe impairments in cognitive functions including memory and learning. An improved kinetic model is proposed here to understand the pathogenesis of AD in particular the role of glial cells in the presence of amyloid plaques and neurofibrillary tangles (NFTs). The kinetic model describes the production of activated microglia and astroglia. It involves two rate equations and incorporates the dual role of these glial cells which can function as neuroprotective and as neurotoxic cells. Examination of the steady state solutions of the model predicts an increase in population of these glial cells as (AD) progresses, and that this continues to increase linearly even after the amyloid population has reached a plateau.This is in agreement with experimental data. Limiting AD to the effect of amyloid peptides alone is incorrect and the role of neurofibrillary tangles, clearance rate of dead neurons and neuroinflammation from glial cells are vital and must be included in understanding the pathogenesis of AD. The study shows that increasing the clearance of dead neurons and use of any method to deactivate the glial cells will diminish the progression of AD.
Collapse
|
36
|
Guo J, Qiu T, Wang L, Shi L, Ai M, Xia Z, Peng Z, Zheng A, Li X, Kuang L. Microglia Loss and Astrocyte Activation Cause Dynamic Changes in Hippocampal [18F]DPA-714 Uptake in Mouse Models of Depression. Front Cell Neurosci 2022; 16:802192. [PMID: 35250485 PMCID: PMC8896346 DOI: 10.3389/fncel.2022.802192] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/31/2022] [Indexed: 12/18/2022] Open
Abstract
Major depression is a serious and chronic mental illness. However, its etiology is poorly understood. Although glial cells have been increasingly implicated in the pathogenesis of depression, the specific role of microglia and astrocytes in stress-induced depression remains unclear. Translocator protein (TSPO) has long been considered a marker of neuroinflammation and microglial activation. However, this protein is also present on astrocytes. Thus, it is necessary to explore the relationships between TSPO, microglia, and astrocytes in the context of depression. In this study, C57BL/6J male mice were subjected to chronic unpredictable stress (CUS) for 5 weeks. Subsequently, sucrose preference and tail suspension tests (TSTs) were performed to assess anhedonia and despair in these mice. [18F]DPA-714 positron emission tomography (PET) was adopted to dynamically assess the changes in glial cells before and 2, 4, or 5 weeks after CUS exposure. The numbers of TSPO+ cells, ionized calcium-binding adaptor molecule (Iba)-1+ microglial cells, TSPO+/Iba-1+ cells, glial fibrillary acidic protein (GFAP)+ astrocytes, TSPO+/GFAP+ cells, and TUNEL-stained microglia were quantified using immunofluorescence staining. Real-time PCR was used to evaluate interleukin (IL)-1β, IL-4, and IL-18 expression in the hippocampus. We observed that hippocampal [18F]DPA-714 uptake significantly increased after 2 weeks of CUS. However, the signal significantly decreased after 5 weeks of CUS. CUS significantly reduced the number of Iba-1+, TSPO+, and TSPO+/Iba-1+ cells in the hippocampus, especially in the CA1 and dentate gyrus (DG) subregions. However, this intervention increased the number of GFAP+ astrocytes in the CA2/CA3 subregions of the hippocampus. In addition, microglial apoptosis in the early stage of CUS appeared to be involved in microglia loss. Further, the expression of pro-inflammatory cytokines (IL-1β and IL-18) was significantly decreased after CUS. In contrast, the expression of the anti-inflammatory cytokine IL-4 was significantly increased after 2 weeks of CUS. These results suggested that the CUS-induced dynamic changes in hippocampal [18F]DPA-714 uptake and several cytokines may be due to combined microglial and astrocyte action. These findings provide a theoretical reference for the future clinical applications of TSPO PET.
Collapse
Affiliation(s)
- Jiamei Guo
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian Qiu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixia Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Shi
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Ai
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Xia
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiping Peng
- College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Anhai Zheng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Kuang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Li Kuang,
| |
Collapse
|
37
|
Kulkarni B, Cruz-Martins N, Kumar D. Microglia in Alzheimer's Disease: An Unprecedented Opportunity as Prospective Drug Target. Mol Neurobiol 2022; 59:2678-2693. [PMID: 35149973 DOI: 10.1007/s12035-021-02661-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/20/2021] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is an ever more common neurodegenerative disease among the elderly, characterized by recurrent neuroinflammation and amyloid beta (Aβ) accumulation in the brain parenchyma. Recent genome-wide association studies (GWAS) have shown a distinct role for the innate immune system in AD, with microglia playing a key role. The function of microglial cells is stringently regulated by the neighboring microenvironment in the brain. Upon interruption in diseases, like AD, it demonstrates neurotoxic and neuroprotective action by M1 (neurotoxic) and M2 (neuroprotective) microglial phenotypes, respectively, in the brain. Microglial cells on activation by complement factors, toll-like receptors, and genetic variants result in Aβ' phagocytosis, synaptic pruning, and reactivation of complement pathway. Recent studies have demonstrated the presence of potential therapeutic targets in microglial cells. Immune receptors revealed on microglia as potential drug targets can be paired immunoglobulin-like type 2 receptor (PILR), CD3358, and triggering receptor expressed on myeloid cells 2 (TREM2), as they can have impact on late-onset AD occurrence and progression. Thus, targeting these receptors can accentuate the beneficial effects of microglial cells required to decelerate the progression of AD. This review emphasizes the microglial phenotypes, its function in AD brain, and potential immunological and therapeutic targets to fight this highly progressive neurodegenerative disorder.
Collapse
Affiliation(s)
- Bhargavi Kulkarni
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed To Be University) Erandawane, Pune, 411038, Maharashtra, India
| | - Natália Cruz-Martins
- Institute of Research and Advanced, Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal. .,Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319, Porto, Portugal. .,Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135, Porto, Portugal.
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed To Be University) Erandawane, Pune, 411038, Maharashtra, India.
| |
Collapse
|
38
|
Konishi H, Koizumi S, Kiyama H. Phagocytic astrocytes: Emerging from the shadows of microglia. Glia 2022; 70:1009-1026. [PMID: 35142399 PMCID: PMC9305589 DOI: 10.1002/glia.24145] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
Elimination of dead or live cells take place in both a healthy and diseased central nervous system (CNS). Dying or dead cells are quickly cleared by phagocytosis for the maintenance of a healthy CNS or for recovery after injury. Live cells or parts thereof, such as the synapses and myelin, are appropriately eliminated by phagocytosis to maintain or refine neural networks during development and adulthood. Microglia, the specific population of resident macrophages in the CNS, are classically considered as primary phagocytes; however, astrocytes have also been highlighted as phagocytes in the last decade. Phagocytic targets and receptors are reported to be mostly common between astrocytes and microglia, which raises the question of how astrocytic phagocytosis differs from microglial phagocytosis, and how these two phagocytic systems cooperate. In this review, we address the consequences of astrocytic phagocytosis, particularly focusing on these elusive points.
Collapse
Affiliation(s)
- Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, University of Yamanashi, Yamanashi, Japan.,GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
39
|
Maternal high-fat diet in mice induces cerebrovascular, microglial and long-term behavioural alterations in offspring. Commun Biol 2022; 5:26. [PMID: 35017640 PMCID: PMC8752761 DOI: 10.1038/s42003-021-02947-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Various environmental exposures during pregnancy, like maternal diet, can compromise, at critical periods of development, the neurovascular maturation of the offspring. Foetal exposure to maternal high-fat diet (mHFD), common to Western societies, has been shown to disturb neurovascular development in neonates and long-term permeability of the neurovasculature. Nevertheless, the effects of mHFD on the offspring’s cerebrovascular health remains largely elusive. Here, we sought to address this knowledge gap by using a translational mouse model of mHFD exposure. Three-dimensional and ultrastructure analysis of the neurovascular unit (vasculature and parenchymal cells) in mHFD-exposed offspring revealed major alterations of the neurovascular organization and metabolism. These alterations were accompanied by changes in the expression of genes involved in metabolism and immunity, indicating that neurovascular changes may result from abnormal brain metabolism and immune regulation. In addition, mHFD-exposed offspring showed persisting behavioural alterations reminiscent of neurodevelopmental disorders, specifically an increase in stereotyped and repetitive behaviours into adulthood. In order to advance our understanding of the effects of maternal high-fat diet (mHFD) on the cerebrovascular health of offspring, Bordeleau et al. use a translational mouse model of mHFD exposure. They demonstrate that mHFD induces cerebrovascular and microglial changes in the offspring as well as behavioural alterations that are reminiscent of neurodevelopmental disorders associated with repetitive behaviours at adulthood.
Collapse
|
40
|
Penning A, Tosoni G, Abiega O, Bielefeld P, Gasperini C, De Pietri Tonelli D, Fitzsimons CP, Salta E. Adult Neural Stem Cell Regulation by Small Non-coding RNAs: Physiological Significance and Pathological Implications. Front Cell Neurosci 2022; 15:781434. [PMID: 35058752 PMCID: PMC8764185 DOI: 10.3389/fncel.2021.781434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/09/2021] [Indexed: 01/11/2023] Open
Abstract
The adult neurogenic niches are complex multicellular systems, receiving regulatory input from a multitude of intracellular, juxtacrine, and paracrine signals and biological pathways. Within the niches, adult neural stem cells (aNSCs) generate astrocytic and neuronal progeny, with the latter predominating in physiological conditions. The new neurons generated from this neurogenic process are functionally linked to memory, cognition, and mood regulation, while much less is known about the functional contribution of aNSC-derived newborn astrocytes and adult-born oligodendrocytes. Accumulating evidence suggests that the deregulation of aNSCs and their progeny can impact, or can be impacted by, aging and several brain pathologies, including neurodevelopmental and mood disorders, neurodegenerative diseases, and also by insults, such as epileptic seizures, stroke, or traumatic brain injury. Hence, understanding the regulatory underpinnings of aNSC activation, differentiation, and fate commitment could help identify novel therapeutic avenues for a series of pathological conditions. Over the last two decades, small non-coding RNAs (sncRNAs) have emerged as key regulators of NSC fate determination in the adult neurogenic niches. In this review, we synthesize prior knowledge on how sncRNAs, such as microRNAs (miRNAs) and piwi-interacting RNAs (piRNAs), may impact NSC fate determination in the adult brain and we critically assess the functional significance of these events. We discuss the concepts that emerge from these examples and how they could be used to provide a framework for considering aNSC (de)regulation in the pathogenesis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Amber Penning
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Giorgia Tosoni
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Oihane Abiega
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Pascal Bielefeld
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Caterina Gasperini
- Neurobiology of miRNAs Lab, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Carlos P. Fitzsimons
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Evgenia Salta
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
41
|
Cheng Y, Heng X, Feng F. G-protein Coupled Receptor 34 Promotes Gliomagenesis by Inducing Proliferation and Malignant Phenotype via TGF-Beta/Smad Signaling Pathway. Technol Cancer Res Treat 2022; 21:15330338221105733. [PMID: 35770303 PMCID: PMC9252019 DOI: 10.1177/15330338221105733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background: G-protein coupled receptor 34 (GPR34) is involved in cell motility, differentiation, and mitosis. GPR34 was reported to be highly expressed and play an oncogenic role in several solid tumors. Here, we investigated the mechanisms underlying how GPR34 promotes glioma progression. Methods: Bioinformatic analysis was performed on RNA-seq and clinical data from the gene expression omnibus (GEO), cancer genome atlas (TCGA), and Genotype-Tissue Expression (GTEx) databases. TIMER database and single-sample GSEA (ssGAEA) method were used to investigate the association between the GPR34 expression and immune infiltration level in glioma. Cox regression analysis was employed to ascertain whether the risk signature was an independent prognostic indicator for glioma. The viability and migratory/invasive potential of glioma cells were assessed using Cell Counting Kit-8, colony formation, wound healing, and Transwell assays. Results: We found that GPR34 expression was positively correlated with immune infiltration level and that high GPR34 level may be associated with poor prognosis in glioma. We further found that GPR34 may serve as an independent prognostic marker and prediction factor for the clinicopathological features of glioma. We showed that knocking down GPR34 attenuated the viability and migratory/invasive capacity of glioma cells (U251 and LN229), while GPR34 overexpression exerted the opposite effects. Additionally, core enrichment in the GSEA analysis indicated that GPR34-mediated gliomagenesis was associated with the cell cycle arrest, epithelial–mesenchymal transition (EMT), and activation of the TGF-β/Smad pathway; furthermore, inhibiting TGF-β/Smad signaling using LY2157299, a TGF-β inhibitor, reversed the oncogenic effects and malignant phenotype associated with GPR34 overexpression. Conclusion: GPR34 enhances the malignancy and carcinogenesis of glioma by promoting an EMT-like process, G1/S phase cell cycle transition, and TGF-β/Smad signaling. Accordingly, GPR34 likely functions as an oncogene in glioma and may represent a potential therapeutic target for this cancer.
Collapse
Affiliation(s)
- Yanhao Cheng
- Institute of Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Institute of Brain Science and Brain-Like Intelligence, 529858Linyi People's Hospital, Linyi, Shandong, People's Republic of China.,Department of Neurosurgery, 529858Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Xueyuan Heng
- Institute of Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Institute of Brain Science and Brain-Like Intelligence, 529858Linyi People's Hospital, Linyi, Shandong, People's Republic of China.,Department of Neurosurgery, 529858Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Fan Feng
- Institute of Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Institute of Brain Science and Brain-Like Intelligence, 529858Linyi People's Hospital, Linyi, Shandong, People's Republic of China.,Department of Neurosurgery, 529858Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| |
Collapse
|
42
|
Zhao J, Zhang W, Wu T, Wang H, Mao J, Liu J, Zhou Z, Lin X, Yan H, Wang Q. Efferocytosis in the Central Nervous System. Front Cell Dev Biol 2021; 9:773344. [PMID: 34926460 PMCID: PMC8678611 DOI: 10.3389/fcell.2021.773344] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
The effective clearance of apoptotic cells is essential for maintaining central nervous system (CNS) homeostasis and restoring homeostasis after injury. In most cases of physiological apoptotic cell death, efferocytosis prevents inflammation and other pathological conditions. When apoptotic cells are not effectively cleared, destruction of the integrity of the apoptotic cell membrane integrity, leakage of intracellular contents, and secondary necrosis may occur. Efferocytosis is the mechanism by which efferocytes quickly remove apoptotic cells from tissues before they undergo secondary necrosis. Cells with efferocytosis functions, mainly microglia, help to eliminate apoptotic cells from the CNS. Here, we discuss the impacts of efferocytosis on homeostasis, the mechanism of efferocytosis, the associations of efferocytosis failure and CNS diseases, and the current clinical applications of efferocytosis. We also identify efferocytosis as a novel potential target for exploring the causes and treatments of CNS diseases.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Anesthesia, Zhejiang Hospital, Hangzhou, China
| | - Weiqi Zhang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Tingting Wu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hongyi Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jialiang Mao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jian Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ziheng Zhou
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huige Yan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
43
|
Jonavičė U, Romenskaja D, Kriaučiūnaitė K, Jarmalavičiūtė A, Pajarskienė J, Kašėta V, Tunaitis V, Malm T, Giniatulin R, Pivoriūnas A. Extracellular Vesicles from Human Teeth Stem Cells Trigger ATP Release and Promote Migration of Human Microglia through P2X4 Receptor/MFG-E8-Dependent Mechanisms. Int J Mol Sci 2021; 22:ijms222010970. [PMID: 34681627 PMCID: PMC8537493 DOI: 10.3390/ijms222010970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) effectively suppress neuroinflammation and induce neuroprotective effects in different disease models. However, the mechanisms by which EVs regulate the neuroinflammatory response of microglia remains largely unexplored. Here, we addressed this issue by testing the action of EVs derived from human exfoliated deciduous teeth stem cells (SHEDs) on immortalized human microglial cells. We found that EVs induced a rapid increase in intracellular Ca2+ and promoted significant ATP release in microglial cells after 20 min of treatment. Boyden chamber assays revealed that EVs promoted microglial migration by 20%. Pharmacological inhibition of different subtypes of purinergic receptors demonstrated that EVs activated microglial migration preferentially through the P2X4 receptor (P2X4R) pathway. Proximity ligation and co-immunoprecipitation assays revealed that EVs promote association between milk fat globule-epidermal growth factor-factor VIII (MFG-E8) and P2X4R proteins. Furthermore, pharmacological inhibition of αVβ3/αVβ5 integrin suppressed EV-induced cell migration and formation of lipid rafts in microglia. These results demonstrate that EVs promote microglial motility through P2X4R/MFG-E8-dependent mechanisms. Our findings provide novel insights into the molecular mechanisms through which EVs target human microglia that may be exploited for the development of new therapeutic strategies targeting disease-associated neuroinflammation.
Collapse
Affiliation(s)
- Ugnė Jonavičė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania; (U.J.); (D.R.); (K.K.); (A.J.); (J.P.); (V.K.); (V.T.)
| | - Diana Romenskaja
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania; (U.J.); (D.R.); (K.K.); (A.J.); (J.P.); (V.K.); (V.T.)
| | - Karolina Kriaučiūnaitė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania; (U.J.); (D.R.); (K.K.); (A.J.); (J.P.); (V.K.); (V.T.)
| | - Akvilė Jarmalavičiūtė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania; (U.J.); (D.R.); (K.K.); (A.J.); (J.P.); (V.K.); (V.T.)
| | - Justina Pajarskienė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania; (U.J.); (D.R.); (K.K.); (A.J.); (J.P.); (V.K.); (V.T.)
| | - Vytautas Kašėta
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania; (U.J.); (D.R.); (K.K.); (A.J.); (J.P.); (V.K.); (V.T.)
| | - Virginijus Tunaitis
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania; (U.J.); (D.R.); (K.K.); (A.J.); (J.P.); (V.K.); (V.T.)
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (T.M.); (R.G.)
| | - Rashid Giniatulin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (T.M.); (R.G.)
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania; (U.J.); (D.R.); (K.K.); (A.J.); (J.P.); (V.K.); (V.T.)
- Correspondence:
| |
Collapse
|
44
|
Parkitny L, Maletic-Savatic M. Glial PAMPering and DAMPening of Adult Hippocampal Neurogenesis. Brain Sci 2021; 11:1299. [PMID: 34679362 PMCID: PMC8533961 DOI: 10.3390/brainsci11101299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Adult neurogenesis represents a mature brain's capacity to integrate newly generated neurons into functional circuits. Impairment of neurogenesis contributes to the pathophysiology of various mood and cognitive disorders such as depression and Alzheimer's Disease. The hippocampal neurogenic niche hosts neural progenitors, glia, and vasculature, which all respond to intrinsic and environmental cues, helping determine their current state and ultimate fate. In this article we focus on the major immune communication pathways and mechanisms through which glial cells sense, interact with, and modulate the neurogenic niche. We pay particular attention to those related to the sensing of and response to innate immune danger signals. Receptors for danger signals were first discovered as a critical component of the innate immune system response to pathogens but are now also recognized to play a crucial role in modulating non-pathogenic sterile inflammation. In the neurogenic niche, viable, stressed, apoptotic, and dying cells can activate danger responses in neuroimmune cells, resulting in neuroprotection or neurotoxicity. Through these mechanisms glial cells can influence hippocampal stem cell fate, survival, neuronal maturation, and integration. Depending on the context, such responses may be appropriate and on-target, as in the case of learning-associated synaptic pruning, or excessive and off-target, as in neurodegenerative disorders.
Collapse
Affiliation(s)
- Luke Parkitny
- Baylor College of Medicine and Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA;
| | | |
Collapse
|
45
|
Stoiljkovic M, Gutierrez KO, Kelley C, Horvath TL, Hajós M. TREM2 Deficiency Disrupts Network Oscillations Leading to Epileptic Activity and Aggravates Amyloid-β-Related Hippocampal Pathophysiology in Mice. J Alzheimers Dis 2021; 88:837-847. [PMID: 34120899 DOI: 10.3233/jad-210041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Genetic mutations in triggering receptor expressed on myeloid cells-2 (TREM2) have been strongly associated with increased risk of developing Alzheimer's disease (AD) and other progressive dementias. In the brain, TREM2 protein is specifically expressed on microglia suggesting their active involvement in driving disease pathology. Using various transgenic AD models to interfere with microglial function through TREM2, several recent studies provided important data indicating a causal link between TREM2 and underlying amyloid-β (Aβ) and tau pathology. However, mechanisms by which TREM2 contributes to increased predisposition to clinical AD and influences its progression still remain largely unknown. OBJECTIVE Our aim was to elucidate the potential contribution of TREM2 on specific oscillatory dynamic changes associated with AD pathophysiology. METHODS Spontaneous and brainstem nucleus pontis oralis stimulation-induced hippocampal oscillation paradigm was used to investigate the impact of TREM2 haploinsufficiency TREM2(Het) or total deficiency TREM2(Hom) on hippocampal network function in wild-type and Aβ overproducing Tg2576 mice under urethane anesthesia. RESULTS Partial (TREM2(Het)) or total (TREM2(Hom)) deletion of TREM2 led to increased incidence of spontaneous epileptiform seizures in both wild-type and Tg2576 mice. Importantly, deficiency of TREM2 in Tg2576 mice significantly diminished power of theta oscillation in the hippocampus elicited by brainstem-stimulation compared to wild-type mice. However, it did not affect hippocampal theta-phase gamma-amplitude coupling significantly, since over a 60%reduction was found in coupling in Tg2576 mice regardless of TREM2 function. CONCLUSION Our findings indicate a role for TREM2-dependent microglial function in the hippocampal neuronal excitability in both wild type and Aβ overproducing mice, whereas deficiency in TREM2 function exacerbates disruptive effects of Aβ on hippocampal network oscillations.
Collapse
Affiliation(s)
- Milan Stoiljkovic
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Karel Otero Gutierrez
- Department of Neuroimmunology, Acute Neurology and Pain, Biogen Inc., Cambridge, MA, USA
| | - Craig Kelley
- Joint Biomedical Engineering Program, The State University of New York-Downstate and New York University-Tandon, Brooklyn, NY, USA
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Mihály Hajós
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.,Cognito Therapeutics, Cambridge, MA, USA
| |
Collapse
|
46
|
Matejuk A, Vandenbark AA, Offner H. Cross-Talk of the CNS With Immune Cells and Functions in Health and Disease. Front Neurol 2021; 12:672455. [PMID: 34135852 PMCID: PMC8200536 DOI: 10.3389/fneur.2021.672455] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
The immune system's role is much more than merely recognizing self vs. non-self and involves maintaining homeostasis and integrity of the organism starting from early development to ensure proper organ function later in life. Unlike other systems, the central nervous system (CNS) is separated from the peripheral immune machinery that, for decades, has been envisioned almost entirely as detrimental to the nervous system. New research changes this view and shows that blood-borne immune cells (both adaptive and innate) can provide homeostatic support to the CNS via neuroimmune communication. Neurodegeneration is mostly viewed through the lens of the resident brain immune populations with little attention to peripheral circulation. For example, cognition declines with impairment of peripheral adaptive immunity but not with the removal of microglia. Therapeutic failures of agents targeting the neuroinflammation framework (inhibiting immune response), especially in neurodegenerative disorders, call for a reconsideration of immune response contributions. It is crucial to understand cross-talk between the CNS and the immune system in health and disease to decipher neurodestructive and neuroprotective immune mechanisms for more efficient therapeutic strategies.
Collapse
Affiliation(s)
- Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
| | - Arthur A Vandenbark
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, United States.,Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Halina Offner
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, United States.,Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
47
|
Liu T, Lu J, Lukasiewicz K, Pan B, Zuo Y. Stress induces microglia-associated synaptic circuit alterations in the dorsomedial prefrontal cortex. Neurobiol Stress 2021; 15:100342. [PMID: 34136592 PMCID: PMC8182072 DOI: 10.1016/j.ynstr.2021.100342] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 01/15/2023] Open
Abstract
The mammalian dorsomedial prefrontal cortex (dmPFC) receives diverse inputs and plays important roles in adaptive behavior and cognitive flexibility. Stress, a major risk factor for many psychiatric disorders, compromises the structure and function of multiple brain regions and circuits. Here we show that 7-day restraint stress impairs reversal learning in the 4-choice odor discrimination test, a decision-making task requiring an intact dmPFC. In vivo two-photon imaging further reveals that stress increases dmPFC dendritic spine elimination, particularly those of the mushroom morphology, without affecting spine formation. In addition, stress alters dmPFC microglial branching complexity and elevates their terminal process dynamics. In stressed mice, dmPFC microglia contact dendrites more frequently, and dendritic spines with microglial contact are prone to elimination. In summary, our work suggests that stress-induced changes in glial-synapse interaction contributes to synaptic loss in dmPFC, resulting in neuronal circuit deficits and impaired cognitive flexibility. Restraint stress impairs cognitive flexibility in adolescent mice. Stress leads to synapse loss on pyramidal neurons in the dorsomedial prefrontal cortex. Stress decreases microglial complexity but increases their terminal dynamics and contacts with dendritic spines. Dendritic spines contacted by microglial processes are more prone to elimination.
Collapse
Affiliation(s)
- Taohui Liu
- School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China.,Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Ju Lu
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Kacper Lukasiewicz
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Bingxing Pan
- School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| |
Collapse
|
48
|
Rudolph M, Schmeer CW, Günther M, Woitke F, Kathner-Schaffert C, Karapetow L, Lindner J, Lehmann T, Jirikowski G, Witte OW, Redecker C, Keiner S. Microglia-mediated phagocytosis of apoptotic nuclei is impaired in the adult murine hippocampus after stroke. Glia 2021; 69:2006-2022. [PMID: 33942391 DOI: 10.1002/glia.24009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 01/02/2023]
Abstract
Following stroke, neuronal death takes place both in the infarct region and in brain areas distal to the lesion site including the hippocampus. The hippocampus is critically involved in learning and memory processes and continuously generates new neurons. Dysregulation of adult neurogenesis may be associated with cognitive decline after a stroke lesion. In particular, proliferation of precursor cells and the formation of new neurons are increased after lesion. Within the first week, many new precursor cells die during development. How dying precursors are removed from the hippocampus and to what extent phagocytosis takes place after stroke is still not clear. Here, we evaluated the effect of a prefrontal stroke lesion on the phagocytic activity of microglia in the dentate gyrus (DG) of the hippocampus. Three-months-old C57BL/6J mice were injected once with the proliferation marker BrdU (250 mg/kg) 6 hr after a middle cerebral artery occlusion or sham surgery. The number of apoptotic cells and the phagocytic capacity of the microglia were evaluated by means of immunohistochemistry, confocal microscopy, and 3D-reconstructions. We found a transient but significant increase in the number of apoptotic cells in the DG early after stroke, associated with impaired removal by microglia. Interestingly, phagocytosis of newly generated precursor cells was not affected. Our study shows that a prefrontal stroke lesion affects phagocytosis of apoptotic cells in the DG, a region distal to the lesion core. Whether disturbed phagocytosis might contribute to inflammatory- and maladaptive processes including cognitive impairment following stroke needs to be further investigated.
Collapse
Affiliation(s)
- Max Rudolph
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Christian W Schmeer
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Madlen Günther
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Florus Woitke
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Lina Karapetow
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Julia Lindner
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Thomas Lehmann
- Institute of Medical Statistics and Computer Science, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Gustav Jirikowski
- Health and Medical University Potsdam, University Potsdam, Potsdam, Germany
| | - Otto W Witte
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Christoph Redecker
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Department of Neurology, Lippe General Hospital, Lemgo, Germany
| | - Silke Keiner
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
49
|
Eyo UB, Haruwaka K, Mo M, Campos-Salazar AB, Wang L, Speros XS, Sabu S, Xu P, Wu LJ. Microglia provide structural resolution to injured dendrites after severe seizures. Cell Rep 2021; 35:109080. [PMID: 33951432 PMCID: PMC8164475 DOI: 10.1016/j.celrep.2021.109080] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/01/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
Although an imbalance between neuronal excitation and inhibition underlies seizures, clinical approaches that target these mechanisms are insufficient in containing seizures in patients with epilepsy, raising the need for alternative approaches. Brain-resident microglia contribute to the development and stability of neuronal structure and functional networks that are perturbed during seizures. However, the extent of microglial contributions in response to seizures in vivo remain to be elucidated. Using two-photon in vivo imaging to visualize microglial dynamics, we show that severe seizures induce formation of microglial process pouches that target but rarely engulf beaded neuronal dendrites. Microglial process pouches are stable for hours, although they often shrink in size. We further find that microglial process pouches are associated with a better structural resolution of beaded dendrites. These findings provide evidence for the structural resolution of injured dendrites by microglia as a form of neuroprotection.
Collapse
Affiliation(s)
- Ukpong B Eyo
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Brain Immunology and Glia Center, Department of Cell Biology and Neuroscience, University of Virginia, Charlottesville, VA 22908, USA.
| | | | - Mingshu Mo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangdong 510120, China
| | - Antony Brayan Campos-Salazar
- Brain Immunology and Glia Center, Department of Cell Biology and Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Lingxiao Wang
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xenophon S Speros
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Sruchika Sabu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Pingyi Xu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangdong 510120, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
50
|
Sharma K, Bisht K, Eyo UB. A Comparative Biology of Microglia Across Species. Front Cell Dev Biol 2021; 9:652748. [PMID: 33869210 PMCID: PMC8047420 DOI: 10.3389/fcell.2021.652748] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/10/2021] [Indexed: 12/26/2022] Open
Abstract
Microglia are unique brain-resident, myeloid cells. They have received growing interest for their implication in an increasing number of neurodevelopmental, acute injury, and neurodegenerative disorders of the central nervous system (CNS). Fate-mapping studies establish microglial ontogeny from the periphery during development, while recent transcriptomic studies highlight microglial identity as distinct from other CNS cells and peripheral myeloid cells. This evidence for a unique microglial ontogeny and identity raises questions regarding their identity and functions across species. This review will examine the available evidence for microglia in invertebrate and vertebrate species to clarify similarities and differences in microglial identity, ontogeny, and physiology across species. This discussion highlights conserved and divergent microglial properties through evolution. Finally, we suggest several interesting research directions from an evolutionary perspective to adequately understand the significance of microglia emergence. A proper appreciation of microglia from this perspective could inform the development of specific therapies geared at targeting microglia in various pathologies.
Collapse
Affiliation(s)
- Kaushik Sharma
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, United States.,Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Kanchan Bisht
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, United States.,Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Ukpong B Eyo
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, United States.,Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|