1
|
Yu Y, Iatsenko I. Drosophila symbionts in infection: when a friend becomes an enemy. Infect Immun 2025; 93:e0051124. [PMID: 40172541 PMCID: PMC12070757 DOI: 10.1128/iai.00511-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
The insect microbiome is comprised of extracellular microbial communities that colonize the host surfaces and endosymbionts that reside inside host cells and tissues. Both of these communities participate in essential aspects of host biology, including the immune response and interactions with pathogens. In recent years, our knowledge about the role of the insect microbiome in infection has increased tremendously. While many studies have highlighted the microbiome's protective effect against various natural enemies of insects, unexpected discoveries have shown that some members of the microbiota can facilitate pathogenic infections. Here, we summarize studies in the fruit fly, Drosophila melanogaster, that have substantially progressed our understanding of host-pathogen-microbiome interactions during infection. We summarize studies on the protective mechanisms of Drosophila gut microbiota, highlight examples of microbiome exploitation by pathogens, and detail the mechanisms of endosymbiont-mediated host protection. In addition, we delve into a previously neglected topic in Drosophila microbiome research-the crosstalk between endosymbionts and gut microbiota. Finally, we address how endosymbionts and gut microbiota remain resilient to host immune responses and stably colonize the host during infection. By examining how the microbiome is influenced by and reciprocally affects infection outcomes, this review provides timely and cohesive coverage of the roles of Drosophila endosymbionts and gut microbiota during infections.
Collapse
Affiliation(s)
- Yi Yu
- Research Group Genetics of Host-Microbe Interactions, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Igor Iatsenko
- Research Group Genetics of Host-Microbe Interactions, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
2
|
Rahimi-Midani A, Iatsenko I. Colonization island directs L. plantarum to its niche. Cell Host Microbe 2025; 33:168-170. [PMID: 39947128 DOI: 10.1016/j.chom.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 05/09/2025]
Abstract
Symbiotic gut bacteria have evolved mechanisms to selectively recognize and colonize an appropriate host. In a recent issue of Science, Gutiérrez-García et al. reported a colonization island that encodes sugar-binding adhesins used by Lactiplantibacillus plantarum to colonize its symbiotic niche in the foregut of its host, Drosophila melanogaster.
Collapse
Affiliation(s)
- Aryan Rahimi-Midani
- Research group Genetics of host-microbe interactions, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Igor Iatsenko
- Research group Genetics of host-microbe interactions, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
3
|
Rebelo M, Bom J, Borges AC, Marques R, Pereira M, Leocádio AS, Vieira L, Ribeiro A, Vale L, Santos I, Crisóstomo S, Nunes V, Franco M, Vieira A, Pinto P, Machado AR, Demengeot J. Streamlining model organisms facilities operation: The benefits of a unified management structure. Lab Anim 2025; 59:11-22. [PMID: 40017410 DOI: 10.1177/00236772241309744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
This article is dedicated to elucidating and showcasing the concept of a unified Core Facility for laboratory animals within a research institute specialized in basic biology and biomedical research. In many research centres, animal facilities operate as autonomous entities. Here, we discuss that the centralization of all animal model units within a consolidated organizational framework offers a multitude of benefits in terms of communication with a variety of institutional stakeholders, including the Direction Board, Operational Logistics (Maintenance, Lab Operations and Safety Units), Procurement and Accounting Offices, Research Funding Affairs, Institutional Communication, and IT Units. This integrated approach facilitates the implementation of consistent policies and service pricing strategies. Moreover, it promotes staff flexibility across species, allows for responsiveness to evolving research dynamics, emergence of new scientific areas and infrastructure challenges. This concept also inspires technical advancement within the animal facilities, supports training in Laboratory Animal Science, stimulates the standardization of animal welfare practices, and instils a culture of care transversal to all animal models, ultimately enhancing overall animal welfare. This strategy facilitated the integration of non-vertebrate animals and plant models into the Core Facility. Despite significant differences from vertebrate models, this expansion presented advantages, such as incorporation of specialized staff into a larger organizational structure, offering them new opportunities for skill development and enhancing the overall flexibility of the Core Facility's operations.
Collapse
Affiliation(s)
| | - Joana Bom
- Instituto Gulbenkian de Ciência, Lisbon, Portugal
| | - Ana C Borges
- Instituto Gulbenkian de Ciência, Lisbon, Portugal
| | - Rute Marques
- Instituto Gulbenkian de Ciência, Lisbon, Portugal
| | | | | | | | - Ana Ribeiro
- Instituto Gulbenkian de Ciência, Lisbon, Portugal
| | - Liliana Vale
- Instituto Gulbenkian de Ciência, Lisbon, Portugal
| | - Inês Santos
- Instituto Gulbenkian de Ciência, Lisbon, Portugal
| | | | - Vera Nunes
- Instituto Gulbenkian de Ciência, Lisbon, Portugal
| | - Maysa Franco
- Instituto Gulbenkian de Ciência, Lisbon, Portugal
| | | | - Pedro Pinto
- Instituto Gulbenkian de Ciência, Lisbon, Portugal
| | - Ana R Machado
- Universidade NOVA de Lisboa, NOVA Medical School, Lisbon, Portugal
| | | |
Collapse
|
4
|
Hattori Y. Nutritional Adaptation and Microbes: Insights From Drosophila. Zoolog Sci 2025; 42. [PMID: 39932752 DOI: 10.2108/zs240057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/14/2024] [Indexed: 05/08/2025]
Abstract
Life-history traits such as growth, reproduction, and lifespan in animals are shaped by both genetic and environmental factors, with nutrition being one of the most important environmental factors. However, it remains unclear how and to what extent changes in the nutritional environment affect animals and what molecular mechanisms they employ to adapt to these varying conditions. In recent years, the fruit fly Drosophila melanogaster and related species have been developed as model systems for studying the effects of nutrition and microbes on animals at the molecular level. This review summarizes recent findings on nutritional adaptation in Drosophila species, focusing on nutrition-dependent neuronal developmental mechanisms, carbohydrate-responsive systems that generate differences in adaptabilities among species, and animal-associated microbes that support host growth.
Collapse
Affiliation(s)
- Yukako Hattori
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan,
- Center for Living Systems Information Science, Kyoto University, Kyoto, Japan
- JST FOREST, Tokyo, Japan
| |
Collapse
|
5
|
Jones JA, Newton IG, Moczek AP. Microbiome composition and turnover in the face of complex lifecycles and bottlenecks: insights through the study of dung beetles. Appl Environ Microbiol 2025; 91:e0127824. [PMID: 39704535 PMCID: PMC11784073 DOI: 10.1128/aem.01278-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024] Open
Abstract
Microbiome composition and function often change throughout a host's life cycle, reflecting shifts in the ecological niche of the host. The mechanisms that establish these relationships are therefore important dimensions of host ecology and evolution; yet, their nature remains poorly understood. Here, we sought to investigate the microbial communities associated with the complex life cycle of the dung beetle Onthophagus taurus and the relative contributions of host life stage, sex, and environment in determining microbiome assembly. We find that O. taurus plays host to a diverse microbiota that undergo drastic community shifts throughout host development, influenced by host life stage, environmental microbiota, and, to a lesser degree, sex. Contrary to predictions, we found that egg and pupal stages-despite the absence of a digestive tract or defined microbe-storing organs-do not constrain microbial maintenance, while host-constructed environments, such as a maternally derived fecal pellet or the pupal chamber constructed by late larvae, may still serve as complementary microbial refugia for select taxa. Lastly, we identify a small community of putative core microbiota likely to shape host development and fitness. Our results provide important insights into mechanisms employed by solitary organisms to assemble, maintain, and adjust beneficial microbiota to confront life-stage-specific needs and challenges. IMPORTANCE As the influence of symbionts on host ecology, evolution, and development has become more apparent so has the importance of understanding how hosts facilitate the reliable maintenance of their interactions with these symbionts. A growing body of work has thus begun to identify diverse behaviors and physiological mechanisms underpinning the selective colonization of beneficial symbionts across a range of host taxa. Yet, how organisms with complex life cycles, such as holometabolous insects, establish and maintain key symbionts remains poorly understood. This is particularly interesting considering the drastic transformations of both internal and external host morphology, and the ecological niche shifts in diet and environment, that are the hallmark of metamorphosis. This work investigates the dynamic changes of the microbiota associated with the complex life cycle and host-constructed environments of the bull-headed dung beetle, Onthophagus taurus, a useful model for understanding how organisms may maintain and modulate their microbiota across development.
Collapse
Affiliation(s)
- Joshua A. Jones
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Irene Garcia Newton
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Armin P. Moczek
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
6
|
Mishra L, Mishra M. Ribose-induced advanced glycation end products reduce the lifespan in Drosophila melanogaster by changing the redox state and down-regulating the Sirtuin genes. Biogerontology 2024; 26:28. [PMID: 39702854 DOI: 10.1007/s10522-024-10172-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Advanced Glycation End (AGE) products are one such factor that accumulates during aging and age-related diseases. However, how exogenous AGE compounds cause aging is an area that needs to be explored. Specifically, how an organ undergoes aging and aging-related phenomena that need further investigation. The intestine is the most exposed area to food substances. How AGEs affect the intestine in terms of aging need to be explored. Drosophila melanogaster, a well-known model organism, is used to decode aging and age-associated phenomena. In this study, we fed Ribose induced Advanced Glycation End products (Rib-AGE) to D. melanogaster to study the aging mechanism. The Rib-AGE-induced aging was checked in Drosophila. We found a series of changes in Rib-AGE-fed flies. Reactive oxygen species (ROS) and nitric oxide species (NOs) were higher in the Rib-AGE-fed flies, and the antioxidant level was lower. The intestinal permeability was altered. The microorganism load was higher inside the gut. The structural arrangement of the gut's microfilament was found to be damaged, and the nuclear shape was found to be irregular. Cell death within the gut was elevated in comparison to control. The food intake was found to be reduced. The relative mRNA expression of the Sirtuin 2 and Sirtuin 6 gene of D. melanogaster was downregulated in Rib-AGE-fed flies compared to the control. All these findings strongly suggest that Rib-AGE accelerates aging and age-related disorders in D. melanogaster.
Collapse
Affiliation(s)
- Lokanath Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, 769008, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, 769008, India.
| |
Collapse
|
7
|
Ott L, Smith C, Mellata M. Dietary zinc supplementation inhibits bacterial plasmid conjugation in vitro by regulating plasmid replication ( rep) and transfer ( tra) genes. Appl Environ Microbiol 2024; 90:e0148024. [PMID: 39360838 PMCID: PMC11497784 DOI: 10.1128/aem.01480-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024] Open
Abstract
Humans use dietary supplements for several intended effects, such as supplementing malnutrition. While these compounds have been developed for host end benefits, their ancillary impact on the gut microbiota remains unclear. The human gut has been proposed as a reservoir for the prevalent lateral transfer of antimicrobial resistance and virulence genes in bacteria through plasmid conjugation. Here, we studied the effect of dietary zinc supplements on the incidence of plasmid conjugation in vitro. Supplement effects were analyzed through standardized broth conjugation assays. The avian pathogenic Escherichia coli (APEC) strain APEC-O2-211 was a donor of the multidrug resistance plasmid pAPEC-O2-211A-ColV, and the human commensal isolate E. coli HS-4 was the plasmid-free recipient. Bacterial strains were standardized and mixed 1:1 and supplemented 1:10 with water, or zinc derived from either commercial zinc supplements or zinc gluconate reagent at varying concentrations. We observed a significant reduction in donors, recipients, and transconjugant populations in conjugations supplemented with zinc, with a dose-dependent relationship. Additionally, we observed a significant reduction (P < 0.05) in log conjugation efficiency in zinc-treated reactions. Upregulation of the mRNA for the plasmid replication initiation gene repA and the subset of transfer genes M, J, E, K, B, P, C, W, U, N, F, Q, D, I, and X was observed. Furthermore, we observed a downregulation of the conjugal propilin gene traA and the entry exclusion gene traS. This study demonstrates the effect of dietary zinc supplements on the conjugal transfer of a multidrug resistance plasmid between pathogenic and commensal bacteria during in vitro conditions.IMPORTANCEThis study identifies dietary zinc supplementation as a potential novel intervention for mitigating the emergence of multidrug resistance in bacteria, thus preventing antibiotic treatment failure and death in patients and animals. Further studies are required to determine the applicability of this approach in an in vivo model.
Collapse
Affiliation(s)
- Logan Ott
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Chloe Smith
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Melha Mellata
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
8
|
Gale JT, Kreutz R, Gottfredson Morgan SJ, Davis EK, Hough C, Cisneros Cancino WA, Burnside B, Barney R, Hunsaker R, Hoyt AT, Cluff A, Nosker M, Sefcik C, Beales E, Beltz J, Frandsen PB, Schmidt P, Chaston JM. Environment and diet shape the geography-specific Drosophila melanogaster microbiota composition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617096. [PMID: 39416031 PMCID: PMC11482821 DOI: 10.1101/2024.10.07.617096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Geographic and environmental variation in the animal microbiota can be directly linked to the evolution and wild fitness of their hosts but often appears to be disordered. Here, we sought to better understand patterns that underlie wild variation in the microbiota composition of Drosophila melanogaster . First, environmental temperature predicted geographic variation in fly microbial communities better than latitude did. The microbiota also differed between wild flies and their diets, supporting previous conclusions that the fly microbiota is not merely a reflection of diet. Flies feeding on different diets varied significantly in their microbiota composition, and flies sampled from individual apples were exceptionally depauperate for the Lactic Acid Bacteria (LAB), a major bacterial group in wild and laboratory flies. However, flies bore significantly more LAB when sampled from other fruits or compost piles. Follow-up analyses revealed that LAB abundance in the flies uniquely responds to fruit decomposition, whereas other microbiota members better indicate temporal seasonal progression. Finally, we show that diet-dependent variation in the fly microbiota is associated with phenotypic differentiation of fly lines collected in a single orchard. These last findings link covariation between the flies' dietary history, microbiota composition, and genetic variation across relatively small (single-orchard) landscapes, reinforcing the critical role that environment-dependent variation in microbiota composition can play in local adaptation and genomic differentiation of a model animal host. SIGNIFICANCE STATEMENT The microbial communities of animals influence their hosts' evolution and wild fitness, but it is hard to predict and explain how the microbiota varies in wild animals. Here, we describe that the microbiota composition of wild Drosophila melanogaster can be ordered by temperature, humidity, geographic distance, diet decomposition, and diet type. We show how these determinants of microbiota variation can help explain lactic acid bacteria (LAB) abundance in the flies, including the rarity of LAB in some previous studies. Finally, we show that wild fly phenotypes segregate with the flies' diet and microbiota composition, illuminating links between the microbiota and host evolution. Together, these findings help explain how variation in microbiota compositions can shape an animal's life history.
Collapse
|
9
|
Asgari D, Stewart AJ, Meisel RP. The role of uncertainty and negative feedback loops in the evolution of induced immune defenses. G3 (BETHESDA, MD.) 2024; 14:jkae182. [PMID: 39106431 PMCID: PMC11457078 DOI: 10.1093/g3journal/jkae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Organisms use constitutive or induced defenses against pathogens and other external threats. Constitutive defenses are constantly on, whereas induced defenses are activated when needed. Each of these strategies has costs and benefits, which can affect the type of defense that evolves in response to pathogens. In addition, induced defenses are usually regulated by multiple negative feedback mechanisms that prevent overactivation of the immune response. However, it is unclear how negative feedback affects the costs, benefits, and evolution of induced responses. To address this gap, we developed a mechanistic model of the well-characterized Drosophila melanogaster immune signaling network that includes 3 separate mechanisms of negative feedback as a representative of the widespread phenomenon of multilevel regulation of induced responses. We show that, under stochastic fly-bacteria encounters, an induced defense is favored when bacterial encounters are rare or uncertain, but in ways that depend on the bacterial proliferation rate. Our model also predicts that the specific negative regulators that optimize the induced response depend on the bacterial proliferation rate, linking negative feedback mechanisms to the factors that favor induction.
Collapse
Affiliation(s)
- Danial Asgari
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Alexander J Stewart
- School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9AJ, UK
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
10
|
Gayathri K, Nalini R, Sriram S, Jayaraj I, Parvathi VD, Velraja S. Microbiological Profile of Phytoestrogen Rich Supplement and Its Impact on Gut-microbiome Composition in Drosophila melanogaster. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2024; 18:2005-2013. [DOI: 10.22207/jpam.18.3.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Phytoestrogen-rich diet alters the composition of gut microbiota by enhancing the growth of beneficial bacteria and decreasing the microbial load of pathogenic organisms. Drosophila is an invertebrate model system used for research studies, as it shares 70% genetic homology with humans. The present study aimed to analyse microbiological profile of phytoestrogen rich supplement and its impact on gut-microbiome composition in Drosophila melanogaster. The phytoestrogen rich supplement was mixed with formula 424 plain and flies were exposed to it. Gut of flies was dissected and cell suspension was prepared. Bacterial colonies were developed by streaking method. Gram staining was performed to differentiate the bacterial cells and further gut microbiome composition (Acetobacteraceae and Lactobacillales taxa) was analysed by 16S rRNA sequencing. The microbiological analysis was carried out to ascertain the microbial load of the developed product for consumption. The total bacterial count and coliform counts of the phytoestrogen rich supplement were <10 CFU/g. Also, the developed supplement exhibited minimal yeast and mold growth (<1 CFU/g). Gram staining showed gram positive (Bacilli and cocci). 16S rRNA sequencing showed significance with mild variation in similarity. It confirmed the presence of Bacillus paramycoids. The developed supplement has showed improved gut microbiome composition in the Drosophila. In future, studies can be extended to humans to analyse the efficacy of the supplement in the gut microbiome composition.
Collapse
|
11
|
Sommer AJ, Kettner JE, Coon KL. Stable flies are bona fide carriers of mastitis-associated bacteria. mSphere 2024; 9:e0033624. [PMID: 38920390 PMCID: PMC11288000 DOI: 10.1128/msphere.00336-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 06/27/2024] Open
Abstract
Hematophagous Stomoxys (stable) fly populations in dairy barns are sustained by a constant availability of cattle hosts and manure, which serve as major reservoirs of both zoonotic and opportunistic bacterial pathogens. However, the composition of the Stomoxys fly microbiota, the mechanisms by which flies acquire their microbiome, and the ability of potentially pathogenic bacteria to colonize and persist in fly hosts remain to be investigated. Here, we longitudinally collected fly and manure samples from two connected dairy facilities. High throughput 16S rRNA gene amplicon sequencing was then used to characterize and compare bacterial communities present on or within flies and in manure collected from the same facility, while culture-dependent methods were used to verify the viability of clinically relevant bacteria. Bacterial alpha diversity was overall higher in manure samples as compared to fly samples, with manure-associated bacterial communities being dominated by members of the Bacteroidales, Eubacteriales, and Oscillospirales. In contrast, flies harbored relatively low-complexity communities dominated by members of the Enterobacterales, Staphylococcales, and Lactobacillales. Clinically relevant bacterial strains, including Escherichia spp. and other taxa associated with mastitic cows housed in the same facilities, were detected in paired fly and manure samples but exhibited dramatically elevated abundances in fly samples as compared to manure samples. Viable colonies of Escherichia, Klebsiella, and Staphylococcus spp. were also readily isolated from fly samples, confirming that flies harbor culturable mastitis-associated bacteria. This study identifies biting flies as bona fide carriers of opportunistically pathogenic bacterial taxa on dairy farms. IMPORTANCE Disease prevention on dairy farms has significant implications for cattle health, food security, and zoonosis. Of particular importance is the control of bovine mastitis, which can be caused by diverse bacteria, including Klebsiella, Escherichia coli, Streptococcus, and Staphylococcus spp. Despite being one of the most significant and costly cattle diseases worldwide, the epidemiology of bovine mastitis is not well understood. This study provides parallel culture-independent and culture-dependent evidence to support the carriage of opportunistically pathogenic bacteria by Stomoxys flies on dairy farms. We further show that the fly microbiota is enriched in clinically relevant taxa-the vast majority of which can be traced to the manure habitats in which flies breed. Altogether, our results identify biting flies as underrecognized carriers of bacterial taxa associated with environmental bovine mastitis and other opportunistic infections in vertebrates and offer important insights into mechanisms of microbial acquisition by these and other medically important insects.
Collapse
Affiliation(s)
- Andrew J. Sommer
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Julia E. Kettner
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kerri L. Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Ludington WB. The importance of host physical niches for the stability of gut microbiome composition. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230066. [PMID: 38497267 PMCID: PMC10945397 DOI: 10.1098/rstb.2023.0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/04/2023] [Indexed: 03/19/2024] Open
Abstract
Gut bacteria are prevalent throughout the Metazoa and form complex microbial communities associated with food breakdown, nutrient provision and disease prevention. How hosts acquire and maintain a consistent bacterial flora remains mysterious even in the best-studied animals, including humans, mice, fishes, squid, bugs, worms and flies. This essay visits the evidence that hosts have co-evolved relationships with specific bacteria and that some of these relationships are supported by specialized physical niches that select, sequester and maintain microbial symbionts. Genetics approaches could uncover the mechanisms for recruiting and maintaining the stable and consistent members of the microbiome. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- William B. Ludington
- Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Baltimore, MD 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
13
|
Fujita Y, Kosakamoto H, Obata F. Microbiota-derived acetylcholine can promote gut motility in Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230075. [PMID: 38497270 PMCID: PMC10945411 DOI: 10.1098/rstb.2023.0075] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/04/2023] [Indexed: 03/19/2024] Open
Abstract
The gut microbiota is crucial for intestinal health, including gastrointestinal (GI) motility. How commensal bacterial species influence GI motility has not been fully elucidated. A major factor of GI motility is the gut contraction promoting the propulsive movement of orally ingested materials. Here, we developed a method to monitor and quantify gut contractions in living Drosophila melanogaster larvae. We found that the culture medium of an isolated strain Lactiplantibacillus plantarum Lsi promoted gut contraction in vivo, which was not observed in Leuconostoc sp. Leui nor Acetobacter persici Ai culture medium. To identify bacteria-derived metabolites, we performed metabolome analysis of the culture media by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Of the 66 metabolites detected, we found that some metabolites changed in a species-specific manner. Among them, acetylcholine was specifically produced by L. plantarum. Feeding exogenous acetylcholine increased the frequency of gut contractions, which was blocked by D-tubocurarine, an inhibitor of nicotinic acetylcholine receptors. In this study, we propose a mechanism by which the gut microbiota influences Drosophila gut motility. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Yuka Fujita
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Hina Kosakamoto
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Fumiaki Obata
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
14
|
Massey C, Nosker ME, Gale J, Scott S, Walker CJ, Cluff A, Wilcox S, Morrison A, Gottfredson Morgan SJ, Beltz J, Schmidt P, Chaston JM. Humidity determines penetrance of a latitudinal gradient in genetic selection on the microbiota by Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.591907. [PMID: 38746372 PMCID: PMC11092659 DOI: 10.1101/2024.05.02.591907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The fruit fly Drosophila melanogaster is a model for understanding how hosts and their microbial partners interact as the host adapts to wild environments. These interactions are readily interrogated because of the low taxonomic and numeric complexity of the flies' bacterial communities. Previous work has established that host genotype, the environment, diet, and interspecies microbial interactions can all influence host fitness and microbiota composition, but the specific processes and characters mediating these processes are incompletely understood. Here, we compared the variation in microbiota composition between wild-derived fly populations when flies could choose between the microorganisms in their diets and when flies were reared under environmental perturbation (different humidities). We also compared the colonization of the resident and transient microorganisms. We show that the ability to choose between microorganisms in the diet and the environmental condition of the flies can influence the relative abundance of the microbiota. There were also key differences in the abundances of the resident and transient microbiota. However, the microbiota only differed between populations when the flies were reared at humidities at or above 50% relative humidity. We also show that elevated humidity determined the penetrance of a gradient in host genetic selection on the microbiota that is associated with the latitude the flies were collected from. Finally, we show that the treatment-dependent variation in microbiota composition is associated with variation in host stress survival. Together, these findings emphasize that host genetic selection on the microbiota composition of a model animal host can be patterned with the source geography, and that such variation has the potential to influence their survival in the wild. Importance The fruit fly Drosophila melanogaster is a model for understanding how hosts and their microbial partners interact as hosts adapt in wild environments. Our understanding of what causes geographic variation in the fruit fly microbiota remains incomplete. Previous work has shown that the D. melanogaster microbiota has relatively low numerical and taxonomic complexity. Variation in the fly microbiota composition can be attributed to environmental characters and host genetic variation, and variation in microbiota composition can be patterned with the source location of the flies. In this work we explored three possible causes of patterned variation in microbiota composition. We show that host feeding choices, the host niche colonized by the bacteria, and a single environmental character can all contribute to variation in microbiota composition. We also show that penetrance of latitudinally-patterned host genetic selection is only observed at elevated humidities. Together, these results identify several factors that influence microbiota composition in wild fly genotypes and emphasize the interplay between environmental and host genetic factors in determining the microbiota composition of these model hosts.
Collapse
|
15
|
Yakovleva E, Danilova I, Maximova I, Shabaev A, Dmitrieva A, Belov A, Klyukina A, Perfilieva K, Bonch-Osmolovskaya E, Markov A. Salt concentration in substrate modulates the composition of bacterial and yeast microbiomes of Drosophila melanogaster. MICROBIOME RESEARCH REPORTS 2024; 3:19. [PMID: 38846022 PMCID: PMC11153085 DOI: 10.20517/mrr.2023.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 06/09/2024]
Abstract
Aim: Microbiomes influence the physiology and behavior of multicellular organisms and contribute to their adaptation to changing environmental conditions. However, yeast and bacterial microbiota have usually been studied separately; therefore, the interaction between bacterial and yeast communities in the gut of Drosophila melanogaster (D. melanogaster) is often overlooked. In this study, we investigate the correlation between bacterial and yeast communities in the gut of D. melanogaster. Methods: We studied the shifts in the joint microbiome of Drosophila melanogaster, encompassing both yeasts and bacteria, during adaptation to substrate with varying salt concentrations (0%, 2%, 4%, and 7%) using plating for both yeasts and bacteria and NGS-sequencing of variable 16S rRNA gene regions for bacteria. Results: The microbiome of flies and their substrates was gradually altered at moderate NaCl concentrations (2% and 4% compared with the 0% control) and completely transformed at high salt concentrations (7%). The relative abundance of Acetobacter, potentially beneficial to D. melanogaster, decreased as NaCl concentration increased, whereas the relative abundance of the more halotolerant lactobacilli first increased, peaking at 4% NaCl, and then declined dramatically at 7%. At this salinity level, potentially pathogenic bacteria of the genera Leuconostoc and Providencia were dominant. The yeast microbiome of D. melanogaster also undergoes significant changes with an increase in salt concentration in the substrate. The total yeast abundance undergoes nonlinear changes: it is lowest at 0% salt concentration and highest at 2%-4%. At a 7% concentration, the yeast abundance in flies and their substrate is lower than at 2%-4% but significantly higher than at 0%. Conclusions: The abundance and diversity of bacteria that are potentially beneficial to the flies decreased, while the proportion of potential pathogens, Leuconostoc and Providencia, increased with an increase in salt concentration in the substrate. In samples with a relatively high abundance and/or diversity of yeasts, the corresponding indicators for bacteria were often lowered, and vice versa. This may be due to the greater halotolerance of yeasts compared to bacteria and may also indicate antagonism between these groups of microorganisms.
Collapse
Affiliation(s)
- Ekaterina Yakovleva
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Irina Danilova
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Irina Maximova
- Faculty of Soil Science, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Shabaev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Anastasia Dmitrieva
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrey Belov
- Faculty of Soil Science, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexandra Klyukina
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Ksenia Perfilieva
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elizaveta Bonch-Osmolovskaya
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Alexander Markov
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
- Borisyak Paleontological Institute, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
16
|
Kempraj V, Auth J, Cha DH, Mason CJ. Impact of Larval Food Source on the Stability of the Bactrocera dorsalis Microbiome. MICROBIAL ECOLOGY 2024; 87:46. [PMID: 38407587 PMCID: PMC10896919 DOI: 10.1007/s00248-024-02352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
Bacterial symbionts are crucial to the biology of Bactrocera dorsalis. With larval diet (fruit host) being a key factor that determines microbiome composition and with B. dorsalis using more than 400 fruits as hosts, it is unclear if certain bacterial symbionts are preserved and are passed on to B. dorsalis progenies despite changes in larval diet. Here, we conducted a fly rearing experiment to characterize diet-induced changes in the microbiome of female B. dorsalis. In order to explicitly investigate the impacts of larval diet on the microbiome, including potential stable bacterial constituents of B. dorsalis, we performed 16S rRNA sequencing on the gut tissues of teneral female flies reared from four different host fruits (guava, mango, papaya, and rose apple) infested using a single cohort of wild B. dorsalis that emerged from tropical almond (mother flies). Although B. dorsalis-associated microbiota were predominantly shaped by the larval diet, some major bacterial species from the mother flies were retained in progenies raised on different larval diets. With some variation, Klebsiella (ASV 1 and 2), Morganella (ASV 3), and Providencia (ASV 6) were the major bacterial symbionts that were stable and made up 0.1-80% of the gut and ovipositor microbiome of female teneral flies reared on different host fruits. Our results suggest that certain groups of bacteria are stably associated with female B. dorsalis across larval diets. These findings provide a basis for unexplored research on symbiotic bacterial function in B. dorsalis and may aid in the development of novel management techniques against this devastating pest of horticultural importance.
Collapse
Affiliation(s)
- Vivek Kempraj
- USDA-ARS, Tropical Crop and Commodity Protection Research Unit, Daniel K Inouye US Pacific Basin Agriculture Research Center, Hilo, HI, 96720, USA
- College of Tropical Agriculture and Human Resources, Komohana Research and Extension Center, University of Hawai'i, Hilo, HI, 96720, USA
| | - Jean Auth
- USDA-ARS, Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K Inouye US Pacific Basin Agriculture Research Center, Hilo, HI, 96720, USA
| | - Dong H Cha
- USDA-ARS, Tropical Crop and Commodity Protection Research Unit, Daniel K Inouye US Pacific Basin Agriculture Research Center, Hilo, HI, 96720, USA.
| | - Charles J Mason
- USDA-ARS, Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K Inouye US Pacific Basin Agriculture Research Center, Hilo, HI, 96720, USA.
| |
Collapse
|
17
|
Voogdt CGP, Tripathi S, Bassler SO, McKeithen-Mead SA, Guiberson ER, Koumoutsi A, Bravo AM, Buie C, Zimmermann M, Sonnenburg JL, Typas A, Deutschbauer AM, Shiver AL, Huang KC. Randomly barcoded transposon mutant libraries for gut commensals II: Applying libraries for functional genetics. Cell Rep 2024; 43:113519. [PMID: 38142398 DOI: 10.1016/j.celrep.2023.113519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/22/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
The critical role of the intestinal microbiota in human health and disease is well recognized. Nevertheless, there are still large gaps in our understanding of the functions and mechanisms encoded in the genomes of most members of the gut microbiota. Genome-scale libraries of transposon mutants are a powerful tool to help us address this gap. Recent advances in barcoded transposon mutagenesis have dramatically lowered the cost of mutant fitness determination in hundreds of in vitro and in vivo experimental conditions. In an accompanying review, we discuss recent advances and caveats for the construction of pooled and arrayed barcoded transposon mutant libraries in human gut commensals. In this review, we discuss how these libraries can be used across a wide range of applications, the technical aspects involved, and expectations for such screens.
Collapse
Affiliation(s)
- Carlos Geert Pieter Voogdt
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Surya Tripathi
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stefan Oliver Bassler
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Grabengasse 1, 69117 Heidelberg, Germany
| | - Saria A McKeithen-Mead
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Emma R Guiberson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexandra Koumoutsi
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Afonso Martins Bravo
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Cullen Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Athanasios Typas
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Structural and Computational Biology Unit, EMBL, Heidelberg, Germany.
| | - Adam M Deutschbauer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Anthony L Shiver
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
18
|
Chrostek E. Procedures for the Detection of Wolbachia-Conferred Antiviral Protection in Drosophila melanogaster. Methods Mol Biol 2024; 2739:219-237. [PMID: 38006555 DOI: 10.1007/978-1-0716-3553-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Spread of Wolbachia infections in host populations may be enhanced by Wolbachia-conferred protection from viral pathogens. Wolbachia-infected Drosophila melanogaster survive the pathogenic effects of positive-sense single-stranded RNA virus infections at a higher rate than the flies without Wolbachia. The protection can occur with or without detectable reduction in virus titer. For the comparisons to be meaningful, Wolbachia-harboring and Wolbachia-free insects need to be genetically matched, and original populations of gut microbiota need to be restored after the removal of Wolbachia using antibiotics. Here, I describe the procedures needed to detect Wolbachia-conferred antiviral protection against Drosophila C virus measured as the difference in survival and viral titer between flies with and without Wolbachia.
Collapse
Affiliation(s)
- Ewa Chrostek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland.
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK.
| |
Collapse
|
19
|
Medeiros MJ, Seo L, Macias A, Price DK, Yew JY. Bacterial and fungal components of the microbiome have distinct roles in Hawaiian drosophila reproduction. ISME COMMUNICATIONS 2024; 4:ycae134. [PMID: 39678232 PMCID: PMC11643357 DOI: 10.1093/ismeco/ycae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 12/17/2024]
Abstract
The microbiome provides numerous physiological benefits for host animals. The role of bacterial members of microbiomes to host physiology is well-documented. However, much less is known about the contributions and interactions of fungal members, even though fungi are integral components of many microbiomes, including those of humans and insects. Here, we used antibacterial and antifungal drugs to manipulate the gut microbiome of a Hawaiian picture-wing Drosophila species, Drosophila grimshawi, and identified distinct effects for each treatment on microbiome community stability, reproduction, and lipid metabolism. Female oogenesis, fecundity, and mating drive were significantly diminished with antifungal treatment. In contrast, male fecundity was affected by antibacterial but not antifungal treatment. For males and females, simultaneous treatment with both antibacterial and antifungal drugs resulted in severely reduced fecundity and changes in fatty acid levels and composition. Microbial transplants using frass harvested from control flies partially restored microbiome composition and female fecundity. Overall, our results reveal that antibacterial and antifungal treatments have distinct effects on host fecundity, mating behavior, and lipid metabolism, and that interkingdom interactions contribute to microbial community stability and reproduction.
Collapse
Affiliation(s)
- Matthew J Medeiros
- Pacific Biosciences Research Center, University of Hawai`i at Mānoa, 1993 East West Rd., Honolulu, HI 96826, United States
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154-4004, United States
| | - Laura Seo
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154-4004, United States
| | - Aziel Macias
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154-4004, United States
| | - Donald K Price
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154-4004, United States
| | - Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai`i at Mānoa, 1993 East West Rd., Honolulu, HI 96826, United States
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154-4004, United States
| |
Collapse
|
20
|
Mure A, Sugiura Y, Maeda R, Honda K, Sakurai N, Takahashi Y, Watada M, Katoh T, Gotoh A, Gotoh Y, Taniguchi I, Nakamura K, Hayashi T, Katayama T, Uemura T, Hattori Y. Identification of key yeast species and microbe-microbe interactions impacting larval growth of Drosophila in the wild. eLife 2023; 12:RP90148. [PMID: 38150375 PMCID: PMC10752588 DOI: 10.7554/elife.90148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
Microbiota consisting of various fungi and bacteria have a significant impact on the physiological functions of the host. However, it is unclear which species are essential to this impact and how they affect the host. This study analyzed and isolated microbes from natural food sources of Drosophila larvae, and investigated their functions. Hanseniaspora uvarum is the predominant yeast responsible for larval growth in the earlier stage of fermentation. As fermentation progresses, Acetobacter orientalis emerges as the key bacterium responsible for larval growth, although yeasts and lactic acid bacteria must coexist along with the bacterium to stabilize this host-bacterial association. By providing nutrients to the larvae in an accessible form, the microbiota contributes to the upregulation of various genes that function in larval cell growth and metabolism. Thus, this study elucidates the key microbial species that support animal growth under microbial transition.
Collapse
Affiliation(s)
- Ayumi Mure
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Yuki Sugiura
- Center for Cancer Immunotherapy and Immunobiology, Kyoto UniversityKyotoJapan
| | - Rae Maeda
- Center for Cancer Immunotherapy and Immunobiology, Kyoto UniversityKyotoJapan
| | - Kohei Honda
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | | | | | - Masayoshi Watada
- Graduate School of Science and Engineering, Ehime UniversityMatsuyamaJapan
| | | | - Aina Gotoh
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Yasuhiro Gotoh
- Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Itsuki Taniguchi
- Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Keiji Nakamura
- Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Tetsuya Hayashi
- Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
| | | | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
- Center for Living Systems Information Science, Kyoto UniversityKyotoJapan
- AMED-CRESTTokyoJapan
| | - Yukako Hattori
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
- Center for Living Systems Information Science, Kyoto UniversityKyotoJapan
- JST FORESTTokyoJapan
| |
Collapse
|
21
|
Yitbarek S, Guittar J, Knutie SA, Ogbunugafor CB. Deconstructing taxa x taxa xenvironment interactions in the microbiota: A theoretical examination. iScience 2023; 26:107875. [PMID: 37860776 PMCID: PMC10583047 DOI: 10.1016/j.isci.2023.107875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 03/21/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
A major objective of microbial ecology is to identify how the composition of microbial taxa shapes host phenotypes. However, most studies focus on pairwise interactions and ignore the potentially significant effects of higher-order microbial interactions.Here, we quantify the effects of higher-order interactions among taxa on host infection risk. We apply our approach to an in silico dataset that is built to resemble a population of insect hosts with gut-associated microbial communities at risk of infection from an intestinal parasite across a breadth of nutrient environmental contexts.We find that the effect of higher-order interactions is considerable and can change appreciably across environmental contexts. Furthermore, we show that higher-order interactions can stabilize community structure thereby reducing host susceptibility to parasite invasion.Our approach illustrates how incorporating the effects of higher-order interactions among gut microbiota across environments can be essential for understanding their effects on host phenotypes.
Collapse
Affiliation(s)
- Senay Yitbarek
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John Guittar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI 49060, USA
| | - Sarah A. Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - C. Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
- Vermont Complex Systems Center, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
22
|
Wang Y, Li Z, Zhao Z. Population mixing mediates the intestinal flora composition and facilitates invasiveness in a globally invasive fruit fly. MICROBIOME 2023; 11:213. [PMID: 37759251 PMCID: PMC10538247 DOI: 10.1186/s40168-023-01664-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Changes in population heterozygosity and genetic diversity play important roles in mediating life history traits of organisms; these changes often lead to phenotypic evolution in offspring, which become superior to their parents. In the present study, we examined phenotypic differentiation, the intestinal microbiome composition, and metabolism shift in the oriental fruit fly (Bactrocera dorsalis) by comparing an inbred (monophyletic) original population and an outbred (mixed) invasive population. RESULTS The results showed that the outbred population of B. dorsalis had significantly higher biomass, adult longevity, and fecundity than the inbred population. Additionally, intestinal microflora analysis revealed that both Diutina rugosa and Komagataeibacter saccharivorans were significantly enriched in the outbred population with higher genetic heterozygosity. D. rugosa enrichment altered amino acid metabolism in the intestinal tract, and supplementing essential amino acids (e.g. histidine and glutamine) in the diet led to an increase in pupal weight of the outbred population. Additionally, transcriptome analysis revealed that the HSPA1S gene was significantly downregulated in the outbred population. HSPA1S was involved in activation of the JNK-MAPK pathway through negative regulation, caused the upregulation of juvenile hormone (JH), and led to an increase in biomass in the outbred flies. CONCLUSION In conclusion, the outbred population had an altered intestinal microbe composition, mediating metabolism and transcriptional regulation, leading to phenotypic differentiation; this may be a potential mechanism driving the global invasion of B. dorsalis. Thus, multiple introductions could lead to invasiveness enhancement in B. dorsalis through population mixing, providing preliminary evidence that changes in the intestinal microbiome can promote biological invasion. Video Abstract.
Collapse
Affiliation(s)
- Yidan Wang
- Department of Plant Biosecurity & MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhihong Li
- Department of Plant Biosecurity & MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zihua Zhao
- Department of Plant Biosecurity & MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
23
|
Li S, Wang J, Tian X, Toufeeq S, Huang W. Immunometabolic regulation during the presence of microorganisms and parasitoids in insects. Front Immunol 2023; 14:905467. [PMID: 37818375 PMCID: PMC10560992 DOI: 10.3389/fimmu.2023.905467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Multicellular organisms live in environments containing diverse nutrients and a wide variety of microbial communities. On the one hand, the immune response of organisms can protect from the intrusion of exogenous microorganisms. On the other hand, the dynamic coordination of anabolism and catabolism of organisms is a necessary factor for growth and reproduction. Since the production of an immune response is an energy-intensive process, the activation of immune cells is accompanied by metabolic transformations that enable the rapid production of ATP and new biomolecules. In insects, the coordination of immunity and metabolism is the basis for insects to cope with environmental challenges and ensure normal growth, development and reproduction. During the activation of insect immune tissues by pathogenic microorganisms, not only the utilization of organic resources can be enhanced, but also the activated immune cells can usurp the nutrients of non-immune tissues by generating signals. At the same time, insects also have symbiotic bacteria in their body, which can affect insect physiology through immune-metabolic regulation. This paper reviews the research progress of insect immune-metabolism regulation from the perspective of insect tissues, such as fat body, gut and hemocytes. The effects of microorganisms (pathogenic bacteria/non-pathogenic bacteria) and parasitoids on immune-metabolism were elaborated here, which provide guidance to uncover immunometabolism mechanisms in insects and mammals. This work also provides insights to utilize immune-metabolism for the formulation of pest control strategies.
Collapse
Affiliation(s)
- Shirong Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Jing Wang
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Xing Tian
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Shahzad Toufeeq
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
24
|
Guilhot R, Xuéreb A, Lagmairi A, Olazcuaga L, Fellous S. Microbiota acquisition and transmission in Drosophila flies. iScience 2023; 26:107656. [PMID: 37670792 PMCID: PMC10475513 DOI: 10.1016/j.isci.2023.107656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 08/15/2023] [Indexed: 09/07/2023] Open
Abstract
Understanding the ecological and evolutionary dynamics of host-microbiota associations notably involves exploring how members of the microbiota assemble and whether they are transmitted along host generations. Here, we investigate the larval acquisition of facultative bacterial and yeast symbionts of Drosophila melanogaster and Drosophila suzukii in ecologically realistic setups. Fly mothers and fruit were major sources of symbionts. Microorganisms associated with adult males also contributed to larval microbiota, mostly in D. melanogaster. Yeasts acquired at the larval stage maintained through metamorphosis, adult life, and were transmitted to offspring. All these observations varied widely among microbial strains, suggesting they have different transmission strategies among fruits and insects. Our approach shows microbiota members of insects can be acquired from a diversity of sources and highlights the compound nature of microbiotas. Such microbial transmission events along generations should favor the evolution of mutualistic interactions and enable microbiota-mediated local adaptation of the insect host.
Collapse
Affiliation(s)
- Robin Guilhot
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, 34000 Montpellier, France
| | - Anne Xuéreb
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, 34000 Montpellier, France
| | - Auxane Lagmairi
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, 34000 Montpellier, France
| | - Laure Olazcuaga
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, 34000 Montpellier, France
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Simon Fellous
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, 34000 Montpellier, France
| |
Collapse
|
25
|
Zhao C, Wang L, Zhang K, Zhu X, Li D, Ji J, Luo J, Cui J. Variation of Helicoverpa armigera symbionts across developmental stages and geographic locations. Front Microbiol 2023; 14:1251627. [PMID: 37744901 PMCID: PMC10513443 DOI: 10.3389/fmicb.2023.1251627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Cotton bollworm (Helicoverpa armigera) poses a global problem, causing substantial economic and ecological losses. Endosymbionts in insects play crucial roles in multiple insect biological processes. However, the interactions between H. armigera and its symbionts have not been well characterized to date. We investigated the symbionts of H. armigera in the whole life cycle from different geographical locations. In the whole life cycle of H. armigera, Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria were the dominant bacteria at the phylum level, while Enterococcus, Enterobacter, Glutamicibacter, and Bacillus were the four dominant bacteria at the genus level. Furthermore, high similarity in symbiotic bacterial community was observed in different stages of H. armigera, which were dominated by Enterococcus and Enterobacter. In fields, the dominant bacteria were Proteobacteria and Bacteroidetes, whereas, in the laboratory, the dominant bacteria were Proteobacteria. At the genus level, the dominant bacteria in cotton bollworm eggs of wild populations were Enterobacter, Morganella, Lactococcus, Asaia, Apibacter, and Enterococcus, and the subdominant bacteria were Bartonella, Pseudomonas, and Orbus. Moreover, the symbionts varied with geographical locations, and the closer the geographical distance, the more similar the microbial composition. Taken together, our study identifies and compares the symbiont variation along with geographical gradients and host development dynamic and reveals the high flexibility of microbiome communities in H. armigera, which probably benefits for the successful survival in a complicated changing environment.
Collapse
Affiliation(s)
- Chenchen Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| | - Li Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan, China
| | - Kaixin Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Xiangzhen Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Dongyang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jichao Ji
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Junyu Luo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jinjie Cui
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
26
|
Abstract
A massive number of microorganisms, belonging to different species, continuously divide inside the guts of animals and humans. The large size of these communities and their rapid division times imply that we should be able to watch microbial evolution in the gut in real time, in a similar manner to what has been done in vitro. Here, we review recent findings on how natural selection shapes intrahost evolution (also known as within-host evolution), with a focus on the intestines of mice and humans. The microbiota of a healthy host is not as static as initially thought from the information measured at only one genomic marker. Rather, the genomes of each gut-colonizing species can be highly dynamic, and such dynamism seems to be related to the microbiota species diversity. Genetic and bioinformatic tools, and analysis of time series data, allow quantification of the selection strength on emerging mutations and horizontal transfer events in gut ecosystems. The drivers and functional consequences of gut evolution can now begin to be grasped. The rules of this intrahost microbiota evolution, and how they depend on the biology of each species, need to be understood for more effective development of microbiota therapies to help maintain or restore host health.
Collapse
Affiliation(s)
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|
27
|
Medeiros MJ, Seo L, Macias A, Price DK, Yew JY. Bacterial and fungal components of the gut microbiome have distinct, sex-specific roles in Hawaiian Drosophila reproduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549088. [PMID: 37503295 PMCID: PMC10370118 DOI: 10.1101/2023.07.14.549088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Gut microbiomes provide numerous physiological benefits for host animals. The role of bacterial members of microbiomes in host physiology is well-documented. However, much less is known about the contributions and interactions of fungal members of the microbiome even though fungi are significant components of many microbiomes, including those of humans and insects. Here, we used antibacterial and antifungal drugs to manipulate the gut microbiome of a Hawaiian picture-wing Drosophila species, D. grimshawi, and identified distinct, sex-specific roles for the bacteria and fungi in microbiome community stability and reproduction. Female oogenesis, fecundity and mating drive were significantly diminished when fungal communities were suppressed. By contrast, male fecundity was more strongly affected by bacterial but not fungal populations. For males and females, suppression of both bacteria and fungi severely reduced fecundity and altered fatty acid levels and composition, implicating the importance of interkingdom interactions on reproduction and lipid metabolism. Overall, our results reveal that bacteria and fungi have distinct, sexually-dimorphic effects on host physiology and interkingdom dynamics in the gut help to maintain microbiome community stability and enhance reproduction.
Collapse
Affiliation(s)
- Matthew J. Medeiros
- Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa
- Department of Life Sciences, University of Nevada at Las Vegas
| | - Laura Seo
- Department of Life Sciences, University of Nevada at Las Vegas
| | - Aziel Macias
- Department of Life Sciences, University of Nevada at Las Vegas
| | - Donald K. Price
- Department of Life Sciences, University of Nevada at Las Vegas
| | - Joanne Y. Yew
- Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa
- Department of Life Sciences, University of Nevada at Las Vegas
| |
Collapse
|
28
|
Hanson MA, Grollmus L, Lemaitre B. Ecology-relevant bacteria drive the evolution of host antimicrobial peptides in Drosophila. Science 2023; 381:eadg5725. [PMID: 37471548 DOI: 10.1126/science.adg5725] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023]
Abstract
Antimicrobial peptides are host-encoded immune effectors that combat pathogens and shape the microbiome in plants and animals. However, little is known about how the host antimicrobial peptide repertoire is adapted to its microbiome. Here, we characterized the function and evolution of the Diptericin antimicrobial peptide family of Diptera. Using mutations affecting the two Diptericins (Dpt) of Drosophila melanogaster, we reveal the specific role of DptA for the pathogen Providencia rettgeri and DptB for the gut mutualist Acetobacter. The presence of DptA- or DptB-like genes across Diptera correlates with the presence of Providencia and Acetobacter in their environment. Moreover, DptA- and DptB-like sequences predict host resistance against infection by these bacteria across the genus Drosophila. Our study explains the evolutionary logic behind the bursts of rapid evolution of an antimicrobial peptide family and reveals how the host immune repertoire adapts to changing microbial environments.
Collapse
Affiliation(s)
- M A Hanson
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Disease Ecology and Evolution, Biosciences, University of Exeter, Penryn, United Kingdom
| | - L Grollmus
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - B Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
29
|
Morgan SJ, Chaston JM. Flagellar Genes Are Associated with the Colonization Persistence Phenotype of the Drosophila melanogaster Microbiota. Microbiol Spectr 2023; 11:e0458522. [PMID: 37052495 PMCID: PMC10269862 DOI: 10.1128/spectrum.04585-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
In this work, we use Drosophila melanogaster as a model to identify bacterial genes necessary for bacteria to colonize their hosts independent of the bulk flow of diet. Early work on this model system established that dietary replenishment drives the composition of the D. melanogaster gut microbiota, and subsequent research has shown that some bacterial strains can stably colonize, or persist within, the fly independent of dietary replenishment. Here, we reveal transposon insertions in specific bacterial genes that influence the bacterial colonization persistence phenotype by using a gene association approach. We initially established that different bacterial strains persist at various levels, independent of dietary replenishment. We then repeated the analysis with an expanded panel of bacterial strains and performed a metagenome-wide association (MGWA) study to identify distinct bacterial genes that are significantly correlated with the level of colonization by persistent bacterial strains. Based on the MGWA study, we tested if 44 bacterial transposon insertion mutants from 6 gene categories affect bacterial persistence within the flies. We identified that transposon insertions in four flagellar genes, one urea carboxylase gene, one phosphatidylinositol gene, one bacterial secretion gene, and one antimicrobial peptide (AMP) resistance gene each significantly influenced the colonization of D. melanogaster by an Acetobacter fabarum strain. Follow-up experiments revealed that each flagellar mutant was nonmotile, even though the wild-type strain was motile. Taken together, these results reveal that transposon insertions in specific bacterial genes, including motility genes, are necessary for at least one member of the fly microbiota to persistently colonize the fly. IMPORTANCE Despite the growing body of research on the microbiota, the mechanisms by which the microbiota colonizes a host can still be further elucidated. This study identifies bacterial genes that are associated with the colonization persistence phenotype of the microbiota in Drosophila melanogaster, which reveals specific bacterial factors that influence the establishment of the microbiota within its host. The identification of specific genes that affect persistence can help inform how the microbiota colonizes a host. Furthermore, a deeper understanding of the genetic mechanisms of the establishment of the microbiota could aid in the further development of the Drosophila microbiota as a model for microbiome research.
Collapse
Affiliation(s)
- Sarah J. Morgan
- Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, USA
| | - John M. Chaston
- Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
30
|
Cho H, Rohlfs M. Transmission of beneficial yeasts accompanies offspring production in Drosophila-An initial evolutionary stage of insect maternal care through manipulation of microbial load? Ecol Evol 2023; 13:e10184. [PMID: 37332518 PMCID: PMC10276349 DOI: 10.1002/ece3.10184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/28/2023] [Accepted: 05/26/2023] [Indexed: 06/20/2023] Open
Abstract
Parent-to-offspring transmission of beneficial microorganisms is intimately interwoven with the evolution of social behaviors. Ancestral stages of complex sociality-microbe vectoring interrelationships may be characterized by high costs of intensive parental care and hence only a weak link between the transmission of microbial symbionts and offspring production. We investigate the relationship between yeast symbiont transmission and egg-laying, as well as some general factors thought to drive the "farming" of microscopic fungi by the fruit fly Drosophila melanogaster, an insect with no obvious parental care but which is highly dependent on dietary microbes during offspring development. The process of transmitting microbes involves flies ingesting microbes from their previous environment, storing and vectoring them, and finally depositing them to a new environment. This study revealed that fecal materials of adult flies play a significant role in this process, as they contain viable yeast cells that support larval development. During single patch visits, egg-laying female flies transmitted more yeast cells than non-egg-laying females, suggesting that dietary symbiont transmission is not random, but linked to offspring production. The crop, an extension of the foregut, was identified as an organ capable of storing viable yeast cells during travel between egg-laying sites. However, the amount of yeast in the crop reduced rapidly during periods of starvation. Although females starved for 24 h deposited a smaller amount of yeast than those starved for 6 h, the yeast inoculum produced still promoted the development of larval offspring. The results of these experiments suggest that female Drosophila fruit flies have the ability to store and regulate the transfer of microorganisms beneficial to their offspring via the shedding of fecal material. We argue that our observation may represent an initial evolutionary stage of maternal care through the manipulation of microbial load, from which more specialized feedbacks of sociality and microbe management may evolve.
Collapse
Affiliation(s)
- Hanna Cho
- Institute of Ecology, Insect and Chemical Ecology GroupUniversity of BremenBremenGermany
| | - Marko Rohlfs
- Institute of Ecology, Insect and Chemical Ecology GroupUniversity of BremenBremenGermany
| |
Collapse
|
31
|
Elston KM, Phillips LE, Leonard SP, Young E, Holley JAC, Ahsanullah T, McReynolds B, Moran NA, Barrick JE. The Pathfinder plasmid toolkit for genetically engineering newly isolated bacteria enables the study of Drosophila-colonizing Orbaceae. ISME COMMUNICATIONS 2023; 3:49. [PMID: 37225918 PMCID: PMC10209150 DOI: 10.1038/s43705-023-00255-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/18/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
Toolkits of plasmids and genetic parts streamline the process of assembling DNA constructs and engineering microbes. Many of these kits were designed with specific industrial or laboratory microbes in mind. For researchers interested in non-model microbial systems, it is often unclear which tools and techniques will function in newly isolated strains. To address this challenge, we designed the Pathfinder toolkit for quickly determining the compatibility of a bacterium with different plasmid components. Pathfinder plasmids combine three different broad-host-range origins of replication with multiple antibiotic resistance cassettes and reporters, so that sets of parts can be rapidly screened through multiplex conjugation. We first tested these plasmids in Escherichia coli, a strain of Sodalis praecaptivus that colonizes insects, and a Rosenbergiella isolate from leafhoppers. Then, we used the Pathfinder plasmids to engineer previously unstudied bacteria from the family Orbaceae that were isolated from several fly species. Engineered Orbaceae strains were able to colonize Drosophila melanogaster and could be visualized in fly guts. Orbaceae are common and abundant in the guts of wild-caught flies but have not been included in laboratory studies of how the Drosophila microbiome affects fly health. Thus, this work provides foundational genetic tools for studying microbial ecology and host-associated microbes, including bacteria that are a key constituent of the gut microbiome of a model insect species.
Collapse
Affiliation(s)
- Katherine M Elston
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Laila E Phillips
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sean P Leonard
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Eleanor Young
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jo-Anne C Holley
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712, USA
- Freshman Research Initiative, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tasneem Ahsanullah
- Freshman Research Initiative, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Braydin McReynolds
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nancy A Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
32
|
Jo C, Bernstein DB, Vaisman N, Frydman HM, Segrè D. Construction and Modeling of a Coculture Microplate for Real-Time Measurement of Microbial Interactions. mSystems 2023; 8:e0001721. [PMID: 36802169 PMCID: PMC10134821 DOI: 10.1128/msystems.00017-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 01/24/2023] [Indexed: 02/23/2023] Open
Abstract
The dynamic structures of microbial communities emerge from the complex network of interactions between their constituent microorganisms. Quantitative measurements of these interactions are important for understanding and engineering ecosystem structure. Here, we present the development and application of the BioMe plate, a redesigned microplate device in which pairs of wells are separated by porous membranes. BioMe facilitates the measurement of dynamic microbial interactions and integrates easily with standard laboratory equipment. We first applied BioMe to recapitulate recently characterized, natural symbiotic interactions between bacteria isolated from the Drosophila melanogaster gut microbiome. Specifically, the BioMe plate allowed us to observe the benefit provided by two Lactobacillus strains to an Acetobacter strain. We next explored the use of BioMe to gain quantitative insight into the engineered obligate syntrophic interaction between a pair of Escherichia coli amino acid auxotrophs. We integrated experimental observations with a mechanistic computational model to quantify key parameters associated with this syntrophic interaction, including metabolite secretion and diffusion rates. This model also allowed us to explain the slow growth observed for auxotrophs growing in adjacent wells by demonstrating that, under the relevant range of parameters, local exchange between auxotrophs is essential for efficient growth. The BioMe plate provides a scalable and flexible approach for the study of dynamic microbial interactions. IMPORTANCE Microbial communities participate in many essential processes from biogeochemical cycles to the maintenance of human health. The structure and functions of these communities are dynamic properties that depend on poorly understood interactions among different species. Unraveling these interactions is therefore a crucial step toward understanding natural microbiota and engineering artificial ones. Microbial interactions have been difficult to measure directly, largely due to limitations of existing methods to disentangle the contribution of different organisms in mixed cocultures. To overcome these limitations, we developed the BioMe plate, a custom microplate-based device that enables direct measurement of microbial interactions, by detecting the abundance of segregated populations of microbes that can exchange small molecules through a membrane. We demonstrated the possible application of the BioMe plate for studying both natural and artificial consortia. BioMe is a scalable and accessible platform that can be used to broadly characterize microbial interactions mediated by diffusible molecules.
Collapse
Affiliation(s)
- Charles Jo
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - David B. Bernstein
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Natalie Vaisman
- Department of Biology, Boston University, Boston, Massachusetts, USA
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | | | - Daniel Segrè
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston University, Boston, Massachusetts, USA
- Department of Biology, Boston University, Boston, Massachusetts, USA
- Program in Bioinformatics, Boston University, Boston, Massachusetts, USA
- Department of Physics, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Yue Z, Fan Z, Zhang H, Feng B, Wu C, Chen S, Ouyang J, Fan H, Weng P, Feng H, Chen S, Dong M, Xu A, Huang S. Differential roles of the fish chitinous membrane in gut barrier immunity and digestive compartments. EMBO Rep 2023; 24:e56645. [PMID: 36852962 PMCID: PMC10074124 DOI: 10.15252/embr.202256645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
The chitin-based peritrophic matrix (PM) is a structure critical for both gut immunity and digestion in invertebrates. PM was traditionally considered lost in all vertebrates, but a PM-like chitinous membrane (CM) has recently been discovered in fishes, which may increase the knowledge on vertebrate gut physiology and structural evolution. Here, we show that in zebrafish, the CM affects ingestion behavior, microbial homeostasis, epithelial renewal, digestion, growth, and longevity. Young mutant fish without CM appear healthy and are able to complete their life cycle normally, but with increasing age they develop gut inflammation, resulting in gut atrophy. Unlike mammals, zebrafish have no visible gel-forming mucin layers to protect their gut epithelia, but at least in young fish, the CM is not a prerequisite for the antibacterial gut immunity. These findings provide new insights into the role of the CM in fish prosperity and its eventual loss in tetrapods. These findings may also help to improve fish health and conservation, as well as to advance the understanding of vertebrate gut physiology and human intestinal diseases.
Collapse
Affiliation(s)
- Zirui Yue
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Zhaoyu Fan
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Hao Zhang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Buhan Feng
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Chengyi Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life SciencesXiamen UniversityXiamenChina
| | - Shenghui Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Jihua Ouyang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Huiping Fan
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Panwei Weng
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Huixiong Feng
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Shangwu Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Meiling Dong
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Anlong Xu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Shengfeng Huang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
34
|
Hanson MA, Lemaitre B. Antimicrobial peptides do not directly contribute to aging in Drosophila, but improve lifespan by preventing dysbiosis. Dis Model Mech 2023; 16:dmm049965. [PMID: 36847474 PMCID: PMC10163324 DOI: 10.1242/dmm.049965] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023] Open
Abstract
Antimicrobial peptides (AMPs) are innate immune effectors first studied for their role in host defence. Recent studies have implicated these peptides in the clearance of aberrant cells and in neurodegenerative syndromes. In Drosophila, many AMPs are produced downstream of Toll and Imd NF-κB pathways upon infection. Upon aging, AMPs are upregulated, drawing attention to these molecules as possible causes of age-associated inflammatory diseases. However, functional studies overexpressing or silencing these genes have been inconclusive. Using an isogenic set of AMP gene deletions, we investigated the net impact of AMPs on aging. Overall, we found no major effect of individual AMPs on lifespan, with the possible exception of Defensin. However, ΔAMP14 flies lacking seven AMP gene families displayed reduced lifespan. Increased bacterial load in the food of aged ΔAMP14 flies suggested that their lifespan reduction was due to microbiome dysbiosis, consistent with a previous study. Moreover, germ-free conditions extended the lifespan of ΔAMP14 flies. Overall, our results did not point to an overt role of individual AMPs in lifespan. Instead, we found that AMPs collectively impact lifespan by preventing dysbiosis during aging.
Collapse
Affiliation(s)
- Mark A. Hanson
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
35
|
Dai X, Zhang Q, Zhang G, Ma C, Zhang R. Protective effect of agar oligosaccharide on male Drosophila melanogaster suffering from oxidative stress via intestinal microflora activating the Keap1-Nrf2 signaling pathway. Carbohydr Polym 2023; 313:120878. [PMID: 37182968 DOI: 10.1016/j.carbpol.2023.120878] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Agar oligosaccharide (AOS) is a new kind of marine functional oligosaccharide with generous biological activities. To investigate the antioxidative effects of AOS in vivo, 3 % aqueous hydrogen peroxide (H2O2) was used to induce oxidative stress in male Drosophila melanogaster (D. melanogaster) fed 5 % sucrose (SUC). AOS (0.125 %) in the medium extended the lifespan of D. melanogaster suffering from oxidative stress by improving antioxidant capacity and intestinal function. Electron microscopic observation of epithelial cells showed that AOS alleviated the damage caused by H2O2 challenge in the intestine of D. melanogaster, including a reduction of gut leakage and maintenance of intestinal length and cell ultrastructure. The Keap1-Nrf2 (analogues of CncC gene in D. melanogaster) signaling pathway was significantly activated based on gene expression levels and a reduction in ROS content in the intestine of D. melanogaster suffering from oxidative stress. The improvement of antioxidant capacity may be related to the regulation of intestinal microflora with AOS supplementation for D. melanogaster. Nrf2-RNAi, sterile and gnotobiotic D. melanogaster were used to validate the hypothesis that AOS activated the Keap1-Nrf2 signaling pathway to achieve antioxidant effects by regulating intestinal microflora. The above results contribute to our understanding of the antioxidative mechanism of AOS and promote its application in the food industry.
Collapse
|
36
|
Bland ML. Regulating metabolism to shape immune function: Lessons from Drosophila. Semin Cell Dev Biol 2023; 138:128-141. [PMID: 35440411 PMCID: PMC10617008 DOI: 10.1016/j.semcdb.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/21/2022] [Accepted: 04/03/2022] [Indexed: 12/14/2022]
Abstract
Infection with pathogenic microbes is a severe threat that hosts manage by activating the innate immune response. In Drosophila melanogaster, the Toll and Imd signaling pathways are activated by pathogen-associated molecular patterns to initiate cellular and humoral immune processes that neutralize and kill invaders. The Toll and Imd signaling pathways operate in organs such as fat body and gut that control host nutrient metabolism, and infections or genetic activation of Toll and Imd signaling also induce wide-ranging changes in host lipid, carbohydrate and protein metabolism. Metabolic regulation by immune signaling can confer resistance to or tolerance of infection, but it can also lead to pathology and susceptibility to infection. These immunometabolic phenotypes are described in this review, as are changes in endocrine signaling and gene regulation that mediate survival during infection. Future work in the field is anticipated to determine key variables such as sex, dietary nutrients, life stage, and pathogen characteristics that modify immunometabolic phenotypes and, importantly, to uncover the mechanisms used by the immune system to regulate metabolism.
Collapse
Affiliation(s)
- Michelle L Bland
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, United States.
| |
Collapse
|
37
|
Dodge R, Jones EW, Zhu H, Obadia B, Martinez DJ, Wang C, Aranda-Díaz A, Aumiller K, Liu Z, Voltolini M, Brodie EL, Huang KC, Carlson JM, Sivak DA, Spradling AC, Ludington WB. A symbiotic physical niche in Drosophila melanogaster regulates stable association of a multi-species gut microbiota. Nat Commun 2023; 14:1557. [PMID: 36944617 PMCID: PMC10030875 DOI: 10.1038/s41467-023-36942-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023] Open
Abstract
The gut is continuously invaded by diverse bacteria from the diet and the environment, yet microbiome composition is relatively stable over time for host species ranging from mammals to insects, suggesting host-specific factors may selectively maintain key species of bacteria. To investigate host specificity, we used gnotobiotic Drosophila, microbial pulse-chase protocols, and microscopy to investigate the stability of different strains of bacteria in the fly gut. We show that a host-constructed physical niche in the foregut selectively binds bacteria with strain-level specificity, stabilizing their colonization. Primary colonizers saturate the niche and exclude secondary colonizers of the same strain, but initial colonization by Lactobacillus species physically remodels the niche through production of a glycan-rich secretion to favor secondary colonization by unrelated commensals in the Acetobacter genus. Our results provide a mechanistic framework for understanding the establishment and stability of a multi-species intestinal microbiome.
Collapse
Affiliation(s)
- Ren Dodge
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Eric W Jones
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Department of Physics, University of California, Santa Barbara, CA, 93106, USA
| | - Haolong Zhu
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Benjamin Obadia
- Molecular and Cell Biology Department, University of California, Berkeley, CA, 94720, USA
| | - Daniel J Martinez
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Chenhui Wang
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Howard Hughes Medical Institute, Baltimore, MD, 21218, USA
| | - Andrés Aranda-Díaz
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Kevin Aumiller
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhexian Liu
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Marco Voltolini
- Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
- Dipartimento di Scienze della Terra, Università degli Studi di Milano, Milano, Italy
| | - Eoin L Brodie
- Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Jean M Carlson
- Department of Physics, University of California, Santa Barbara, CA, 93106, USA
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Allan C Spradling
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Howard Hughes Medical Institute, Baltimore, MD, 21218, USA
| | - William B Ludington
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA.
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
38
|
Ma Y, He J, Sieber M, von Frieling J, Bruchhaus I, Baines JF, Bickmeyer U, Roeder T. The microbiome of the marine flatworm Macrostomum lignano provides fitness advantages and exhibits circadian rhythmicity. Commun Biol 2023; 6:289. [PMID: 36934156 PMCID: PMC10024726 DOI: 10.1038/s42003-023-04671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
The close association between animals and their associated microbiota is usually beneficial for both partners. Here, we used a simple marine model invertebrate, the flatworm Macrostomum lignano, to characterize the host-microbiota interaction in detail. This analysis revealed that the different developmental stages each harbor a specific microbiota. Studies with gnotobiotic animals clarified the physiological significance of the microbiota. While no fitness benefits were mediated by the microbiota when food was freely available, animals with microbiota showed significantly increased fitness with a reduced food supply. The microbiota of M. lignano shows circadian rhythmicity, affecting both the total bacterial load and the behavior of specific taxa. Moreover, the presence of the worm influences the composition of the bacterial consortia in the environment. In summary, the Macrostomum-microbiota system described here can serve as a general model for host-microbe interactions in marine invertebrates.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Kiel University, Zoological Institute, Molecular Physiology, Kiel, Germany
| | - Jinru He
- Kiel University, Zoological Institute, Cell and Developmental Biology, Kiel, Germany
| | - Michael Sieber
- Max-Planck Institute for Evolutionary Biology, Dept. Evolutionary Theory, Plön, Germany
| | - Jakob von Frieling
- Kiel University, Zoological Institute, Molecular Physiology, Kiel, Germany
| | - Iris Bruchhaus
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - John F Baines
- Kiel University, Medical Faculty, Institute for Experimental Medicine, Kiel, Germany
- Max-Planck Institute for Evolutionary Biology, Group Evolutionary Medicine, Plön, Germany
| | - Ulf Bickmeyer
- Alfred-Wegener-Institute, Biosciences, Ecological Chemistry, Bremerhaven, Germany
| | - Thomas Roeder
- Kiel University, Zoological Institute, Molecular Physiology, Kiel, Germany.
- German Center for Lung Research (DZL), Airway Research Center North, Kiel, Germany.
| |
Collapse
|
39
|
Elston KM, Phillips LE, Leonard SP, Young E, Holley JAC, Ahsanullah T, McReynolds B, Moran NA, Barrick JE. The Pathfinder plasmid toolkit for genetically engineering newly isolated bacteria enables the study of Drosophila -colonizing Orbaceae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528778. [PMID: 36824770 PMCID: PMC9949093 DOI: 10.1101/2023.02.15.528778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Toolkits of plasmids and genetic parts streamline the process of assembling DNA constructs and engineering microbes. Many of these kits were designed with specific industrial or laboratory microbes in mind. For researchers interested in non-model microbial systems, it is often unclear which tools and techniques will function in newly isolated strains. To address this challenge, we designed the Pathfinder toolkit for quickly determining the compatibility of a bacterium with different plasmid components. Pathfinder plasmids combine three different broad-host-range origins of replication with multiple antibiotic resistance cassettes and reporters, so that sets of parts can be rapidly screened through multiplex conjugation. We first tested these plasmids in Escherichia coli , a strain of Sodalis praecaptivus that colonizes insects, and a Rosenbergiella isolate from leafhoppers. Then, we used the Pathfinder plasmids to engineer previously unstudied bacteria from the family Orbaceae that were isolated from several fly species. Engineered Orbaceae strains were able to colonize Drosophila melanogaster and could be visualized in fly guts. Orbaceae are common and abundant in the guts of wild-caught flies but have not been included in laboratory studies of how the Drosophila microbiome affects fly health. Thus, this work provides foundational genetic tools for studying new host-associated microbes, including bacteria that are a key constituent of the gut microbiome of a model insect species. IMPORTANCE To fully understand how microbes have evolved to interact with their environments, one must be able to modify their genomes. However, it can be difficult and laborious to discover which genetic tools and approaches work for a new isolate. Bacteria from the recently described Orbaceae family are common in the microbiomes of insects. We developed the Pathfinder plasmid toolkit for testing the compatibility of different genetic parts with newly cultured bacteria. We demonstrate its utility by engineering Orbaceae strains isolated from flies to express fluorescent proteins and characterizing how they colonize the Drosophila melanogaster gut. Orbaceae are widespread in Drosophila in the wild but have not been included in laboratory studies examining how the gut microbiome affects fly nutrition, health, and longevity. Our work establishes a path for genetic studies aimed at understanding and altering interactions between these and other newly isolated bacteria and their hosts.
Collapse
Affiliation(s)
- Katherine M. Elston
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Laila E. Phillips
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sean P. Leonard
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Eleanor Young
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jo-anne C. Holley
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tasneem Ahsanullah
- Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Braydin McReynolds
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey E. Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
40
|
Crosstalk between the microbiota and insect postembryonic development. Trends Microbiol 2023; 31:181-196. [PMID: 36167769 DOI: 10.1016/j.tim.2022.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/20/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
Insect sequential development evolves from a simple molt towards complete metamorphosis. Like any multicellular host, insects interact with a complex microbiota. In this review, factors driving the microbiota dynamics were pointed out along their development. Special focus was put on tissue renewal, shift in insect ecology, and microbial interactions. Conversely, how the microbiota modulates its host development through nutrient acquisition, hormonal control, and cellular or tissue differentiation was exemplified. Such modifications might have long-term carry-over effects on insect physiology. Finally, remarkable microbe-driven control of insect behaviors along their life cycle was highlighted. Increasing knowledge of those interactions might offer new insights on how insects respond to their environment as well as perspectives on pest- or vector-control strategies.
Collapse
|
41
|
Dapa T, Wong DP, Vasquez KS, Xavier KB, Huang KC, Good BH. Within-host evolution of the gut microbiome. Curr Opin Microbiol 2023; 71:102258. [PMID: 36608574 PMCID: PMC9993085 DOI: 10.1016/j.mib.2022.102258] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
Gut bacteria inhabit a complex environment that is shaped by interactions with their host and the other members of the community. While these ecological interactions have evolved over millions of years, mounting evidence suggests that gut commensals can evolve on much shorter timescales as well, by acquiring new mutations within individual hosts. In this review, we highlight recent progress in understanding the causes and consequences of short-term evolution in the mammalian gut, from experimental evolution in murine hosts to longitudinal tracking of human cohorts. We also discuss new opportunities for future progress by expanding the repertoire of focal species, hosts, and surrounding communities, and by combining deep-sequencing technologies with quantitative frameworks from population genetics.
Collapse
Affiliation(s)
- Tanja Dapa
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Daniel Pgh Wong
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Kimberly S Vasquez
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
42
|
Ritchie IT, Needles KT, Leigh BA, Kaur R, Bordenstein SR. Transgenic cytoplasmic incompatibility persists across age and temperature variation in Drosophila melanogaster. iScience 2022; 25:105327. [PMID: 36304111 PMCID: PMC9593245 DOI: 10.1016/j.isci.2022.105327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Accepted: 10/07/2022] [Indexed: 12/03/2022] Open
Abstract
Environmental stressors can impact the basic biology and applications of host-microbe symbioses. For example, Wolbachia symbiont densities and cytoplasmic incompatibility (CI) levels can decline in response to extreme temperatures and host aging. To investigate whether transgenic expression of CI-causing cif genes overcomes the environmental sensitivity of CI, we exposed transgenic male flies to low and high temperatures as well as aging treatments. Our results indicate that transgenic cif expression induces nearly complete CI regardless of temperature and aging, despite severe weakening of Wolbachia-based wild-type CI. Strong CI levels correlate with higher levels of cif transgene expression in young males. Altogether, our results highlight that transgenic CI persists against common environmental pressures and may be relevant for future control applications involving the cifA and cifB transgenes.
Collapse
Affiliation(s)
- Isabella T. Ritchie
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, TN 37235, USA
| | - Kelly T. Needles
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, TN 37235, USA
| | - Brittany A. Leigh
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, TN 37235, USA
| | - Rupinder Kaur
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, TN 37235, USA
- The Pennsylvania State University, Departments of Biology and Entomology, University Park, PA 16802, USA
- The Pennsylvania State University, Microbiome Center, Huck Institutes of the Life Sciences, University Park, PA 16802, USA
| | - Seth R. Bordenstein
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, TN 37235, USA
- The Pennsylvania State University, Departments of Biology and Entomology, University Park, PA 16802, USA
- The Pennsylvania State University, Microbiome Center, Huck Institutes of the Life Sciences, University Park, PA 16802, USA
| |
Collapse
|
43
|
Henry LP, Ayroles JF. Drosophila melanogaster microbiome is shaped by strict filtering and neutrality along a latitudinal cline. Mol Ecol 2022; 31:5861-5871. [PMID: 36094780 PMCID: PMC9643648 DOI: 10.1111/mec.16692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 01/13/2023]
Abstract
Microbiomes affect many aspects of host biology, but the eco-evolutionary forces that shape their diversity in natural populations remain poorly understood. Geographical gradients, such as latitudinal clines, generate predictable patterns in biodiversity at macroecological scales, but whether these macroscale processes apply to host-microbiome interactions is an open question. To address this question, we sampled the microbiomes of 13 natural populations of Drosophila melanogaster along a latitudinal cline in the eastern United States. The microbiomes were surprisingly consistent across the cline, as latitude did not predict either alpha or beta diversity. Only a narrow taxonomic range of bacteria were present in all microbiomes, indicating that strict taxonomic filtering by the host and neutral ecological dynamics are the primary factors shaping the fly microbiome. Our findings reveal the complexity of eco-evolutionary interactions shaping microbial variation in D. melanogaster and highlight the need for additional sampling of the microbiomes in natural populations along environmental gradients.
Collapse
Affiliation(s)
- Lucas P Henry
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Julien F Ayroles
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
44
|
Yao Z, Cai Z, Ma Q, Bai S, Wang Y, Zhang P, Guo Q, Gu J, Lemaitre B, Zhang H. Compartmentalized PGRP expression along the dipteran Bactrocera dorsalis gut forms a zone of protection for symbiotic bacteria. Cell Rep 2022; 41:111523. [DOI: 10.1016/j.celrep.2022.111523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/18/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
|
45
|
Basic M, Dardevet D, Abuja PM, Bolsega S, Bornes S, Caesar R, Calabrese FM, Collino M, De Angelis M, Gérard P, Gueimonde M, Leulier F, Untersmayr E, Van Rymenant E, De Vos P, Savary-Auzeloux I. Approaches to discern if microbiome associations reflect causation in metabolic and immune disorders. Gut Microbes 2022; 14:2107386. [PMID: 35939623 PMCID: PMC9361767 DOI: 10.1080/19490976.2022.2107386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Our understanding of microorganisms residing within our gut and their roles in the host metabolism and immunity advanced greatly over the past 20 years. Currently, microbiome studies are shifting from association and correlation studies to studies demonstrating causality of identified microbiome signatures and identification of molecular mechanisms underlying these interactions. This transformation is crucial for the efficient translation into clinical application and development of targeted strategies to beneficially modulate the intestinal microbiota. As mechanistic studies are still quite challenging to perform in humans, the causal role of microbiota is frequently evaluated in animal models that need to be appropriately selected. Here, we provide a comprehensive overview on approaches that can be applied in addressing causality of host-microbe interactions in five major animal model organisms (Caenorhabditis elegans, Drosophila melanogaster, zebrafish, rodents, and pigs). We particularly focused on discussing methods available for studying the causality ranging from the usage of gut microbiota transfer, diverse models of metabolic and immune perturbations involving nutritional and chemical factors, gene modifications and surgically induced models, metabolite profiling up to culture-based approached. Furthermore, we addressed the impact of the gut morphology, physiology as well as diet on the microbiota composition in various models and resulting species specificities. Finally, we conclude this review with the discussion on models that can be applied to study the causal role of the gut microbiota in the context of metabolic syndrome and host immunity. We hope this review will facilitate important considerations for appropriate animal model selection.
Collapse
Affiliation(s)
- Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Dominique Dardevet
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Peter Michael Abuja
- Diagnostic & Research Centre of Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Silvia Bolsega
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Stéphanie Bornes
- University Clermont Auvergne, Inrae, VetAgro Sup, Umrf, Aurillac, France
| | - Robert Caesar
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Massimo Collino
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Science, “Aldo Moro” University Bari, Bari, Italy
| | - Philippe Gérard
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, France
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC;Villaviciosa, Spain
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UMR5242 CNRS, Université Claude Bernard-Lyon1, Lyon, France
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Evelien Van Rymenant
- Flanders Research Institute for Agriculture, Fisheries and Food (Ilvo), Merelbeke, Belgium
| | - Paul De Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen; Groningen, Netherlands
| | - Isabelle Savary-Auzeloux
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France,CONTACT Isabelle Savary-Auzeloux Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| |
Collapse
|
46
|
Landis GN, Riggan L, Bell HS, Vu W, Wang T, Wang I, Tejawinata FI, Ko S, Tower J. Mifepristone Increases Life Span in Female Drosophila Without Detectable Antibacterial Activity. FRONTIERS IN AGING 2022; 3:924957. [PMID: 35935727 PMCID: PMC9354577 DOI: 10.3389/fragi.2022.924957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Mifepristone dramatically increases the life span of mated female Drosophila while reducing the expression of innate immune response genes. Previous results indicated that mifepristone also reduced the load of aero-tolerant bacteria in mated females. Experiments were conducted to further investigate the possible role of bacteria in mifepristone life span effects. Life span was assayed in flies grown from sterilized eggs on autoclaved media and in normally cultured controls in two independent assays. Sterilization increased mated female life span (+8.3% and +57%, respectively), and the effect of mifepristone was additive (+53% and +93%, respectively). High-throughput sequencing of 16S sequences revealed that sterilization reduced the abundance of multiple species and the classes Bacteroidia, Bacilli, Actinobacteria, and Cytophagia. By contrast, mifepristone caused no decreases and instead increased the abundance of three species. Five aero-tolerant bacterial species were cultured from extracts of mated female flies, including both Gram-positive and Gram-negative species (Acetobacter sicerae, Enterococcus faecalis, Lactobacillus plantarum, Serratia rubidea, and Paenibacillus glucanolyticus). There was no detectable effect of mifepristone on the growth of these bacteria in vitro, indicating that mifepristone does not have a direct antibiotic effect. To test if antibiotics could mimic the effects of mifepristone in vivo, mated female flies were treated throughout adult life span with high concentrations of the individual antibiotics doxycycline, ampicillin, kanamycin, and streptomycin, in replicate experiments. No significant effect on life span was observed for ampicillin, kanamycin, or streptomycin, and an inconsistent benefit was observed for doxycycline. Finally, supplementation of media with Enterococcus faecalis did not alter adult female life span in the presence or absence of mifepristone. Taken together, the results indicate the life span benefits of mifepristone are not due to an antibiotic effect.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
47
|
Abstract
Acetobacter species are a major component of the gut microbiome of the fruit fly Drosophila melanogaster, a widely used model organism. While a range of studies have illuminated impacts of Acetobacter on their hosts, less is known about how association with the host impacts bacteria. A previous study identified that a purine salvage locus was commonly found in Acetobacter associated with Drosophila. In this study, we sought to verify the functions of predicted purine salvage genes in Acetobacter fabarum DsW_054 and to test the hypothesis that these bacteria can utilize host metabolites as a sole source of nitrogen. Targeted gene deletion and complementation experiments confirmed that genes encoding xanthine dehydrogenase (xdhB), urate hydroxylase (urhA), and allantoinase (puuE) were required for growth on their respective substrates as the sole source of nitrogen. Utilization of urate by Acetobacter is significant because this substrate is the major nitrogenous waste product of Drosophila, and its accumulation in the excretory system is detrimental to both flies and humans. The potential significance of our findings for host purine homeostasis and health are discussed, as are the implications for interactions among microbiota members, which differ in their capacity to utilize host metabolites for nitrogen. IMPORTANCEAcetobacter are commonly found in the gut microbiota of fruit flies, including Drosophila melanogaster. We evaluated the function of purine salvage genes in Acetobacter fabarum to test the hypothesis that this bacterium can utilize host metabolites as a source of nitrogen. Our results identify functions for three genes required for growth on urate, a major host waste product. The utilization of this and other Drosophila metabolites by gut bacteria may play a role in their survival in the host environment. Future research into how microbial metabolism impacts host purine homeostasis may lead to therapies because urate accumulation in the excretory system is detrimental to flies and humans.
Collapse
|
48
|
Arias-Rojas A, Iatsenko I. The Role of Microbiota in Drosophila melanogaster Aging. FRONTIERS IN AGING 2022; 3:909509. [PMID: 35821860 PMCID: PMC9261426 DOI: 10.3389/fragi.2022.909509] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
Intestinal microbial communities participate in essential aspects of host biology, including nutrient acquisition, development, immunity, and metabolism. During host aging, dramatic shifts occur in the composition, abundance, and function of the gut microbiota. Although such changes in the microbiota are conserved across species, most studies remain descriptive and at most suggest a correlation between age-related pathology and particular microbes. Therefore, the causal role of the microbiota in host aging has remained a challenging question, in part due to the complexity of the mammalian intestinal microbiota, most of which is not cultivable or genetically amenable. Here, we summarize recent studies in the fruit fly Drosophila melanogaster that have substantially progressed our understanding at the mechanistic level of how gut microbes can modulate host aging.
Collapse
Affiliation(s)
| | - Igor Iatsenko
- Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
49
|
Charalambous A, Grivogiannis E, Dieronitou I, Michael C, Rahme L, Apidianakis Y. Proteobacteria and Firmicutes Secreted Factors Exert Distinct Effects on Pseudomonas aeruginosa Infection under Normoxia or Mild Hypoxia. Metabolites 2022; 12:449. [PMID: 35629953 PMCID: PMC9146490 DOI: 10.3390/metabo12050449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Microbiota may alter a pathogen's virulence potential at polymicrobial infection sites. Here, we developed a multi-modal Drosophila assay, amenable to the assessment of human bacterial interactions using fly survival or midgut regeneration as a readout, under normoxia or mild hypoxia. Deploying a matrix of 12 by 33 one-to-one Drosophila co-infections via feeding, we classified bacterial interactions as neutral, synergistic, or antagonistic, based on fly survival. Twenty six percent of these interactions were antagonistic, mainly occurring between Proteobacteria. Specifically, Pseudomonas aeruginosa infection was antagonized by various Klebsiella strains, Acinetobacter baumannii, and Escherichia coli. We validated these interactions in a second screen of 7 by 34 one-to-one Drosophila co-infections based on assessments of midgut regeneration, and in bacterial co-culture test tube assays, where antagonistic interactions depended on secreted factors produced upon high sugar availability. Moreover, Enterococci interacted synergistically with P. aeruginosa in flies and in test tubes, enhancing the virulence and pyocyanin production by P. aeruginosa. However, neither lactic acid bacteria nor their severely hypoxic culture supernatants provided a survival benefit upon P. aeruginosa infection of flies or mice, respectively. We propose that at normoxic or mildly hypoxic sites, Firmicutes may exacerbate, whereas Proteobacteria secreted factors may ameliorate, P. aeruginosa infections.
Collapse
Affiliation(s)
- Anna Charalambous
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; (A.C.); (E.G.); (I.D.); (C.M.)
| | - Evangelos Grivogiannis
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; (A.C.); (E.G.); (I.D.); (C.M.)
| | - Irene Dieronitou
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; (A.C.); (E.G.); (I.D.); (C.M.)
| | - Christina Michael
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; (A.C.); (E.G.); (I.D.); (C.M.)
| | - Laurence Rahme
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Yiorgos Apidianakis
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; (A.C.); (E.G.); (I.D.); (C.M.)
| |
Collapse
|
50
|
Weinhold A. Bowel Movement: Integrating Host Mobility and Microbial Transmission Across Host Taxa. Front Microbiol 2022; 13:826364. [PMID: 35242121 PMCID: PMC8886138 DOI: 10.3389/fmicb.2022.826364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022] Open
Abstract
The gut microbiota of animals displays a high degree of plasticity with respect to environmental or dietary adaptations and is shaped by factors like social interactions, diet diversity or the local environment. But the contribution of these drivers varies across host taxa and our ability to explain microbiome variability within wild populations remains limited. Terrestrial animals have divergent mobility ranges and can either crawl, walk or fly, from a couple of centimeters toward thousands of kilometers. Animal movement has been little regarded in host microbiota frameworks, though it can directly influence major drivers of the host microbiota: (1) Aggregation movement can enhance social transmissions, (2) foraging movement can extend range of diet diversity, and (3) dispersal movement determines the local environment of a host. Here, I would like to outline how movement behaviors of different host taxa matter for microbial acquisition across mammals, birds as well as insects. Host movement can have contrasting effects and either reduce or enlarge spatial scale. Increased dispersal movement could dissolve local effects of sampling location, while aggregation could enhance inter-host transmissions and uniformity among social groups. Host movement can also extend the boundaries of microbial dispersal limitations and connect habitat patches across plant-pollinator networks, while the microbiota of wild populations could converge toward a uniform pattern when mobility is interrupted in captivity or laboratory settings. Hence, the implementation of host movement would be a valuable addition to the metacommunity concept, to comprehend microbial dispersal within and across trophic levels.
Collapse
Affiliation(s)
- Arne Weinhold
- Faculty of Biology, Cellular and Organismic Networks, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|