1
|
Bian Z, Xu Z, Peer A, Choi Y, Priest SJ, Akritidou K, Dasgupta A, Dahlmann TA, Kück U, Nowrousian M, Sachs MS, Sun S, Heitman J. Essential genes encoded by the mating-type locus of the human fungal pathogen Cryptococcus neoformans. mBio 2025; 16:e0022325. [PMID: 39998264 PMCID: PMC11980393 DOI: 10.1128/mbio.00223-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Fungal sexual reproduction is controlled by the mating-type (MAT) locus. In contrast to a majority of species in the phylum Basidiomycota that have tetrapolar mating-type systems, the opportunistic human pathogen Cryptococcus neoformans employs a bipolar mating-type system, with two mating types (a and α) determined by a single MAT locus that is unusually large (~120 kb) and contains more than 20 genes. While several MAT genes are associated with mating and sexual development, others control conserved cellular processes (e.g., cargo transport and protein synthesis), of which five (MYO2, PRT1, RPL22, RPL39, and RPO41) have been hypothesized to be essential. In this study, through genetic analysis involving sporulation of heterozygous diploid deletion mutants, as well as in some cases construction and analyses of conditional expression alleles of these genes, we confirmed that with the exception of MYO2, both alleles of the other four MAT genes are indeed essential for cell viability. We further showed that while MYO2 is not essential, its function is critical for infectious spore production, faithful cytokinesis, adaptation for growth at high temperature, and pathogenicity in vivo. Our results demonstrate the presence of essential genes in the MAT locus that are divergent between cells of opposite mating types. We discuss possible mechanisms to maintain functional alleles of these essential genes in a rapidly evolving genomic region in the context of fungal sexual reproduction and mating-type evolution.IMPORTANCESexual reproduction is essential for long-term evolutionary success. Fungal cell-type identity is governed by the MAT locus, which is typically rapidly evolving and highly divergent between different mating types. In this study, we show that the a and α alleles of four genes encoded in the MAT locus of the opportunistic human fungal pathogen C. neoformans are essential. We demonstrate that a fifth gene, MYO2, which had been predicted to be essential, is in fact dispensable for cell viability. However, a functional MYO2 allele is important for cytokinesis and fungal pathogenicity. Our study highlights the need for careful genetic analyses in determining essential genes, which is complementary to high-throughput approaches. Additionally, the presence of essential genes in the MAT locus of C. neoformans provides insights into the function, maintenance, and evolution of these fast-evolving genomic regions.
Collapse
Affiliation(s)
- Zhuyun Bian
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ziyan Xu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Anushka Peer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yeseul Choi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Shelby J. Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Konstantina Akritidou
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ananya Dasgupta
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Tim A. Dahlmann
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Matthew S. Sachs
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
2
|
Coelho MA, David-Palma M, Marincowitz S, Aylward J, Pham NQ, Yurkov AM, Wingfield BD, Wingfield MJ, Sun S, Heitman J. Tracing the evolution and genomic dynamics of mating-type loci in Cryptococcus pathogens and closely related species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637874. [PMID: 39990455 PMCID: PMC11844451 DOI: 10.1101/2025.02.12.637874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Sexual reproduction in basidiomycete fungi is governed by MAT loci (P/R and HD), which exhibit remarkable evolutionary plasticity, characterized by expansions, rearrangements, and gene losses often associated with mating system transitions. The sister genera Cryptococcus and Kwoniella provide a powerful framework for studying MAT loci evolution owing to their diverse reproductive strategies and distinct architectures, spanning bipolar and tetrapolar systems with either linked or unlinked MAT loci. Building on recent large-scale comparative genomic analyses, we generated additional chromosome-level assemblies uncovering distinct evolutionary trajectories shaping MAT loci organization. Contrasting with the small-scale expansions and gene acquisitions observed in Kwoniella, our analyses revealed independent expansions of the P/R locus in tetrapolar Cryptococcus, possibly driven by pheromone gene duplications. Notably, these expansions coincided with an enrichment of AT-rich codons and a pronounced GC-content reduction, likely associated with recombination suppression and relaxed codon usage selection. Diverse modes of MAT locus linkage were also identified, including three previously unrecognized transitions: one resulting in a pseudobipolar arrangement and two leading to bipolarity. All the three transitions involved translocations. In the pseudobipolar configuration, the P/R and HD loci remained on the same chromosome but genetically unlinked, whereas the bipolar transitions additionally featured rearrangements that fused the two loci into a nonrecombining region. Mating assays confirmed a sexual cycle in C. decagattii, demonstrating its ability to undergo mating and sporulation. Progeny analysis in K. mangrovensis revealed substantial ploidy variation and aneuploidy, likely stemming from haploid-diploid mating, yet evidence of recombination and loss of heterozygosity indicates that meiotic exchange occurs despite irregular chromosome segregation. Our findings underscore the importance of continued diversity sampling and provides further evidence for convergent evolution of fused MAT loci in basidiomycetes, offering new insights into the genetic and chromosomal changes driving reproductive transitions.
Collapse
Affiliation(s)
- Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Seonju Marincowitz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Nam Q. Pham
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Andrey M. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Brenda D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
3
|
Tharappel AM, Li Z, Li H. Effect of insertion of intein to Cryptococcus amylolentus, a nonpathogenic fungus closely related to causative agents of cryptococcosis. Microb Pathog 2025; 199:107267. [PMID: 39736341 PMCID: PMC11863799 DOI: 10.1016/j.micpath.2024.107267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Inteins are mobile elements within a host protein, with flanking exteins. Autocleavage of intein results in the fusion of exteins, leading to activation of protein. The presence of intein is species dependent. Pathogenic fungi Cryptococcus neoformans (Cne) and C. gattii (Cga) contain inteins in their inactive Prp8 protein precursor, whereas closely related nonpathogenic C. amylolentus (Cam) lacks inteins. Handling pathogenic fungi requires additional safety requirements. Studies on nonpathogenic but closely related fungal strains can expedite research on the role of inteins and potential changes in virulence or pathology. In this report, we have genetically modified and characterized Cam to possess intein (Cam-int). First, we inserted a selection marker into the Prp8 intein of Cne using an MIG vector and tested intein splicing efficiency in E. coli. The intein-selection marker fragment was then integrated into the prp8 gene of Cam, demonstrating in vivo splicing within Cam without affecting certain virulence factors. Intein splicing inhibitors, cisplatin and 6G-318S, showed increased sensitivity to Cam-int compared to the wild-type strain without the intein. This Cam-int fungal strain can serve as a valuable tool for further studying the role of inteins and holds potential for screening intein splicing inhibitors.
Collapse
Affiliation(s)
- Anil Mathew Tharappel
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, 1703 E Mabel St, Tucson, AZ, 85721-0207, USA.
| | - Zhong Li
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, 1703 E Mabel St, Tucson, AZ, 85721-0207, USA
| | - Hongmin Li
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, 1703 E Mabel St, Tucson, AZ, 85721-0207, USA; The BIO5 Institute, The University of Arizona, Tucson, AZ, 85721, USA; Biological Chemistry Program, Department of Chemistry and Biochemistry, College of Science & College of Medicine, The University of Arizona, Tucson, AZ, 85721, USA; Department of Molecular & Cellular Biology, College of Science, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
4
|
Bian Z, Xu Z, Peer A, Choi Y, Priest SJ, Akritidou K, Dasgupta A, Dahlmann TA, Kück U, Nowrousian M, Sachs MS, Sun S, Heitman J. Essential genes encoded by the mating-type locus of the human fungal pathogen Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626420. [PMID: 39677606 PMCID: PMC11642766 DOI: 10.1101/2024.12.02.626420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Fungal sexual reproduction is controlled by the mating-type (MAT) locus. In contrast to a majority of species in the phylum Basidiomycota that have tetrapolar mating-type systems, the opportunistic human pathogen Cryptococcus neoformans employs a bipolar mating-type system, with two mating types (a and α) determined by a single MAT locus that is unusually large (~120 kb) and contains more than 20 genes. While several MAT genes are associated with mating and sexual development, others control conserved cellular processes (e.g. cargo transport and protein synthesis), of which five (MYO2, PRT1, RPL22, RPL39, and RPO41) have been hypothesized to be essential. In this study, through genetic analysis involving sporulation of heterozygous diploid deletion mutants, as well as in some cases construction and analyses of conditional expression alleles of these genes, we confirmed that with the exception of MYO2, both alleles of the other four MAT genes are indeed essential for cell viability. We further showed that while MYO2 is not essential, its function is critical for infectious spore production, faithful cytokinesis, adaptation for growth at high temperature, and pathogenicity in vivo. Our results demonstrate the presence of essential genes in the MAT locus that are divergent between cells of opposite mating types. We discuss possible mechanisms to maintain functional alleles of these essential genes in a rapidly-evolving genomic region in the context of fungal sexual reproduction and mating-type evolution.
Collapse
Affiliation(s)
- Zhuyun Bian
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ziyan Xu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Anushka Peer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yeseul Choi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Shelby J. Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Konstantina Akritidou
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ananya Dasgupta
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Tim A. Dahlmann
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Germany
| | - Matthew S. Sachs
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
5
|
Coelho MA, David-Palma M, Shea T, Bowers K, McGinley-Smith S, Mohammad AW, Gnirke A, Yurkov AM, Nowrousian M, Sun S, Cuomo CA, Heitman J. Comparative genomics of the closely related fungal genera Cryptococcus and Kwoniella reveals karyotype dynamics and suggests evolutionary mechanisms of pathogenesis. PLoS Biol 2024; 22:e3002682. [PMID: 38843310 PMCID: PMC11185503 DOI: 10.1371/journal.pbio.3002682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/18/2024] [Accepted: 05/17/2024] [Indexed: 06/19/2024] Open
Abstract
In exploring the evolutionary trajectories of both pathogenesis and karyotype dynamics in fungi, we conducted a large-scale comparative genomic analysis spanning the Cryptococcus genus, encompassing both global human fungal pathogens and nonpathogenic species, and related species from the sister genus Kwoniella. Chromosome-level genome assemblies were generated for multiple species, covering virtually all known diversity within these genera. Although Cryptococcus and Kwoniella have comparable genome sizes (about 19.2 and 22.9 Mb) and similar gene content, hinting at preadaptive pathogenic potential, our analysis found evidence of gene gain (via horizontal gene transfer) and gene loss in pathogenic Cryptococcus species, which might represent evolutionary signatures of pathogenic development. Genome analysis also revealed a significant variation in chromosome number and structure between the 2 genera. By combining synteny analysis and experimental centromere validation, we found that most Cryptococcus species have 14 chromosomes, whereas most Kwoniella species have fewer (11, 8, 5, or even as few as 3). Reduced chromosome number in Kwoniella is associated with formation of giant chromosomes (up to 18 Mb) through repeated chromosome fusion events, each marked by a pericentric inversion and centromere loss. While similar chromosome inversion-fusion patterns were observed in all Kwoniella species with fewer than 14 chromosomes, no such pattern was detected in Cryptococcus. Instead, Cryptococcus species with less than 14 chromosomes showed reductions primarily through rearrangements associated with the loss of repeat-rich centromeres. Additionally, Cryptococcus genomes exhibited frequent interchromosomal translocations, including intercentromeric recombination facilitated by transposons shared between centromeres. Overall, our findings advance our understanding of genetic changes possibly associated with pathogenicity in Cryptococcus and provide a foundation to elucidate mechanisms of centromere loss and chromosome fusion driving distinct karyotypes in closely related fungal species, including prominent global human pathogens.
Collapse
Affiliation(s)
- Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Terrance Shea
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Katharine Bowers
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sage McGinley-Smith
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Arman W. Mohammad
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Andrey M. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christina A. Cuomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
6
|
Narayanan A, Reza MH, Sanyal K. Behind the scenes: Centromere-driven genomic innovations in fungal pathogens. PLoS Pathog 2024; 20:e1012080. [PMID: 38547101 PMCID: PMC10977804 DOI: 10.1371/journal.ppat.1012080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Affiliation(s)
- Aswathy Narayanan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Md. Hashim Reza
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
7
|
Coelho MA, David-Palma M, Shea T, Bowers K, McGinley-Smith S, Mohammad AW, Gnirke A, Yurkov AM, Nowrousian M, Sun S, Cuomo CA, Heitman J. Comparative genomics of Cryptococcus and Kwoniella reveals pathogenesis evolution and contrasting karyotype dynamics via intercentromeric recombination or chromosome fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.27.573464. [PMID: 38234769 PMCID: PMC10793447 DOI: 10.1101/2023.12.27.573464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A large-scale comparative genomic analysis was conducted for the global human fungal pathogens within the Cryptococcus genus, compared to non-pathogenic Cryptococcus species, and related species from the sister genus Kwoniella. Chromosome-level genome assemblies were generated for multiple species of both genera, resulting in a dataset encompassing virtually all of their known diversity. Although Cryptococcus and Kwoniella have comparable genome sizes (about 19.2 and 22.9 Mb) and similar gene content, hinting at pre-adaptive pathogenic potential, our analysis found evidence in pathogenic Cryptococcus species of specific examples of gene gain (via horizontal gene transfer) and gene loss, which might represent evolutionary signatures of pathogenic development. Genome analysis also revealed a significant variation in chromosome number and structure between the two genera. By combining synteny analysis and experimental centromere validation, we found that most Cryptococcus species have 14 chromosomes, whereas most Kwoniella species have fewer (11, 8, 5 or even as few as 3). Reduced chromosome number in Kwoniella is associated with formation of giant chromosomes (up to 18 Mb) through repeated chromosome fusion events, each marked by a pericentric inversion and centromere loss. While similar chromosome inversion-fusion patterns were observed in all Kwoniella species with fewer than 14 chromosomes, no such pattern was detected in Cryptococcus. Instead, Cryptococcus species with less than 14 chromosomes, underwent chromosome reductions primarily through rearrangements associated with the loss of repeat-rich centromeres. Additionally, Cryptococcus genomes exhibited frequent interchromosomal translocations, including intercentromeric recombination facilitated by transposons shared between centromeres. Taken together, our findings advance our understanding of genomic changes possibly associated with pathogenicity in Cryptococcus and provide a foundation to elucidate mechanisms of centromere loss and chromosome fusion driving distinct karyotypes in closely related fungal species, including prominent global human pathogens.
Collapse
Affiliation(s)
- Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Terrance Shea
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Katharine Bowers
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | | | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Andrey M. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
8
|
De Vos L, van der Nest MA, Santana QC, van Wyk S, Leeuwendaal KS, Wingfield BD, Steenkamp ET. Chromosome-Level Assemblies for the Pine Pitch Canker Pathogen Fusarium circinatum. Pathogens 2024; 13:70. [PMID: 38251377 PMCID: PMC10819268 DOI: 10.3390/pathogens13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The pine pitch canker pathogen, Fusarium circinatum, is globally regarded as one of the most important threats to commercial pine-based forestry. Although genome sequences of this fungus are available, these remain highly fragmented or structurally ill-defined. Our overall goal was to provide high-quality assemblies for two notable strains of F. circinatum, and to characterize these in terms of coding content, repetitiveness and the position of telomeres and centromeres. For this purpose, we used Oxford Nanopore Technologies MinION long-read sequences, as well as Illumina short sequence reads. By leveraging the genomic synteny inherent to F. circinatum and its close relatives, these sequence reads were assembled to chromosome level, where contiguous sequences mostly spanned from telomere to telomere. Comparative analyses unveiled remarkable variability in the twelfth and smallest chromosome, which is known to be dispensable. It presented a striking length polymorphism, with one strain lacking substantial portions from the chromosome's distal and proximal regions. These regions, characterized by a lower gene density, G+C content and an increased prevalence of repetitive elements, contrast starkly with the syntenic segments of the chromosome, as well as with the core chromosomes. We propose that these unusual regions might have arisen or expanded due to the presence of transposable elements. A comparison of the overall chromosome structure revealed that centromeric elements often underpin intrachromosomal differences between F. circinatum strains, especially at chromosomal breakpoints. This suggests a potential role for centromeres in shaping the chromosomal architecture of F. circinatum and its relatives. The publicly available genome data generated here, together with the detailed metadata provided, represent essential resources for future studies of this important plant pathogen.
Collapse
Affiliation(s)
- Lieschen De Vos
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria (UP), Pretoria 0002, South Africa; (L.D.V.); (K.S.L.); (B.D.W.)
| | - Magriet A. van der Nest
- Hans Merensky Chair in Avocado Research, Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute FABI, University of Pretoria, Pretoria 0002, South Africa;
| | - Quentin C. Santana
- Biotechnology Platform, Agricultural Research Council, 100 Old Soutpan Road, Onderstepoort, Pretoria 0010, South Africa;
| | - Stephanie van Wyk
- Collaborating Centre for Optimising Antimalarial Therapy (CCOAT), Mitigating Antimalarial Resistance Consortium in South-East Africa (MARC SEA), Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town 7925, South Africa;
| | - Kyle S. Leeuwendaal
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria (UP), Pretoria 0002, South Africa; (L.D.V.); (K.S.L.); (B.D.W.)
| | - Brenda D. Wingfield
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria (UP), Pretoria 0002, South Africa; (L.D.V.); (K.S.L.); (B.D.W.)
| | - Emma T. Steenkamp
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria (UP), Pretoria 0002, South Africa; (L.D.V.); (K.S.L.); (B.D.W.)
| |
Collapse
|
9
|
Deng Y, Guo L, Lin L, Li Y, Zhang J, Zhang Y, Yuan B, Ke L, Xie B, Ming R. Meiosis in an asymmetric dikaryotic genome of Tremella fuciformis Tr01 facilitates new chromosome formation. Genome Biol 2023; 24:280. [PMID: 38053144 PMCID: PMC10696834 DOI: 10.1186/s13059-023-03093-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/22/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND The dikaryotic stage dominates most of the life cycle in basidiomycetes, and each cell carries two different haploid nuclei. Accurate phasing of these two nuclear genomes and their interactions have long been of interest. RESULTS We combine PacBio HiFi reads, Nanopore ultra-long reads, and Hi-C data to generate a complete, high-quality asymmetric dikaryotic genome of Tremella fuciformis Tr01, including Haplotypes A and B genomes. We assemble a meiotic haploid DBZ04 genome and detect three recombination events in these two haplotypes. We identify several chromosomal rearrangements that lead to differences in chromosome number, length, content, and sequence arrangement between these two haplotypes. Each nucleus contains a two-speed genome, harboring three accessory chromosomes and two accessory compartments that affect horizontal chromatin transfer between nuclei. We find few basidiospores are ejected from fruiting bodies of Tr01. Most monospore isolates sequenced belong to Tr01-Haplotype A genome architecture. More than one-third of monospore isolates carry one or two extra chromosomes including Chr12B and two new chromosomes ChrN1 and ChrN2. We hypothesize that homologous regions of seven sister chromatids pair into a large complex during meiosis, followed by inter-chromosomal recombination at physical contact sites and formation of new chromosomes. CONCLUSION We assemble two haplotype genomes of T. fuciformis Tr01 and provide the first overview of basidiomycetous genomes with discrete genomic architecture. Meiotic activities of asymmetric dikaryotic genomes result in formation of new chromosomes, aneuploidy of some daughter cells, and inviability of most other daughter cells. We propose a new approach for breeding of sporeless mushroom.
Collapse
Affiliation(s)
- Youjin Deng
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lin Guo
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Longji Lin
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yuefeng Li
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jinxiang Zhang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yue Zhang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Bin Yuan
- Zhangzhou Institute of Agricultural Science, Zhangzhou, Fujian, 363005, China
| | - Lina Ke
- Zhangzhou Institute of Agricultural Science, Zhangzhou, Fujian, 363005, China
| | - Baogui Xie
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Ray Ming
- Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 1201 W. Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
10
|
Kobayashi Y, Kayamori A, Aoki K, Shiwa Y, Matsutani M, Fujita N, Sugita T, Iwasaki W, Tanaka N, Takashima M. Chromosome-level genome assemblies of Cutaneotrichosporon spp. (Trichosporonales, Basidiomycota) reveal imbalanced evolution between nucleotide sequences and chromosome synteny. BMC Genomics 2023; 24:609. [PMID: 37821828 PMCID: PMC10568926 DOI: 10.1186/s12864-023-09718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Since DNA information was first used in taxonomy, barcode sequences such as the internal transcribed spacer (ITS) region have greatly aided fungal identification; however, a barcode sequence alone is often insufficient. Thus, multi-gene- or whole-genome-based methods were developed. We previously isolated Basidiomycota yeasts classified in the Trichosporonales. Some strains were described as Cutaneotrichosporon cavernicola and C. spelunceum, whereas strain HIS471 remained unidentified. We analysed the genomes of these strains to elucidate their taxonomic relationship and genetic diversity. RESULTS The long-read-based assembly resulted in chromosome-level draft genomes consisting of seven chromosomes and one mitochondrial genome. The genome of strain HIS471 has more than ten chromosome inversions or translocations compared to the type strain of C. cavernicola despite sharing identical ITS barcode sequences and displaying an average nucleotide identity (ANI) above 93%. Also, the chromosome synteny between C. cavernicola and the related species, C. spelunceum, showed significant rearrangements, whereas the ITS sequence identity exceeds 98.6% and the ANI is approximately 82%. Our results indicate that the relative evolutionary rates of barcode sequences, whole-genome nucleotide sequences, and chromosome synteny in Cutaneotrichosporon significantly differ from those in the model yeast Saccharomyces. CONCLUSIONS Our results revealed that the relative evolutionary rates of nucleotide sequences and chromosome synteny are different among fungal clades, likely because different clades have diverse mutation/repair rates and distinct selection pressures on their genomic sequences and syntenic structures. Because diverse syntenic structures can be a barrier to meiotic recombination and may lead to speciation, the non-linear relationships between nucleotide and synteny diversification indicate that sequence-level distances at the barcode or whole-genome level are not sufficient for delineating species boundaries.
Collapse
Affiliation(s)
- Yuuki Kobayashi
- Laboratory of Yeast Systematics, Tokyo NODAI Research Institute (TNRI), Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan.
| | - Ayane Kayamori
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Keita Aoki
- Laboratory of Yeast Systematics, Tokyo NODAI Research Institute (TNRI), Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Yuh Shiwa
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Minenosuke Matsutani
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Nobuyuki Fujita
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-0882, Japan
| | - Naoto Tanaka
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Masako Takashima
- Laboratory of Yeast Systematics, Tokyo NODAI Research Institute (TNRI), Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan.
| |
Collapse
|
11
|
Coelho MA, Ianiri G, David-Palma M, Theelen B, Goyal R, Narayanan A, Lorch JM, Sanyal K, Boekhout T, Heitman J. Frequent transitions in mating-type locus chromosomal organization in Malassezia and early steps in sexual reproduction. Proc Natl Acad Sci U S A 2023; 120:e2305094120. [PMID: 37523560 PMCID: PMC10410736 DOI: 10.1073/pnas.2305094120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/28/2023] [Indexed: 08/02/2023] Open
Abstract
Fungi in the basidiomycete genus Malassezia are the most prevalent eukaryotic microbes resident on the skin of human and other warm-blooded animals and have been implicated in skin diseases and systemic disorders. Analysis of Malassezia genomes revealed that key adaptations to the skin microenvironment have a direct genomic basis, and the identification of mating/meiotic genes suggests a capacity to reproduce sexually, even though no sexual cycle has yet been observed. In contrast to other bipolar or tetrapolar basidiomycetes that have either two linked mating-type-determining (MAT) loci or two MAT loci on separate chromosomes, in Malassezia species studied thus far the two MAT loci are arranged in a pseudobipolar configuration (linked on the same chromosome but capable of recombining). By generating additional chromosome-level genome assemblies, and an improved Malassezia phylogeny, we infer that the pseudobipolar arrangement was the ancestral state of this group and revealed six independent transitions to tetrapolarity, seemingly driven by centromere fission or translocations in centromere-flanking regions. Additionally, in an approach to uncover a sexual cycle, Malassezia furfur strains were engineered to express different MAT alleles in the same cell. The resulting strains produce hyphae reminiscent of early steps in sexual development and display upregulation of genes associated with sexual development as well as others encoding lipases and a protease potentially relevant for pathogenesis of the fungus. Our study reveals a previously unseen genomic relocation of mating-type loci in fungi and provides insight toward the identification of a sexual cycle in Malassezia, with possible implications for pathogenicity.
Collapse
Affiliation(s)
- Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso86100, Italy
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht3584 CT, The Netherlands
| | - Rohit Goyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru560064, India
| | - Aswathy Narayanan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru560064, India
| | - Jeffrey M. Lorch
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI53711
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru560064, India
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht3584 CT, The Netherlands
- College of Science, King Saud University, Riyadh11451, Saudi Arabia
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
12
|
Coelho MA, Ianiri G, David-Palma M, Theelen B, Goyal R, Narayanan A, Lorch JM, Sanyal K, Boekhout T, Heitman J. Frequent transitions in mating-type locus chromosomal organization in Malassezia and early steps in sexual reproduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534224. [PMID: 36993584 PMCID: PMC10055393 DOI: 10.1101/2023.03.25.534224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Fungi in the basidiomycete genus Malassezia are the most prevalent eukaryotic microbes resident on the skin of human and other warm-blooded animals and have been implicated in skin diseases and systemic disorders. Analysis of Malassezia genomes revealed that key adaptations to the skin microenvironment have a direct genomic basis, and the identification of mating/meiotic genes suggests a capacity to reproduce sexually, even though no sexual cycle has yet been observed. In contrast to other bipolar or tetrapolar basidiomycetes that have either two linked mating-type-determining ( MAT ) loci or two MAT loci on separate chromosomes, in Malassezia species studied thus far the two MAT loci are arranged in a pseudobipolar configuration (linked on the same chromosome but capable of recombining). By incorporating newly generated chromosome-level genome assemblies, and an improved Malassezia phylogeny, we infer that the pseudobipolar arrangement was the ancestral state of this group and revealed six independent transitions to tetrapolarity, seemingly driven by centromere fission or translocations in centromere- flanking regions. Additionally, in an approach to uncover a sexual cycle, Malassezia furfur strains were engineered to express different MAT alleles in the same cell. The resulting strains produce hyphae reminiscent of early steps in sexual development and display upregulation of genes associated with sexual development as well as others encoding lipases and a protease potentially relevant for pathogenesis of the fungus. Our study reveals a previously unseen genomic relocation of mating-type loci in fungi and provides insight towards the discovery of a sexual cycle in Malassezia , with possible implications for pathogenicity. Significance Statement Malassezia , the dominant fungal group of the mammalian skin microbiome, is associated with numerous skin disorders. Sexual development and yeast-to-hyphae transitions, governed by genes at two mating-type ( MAT ) loci, are thought to be important for fungal pathogenicity. However, Malassezia sexual reproduction has never been observed. Here, we used chromosome-level assemblies and comparative genomics to uncover unforeseen transitions in MAT loci organization within Malassezia , possibly related with fragility of centromeric-associated regions. Additionally, by expressing different MAT alleles in the same cell, we show that Malassezia can undergo hyphal development and this phenotype is associated with increased expression of key mating genes along with other genes known to be virulence factors, providing a possible connection between hyphal development, sexual reproduction, and pathogenicity.
Collapse
Affiliation(s)
- Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso 86100, Italy
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht 3584 CT, The Netherlands
| | - Rohit Goyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Aswathy Narayanan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Jeffrey M. Lorch
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht 3584 CT, The Netherlands
- College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
13
|
Yadav V, Sun S, Heitman J. On the evolution of variation in sexual reproduction through the prism of eukaryotic microbes. Proc Natl Acad Sci U S A 2023; 120:e2219120120. [PMID: 36867686 PMCID: PMC10013875 DOI: 10.1073/pnas.2219120120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/23/2023] [Indexed: 03/05/2023] Open
Abstract
Almost all eukaryotes undergo sexual reproduction to generate diversity and select for fitness in their population pools. Interestingly, the systems by which sex is defined are highly diverse and can even differ between evolutionarily closely related species. While the most commonly known form of sex determination involves males and females in animals, eukaryotic microbes can have as many as thousands of different mating types for the same species. Furthermore, some species have found alternatives to sexual reproduction and prefer to grow clonally and yet undergo infrequent facultative sexual reproduction. These organisms are mainly invertebrates and microbes, but several examples are also present among vertebrates suggesting that alternative modes of sexual reproduction evolved multiple times throughout evolution. In this review, we summarize the sex-determination modes and variants of sexual reproduction found across the eukaryotic tree of life and suggest that eukaryotic microbes provide unique opportunities to study these processes in detail. We propose that understanding variations in modes of sexual reproduction can serve as a foundation to study the evolution of sex and why and how it evolved in the first place.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
14
|
Heitman J. Lessons learned: from mentored to mentor. J Clin Invest 2023; 133:e167444. [PMID: 36647823 PMCID: PMC9843041 DOI: 10.1172/jci167444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This Viewpoint was written in association with the 25th anniversary of the American Society for Clinical Investigation's (ASCI's) Stanley J. Korsmeyer Award, which honors the highest standards of scientific excellence, meritorious research, intellectual integrity, and the mentoring of future life-science researchers. In 2018, the award recognized Joseph Heitman (Figure 1), for his key contributions to our understanding of how eukaryotic microbial pathogens evolve, cause disease, and develop drug resistance and his discovery of TOR and FKBP12 as targets of the immunosuppressive chemotherapeutic drug rapamycin. Dr. Heitman has mentored numerous undergraduates, medical students, graduate students, and postdoctoral and medical fellows, many of whom have developed independent careers in medicine and basic biomedical research.
Collapse
|
15
|
Duhamel M, Carpentier F, Begerow D, Hood ME, Rodríguez de la Vega RC, Giraud T. Onset and stepwise extensions of recombination suppression are common in mating-type chromosomes of Microbotryum anther-smut fungi. J Evol Biol 2022; 35:1619-1634. [PMID: 35271741 PMCID: PMC10078771 DOI: 10.1111/jeb.13991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/21/2021] [Accepted: 02/07/2022] [Indexed: 12/16/2022]
Abstract
Sex chromosomes and mating-type chromosomes can display large genomic regions without recombination. Recombination suppression often extended stepwise with time away from the sex- or mating-type-determining genes, generating evolutionary strata of differentiation between alternative sex or mating-type chromosomes. In anther-smut fungi of the Microbotryum genus, recombination suppression evolved repeatedly, linking the two mating-type loci and extended multiple times in regions distal to the mating-type genes. Here, we obtained high-quality genome assemblies of alternative mating types for four Microbotryum fungi. We found an additional event of independent chromosomal rearrangements bringing the two mating-type loci on the same chromosome followed by recombination suppression linking them. We also found, in a new clade analysed here, that recombination suppression between the two mating-type loci occurred in several steps, with first an ancestral recombination suppression between one of the mating-type locus and its centromere; later, completion of recombination suppression up to the second mating-type locus occurred independently in three species. The estimated dates of recombination suppression between the mating-type loci ranged from 0.15 to 3.58 million years ago. In total, this makes at least nine independent events of linkage between the mating-type loci across the Microbotryum genus. Several mating-type locus linkage events occurred through the same types of chromosomal rearrangements, where similar chromosome fissions at centromeres represent convergence in the genomic changes leading to the phenotypic convergence. These findings further highlight Microbotryum fungi as excellent models to study the evolution of recombination suppression.
Collapse
Affiliation(s)
- Marine Duhamel
- Ecologie Systématique Evolution, Bâtiment 360CNRSAgroParisTechUniversité Paris‐SaclayOrsayFrance
- Evolution der Pflanzen und PilzeRuhr‐Universität BochumBochumGermany
| | - Fantin Carpentier
- Ecologie Systématique Evolution, Bâtiment 360CNRSAgroParisTechUniversité Paris‐SaclayOrsayFrance
| | - Dominik Begerow
- Evolution der Pflanzen und PilzeRuhr‐Universität BochumBochumGermany
| | | | | | - Tatiana Giraud
- Ecologie Systématique Evolution, Bâtiment 360CNRSAgroParisTechUniversité Paris‐SaclayOrsayFrance
| |
Collapse
|
16
|
Passer AR, Clancey SA, Shea T, David-Palma M, Averette AF, Boekhout T, Porcel BM, Nowrousian M, Cuomo CA, Sun S, Heitman J, Coelho MA. Obligate sexual reproduction of a homothallic fungus closely related to the Cryptococcus pathogenic species complex. eLife 2022; 11:e79114. [PMID: 35713948 PMCID: PMC9296135 DOI: 10.7554/elife.79114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/15/2022] [Indexed: 12/03/2022] Open
Abstract
Fungi are enigmatic organisms that flourish in soil, on decaying plants, or during infection of animals or plants. Growing in myriad forms, from single-celled yeast to multicellular molds and mushrooms, fungi have also evolved a variety of strategies to reproduce. Normally, fungi reproduce in one of two ways: either they reproduce asexually, with one individual producing a new individual identical to itself, or they reproduce sexually, with two individuals of different 'mating types' contributing to produce a new individual. However, individuals of some species exhibit 'homothallism' or self-fertility: these individuals can produce reproductive cells that are universally compatible, and therefore can reproduce sexually with themselves or with any other cell in the population. Homothallism has evolved multiple times throughout the fungal kingdom, suggesting it confers advantage when population numbers are low or mates are hard to find. Yet some homothallic fungi been overlooked compared to heterothallic species, whose mating types have been well characterised. Understanding the genetic basis of homothallism and how it evolved in different species can provide insights into pathogenic species that cause fungal disease. With that in mind, Passer, Clancey et al. explored the genetic basis of homothallism in Cryptococcus depauperatus, a close relative of C. neoformans, a species that causes fungal infections in humans. A combination of genetic sequencing techniques and experiments were applied to analyse, compare, and manipulate C. depauperatus' genome to see how this species evolved self-fertility. Passer, Clancey et al. showed that C. depauperatus evolved the ability to reproduce sexually by itself via a unique evolutionary pathway. The result is a form of homothallism never reported in fungi before. C. depauperatus lost some of the genes that control mating in other species of fungi, and acquired genes from the opposing mating types of a heterothallic ancestor to become self-fertile. Passer, Clancey et al. also found that, unlike other Cryptococcus species that switch between asexual and sexual reproduction, C. depauperatus grows only as long, branching filaments called hyphae, a sexual form. The species reproduces sexually with itself throughout its life cycle and is unable to produce a yeast (asexual) form, in contrast to other closely related species. This work offers new insights into how different modes of sexual reproduction have evolved in fungi. It also provides another interesting case of how genome plasticity and evolutionary pressures can produce similar outcomes, homothallism, via different evolutionary paths. Lastly, assembling the complete genome of C. depauperatus will foster comparative studies between pathogenic and non-pathogenic Cryptococcus species.
Collapse
Affiliation(s)
- Andrew Ryan Passer
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Shelly Applen Clancey
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Terrance Shea
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Anna Floyd Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity InstituteUtrechtNetherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of AmsterdamAmsterdamNetherlands
| | - Betina M Porcel
- Génomique Métabolique, CNRS, University Evry, Université Paris-SaclayEvryFrance
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität BochumBochumGermany
| | | | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
17
|
Theelen B, Mixão V, Ianiri G, Goh JPZ, Dijksterhuis J, Heitman J, Dawson TL, Gabaldón T, Boekhout T. Multiple Hybridization Events Punctuate the Evolutionary Trajectory of Malassezia furfur. mBio 2022; 13:e0385321. [PMID: 35404119 PMCID: PMC9040865 DOI: 10.1128/mbio.03853-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 12/18/2022] Open
Abstract
Malassezia species are important fungal skin commensals and are part of the normal microbiota of humans and other animals. However, under certain circumstances these fungi can also display a pathogenic behavior. For example, Malassezia furfur is a common commensal of human skin and yet is often responsible for skin disorders but also systemic infections. Comparative genomics analysis of M. furfur revealed that some isolates have a hybrid origin, similar to several other recently described hybrid fungal pathogens. Because hybrid species exhibit genomic plasticity that can impact phenotypes, we sought to elucidate the genomic evolution and phenotypic characteristics of M. furfur hybrids in comparison to their parental lineages. To this end, we performed a comparative genomics analysis between hybrid strains and their presumptive parental lineages and assessed phenotypic characteristics. Our results provide evidence that at least two distinct hybridization events occurred between the same parental lineages and that the parental strains may have originally been hybrids themselves. Analysis of the mating-type locus reveals that M. furfur has a pseudobipolar mating system and provides evidence that after sexual liaisons of mating compatible cells, hybridization involved cell-cell fusion leading to a diploid/aneuploid state. This study provides new insights into the evolutionary trajectory of M. furfur and contributes with valuable genomic resources for future pathogenicity studies. IMPORTANCEMalassezia furfur is a common commensal member of human/animal microbiota that is also associated with several pathogenic states. Recent studies report involvement of Malassezia species in Crohn's disease, a type of inflammatory bowel disease, pancreatic cancer progression, and exacerbation of cystic fibrosis. A recent genomics analysis of M. furfur revealed the existence of hybrid isolates and identified their putative parental lineages. In this study, we explored the genomic and phenotypic features of these hybrids in comparison to their putative parental lineages. Our results revealed the existence of a pseudobipolar mating system in this species and showed evidence for the occurrence of multiple hybridization events in the evolutionary trajectory of M. furfur. These findings significantly advance our understanding of the evolution of this commensal microbe and are relevant for future studies exploring the role of hybridization in the adaptation to new niches or environments, including the emergence of pathogenicity.
Collapse
Affiliation(s)
- Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Verónica Mixão
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine, Barcelona, Spain
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Joleen Pei Zhen Goh
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research, Singapore
| | - Jan Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Thomas L. Dawson
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research, Singapore
- Center for Cell Death, Injury and Regeneration, Departments of Drug Discovery and Biomedical Sciences and Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Chen CL, Li WC, Chuang YC, Liu HC, Huang CH, Lo KY, Chen CY, Chang FM, Chang GA, Lin YL, Yang WD, Su CH, Yeh TM, Wang TF. Sexual Crossing, Chromosome-Level Genome Sequences, and Comparative Genomic Analyses for the Medicinal Mushroom Taiwanofungus Camphoratus (Syn. Antrodia Cinnamomea, Antrodia Camphorata). Microbiol Spectr 2022; 10:e0203221. [PMID: 35196809 PMCID: PMC8865532 DOI: 10.1128/spectrum.02032-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022] Open
Abstract
Taiwanofungus camphoratus mushrooms are a complementary and alternative medicine for hangovers, cancer, hypertension, obesity, diabetes, and inflammation. Though Taiwanofungus camphoratus has attracted considerable biotechnological and pharmacological attention, neither classical genetic nor genomic approaches have been properly established for it. We isolated four sexually competent monokaryons from two T. camphoratus dikaryons used for the commercial cultivation of orange-red (HC1) and milky-white (SN1) mushrooms, respectively. We also sequenced, annotated, and comparatively analyzed high-quality and chromosome-level genome sequences of these four monokaryons. These genomic resources represent a valuable basis for understanding the biology, evolution, and secondary metabolite biosynthesis of this economically important mushrooms. We demonstrate that T. camphoratus has a tetrapolar mating system and that HC1 and SN1 represent two intraspecies isolates displaying karyotypic variation. Compared with several edible mushroom model organisms, T. camphoratus underwent a significant contraction in the gene family and individual gene numbers, most notably for plant, fungal, and bacterial cell-wall-degrading enzymes, explaining why T. camphoratus mushrooms are rare in natural environments, are difficult and time-consuming to artificially cultivate, and are susceptible to fungal and bacterial infections. Our results lay the foundation for an in-depth T. camphoratus study, including precise genetic manipulation, improvements to mushroom fruiting, and synthetic biology applications for producing natural medicinal products. IMPORTANCETaiwanofungus camphoratus (Tc) is a basidiomycete fungus that causes brown heart rot of the aromatic tree Cinnamomum kanehirae. The Tc fruiting bodies have been used to treat hangovers, abdominal pain, diarrhea, hypertension, and other diseases first by aboriginal Taiwanese and later by people in many countries. To establish classical genetic and genomic approaches for this economically important medicinal mushroom, we first isolated and characterized four sexually competent monokaryons from two dikaryons wildly used for commercial production of Tc mushrooms. We applied PacBio single molecule, real-time sequencing technology to determine the near-completed genome sequences of four monokaryons. These telomere-to-telomere and gapless haploid genome sequences reveal all genomic variants needed to be studied and discovered, including centromeres, telomeres, retrotransposons, mating type loci, biosynthetic, and metabolic gene clusters. Substantial interspecies diversities are also discovered between Tc and several other mushroom model organisms, including Agrocybe aegerita, Coprinopsis cinerea, and Schizophyllum commune, and Ganoderma lucidum.
Collapse
Affiliation(s)
- Chia-Ling Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wan-Chen Li
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chien Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hou-Cheng Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chien-Hao Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ko-Yun Lo
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chung-Yu Chen
- Shen Nong Fungal Biotechnology Co. Ltd., Taoyuan City, Taiwan
| | - Fang-Mo Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | - Ching-Hua Su
- Department of Microbiology and Immunology, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Ming Yeh
- Shen Nong Fungal Biotechnology Co. Ltd., Taoyuan City, Taiwan
| | - Ting-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
19
|
Sun S, Roth C, Floyd Averette A, Magwene PM, Heitman J. Epistatic genetic interactions govern morphogenesis during sexual reproduction and infection in a global human fungal pathogen. Proc Natl Acad Sci U S A 2022; 119:e2122293119. [PMID: 35169080 PMCID: PMC8872808 DOI: 10.1073/pnas.2122293119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Cellular development is orchestrated by evolutionarily conserved signaling pathways, which are often pleiotropic and involve intra- and interpathway epistatic interactions that form intricate, complex regulatory networks. Cryptococcus species are a group of closely related human fungal pathogens that grow as yeasts yet transition to hyphae during sexual reproduction. Additionally, during infection they can form large, polyploid titan cells that evade immunity and develop drug resistance. Multiple known signaling pathways regulate cellular development, yet how these are coordinated and interact with genetic variation is less well understood. Here, we conducted quantitative trait locus (QTL) analyses of a mapping population generated by sexual reproduction of two parents, only one of which is unisexually fertile. We observed transgressive segregation of the unisexual phenotype among progeny, as well as a large-cell phenotype under mating-inducing conditions. These large-cell progeny were found to produce titan cells both in vitro and in infected animals. Two major QTLs and corresponding quantitative trait genes (QTGs) were identified: RIC8 (encoding a guanine-exchange factor) and CNC06490 (encoding a putative Rho-GTPase activator), both involved in G protein signaling. The two QTGs interact epistatically with each other and with the mating-type locus in phenotypic determination. These findings provide insights into the complex genetics of morphogenesis during unisexual reproduction and pathogenic titan cell formation and illustrate how QTL analysis can be applied to identify epistasis between genes. This study shows that phenotypic outcomes are influenced by the genetic background upon which mutations arise, implicating dynamic, complex genotype-to-phenotype landscapes in fungal pathogens and beyond.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Cullen Roth
- Department of Biology, Duke University, Durham, NC 27708
| | - Anna Floyd Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Paul M Magwene
- Department of Biology, Duke University, Durham, NC 27708
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710;
| |
Collapse
|
20
|
Palmieri D, Barone G, Cigliano RA, De Curtis F, Lima G, Castoria R, Ianiri G. Complete genome sequence of the biocontrol yeast Papiliotrema terrestris strain LS28. G3 GENES|GENOMES|GENETICS 2021; 11:6371956. [PMID: 34534326 PMCID: PMC8664472 DOI: 10.1093/g3journal/jkab332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022]
Abstract
Papiliotrema terrestris strain LS28 is a biocontrol agent selected for its antagonistic activity against several plant pathogens both in the field and postharvest. The availability of a genome sequencing sets the foundation for the identification of the genetic mechanisms of its antagonistic activity. The genome size is 21.29 Mbp with a G+C content of 58.65%, and genome annotation predicts 8,626 protein-encoding genes. Phylogenetic analysis based on whole-genome data confirms that P. terrestris is a Tremellomycetes more closely related to Papiliotrema flavescens than Papiliotrema laurentii.
Collapse
Affiliation(s)
- Davide Palmieri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Giuseppe Barone
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | | | - Filippo De Curtis
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Giuseppe Lima
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Raffaello Castoria
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
21
|
Elfstrand M, Chen J, Cleary M, Halecker S, Ihrmark K, Karlsson M, Davydenko K, Stenlid J, Stadler M, Durling MB. Comparative analyses of the Hymenoscyphus fraxineus and Hymenoscyphus albidus genomes reveals potentially adaptive differences in secondary metabolite and transposable element repertoires. BMC Genomics 2021; 22:503. [PMID: 34217229 PMCID: PMC8254937 DOI: 10.1186/s12864-021-07837-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/24/2021] [Indexed: 11/29/2022] Open
Abstract
Background The dieback epidemic decimating common ash (Fraxinus excelsior) in Europe is caused by the invasive fungus Hymenoscyphus fraxineus. In this study we analyzed the genomes of H. fraxineus and H. albidus, its native but, now essentially displaced, non-pathogenic sister species, and compared them with several other members of Helotiales. The focus of the analyses was to identify signals in the genome that may explain the rapid establishment of H. fraxineus and displacement of H. albidus. Results The genomes of H. fraxineus and H. albidus showed a high level of synteny and identity. The assembly of H. fraxineus is 13 Mb longer than that of H. albidus’, most of this difference can be attributed to higher dispersed repeat content (i.e. transposable elements [TEs]) in H. fraxineus. In general, TE families in H. fraxineus showed more signals of repeat-induced point mutations (RIP) than in H. albidus, especially in Long-terminal repeat (LTR)/Copia and LTR/Gypsy elements. Comparing gene family expansions and 1:1 orthologs, relatively few genes show signs of positive selection between species. However, several of those did appeared to be associated with secondary metabolite genes families, including gene families containing two of the genes in the H. fraxineus-specific, hymenosetin biosynthetic gene cluster (BGC). Conclusion The genomes of H. fraxineus and H. albidus show a high degree of synteny, and are rich in both TEs and BGCs, but the genomic signatures also indicated that H. albidus may be less well equipped to adapt and maintain its ecological niche in a rapidly changing environment. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07837-2.
Collapse
Affiliation(s)
- Malin Elfstrand
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7026, SE-750 07, Uppsala, Sweden.
| | - Jun Chen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7026, SE-750 07, Uppsala, Sweden.,Systematic & Evolutionary Botany and Biodiversity group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Michelle Cleary
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, Box 49, SE-230 53, Alnarp, Sweden
| | - Sandra Halecker
- Dept. Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124, Braunschweig, Germany
| | - Katarina Ihrmark
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7026, SE-750 07, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7026, SE-750 07, Uppsala, Sweden
| | - Kateryna Davydenko
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7026, SE-750 07, Uppsala, Sweden.,Ukrainian research Institute of Forestry and Forest Melioration, 62458, Kharkov, Ukraine
| | - Jan Stenlid
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7026, SE-750 07, Uppsala, Sweden
| | - Marc Stadler
- Dept. Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124, Braunschweig, Germany
| | - Mikael Brandström Durling
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7026, SE-750 07, Uppsala, Sweden
| |
Collapse
|
22
|
Boekhout T, Aime MC, Begerow D, Gabaldón T, Heitman J, Kemler M, Khayhan K, Lachance MA, Louis EJ, Sun S, Vu D, Yurkov A. The evolving species concepts used for yeasts: from phenotypes and genomes to speciation networks. FUNGAL DIVERS 2021; 109:27-55. [PMID: 34720775 PMCID: PMC8550739 DOI: 10.1007/s13225-021-00475-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Here we review how evolving species concepts have been applied to understand yeast diversity. Initially, a phenotypic species concept was utilized taking into consideration morphological aspects of colonies and cells, and growth profiles. Later the biological species concept was added, which applied data from mating experiments. Biophysical measurements of DNA similarity between isolates were an early measure that became more broadly applied with the advent of sequencing technology, leading to a sequence-based species concept using comparisons of parts of the ribosomal DNA. At present phylogenetic species concepts that employ sequence data of rDNA and other genes are universally applied in fungal taxonomy, including yeasts, because various studies revealed a relatively good correlation between the biological species concept and sequence divergence. The application of genome information is becoming increasingly common, and we strongly recommend the use of complete, rather than draft genomes to improve our understanding of species and their genome and genetic dynamics. Complete genomes allow in-depth comparisons on the evolvability of genomes and, consequently, of the species to which they belong. Hybridization seems a relatively common phenomenon and has been observed in all major fungal lineages that contain yeasts. Note that hybrids may greatly differ in their post-hybridization development. Future in-depth studies, initially using some model species or complexes may shift the traditional species concept as isolated clusters of genetically compatible isolates to a cohesive speciation network in which such clusters are interconnected by genetic processes, such as hybridization.
Collapse
Affiliation(s)
- Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - M. Catherine Aime
- Dept Botany and Plant Pathology, College of Agriculture, Purdue University, West Lafayette, IN 47907 USA
| | - Dominik Begerow
- Evolution of Plants and Fungi, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC–CNS), Jordi Girona, 29, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710 USA
| | - Martin Kemler
- Evolution of Plants and Fungi, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Kantarawee Khayhan
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, University of Phayao, Phayao, 56000 Thailand
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, ON N6A 5B7 Canada
| | - Edward J. Louis
- Department of Genetics and Genome Biology, Genetic Architecture of Complex Traits, University of Leicester, Leicester, LE1 7RH UK
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710 USA
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Andrey Yurkov
- German Collection of Microorganisms and Cell Cultures, Leibniz Institute DSMZ, Brunswick, Germany
| |
Collapse
|
23
|
Narayanan A, Vadnala RN, Ganguly P, Selvakumar P, Rudramurthy SM, Prasad R, Chakrabarti A, Siddharthan R, Sanyal K. Functional and Comparative Analysis of Centromeres Reveals Clade-Specific Genome Rearrangements in Candida auris and a Chromosome Number Change in Related Species. mBio 2021; 12:e00905-21. [PMID: 33975937 PMCID: PMC8262905 DOI: 10.1128/mbio.00905-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/22/2022] Open
Abstract
The thermotolerant multidrug-resistant ascomycete Candida auris rapidly emerged since 2009 causing systemic infections worldwide and simultaneously evolved in different geographical zones. The molecular events that orchestrated this sudden emergence of the killer fungus remain mostly elusive. Here, we identify centromeres in C. auris and related species, using a combined approach of chromatin immunoprecipitation and comparative genomic analyses. We find that C. auris and multiple other species in the Clavispora/Candida clade shared a conserved small regional GC-poor centromere landscape lacking pericentromeres or repeats. Further, a centromere inactivation event led to karyotypic alterations in this species complex. Interspecies genome analysis identified several structural chromosomal changes around centromeres. In addition, centromeres are found to be rapidly evolving loci among the different geographical clades of the same species of C. auris Finally, we reveal an evolutionary trajectory of the unique karyotype associated with clade 2 that consists of the drug-susceptible isolates of C. aurisIMPORTANCECandida auris, the killer fungus, emerged as different geographical clades, exhibiting multidrug resistance and high karyotype plasticity. Chromosomal rearrangements are known to play key roles in the emergence of new species, virulence, and drug resistance in pathogenic fungi. Centromeres, the genomic loci where microtubules attach to separate the sister chromatids during cell division, are known to be hot spots of breaks and downstream rearrangements. We identified the centromeres in C. auris and related species to study their involvement in the evolution and karyotype diversity reported in C. auris We report conserved centromere features in 10 related species and trace the events that occurred at the centromeres during evolution. We reveal a centromere inactivation-mediated chromosome number change in these closely related species. We also observe that one of the geographical clades, the East Asian clade, evolved along a unique trajectory, compared to the other clades and related species.
Collapse
Affiliation(s)
- Aswathy Narayanan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Rakesh Netha Vadnala
- Computational Biology, The Institute of Mathematical Sciences/HBNI, Chennai, India
| | - Promit Ganguly
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Pavitra Selvakumar
- Computational Biology, The Institute of Mathematical Sciences/HBNI, Chennai, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajendra Prasad
- Amity Institute of Biotechnology, Amity University Haryana, Haryana, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rahul Siddharthan
- Computational Biology, The Institute of Mathematical Sciences/HBNI, Chennai, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- Osaka University, Suita, Japan
| |
Collapse
|
24
|
Hartmann FE, Duhamel M, Carpentier F, Hood ME, Foulongne‐Oriol M, Silar P, Malagnac F, Grognet P, Giraud T. Recombination suppression and evolutionary strata around mating-type loci in fungi: documenting patterns and understanding evolutionary and mechanistic causes. THE NEW PHYTOLOGIST 2021; 229:2470-2491. [PMID: 33113229 PMCID: PMC7898863 DOI: 10.1111/nph.17039] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/03/2020] [Indexed: 05/08/2023]
Abstract
Genomic regions determining sexual compatibility often display recombination suppression, as occurs in sex chromosomes, plant self-incompatibility loci and fungal mating-type loci. Regions lacking recombination can extend beyond the genes determining sexes or mating types, by several successive steps of recombination suppression. Here we review the evidence for recombination suppression around mating-type loci in fungi, sometimes encompassing vast regions of the mating-type chromosomes. The suppression of recombination at mating-type loci in fungi has long been recognized and maintains the multiallelic combinations required for correct compatibility determination. We review more recent evidence for expansions of recombination suppression beyond mating-type genes in fungi ('evolutionary strata'), which have been little studied and may be more pervasive than commonly thought. We discuss testable hypotheses for the ultimate (evolutionary) and proximate (mechanistic) causes for such expansions of recombination suppression, including (1) antagonistic selection, (2) association of additional functions to mating-type, such as uniparental mitochondria inheritance, (3) accumulation in the margin of nonrecombining regions of various factors, including deleterious mutations or transposable elements resulting from relaxed selection, or neutral rearrangements resulting from genetic drift. The study of recombination suppression in fungi could thus contribute to our understanding of recombination suppression expansion across a broader range of organisms.
Collapse
Affiliation(s)
- Fanny E. Hartmann
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| | - Marine Duhamel
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
- Ruhr‐Universität Bochum, Evolution of Plants and Fungi ‐ Gebäude ND 03/174Universitätsstraße150, 44801 BochumGermany
| | - Fantin Carpentier
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| | - Michael E. Hood
- Biology Department, Science CentreAmherst CollegeAmherstMA01002USA
| | | | - Philippe Silar
- Lab Interdisciplinaire Energies DemainUniv Paris DiderotSorbonne Paris CiteParis 13F‐75205France
| | - Fabienne Malagnac
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayCEACNRSGif‐sur‐Yvette91198France
| | - Pierre Grognet
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayCEACNRSGif‐sur‐Yvette91198France
| | - Tatiana Giraud
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| |
Collapse
|
25
|
Courtine D, Provaznik J, Reboul J, Blanc G, Benes V, Ewbank JJ. Long-read only assembly of Drechmeria coniospora genomes reveals widespread chromosome plasticity and illustrates the limitations of current nanopore methods. Gigascience 2020; 9:giaa099. [PMID: 32947622 PMCID: PMC7500977 DOI: 10.1093/gigascience/giaa099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/17/2020] [Accepted: 09/02/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Long-read sequencing is increasingly being used to determine eukaryotic genomes. We used nanopore technology to generate chromosome-level assemblies for 3 different strains of Drechmeria coniospora, a nematophagous fungus used extensively in the study of innate immunity in Caenorhabditis elegans. RESULTS One natural geographical isolate demonstrated high stability over decades, whereas a second isolate not only had a profoundly altered genome structure but exhibited extensive instability. We conducted an in-depth analysis of sequence errors within the 3 genomes and established that even with state-of-the-art tools, nanopore methods alone are insufficient to generate eukaryotic genome sequences of sufficient accuracy to merit inclusion in public databases. CONCLUSIONS Although nanopore long-read sequencing is not accurate enough to produce publishable eukaryotic genomes, in our case, it has revealed new information about genome plasticity in D. coniospora and provided a backbone that will permit future detailed study to characterize gene evolution in this important model fungal pathogen.
Collapse
Affiliation(s)
- Damien Courtine
- Aix-Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Jan Provaznik
- European Molecular Biology Laboratory (EMBL), GeneCore, Heidelberg, Germany
| | - Jerome Reboul
- Aix-Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Guillaume Blanc
- Aix-Marseille University, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Vladimir Benes
- European Molecular Biology Laboratory (EMBL), GeneCore, Heidelberg, Germany
| | - Jonathan J Ewbank
- Aix-Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
26
|
Gupta S, Paul K, Kaur S. Diverse species in the genus Cryptococcus: Pathogens and their non-pathogenic ancestors. IUBMB Life 2020; 72:2303-2312. [PMID: 32897638 DOI: 10.1002/iub.2377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 12/14/2022]
Abstract
The genus Cryptococcus comprises of more than 30 species. It consists of clinically significant pathogenic Cryptococcus neoformans/Cryptococcus gattii species complex comprising of a minimum of seven species. These pathogens cost more than 200,000 lives annually by causing cryptococcal meningoencephalitis. The evolution of the pathogenic species from closely related non-pathogenic species of the Cryptococcus amylolentus complex is of particular importance and several advances have been made to understand their phylogenetic and genomic relationships. The current review briefly describes the sexual reproduction process followed by an individual description of the members focusing on their key attributes and virulence mechanisms of the pathogenic species. A special section on phylogenetic studies is aimed at understanding the evolutionary divergence of pathogens from non-pathogens. Recent findings from our group pertaining to parameters affecting codon usage bias in six pathogenic and three non-pathogenic ancestral species and their corroboration with existing phylogenetic reports are also included in the current review.
Collapse
Affiliation(s)
- Shelly Gupta
- Department of Biochemistry, Lovely Professional University, Kapurthala, India
| | - Karan Paul
- Department of Biochemistry, DAV University, Jalandhar, India
| | - Sukhmanjot Kaur
- Department of Biochemistry, Lovely Professional University, Kapurthala, India
| |
Collapse
|
27
|
Seidl MF, Kramer HM, Cook DE, Fiorin GL, van den Berg GCM, Faino L, Thomma BPHJ. Repetitive Elements Contribute to the Diversity and Evolution of Centromeres in the Fungal Genus Verticillium. mBio 2020; 11:e01714-20. [PMID: 32900804 PMCID: PMC7482064 DOI: 10.1128/mbio.01714-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Centromeres are chromosomal regions that are crucial for chromosome segregation during mitosis and meiosis, and failed centromere formation can contribute to chromosomal anomalies. Despite this conserved function, centromeres differ significantly between and even within species. Thus far, systematic studies into the organization and evolution of fungal centromeres remain scarce. In this study, we identified the centromeres in each of the 10 species of the fungal genus Verticillium and characterized their organization and evolution. Chromatin immunoprecipitation of the centromere-specific histone CenH3 (ChIP-seq) and chromatin conformation capture (Hi-C) followed by high-throughput sequencing identified eight conserved, large (∼150-kb), AT-, and repeat-rich regional centromeres that are embedded in heterochromatin in the plant pathogen Verticillium dahliae Using Hi-C, we similarly identified repeat-rich centromeres in the other Verticillium species. Strikingly, a single degenerated long terminal repeat (LTR) retrotransposon is strongly associated with centromeric regions in some but not all Verticillium species. Extensive chromosomal rearrangements occurred during Verticillium evolution, of which some could be linked to centromeres, suggesting that centromeres contributed to chromosomal evolution. The size and organization of centromeres differ considerably between species, and centromere size was found to correlate with the genome-wide repeat content. Overall, our study highlights the contribution of repetitive elements to the diversity and rapid evolution of centromeres within the fungal genus VerticilliumIMPORTANCE The genus Verticillium contains 10 species of plant-associated fungi, some of which are notorious pathogens. Verticillium species evolved by frequent chromosomal rearrangements that contribute to genome plasticity. Centromeres are instrumental for separation of chromosomes during mitosis and meiosis, and failed centromere functionality can lead to chromosomal anomalies. Here, we used a combination of experimental techniques to identify and characterize centromeres in each of the Verticillium species. Intriguingly, we could strongly associate a single repetitive element to the centromeres of some of the Verticillium species. The presence of this element in the centromeres coincides with increased centromere sizes and genome-wide repeat expansions. Collectively, our findings signify a role of repetitive elements in the function, organization, and rapid evolution of centromeres in a set of closely related fungal species.
Collapse
Affiliation(s)
- Michael F Seidl
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, the Netherlands
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | - H Martin Kramer
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | - David E Cook
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
- Plant Pathology, Kansas State University, Manhattan, Kansas, USA
| | - Gabriel L Fiorin
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | | | - Luigi Faino
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
- Environmental Biology Department, Sapienza Università di Roma, Rome, Italy
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| |
Collapse
|
28
|
Abstract
Diversity within the fungal kingdom is evident from the wide range of morphologies fungi display as well as the various ecological roles and industrial purposes they serve. Technological advances, particularly in long-read sequencing, coupled with the increasing efficiency and decreasing costs across sequencing platforms have enabled robust characterization of fungal genomes. These sequencing efforts continue to reveal the rampant diversity in fungi at the genome level. Here, we discuss studies that have furthered our understanding of fungal genetic diversity and genomic evolution. These studies revealed the presence of both small-scale and large-scale genomic changes. In fungi, research has recently focused on many small-scale changes, such as how hypermutation and allelic transmission impact genome evolution as well as how and why a few specific genomic regions are more susceptible to rapid evolution than others. High-throughput sequencing of a diverse set of fungal genomes has also illuminated the frequency, mechanisms, and impacts of large-scale changes, which include chromosome structural variation and changes in chromosome number, such as aneuploidy, polyploidy, and the presence of supernumerary chromosomes. The studies discussed herein have provided great insight into how the architecture of the fungal genome varies within species and across the kingdom and how modern fungi may have evolved from the last common fungal ancestor and might also pave the way for understanding how genomic diversity has evolved in all domains of life.
Collapse
Affiliation(s)
- Shelby J. Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Centre, Durham, NC, USA
| | - Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Centre, Durham, NC, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Centre, Durham, NC, USA
| |
Collapse
|
29
|
Guin K, Sreekumar L, Sanyal K. Implications of the Evolutionary Trajectory of Centromeres in the Fungal Kingdom. Annu Rev Microbiol 2020; 74:835-853. [PMID: 32706633 DOI: 10.1146/annurev-micro-011720-122512] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromosome segregation during the cell cycle is an evolutionarily conserved, fundamental biological process. Dynamic interaction between spindle microtubules and the kinetochore complex that assembles on centromere DNA is required for faithful chromosome segregation. The first artificial minichromosome was constructed by cloning the centromere DNA of the budding yeast Saccharomyces cerevisiae. Since then, centromeres have been identified in >60 fungal species. The DNA sequence and organization of the sequence elements are highly diverse across these fungal centromeres. In this article, we provide a comprehensive view of the evolution of fungal centromeres. Studies of this process facilitated the identification of factors influencing centromere specification, maintenance, and propagation through many generations. Additionally, we discuss the unique features and plasticity of centromeric chromatin and the involvement of centromeres in karyotype evolution. Finally, we discuss the implications of recurrent loss of RNA interference (RNAi) and/or heterochromatin components on the trajectory of the evolution of fungal centromeres and propose the centromere structure of the last common ancestor of three major fungal phyla-Ascomycota, Basidiomycota, and Mucoromycota.
Collapse
Affiliation(s)
- Krishnendu Guin
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka 560064, India; , ,
| | - Lakshmi Sreekumar
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka 560064, India; , ,
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka 560064, India; , ,
| |
Collapse
|
30
|
Guin K, Chen Y, Mishra R, Muzaki SRBM, Thimmappa BC, O'Brien CE, Butler G, Sanyal A, Sanyal K. Spatial inter-centromeric interactions facilitated the emergence of evolutionary new centromeres. eLife 2020; 9:e58556. [PMID: 32469306 PMCID: PMC7292649 DOI: 10.7554/elife.58556] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Centromeres of Candida albicans form on unique and different DNA sequences but a closely related species, Candida tropicalis, possesses homogenized inverted repeat (HIR)-associated centromeres. To investigate the mechanism of centromere type transition, we improved the fragmented genome assembly and constructed a chromosome-level genome assembly of C. tropicalis by employing PacBio sequencing, chromosome conformation capture sequencing (3C-seq), chromoblot, and genetic analysis of engineered aneuploid strains. Further, we analyzed the 3D genome organization using 3C-seq data, which revealed spatial proximity among the centromeres as well as telomeres of seven chromosomes in C. tropicalis. Intriguingly, we observed evidence of inter-centromeric translocations in the common ancestor of C. albicans and C. tropicalis. Identification of putative centromeres in closely related Candida sojae, Candida viswanathii and Candida parapsilosis indicates loss of ancestral HIR-associated centromeres and establishment of evolutionary new centromeres (ENCs) in C. albicans. We propose that spatial proximity of the homologous centromere DNA sequences facilitated karyotype rearrangements and centromere type transitions in human pathogenic yeasts of the CUG-Ser1 clade.
Collapse
Affiliation(s)
- Krishnendu Guin
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Yao Chen
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Radha Mishra
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | | | - Bhagya C Thimmappa
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Caoimhe E O'Brien
- School Of Biomolecular & Biomed Science, Conway Institute of Biomolecular and Biomedical Research, University College DublinDublinIreland
| | - Geraldine Butler
- School Of Biomolecular & Biomed Science, Conway Institute of Biomolecular and Biomedical Research, University College DublinDublinIreland
| | - Amartya Sanyal
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| |
Collapse
|
31
|
Ola M, O'Brien CE, Coughlan AY, Ma Q, Donovan PD, Wolfe KH, Butler G. Polymorphic centromere locations in the pathogenic yeast Candida parapsilosis. Genome Res 2020; 30:684-696. [PMID: 32424070 PMCID: PMC7263194 DOI: 10.1101/gr.257816.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/24/2020] [Indexed: 11/24/2022]
Abstract
Centromeres pose an evolutionary paradox: strongly conserved in function but rapidly changing in sequence and structure. However, in the absence of damage, centromere locations are usually conserved within a species. We report here that isolates of the pathogenic yeast species Candida parapsilosis show within-species polymorphism for the location of centromeres on two of its eight chromosomes. Its old centromeres have an inverted-repeat (IR) structure, whereas its new centromeres have no obvious structural features but are located within 30 kb of the old site. Centromeres can therefore move naturally from one chromosomal site to another, apparently spontaneously and in the absence of any significant changes in DNA sequence. Our observations are consistent with a model in which all centromeres are genetically determined, such as by the presence of short or long IRs or by the ability to form cruciforms. We also find that centromeres have been hotspots for genomic rearrangements in the C. parapsilosis clade.
Collapse
Affiliation(s)
- Mihaela Ola
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Caoimhe E O'Brien
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aisling Y Coughlan
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Qinxi Ma
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Paul D Donovan
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kenneth H Wolfe
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
32
|
Ostevik KL, Samuk K, Rieseberg LH. Ancestral Reconstruction of Karyotypes Reveals an Exceptional Rate of Nonrandom Chromosomal Evolution in Sunflower. Genetics 2020; 214:1031-1045. [PMID: 32033968 PMCID: PMC7153943 DOI: 10.1534/genetics.120.303026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/03/2020] [Indexed: 12/20/2022] Open
Abstract
Mapping the chromosomal rearrangements between species can inform our understanding of genome evolution, reproductive isolation, and speciation. Here, we present a novel algorithm for identifying regions of synteny in pairs of genetic maps, which is implemented in the accompanying R package syntR. The syntR algorithm performs as well as previous ad hoc methods while being systematic, repeatable, and applicable to mapping chromosomal rearrangements in any group of species. In addition, we present a systematic survey of chromosomal rearrangements in the annual sunflowers, which is a group known for extreme karyotypic diversity. We build high-density genetic maps for two subspecies of the prairie sunflower, Helianthus petiolaris ssp. petiolaris and H. petiolaris ssp. fallax Using syntR, we identify blocks of synteny between these two subspecies and previously published high-density genetic maps. We reconstruct ancestral karyotypes for annual sunflowers using those synteny blocks and conservatively estimate that there have been 7.9 chromosomal rearrangements per million years, a high rate of chromosomal evolution. Although the rate of inversion is even higher than the rate of translocation in this group, we further find that every extant karyotype is distinguished by between one and three translocations involving only 8 of the 17 chromosomes. This nonrandom exchange suggests that specific chromosomes are prone to translocation and may thus contribute disproportionately to widespread hybrid sterility in sunflowers. These data deepen our understanding of chromosome evolution and confirm that Helianthus has an exceptional rate of chromosomal rearrangement that may facilitate similarly rapid diversification.
Collapse
Affiliation(s)
- Kate L Ostevik
- Department of Biology, Duke University, Durham, North Carolina 27701
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Kieran Samuk
- Department of Biology, Duke University, Durham, North Carolina 27701
| | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
33
|
Centromere scission drives chromosome shuffling and reproductive isolation. Proc Natl Acad Sci U S A 2020; 117:7917-7928. [PMID: 32193338 DOI: 10.1073/pnas.1918659117] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A fundamental characteristic of eukaryotic organisms is the generation of genetic variation via sexual reproduction. Conversely, significant large-scale genome structure variations could hamper sexual reproduction, causing reproductive isolation and promoting speciation. The underlying processes behind large-scale genome rearrangements are not well understood and include chromosome translocations involving centromeres. Recent genomic studies in the Cryptococcus species complex revealed that chromosome translocations generated via centromere recombination have reshaped the genomes of different species. In this study, multiple DNA double-strand breaks (DSBs) were generated via the CRISPR/Cas9 system at centromere-specific retrotransposons in the human fungal pathogen Cryptococcus neoformans The resulting DSBs were repaired in a complex manner, leading to the formation of multiple interchromosomal rearrangements and new telomeres, similar to chromothripsis-like events. The newly generated strains harboring chromosome translocations exhibited normal vegetative growth but failed to undergo successful sexual reproduction with the parental wild-type strain. One of these strains failed to produce any spores, while another produced ∼3% viable progeny. The germinated progeny exhibited aneuploidy for multiple chromosomes and showed improved fertility with both parents. All chromosome translocation events were accompanied without any detectable change in gene sequences and thus suggest that chromosomal translocations alone may play an underappreciated role in the onset of reproductive isolation and speciation.
Collapse
|
34
|
Ianiri G, Fang YF, Dahlmann TA, Clancey SA, Janbon G, Kück U, Heitman J. Mating-Type-Specific Ribosomal Proteins Control Aspects of Sexual Reproduction in Cryptococcus neoformans. Genetics 2020; 214:635-649. [PMID: 31882399 PMCID: PMC7054023 DOI: 10.1534/genetics.119.302740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/21/2019] [Indexed: 12/31/2022] Open
Abstract
The MAT locus of Cryptococcus neoformans has a bipolar organization characterized by an unusually large structure, spanning over 100 kb. MAT genes have been characterized by functional genetics as being involved in sexual reproduction and virulence. However, classical gene replacement failed to achieve mutants for five MAT genes (RPL22, RPO41, MYO2, PRT1, and RPL39), indicating that they are likely essential. In the present study, targeted gene replacement was performed in a diploid strain for both the α and a alleles of the ribosomal genes RPL22 and RPL39 Mendelian analysis of the progeny confirmed that both RPL22 and RPL39 are essential for viability. Ectopic integration of the RPL22 allele of opposite MAT identity in the heterozygous RPL22a/rpl22αΔ or RPL22α/rpl22aΔ mutant strains failed to complement their essential phenotype. Evidence suggests that this is due to differential expression of the RPL22 genes, and an RNAi-dependent mechanism that contributes to control RPL22a expression. Furthermore, via CRISPR/Cas9 technology, the RPL22 alleles were exchanged in haploid MATα and MATa strains of C. neoformans These RPL22 exchange strains displayed morphological and genetic defects during bilateral mating. These results contribute to elucidating functions of C. neoformans essential mating type genes that may constitute a type of imprinting system to promote inheritance of nuclei of both mating types.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Yufeng Francis Fang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Tim A Dahlmann
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Shelly Applen Clancey
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, 75015 Paris, France
| | - Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
35
|
Sun S, Fu C, Ianiri G, Heitman J. The Pheromone and Pheromone Receptor Mating-Type Locus Is Involved in Controlling Uniparental Mitochondrial Inheritance in Cryptococcus. Genetics 2020; 214:703-717. [PMID: 31888949 PMCID: PMC7054021 DOI: 10.1534/genetics.119.302824] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/23/2019] [Indexed: 01/03/2023] Open
Abstract
Mitochondria are inherited uniparentally during sexual reproduction in the majority of eukaryotic species studied, including humans, mice, and nematodes, as well as many fungal species. Mitochondrial uniparental inheritance (mito-UPI) could be beneficial in that it avoids possible genetic conflicts between organelles with different genetic backgrounds, as recently shown in mice, and it could prevent the spread of selfish genetic elements in the mitochondrial genome. Despite the prevalence of observed mito-UPI, the underlying mechanisms and the genes involved in controlling this non-Mendelian inheritance are poorly understood in many species. In Cryptococcus neoformans, a human pathogenic basidiomyceteous fungus, mating types (MATα and MATa) are defined by alternate alleles at the single MAT locus that evolved from fusion of the two MAT loci (P/R encoding pheromones and pheromone receptors, and HD encoding homeodomain transcription factors) that are the ancestral state in the basidiomycota. Mitochondria are inherited uniparentally from the MATa parent in C. neoformans, and this requires the SXI1α and SXI2a HD factors encoded by MAT However, there is evidence that additional genes contribute to the control of mito-UPI in Cryptococcus Here, we show that in C. amylolentus, a sibling species of C. neoformans with unlinked P/R and HD MAT loci, mito-UPI is controlled by the P/R locus and is independent of the HD locus. Consistently, by replacing the MATα alleles of the pheromones (MF) and pheromone receptor (STE3) with the MATa alleles, we show that these P/R locus-defining genes indeed affect mito-UPI in C. neoformans during sexual reproduction. Additionally, we show that during early stages of C. neoformans sexual reproduction, conjugation tubes are always produced by the MATα cells, resulting in unidirectional migration of the MATα nucleus into the MATa cell during zygote formation. This process is controlled by the P/R locus and could serve to physically restrict movement of MATα mitochondria in the zygotes, and thereby contribute to mito-UPI. We propose a model in which both physical and genetic mechanisms function in concert to prevent the coexistence of mitochondria from the two parents in the zygote, and subsequently in the meiotic progeny, thus ensuring mito-UPI in pathogenic Cryptococcus, as well as in closely related nonpathogenic species. The implications of these findings are discussed in the context of the evolution of mito-UPI in fungi and other more diverse eukaryotes.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
36
|
Sankaranarayanan SR, Ianiri G, Coelho MA, Reza MH, Thimmappa BC, Ganguly P, Vadnala RN, Sun S, Siddharthan R, Tellgren-Roth C, Dawson TL, Heitman J, Sanyal K. Loss of centromere function drives karyotype evolution in closely related Malassezia species. eLife 2020; 9:e53944. [PMID: 31958060 PMCID: PMC7025860 DOI: 10.7554/elife.53944] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Genomic rearrangements associated with speciation often result in variation in chromosome number among closely related species. Malassezia species show variable karyotypes ranging between six and nine chromosomes. Here, we experimentally identified all eight centromeres in M. sympodialis as 3-5-kb long kinetochore-bound regions that span an AT-rich core and are depleted of the canonical histone H3. Centromeres of similar sequence features were identified as CENP-A-rich regions in Malassezia furfur, which has seven chromosomes, and histone H3 depleted regions in Malassezia slooffiae and Malassezia globosa with nine chromosomes each. Analysis of synteny conservation across centromeres with newly generated chromosome-level genome assemblies suggests two distinct mechanisms of chromosome number reduction from an inferred nine-chromosome ancestral state: (a) chromosome breakage followed by loss of centromere DNA and (b) centromere inactivation accompanied by changes in DNA sequence following chromosome-chromosome fusion. We propose that AT-rich centromeres drive karyotype diversity in the Malassezia species complex through breakage and inactivation.
Collapse
Affiliation(s)
- Sundar Ram Sankaranarayanan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Md Hashim Reza
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| | - Bhagya C Thimmappa
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| | - Promit Ganguly
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| | | | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | | | - Christian Tellgren-Roth
- National Genomics Infrastructure, Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala UniversityUppsalaSweden
| | - Thomas L Dawson
- Skin Research Institute Singapore, Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Department of Drug Discovery, Medical University of South Carolina, School of PharmacyCharlestonUnited States
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| |
Collapse
|
37
|
Sun S, Coelho MA, David-Palma M, Priest SJ, Heitman J. The Evolution of Sexual Reproduction and the Mating-Type Locus: Links to Pathogenesis of Cryptococcus Human Pathogenic Fungi. Annu Rev Genet 2019; 53:417-444. [PMID: 31537103 PMCID: PMC7025156 DOI: 10.1146/annurev-genet-120116-024755] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cryptococcus species utilize a variety of sexual reproduction mechanisms, which generate genetic diversity, purge deleterious mutations, and contribute to their ability to occupy myriad environmental niches and exhibit a range of pathogenic potential. The bisexual and unisexual cycles of pathogenic Cryptococcus species are stimulated by properties associated with their environmental niches and proceed through well-characterized signaling pathways and corresponding morphological changes. Genes governing mating are encoded by the mating-type (MAT) loci and influence pathogenesis, population dynamics, and lineage divergence in Cryptococcus. MAT has undergone significant evolutionary changes within the Cryptococcus genus, including transition from the ancestral tetrapolar state in nonpathogenic species to a bipolar mating system in pathogenic species, as well as several internal reconfigurations. Owing to the variety of established sexual reproduction mechanisms and the robust characterization of the evolution of mating and MAT in this genus, Cryptococcus species provide key insights into the evolution of sexual reproduction.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Shelby J Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| |
Collapse
|
38
|
Mitotic Recombination and Adaptive Genomic Changes in Human Pathogenic Fungi. Genes (Basel) 2019; 10:genes10110901. [PMID: 31703352 PMCID: PMC6895784 DOI: 10.3390/genes10110901] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
Genome rearrangements and ploidy alterations are important for adaptive change in the pathogenic fungal species Candida and Cryptococcus, which propagate primarily through clonal, asexual reproduction. These changes can occur during mitotic growth and lead to enhanced virulence, drug resistance, and persistence in chronic infections. Examples of microevolution during the course of infection were described in both human infections and mouse models. Recent discoveries defining the role of sexual, parasexual, and unisexual cycles in the evolution of these pathogenic fungi further expanded our understanding of the diversity found in and between species. During mitotic growth, damage to DNA in the form of double-strand breaks (DSBs) is repaired, and genome integrity is restored by the homologous recombination and non-homologous end-joining pathways. In addition to faithful repair, these pathways can introduce minor sequence alterations at the break site or lead to more extensive genetic alterations that include loss of heterozygosity, inversions, duplications, deletions, and translocations. In particular, the prevalence of repetitive sequences in fungal genomes provides opportunities for structural rearrangements to be generated by non-allelic (ectopic) recombination. In this review, we describe DSB repair mechanisms and the types of resulting genome alterations that were documented in the model yeast Saccharomyces cerevisiae. The relevance of similar recombination events to stress- and drug-related adaptations and in generating species diversity are discussed for the human fungal pathogens Candida albicans and Cryptococcus neoformans.
Collapse
|
39
|
Thermotolerance in the pathogen Cryptococcus neoformans is linked to antigen masking via mRNA decay-dependent reprogramming. Nat Commun 2019; 10:4950. [PMID: 31666517 PMCID: PMC6821889 DOI: 10.1038/s41467-019-12907-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 10/04/2019] [Indexed: 01/24/2023] Open
Abstract
A common feature shared by systemic fungal pathogens of environmental origin, such as Cryptococcus neoformans, is their ability to adapt to mammalian core body temperature. In C. neoformans, this adaptation is accompanied by Ccr4-mediated decay of ribosomal protein mRNAs. Here we use the related, but thermo-intolerant species Cryptococcus amylolentus to demonstrate that this response contributes to host-temperature adaptation and pathogenicity of cryptococci. In a C. neoformans ccr4Δ mutant, stabilized ribosomal protein mRNAs are retained in the translating pool, and stress-induced transcriptomic changes are reduced in comparison with the wild type strain, likely due to ineffective translation of transcription factors. In addition, the mutant displays increased exposure of cell wall glucans, and recognition by Dectin-1 results in increased phagocytosis by lung macrophages, linking mRNA decay to adaptation and immune evasion. The fungal pathogen Cryptococcus neoformans can adapt to mammalian core body temperature. Here, Bloom et al. show that Ccr4-mediated decay of ribosomal protein mRNAs is important for thermotolerance and immune evasion by promoting masking of cell wall glucans.
Collapse
|
40
|
Abstract
Cryptococcus neoformans is a ubiquitous environmental fungus and an opportunistic pathogen that causes fatal cryptococcal meningitis. Advances in genomics, genetics, and cellular and molecular biology of C. neoformans have dramatically improved our understanding of this important pathogen, rendering it a model organism to study eukaryotic biology and microbial pathogenesis. In light of recent progress, we describe in this review the life cycle of C. neoformans with a special emphasis on the regulation of the yeast-to-hypha transition and different modes of sexual reproduction, in addition to the impacts of the life cycle on cryptococcal populations and pathogenesis.
Collapse
Affiliation(s)
- Youbao Zhao
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Jianfeng Lin
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Yumeng Fan
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| |
Collapse
|
41
|
Heitman J. E Pluribus Unum: The Fungal Kingdom as a Rosetta Stone for Biology and Medicine. Genetics 2019; 213:1-7. [PMID: 31488591 PMCID: PMC6727799 DOI: 10.1534/genetics.119.302537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
THE Genetics Society of America's (GSA's) Edward Novitski Prize recognizes a single experimental accomplishment or a body of work in which an exceptional level of creativity, and intellectual ingenuity, has been used to design and execute scientific experiments to solve a difficult problem in genetics. The 2019 recipient is Joseph Heitman, who is recognized for his work on fungal pathogens of humans and for ingenious experiments using yeast to identify the molecular targets of widely used immunosuppressive drugs. The latter work, part of Heitman's postdoctoral research, proved to be a seminal contribution to the discovery of the conserved Target of Rapamycin (TOR) pathway. In his own research group, a recurring theme has been the linking of fundamental insights in fungal biology to medically important problems. His studies have included defining fungal mating-type loci, including their evolution and links to virulence, and illustrating convergent transitions from outcrossing to inbreeding in fungal pathogens of plants and animals. He has led efforts to establish new genetic and genomic methods for studying pathogenesis in Cryptococcus species. Heitman's group also discovered unisexual reproduction, a novel mode of fungal reproduction with implications for pathogen evolution and the origins of sexual reproduction.
Collapse
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
42
|
Sun S, Coelho MA, Heitman J, Nowrousian M. Convergent evolution of linked mating-type loci in basidiomycete fungi. PLoS Genet 2019; 15:e1008365. [PMID: 31490920 PMCID: PMC6730849 DOI: 10.1371/journal.pgen.1008365] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
Sexual development is a key evolutionary innovation of eukaryotes. In many species, mating involves interaction between compatible mating partners that can undergo cell and nuclear fusion and subsequent steps of development including meiosis. Mating compatibility in fungi is governed by the mating type (MAT) loci. In basidiomycetes, the ancestral state is hypothesized to be tetrapolar, with two genetically unlinked MAT loci containing homeodomain transcription factor genes (HD locus) and pheromone and pheromone receptor genes (P/R locus), respectively. Alleles at both loci must differ between mating partners for completion of sexual development. However, there are also basidiomycetes with bipolar mating systems, which can arise through genomic linkage of the HD and P/R loci. In the order Tremellales, bipolarity is found only in the pathogenic Cryptococcus species. Here, we describe the analysis of MAT loci from 24 species of the Trichosporonales, a sister order to the Tremellales. In all of the species analyzed, the MAT loci are fused and a single HD gene is present in each mating type, similar to the organization in the pathogenic Cryptococci. However, the HD and P/R allele combinations in the Trichosporonales are different from those in the pathogenic Cryptococci. This and the existence of tetrapolar species in the Tremellales suggest that fusion of the HD and P/R loci occurred independently in the Trichosporonales and pathogenic Cryptococci, supporting the hypothesis of convergent evolution towards fused MAT regions, similar to previous findings in other fungal groups. Unlike the fused MAT loci in several other basidiomycete lineages though, the gene content and gene order within the fused MAT loci are highly conserved in the Trichosporonales, and there is no apparent suppression of recombination extending from the MAT loci to adjacent chromosomal regions, suggesting different mechanisms for the evolution of physically linked MAT loci in these groups.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
43
|
Abstract
Magnaporthe oryzae is an important fungal pathogen that causes a loss of 10% to 30% of the annual rice crop due to the devastating blast disease. In most organisms, kinetochores are clustered together or arranged at the metaphase plate to facilitate synchronized anaphase separation of sister chromatids in mitosis. In this study, we showed that the initially clustered kinetochores separate and position randomly prior to anaphase in M. oryzae. Centromeres in M. oryzae occupy large genomic regions and form on AT-rich DNA without any common sequence motifs. Overall, this study identified atypical kinetochore dynamics and mapped functional centromeres in M. oryzae to define the roles of centromeric and pericentric boundaries in kinetochore assembly on epigenetically specified centromere loci. This study should pave the way for further understanding of the contribution of heterochromatin in genome stability and virulence of the blast fungus and its related species of high economic importance. Precise kinetochore-microtubule interactions ensure faithful chromosome segregation in eukaryotes. Centromeres, identified as scaffolding sites for kinetochore assembly, are among the most rapidly evolving chromosomal loci in terms of the DNA sequence and length and organization of intrinsic elements. Neither the centromere structure nor the kinetochore dynamics is well studied in plant-pathogenic fungi. Here, we sought to understand the process of chromosome segregation in the rice blast fungus Magnaporthe oryzae. High-resolution imaging of green fluorescent protein (GFP)-tagged inner kinetochore proteins CenpA and CenpC revealed unusual albeit transient declustering of centromeres just before anaphase separation of chromosomes in M. oryzae. Strikingly, the declustered centromeres positioned randomly at the spindle midzone without an apparent metaphase plate per se. Using CenpA chromatin immunoprecipitation followed by deep sequencing, all seven centromeres in M. oryzae were found to be regional, spanning 57-kb to 109-kb transcriptionally poor regions. Highly AT-rich and heavily methylated DNA sequences were the only common defining features of all the centromeres in rice blast. Lack of centromere-specific DNA sequence motifs or repetitive elements suggests an epigenetic specification of centromere function in M. oryzae. PacBio genome assemblies and synteny analyses facilitated comparison of the centromeric/pericentromeric regions in distinct isolates of rice blast and wheat blast and in Magnaporthiopsis poae. Overall, this study revealed unusual centromere dynamics and precisely identified the centromere loci in the top model fungal pathogens that belong to Magnaporthales and cause severe losses in the global production of food crops and turf grasses.
Collapse
|
44
|
Distribution and Diversity of Cytochrome P450 Monooxygenases in the Fungal Class Tremellomycetes. Int J Mol Sci 2019; 20:ijms20122889. [PMID: 31200551 PMCID: PMC6627453 DOI: 10.3390/ijms20122889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/25/2019] [Accepted: 05/30/2019] [Indexed: 12/16/2022] Open
Abstract
Tremellomycetes, a fungal class in the subphylum Agaricomycotina, contain well-known opportunistic and emerging human pathogens. The azole drug fluconazole, used in the treatment of diseases caused by some species of Tremellomycetes, inhibits cytochrome P450 monooxygenase CYP51, an enzyme that converts lanosterol into an essential component of the fungal cell membrane ergosterol. Studies indicate that mutations and over-expression of CYP51 in species of Tremellomycetes are one of the reasons for fluconazole resistance. Moreover, the novel drug, VT-1129, that is in the pipeline is reported to exert its effect by binding and inhibiting CYP51. Despite the importance of CYPs, the CYP repertoire in species of Tremellomycetes has not been reported to date. This study intends to address this research gap. Comprehensive genome-wide CYP analysis revealed the presence of 203 CYPs (excluding 16 pseudo-CYPs) in 23 species of Tremellomycetes that can be grouped into 38 CYP families and 72 CYP subfamilies. Twenty-three CYP families are new and three CYP families (CYP5139, CYP51 and CYP61) were conserved across 23 species of Tremellomycetes. Pathogenic cryptococcal species have 50% fewer CYP genes than non-pathogenic species. The results of this study will serve as reference for future annotation and characterization of CYPs in species of Tremellomycetes.
Collapse
|
45
|
Passer AR, Coelho MA, Billmyre RB, Nowrousian M, Mittelbach M, Yurkov AM, Averette AF, Cuomo CA, Sun S, Heitman J. Genetic and Genomic Analyses Reveal Boundaries between Species Closely Related to Cryptococcus Pathogens. mBio 2019; 10:e00764-19. [PMID: 31186317 PMCID: PMC6561019 DOI: 10.1128/mbio.00764-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
Speciation is a central mechanism of biological diversification. While speciation is well studied in plants and animals, in comparison, relatively little is known about speciation in fungi. One fungal model is the Cryptococcus genus, which is best known for the pathogenic Cryptococcus neoformans/Cryptococcus gattii species complex that causes >200,000 new human infections annually. Elucidation of how these species evolved into important human-pathogenic species remains challenging and can be advanced by studying the most closely related nonpathogenic species, Cryptococcus amylolentus and Tsuchiyaea wingfieldii However, these species have only four known isolates, and available data were insufficient to determine species boundaries within this group. By analyzing full-length chromosome assemblies, we reappraised the phylogenetic relationships of the four available strains, confirmed the genetic separation of C. amylolentus and T. wingfieldii (now Cryptococcus wingfieldii), and revealed an additional cryptic species, for which the name Cryptococcus floricola is proposed. The genomes of the three species are ∼6% divergent and exhibit significant chromosomal rearrangements, including inversions and a reciprocal translocation that involved intercentromeric ectopic recombination, which together likely impose significant barriers to genetic exchange. Using genetic crosses, we show that while C. wingfieldii cannot interbreed with any of the other strains, C. floricola can still undergo sexual reproduction with C. amylolentus However, most of the resulting spores were inviable or sterile or showed reduced recombination during meiosis, indicating that intrinsic postzygotic barriers had been established. Our study and genomic data will foster additional studies addressing fungal speciation and transitions between nonpathogenic and pathogenic Cryptococcus lineages.IMPORTANCE The evolutionary drivers of speciation are critical to our understanding of how new pathogens arise from nonpathogenic lineages and adapt to new environments. Here we focus on the Cryptococcus amylolentus species complex, a nonpathogenic fungal lineage closely related to the human-pathogenic Cryptococcus neoformans/Cryptococcus gattii complex. Using genetic and genomic analyses, we reexamined the species boundaries of four available isolates within the C. amylolentus complex and revealed three genetically isolated species. Their genomes are ∼6% divergent and exhibit chromosome rearrangements, including translocations and small-scale inversions. Although two of the species (C. amylolentus and newly described C. floricola) were still able to interbreed, the resulting hybrid progeny were usually inviable or sterile, indicating that barriers to reproduction had already been established. These results advance our understanding of speciation in fungi and highlight the power of genomics in assisting our ability to correctly identify and discriminate fungal species.
Collapse
Affiliation(s)
- Andrew Ryan Passer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Robert Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Moritz Mittelbach
- Geobotany, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Andrey M Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Anna Floyd Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
46
|
Carpentier F, Rodríguez de la Vega RC, Branco S, Snirc A, Coelho MA, Hood ME, Giraud T. Convergent recombination cessation between mating-type genes and centromeres in selfing anther-smut fungi. Genome Res 2019; 29:944-953. [PMID: 31043437 PMCID: PMC6581054 DOI: 10.1101/gr.242578.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/29/2019] [Indexed: 12/28/2022]
Abstract
The degree of selfing has major impacts on adaptability and is often controlled by molecular mechanisms determining mating compatibility. Changes in compatibility systems are therefore important evolutionary events, but their underlying genomic mechanisms are often poorly understood. Fungi display frequent shifts in compatibility systems, and their small genomes facilitate elucidation of the mechanisms involved. In particular, linkage between the pre- and postmating compatibility loci has evolved repeatedly, increasing the odds of gamete compatibility under selfing. Here, we studied the mating-type chromosomes of two anther-smut fungi with unlinked mating-type loci despite a self-fertilization mating system. Segregation analyses and comparisons of high-quality genome assemblies revealed that these two species displayed linkage between mating-type loci and their respective centromeres. This arrangement renders the same improved odds of gamete compatibility as direct linkage of the two mating-type loci under the automictic mating (intratetrad selfing) of anther-smut fungi. Recombination cessation was found associated with a large inversion in only one of the four linkage events. The lack of trans-specific polymorphism at genes located in nonrecombining regions and linkage date estimates indicated that the events of recombination cessation occurred independently in the two sister species. Our study shows that natural selection can repeatedly lead to similar genomic patterns and phenotypes, and that different evolutionary paths can lead to distinct yet equally beneficial responses to selection. Our study further highlights that automixis and gene linkage to centromeres have important genetic and evolutionary consequences, while being poorly recognized despite being present in a broad range of taxa.
Collapse
Affiliation(s)
- Fantin Carpentier
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Ricardo C Rodríguez de la Vega
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Sara Branco
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Alodie Snirc
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Marco A Coelho
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, Massachusetts 01002, USA
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
47
|
Sun S, Priest SJ, Heitman J. Cryptococcus neoformans Mating and Genetic Crosses. ACTA ACUST UNITED AC 2019; 53:e75. [PMID: 30661293 DOI: 10.1002/cpmc.75] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Cryptococcus pathogenic species complex is a group of opportunistic human fungal pathogens that cause cryptococcal meningoencephalitis, an infection associated with unacceptably high mortality rates. The public health relevance of these pathogens has galvanized extensive research over the past several decades and led to characterization of their sexual cycles. This research has allowed several Cryptococcus species to develop into model fungal organisms for both pathogenesis and basic science studies. Many of these studies require observation of the meiotic process and its associated mating structures as well as generation of meiotic progeny with novel phenotypes and genotypes. Herein, we describe how to set up genetic crosses between Cryptococcus strains and observe their mating phenotypes as well as how to recover progeny from these crosses for further analysis. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Shelby J Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
48
|
Nieuwenhuis BPS, Aanen DK. Nuclear arms races: Experimental evolution for mating success in the mushroom-forming fungus Schizophyllum commune. PLoS One 2018; 13:e0209671. [PMID: 30589876 PMCID: PMC6320016 DOI: 10.1371/journal.pone.0209671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
When many gametes compete to fertilize a limited number of compatible gametes, sexual selection will favour traits that increase competitive success during mating. In animals and plants, sperm and pollen competition have yielded many interesting adaptations for improved mating success. In fungi, similar processes have not been shown directly yet. We test the hypothesis that sexual selection can increase competitive fitness during mating, using experimental evolution in the mushroom-forming fungus Schizophyllum commune (Basidiomycota). Mating in mushroom fungi occurs by donation of nuclei to a mycelium. These fertilizing 'male' nuclei migrate through the receiving 'female' mycelium. In our setup, an evolving population of nuclei was serially mated with a non-evolving female mycelium for 20 sexual generations. From the twelve tested evolved lines, four had increased and one had decreased fitness relative to an unevolved competitor. Even though only two of those five remained significant after correcting for multiple comparisons, for all five lines we found a correlation between the efficiency with which the female mycelium is accessed and fitness, providing additional circumstantial evidence for fitness change in those five lines. In two lines, fitness change was also accompanied by increased spore production. The one line with net reduced competitive fitness had increased spore production, but reduced fertilisation efficiency. We did not find trade-offs between male reproductive success and other fitness components. We compare these findings with examples of sperm and pollen competition and show that many similarities between these systems and nuclear competition in mushrooms exist.
Collapse
Affiliation(s)
- Bart P. S. Nieuwenhuis
- Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
- * E-mail:
| | - Duur K. Aanen
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
49
|
|
50
|
Branco S, Carpentier F, Rodríguez de la Vega RC, Badouin H, Snirc A, Le Prieur S, Coelho MA, de Vienne DM, Hartmann FE, Begerow D, Hood ME, Giraud T. Multiple convergent supergene evolution events in mating-type chromosomes. Nat Commun 2018; 9:2000. [PMID: 29784936 PMCID: PMC5962589 DOI: 10.1038/s41467-018-04380-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 04/24/2018] [Indexed: 11/18/2022] Open
Abstract
Convergent adaptation provides unique insights into the predictability of evolution and ultimately into processes of biological diversification. Supergenes (beneficial gene linkage) are striking examples of adaptation, but little is known about their prevalence or evolution. A recent study on anther-smut fungi documented supergene formation by rearrangements linking two key mating-type loci, controlling pre- and post-mating compatibility. Here further high-quality genome assemblies reveal four additional independent cases of chromosomal rearrangements leading to regions of suppressed recombination linking these mating-type loci in closely related species. Such convergent transitions in genomic architecture of mating-type determination indicate strong selection favoring linkage of mating-type loci into cosegregating supergenes. We find independent evolutionary strata (stepwise recombination suppression) in several species, with extensive rearrangements, gene losses, and transposable element accumulation. We thus show remarkable convergence in mating-type chromosome evolution, recurrent supergene formation, and repeated evolution of similar phenotypes through different genomic changes. Supergenes result from beneficial linkage and recombination suppression between two or more genes. Giraud and colleagues use whole genome sequencing data to show convergent evolution of supergenes on mating-type chromosomes in multiple closely-related fungal lineages.
Collapse
Affiliation(s)
- Sara Branco
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Fantin Carpentier
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Ricardo C Rodríguez de la Vega
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Hélène Badouin
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France.,Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622, Villeurbanne, France
| | - Alodie Snirc
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Stéphanie Le Prieur
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Marco A Coelho
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Damien M de Vienne
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622, Villeurbanne, France
| | - Fanny E Hartmann
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Dominik Begerow
- Ruhr-Universitat Bochum, AG Geobotanik Gebaude ND 03/174 Universitatsstraße, 15044780, Bochum, Germany
| | - Michael E Hood
- Department of Biology, University of Virginia, Gilmer 051, Charlottesville, VA, 22903, USA
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|