1
|
Stevens A, Kashyap S, Crofut E, Alvarez-Cabrera AL, Jih J, Liu Y, Zhou ZH. Structure of a new capsid form and comparison with A-, B- and C-capsids clarify herpesvirus assembly and DNA translocation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644230. [PMID: 40166288 PMCID: PMC11957103 DOI: 10.1101/2025.03.19.644230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Three capsid types have been recognized from the nuclei of herpesvirus-infected cells: empty A-capsids, scaffolding-containing B-capsids, and DNA-filled C-capsids. Despite great progress in determining the structures of these capsids and extracellular virions in recent years, debate persists concerning the origins and temporal relationships among these capsids during capsid assembly and genome packaging. Here, we have imaged over 300,000 capsids of herpes simplex virus type 1 by cryogenic electron microscopy (cryoEM) and exhaustively classified them to characterize the structural heterogeneity of the DNA-translocating portal complex and their functional states. The resultant atomic structures reveal not only the expected A-, B-, and C-capsids, but also capsids with portal vertices similar to C-capsids but no resolvable genome in the capsid lumen, which we named D-capsids. The dodecameric dsDNA-translocating portal complex varies in their radial positions in the icosahedral capsids and structural conformations among these capsids. In D-capsids, terminal DNA density exists in multiple conformations including one reminiscent to that in C-capsids, suggesting D-capsids are products of failed DNA retention. This interpretation is supported by varying amounts of DNA outside individual D-capsids and by correlation of capsid counts observed in situ of infected cell nuclei and those after purification. Additionally, an "anchoring" segment of the scaffold protein is resolved interacting with the portal baskets of A- and B-capsids but not D- and C-capsids. Taken together, our data indicate that A-capsids arise from failed DNA packaging and D-capsids from failed genome retention, clarifying the origins of empty capsids in herpesvirus assembly.
Collapse
|
2
|
Lewis CB, Sherry L, Conley MJ, Nakashima M, Akbar S, Govindan N, Hosie MJ, Bhella D. Conformational Flexibility in Capsids Encoded by the Caliciviridae. Viruses 2024; 16:1835. [PMID: 39772145 PMCID: PMC11680396 DOI: 10.3390/v16121835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/06/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Caliciviruses are a diverse group of non-enveloped, positive-sense RNA viruses with a wide range of hosts and transmission routes. Norovirus is the most well-known member of the Caliciviridae; the acute gastroenteritis caused by human norovirus (HuNoV), for example, frequently results in closures of hospital wards and schools during the winter months. One area of calicivirus biology that has gained increasing attention over the past decade is the conformational flexibility exhibited by the protruding (P) domains of the major capsid protein VP1. This was observed in structure analyses of capsids encoded by many species and is often a consequence of environmental cues such as metal ions, changes to pH, or receptor/co-factor engagement. This review summarises the current understanding of P-domain flexibility, discussing the role this region plays in caliciviral infection and immune evasion, and highlighting potential avenues for further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David Bhella
- MRC—University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK; (C.B.L.); (L.S.); (M.J.C.); (M.N.); (S.A.); (M.J.H.)
| |
Collapse
|
3
|
Döhner K, Serrero MC, Viejo-Borbolla A, Sodeik B. A Hitchhiker's Guide Through the Cell: The World According to the Capsids of Alphaherpesviruses. Annu Rev Virol 2024; 11:215-238. [PMID: 38954634 DOI: 10.1146/annurev-virology-100422-022751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The nucleoplasm, the cytosol, the inside of virions, and again the cytosol comprise the world in which the capsids of alphaherpesviruses encounter viral and host proteins that support or limit them in performing their tasks. Here, we review the fascinating conundrum of how specific protein-protein interactions late in alphaherpesvirus infection orchestrate capsid nuclear assembly, nuclear egress, and cytoplasmic envelopment, but target incoming capsids to the nuclear pores in naive cells to inject the viral genomes into the nucleoplasm for viral transcription and replication. Multiple capsid interactions with viral and host proteins have been characterized using viral mutants and assays that reconstitute key stages of the infection cycle. Keratinocytes, fibroblasts, mucosal epithelial cells, neurons, and immune cells employ cell type-specific intrinsic and cytokine-induced resistance mechanisms to restrict several stages of the viral infection cycle. However, concomitantly, alphaherpesviruses have evolved countermeasures to ensure efficient capsid function during infection.
Collapse
Affiliation(s)
- Katinka Döhner
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- RESIST Cluster of Excellence, Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany;
| | - Manutea Christophe Serrero
- Department of Biomedicine and Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
- RESIST Cluster of Excellence, Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany;
| | - Abel Viejo-Borbolla
- RESIST Cluster of Excellence, Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany;
| | - Beate Sodeik
- DZIF German Centre for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany
- RESIST Cluster of Excellence, Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany;
| |
Collapse
|
4
|
Kingston NJ, Snowden JS, Grehan K, Hall PK, Hietanen EV, Passchier TC, Polyak SJ, Filman DJ, Hogle JM, Rowlands DJ, Stonehouse NJ. Mechanism of enterovirus VP0 maturation cleavage based on the structure of a stabilised assembly intermediate. PLoS Pathog 2024; 20:e1012511. [PMID: 39298524 PMCID: PMC11444389 DOI: 10.1371/journal.ppat.1012511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/01/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024] Open
Abstract
Molecular details of genome packaging are little understood for the majority of viruses. In enteroviruses (EVs), cleavage of the structural protein VP0 into VP4 and VP2 is initiated by the incorporation of RNA into the assembling virion and is essential for infectivity. We have applied a combination of bioinformatic, molecular and structural approaches to generate the first high-resolution structure of an intermediate in the assembly pathway, termed a provirion, which contains RNA and intact VP0. We have demonstrated an essential role of VP0 E096 in VP0 cleavage independent of RNA encapsidation and generated a new model of capsid maturation, supported by bioinformatic analysis. This provides a molecular basis for RNA-dependence, where RNA induces conformational changes required for VP0 maturation, but that RNA packaging itself is not sufficient to induce maturation. These data have implications for understanding production of infectious virions and potential relevance for future vaccine and antiviral drug design.
Collapse
Affiliation(s)
- Natalie J Kingston
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Joseph S Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Keith Grehan
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Philippa K Hall
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Eero V Hietanen
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Tim C Passchier
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Stephen J Polyak
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, United States of America
| | - David J Filman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James M Hogle
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David J Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicola J Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
5
|
Roberts AP, Orr A, Iliev V, Orr L, McFarlane S, Yang Z, Epifano I, Loney C, Rodriguez MC, Cliffe AR, Conn KL, Boutell C. Daxx mediated histone H3.3 deposition on HSV-1 DNA restricts genome decompaction and the progression of immediate-early transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608064. [PMID: 39185184 PMCID: PMC11343217 DOI: 10.1101/2024.08.15.608064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Herpesviruses are ubiquitous pathogens that cause a wide range of disease. Upon nuclear entry, their genomes associate with histones and chromatin modifying enzymes that regulate the progression of viral transcription and outcome of infection. While the composition and modification of viral chromatin has been extensively studied on bulk populations of infected cells by chromatin immunoprecipitation, this key regulatory process remains poorly defined at single-genome resolution. Here we use high-resolution quantitative imaging to investigate the spatial proximity of canonical and variant histones at individual Herpes Simplex Virus 1 (HSV-1) genomes within the first 90 minutes of infection. We identify significant population heterogeneity in the stable enrichment and spatial proximity of canonical histones (H2A, H2B, H3.1) at viral DNA (vDNA) relative to established promyelocytic leukaemia nuclear body (PML-NB) host factors that are actively recruited to viral genomes upon nuclear entry. We show the replication-independent histone H3.3/H4 chaperone Daxx to cooperate with PML to mediate the enrichment and spatial localization of variant histone H3.3 at vDNA that limits the rate of HSV-1 genome decompaction to restrict the progress of immediate-early (IE) transcription. This host response is counteracted by the viral ubiquitin ligase ICP0, which degrades PML to disperse Daxx and variant histone H3.3 from vDNA to stimulate the progression of viral genome expansion, IE transcription, and onset of HSV-1 replication. Our data support a model of intermediate and sequential histone assembly initiated by Daxx that limits the rate of HSV-1 genome decompaction independently of the stable enrichment of histones H2A and H2B at vDNA required to facilitate canonical nucleosome assembly. We identify HSV-1 genome decompaction upon nuclear infection to play a key role in the initiation and functional outcome of HSV-1 lytic infection, findings pertinent to the transcriptional regulation of many nuclear replicating herpesvirus pathogens.
Collapse
Affiliation(s)
- Ashley P.E. Roberts
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
- School of Life and Environmental Sciences, College of Health and Science, Joseph Banks laboratories, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK
| | - Anne Orr
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Victor Iliev
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Lauren Orr
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Steven McFarlane
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Zhousiyu Yang
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Ilaria Epifano
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Milagros Collados Rodriguez
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Kristen L. Conn
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, CAN
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| |
Collapse
|
6
|
Visalli MA, Nale Lovett DJ, Kornfeind EM, Herrington H, Xiao YT, Lee D, Plair P, Wilder SG, Garza BK, Young A, Visalli RJ. Mutagenesis and functional analysis of the varicella-zoster virus portal protein. J Virol 2024; 98:e0060323. [PMID: 38517165 PMCID: PMC11019927 DOI: 10.1128/jvi.00603-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Herpesviruses replicate by cleaving concatemeric dsDNA into single genomic units that are packaged through an oligomeric portal present in preformed procapsids. In contrast to what is known about phage portal proteins, details concerning herpesvirus portal structure and function are not as well understood. A panel of 65 Varicella-Zoster virus (VZV) recombinant portal proteins with five amino acid in-frame insertions were generated by random transposon mutagenesis of the VZV portal gene, ORF54. Subsequently, 65 VZVLUC recombinant viruses (TNs) were generated via recombineering. Insertions were mapped to predicted portal domains (clip, wing, stem, wall, crown, and β-hairpin tunnel-loop) and recombinant viruses were characterized for plaque morphology, replication kinetics, pORF54 expression, and classified based on replication in non-complementing (ARPE19) or complementing (ARPE54C50) cell lines. The N- and C-termini were tolerant to insertion mutagenesis, as were certain clip sub-domains. The majority of mutants mapping to the wing, wall, β-hairpin tunnel loop, and stem domains were lethal. Elimination of the predicted ORF54 start codon revealed that the first 40 amino acids of the N-terminus were not required for viral replication. Stop codon insertions in the C-terminus showed that the last 100 amino acids were not required for viral replication. Lastly, a putative protease cleavage site was identified in the C-terminus of pORF54. Cleavage was likely orchestrated by a viral protease; however, processing was not required for DNA encapsidation and viral replication. The panel of recombinants should prove valuable in future studies to dissect mammalian portal structure and function.IMPORTANCEThough nucleoside analogs and a live-attenuated vaccine are currently available to treat some human herpesvirus family members, alternate methods of combating herpesvirus infection could include blocking viral replication at the DNA encapsidation stage. The approval of Letermovir provided proof of concept regarding the use of encapsidation inhibitors to treat herpesvirus infections in the clinic. We propose that small-molecule compounds could be employed to interrupt portal oligomerization, assembly into the capsid vertex, or affect portal function/dynamics. Targeting portal at any of these steps would result in disruption of viral DNA packaging and a decrease or absence of mature infectious herpesvirus particles. The oligomeric portals of herpesviruses are structurally conserved, and therefore, it may be possible to find a single compound capable of targeting portals from one or more of the herpesvirus subfamilies. Drug candidates from such a series would be effective against viruses resistant to the currently available antivirals.
Collapse
Affiliation(s)
- Melissa A. Visalli
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Dakota J. Nale Lovett
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Ellyn M. Kornfeind
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Haley Herrington
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Yi Tian Xiao
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Daniel Lee
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Patience Plair
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - S. Garrett Wilder
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Bret K. Garza
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Ashton Young
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Robert J. Visalli
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| |
Collapse
|
7
|
Kingston NJ, Snowden JS, Grehan K, Hall PK, Hietanen EV, Passchier TC, Polyak SJ, Filman DJ, Hogle JM, Rowlands DJ, Stonehouse NJ. Mechanism of enterovirus VP0 maturation cleavage based on the structure of a stabilised assembly intermediate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.06.588229. [PMID: 38617325 PMCID: PMC11014595 DOI: 10.1101/2024.04.06.588229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Molecular details of genome packaging are little understood for the majority of viruses. In enteroviruses (EVs), cleavage of the structural protein VP0 into VP4 and VP2 is initiated by the incorporation of RNA into the assembling virion and is essential for infectivity. We have applied a combination of bioinformatic, molecular and structural approaches to generate the first high-resolution structure of an intermediate in the assembly pathway, termed a provirion, which contains RNA and intact VP0. We have demonstrated an essential role of VP0 E096 in VP0 cleavage independent of RNA encapsidation and generated a new model of capsid maturation, supported by bioinformatic analysis. This provides a molecular basis for RNA-dependence, where RNA induces conformational changes required for VP0 maturation, but that RNA packaging itself is not sufficient to induce maturation. These data have implications for understanding production of infectious virions and potential relevance for future vaccine and antiviral drug design.
Collapse
Affiliation(s)
- Natalie J Kingston
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Joseph S Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Keith Grehan
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Philippa K Hall
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Eero V Hietanen
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Tim C Passchier
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Stephen J Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA, Department of Global Health, University of Washington, Seattle, Washington, USA
| | - David J Filman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - James M Hogle
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - David J Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicola J Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
8
|
Jih J, Liu YT, Liu W, Zhou ZH. The incredible bulk: Human cytomegalovirus tegument architectures uncovered by AI-empowered cryo-EM. SCIENCE ADVANCES 2024; 10:eadj1640. [PMID: 38394211 PMCID: PMC10889378 DOI: 10.1126/sciadv.adj1640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
The compartmentalization of eukaryotic cells presents considerable challenges to the herpesvirus life cycle. The herpesvirus tegument, a bulky proteinaceous aggregate sandwiched between herpesviruses' capsid and envelope, is uniquely evolved to address these challenges, yet tegument structure and organization remain poorly characterized. We use deep-learning-enhanced cryogenic electron microscopy to investigate the tegument of human cytomegalovirus virions and noninfectious enveloped particles (NIEPs; a genome packaging-aborted state), revealing a portal-biased tegumentation scheme. We resolve atomic structures of portal vertex-associated tegument (PVAT) and identify multiple configurations of PVAT arising from layered reorganization of pUL77, pUL48 (large tegument protein), and pUL47 (inner tegument protein) assemblies. Analyses show that pUL77 seals the last-packaged viral genome end through electrostatic interactions, pUL77 and pUL48 harbor a head-linker-capsid-binding motif conducive to PVAT reconfiguration, and pUL47/48 dimers form 45-nm-long filaments extending from the portal vertex. These results provide a structural framework for understanding how herpesvirus tegument facilitates and evolves during processes spanning viral genome packaging to delivery.
Collapse
Affiliation(s)
- Jonathan Jih
- Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Yun-Tao Liu
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Wei Liu
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Z. Hong Zhou
- Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Hernandez-Gonzalez M, Calcraft T, Nans A, Rosenthal PB, Way M. Palisade structure in intact vaccinia virions. mBio 2024; 15:e0313423. [PMID: 38171004 PMCID: PMC10865856 DOI: 10.1128/mbio.03134-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Vaccinia virus assembly in the cytoplasm of infected cells involves the formation of a biconcave viral core inside the maturing viral particle. The boundary of the core is defined by a pseudohexagonal palisade layer, composed of trimers projecting from an inner wall. To understand the assembly of this complex core architecture, we obtained a subnanometer structure of the palisade trimer by cryo-electron tomography and subtomogram averaging of purified intact virions. Using AlphaFold2 structure predictions, we determined that the palisade is formed from trimers of the proteolytically processed form of the viral protein A10. In addition, we found that each A10 protomer associates with an α-helix (residues 24-66) of A4. Cellular localization assays outside the context of infection demonstrate that the A4 N-terminus is necessary and sufficient to interact with A10. The interaction between A4 and A10 provides insights into how the palisade layer might become tightly associated with the viral membrane during virion maturation. Reconstruction of the palisade layer reveals that, despite local hexagonal ordering, the A10/A4 trimers are widely spaced, suggesting that additional components organize the lattice. This spacing would, however, allow the adoption of the characteristic biconcave shape of the viral core. Finally, we also found that the palisade incorporates multiple copies of a hexameric portal structure. We suggest that these portals are formed by E6, a viral protein that is essential for virion assembly and required to release viral mRNA from the core early in infection.IMPORTANCEPoxviruses such as variola virus (smallpox) and monkeypox cause diseases in humans. Other poxviruses, including vaccinia and modified vaccinia Ankara, are used as vaccine vectors. Given their importance, a greater structural understanding of poxvirus virions is needed. We now performed cryo-electron tomography of purified intact vaccinia virions to study the structure of the palisade, a protein lattice that defines the viral core boundary. We identified the main viral proteins that form the palisade and their interaction surfaces and provided new insights into the organization of the viral core.
Collapse
Affiliation(s)
- Miguel Hernandez-Gonzalez
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Thomas Calcraft
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Peter B. Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
| |
Collapse
|
10
|
Döhner K, Serrero MC, Sodeik B. The role of nuclear pores and importins for herpes simplex virus infection. Curr Opin Virol 2023; 62:101361. [PMID: 37672874 DOI: 10.1016/j.coviro.2023.101361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
Microtubule transport and nuclear import are functionally connected, and the nuclear pore complex (NPC) can interact with microtubule motors. For several alphaherpesvirus proteins, nuclear localization signals (NLSs) and their interactions with specific importin-α proteins have been characterized. Here, we review recent insights on the roles of microtubule motors, capsid-associated NLSs, and importin-α proteins for capsid transport, capsid docking to NPCs, and genome release into the nucleoplasm, as well as the role of importins for nuclear viral transcription, replication, capsid assembly, genome packaging, and nuclear capsid egress. Moreover, importin-α proteins exert antiviral effects by promoting the nuclear import of transcription factors inducing the expression of interferons (IFN), cytokines, and IFN-stimulated genes, and the IFN-inducible MxB restricts capsid docking to NPCs.
Collapse
Affiliation(s)
- Katinka Döhner
- Institute of Virology, Hannover Medical School, Hannover, Germany; Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany; RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany.
| | - Manutea C Serrero
- Institute of Virology, Hannover Medical School, Hannover, Germany; RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany; RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany; DZIF - German Centre for Infection Research, Braunschweig, Hannover, Germany.
| |
Collapse
|
11
|
Xiang J, Fan C, Dong H, Ma Y, Xu P. A CRISPR-based rapid DNA repositioning strategy and the early intranuclear life of HSV-1. eLife 2023; 12:e85412. [PMID: 37702383 PMCID: PMC10522339 DOI: 10.7554/elife.85412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/12/2023] [Indexed: 09/14/2023] Open
Abstract
The relative positions of viral DNA genomes to the host intranuclear environment play critical roles in determining virus fate. Recent advances in the application of chromosome conformation capture-based sequencing analysis (3 C technologies) have revealed valuable aspects of the spatiotemporal interplay of viral genomes with host chromosomes. However, to elucidate the causal relationship between the subnuclear localization of viral genomes and the pathogenic outcome of an infection, manipulative tools are needed. Rapid repositioning of viral DNAs to specific subnuclear compartments amid infection is a powerful approach to synchronize and interrogate this dynamically changing process in space and time. Herein, we report an inducible CRISPR-based two-component platform that relocates extrachromosomal DNA pieces (5 kb to 170 kb) to the nuclear periphery in minutes (CRISPR-nuPin). Based on this strategy, investigations of herpes simplex virus 1 (HSV-1), a prototypical member of the human herpesvirus family, revealed unprecedently reported insights into the early intranuclear life of the pathogen: (I) Viral genomes tethered to the nuclear periphery upon entry, compared with those freely infecting the nucleus, were wrapped around histones with increased suppressive modifications and subjected to stronger transcriptional silencing and prominent growth inhibition. (II) Relocating HSV-1 genomes at 1 hr post infection significantly promoted the transcription of viral genes, termed an 'Escaping' effect. (III) Early accumulation of ICP0 was a sufficient but not necessary condition for 'Escaping'. (IV) Subnuclear localization was only critical during early infection. Importantly, the CRISPR-nuPin tactic, in principle, is applicable to many other DNA viruses.
Collapse
Affiliation(s)
- Juan Xiang
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen Univeristy, Sun Yat-sen UniversityShenzhenChina
| | - Chaoyang Fan
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen Univeristy, Sun Yat-sen UniversityShenzhenChina
| | - Hongchang Dong
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen Univeristy, Sun Yat-sen UniversityShenzhenChina
| | - Yilei Ma
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen Univeristy, Sun Yat-sen UniversityShenzhenChina
| | - Pei Xu
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen Univeristy, Sun Yat-sen UniversityShenzhenChina
| |
Collapse
|
12
|
Huet A, Oh B, Maurer J, Duda RL, Conway JF. A symmetry mismatch unraveled: How phage HK97 scaffold flexibly accommodates a 12-fold pore at a 5-fold viral capsid vertex. SCIENCE ADVANCES 2023; 9:eadg8868. [PMID: 37327331 PMCID: PMC10275583 DOI: 10.1126/sciadv.adg8868] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/12/2023] [Indexed: 06/18/2023]
Abstract
Tailed bacteriophages and herpesviruses use a transient scaffold to assemble icosahedral capsids with hexameric capsomers on the faces and pentameric capsomers at all but one vertex where a 12-fold portal is thought to nucleate the assembly. How does the scaffold orchestrate this step? We have determined the portal vertex structure of the bacteriophage HK97 procapsid, where the scaffold is a domain of the major capsid protein. The scaffold forms rigid helix-turn-strand structures on the interior surfaces of all capsomers and is further stabilized around the portal, forming trimeric coiled-coil towers, two per surrounding capsomer. These 10 towers bind identically to 10 of 12 portal subunits, adopting a pseudo-12-fold organization that explains how the symmetry mismatch is managed at this early step.
Collapse
Affiliation(s)
- Alexis Huet
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bonnie Oh
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Josh Maurer
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert L. Duda
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - James F. Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Rana A, Pathak S, Lim DK, Kim SK, Srivastava R, Sharma SN, Verma R. Recent Advancements in Plant- and Microbe-Mediated Synthesis of Metal and Metal Oxide Nanomaterials and Their Emerging Antimicrobial Applications. ACS APPLIED NANO MATERIALS 2023; 6:8106-8134. [DOI: 10.1021/acsanm.3c01351] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Archana Rana
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Saurabh Pathak
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, South Korea
| | - Sang-Koog Kim
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
| | - Ritu Srivastava
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Shailesh Narain Sharma
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Rajni Verma
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
14
|
Li Z, Pang J, Gao R, Wang Q, Zhang M, Yu X. Cryo-electron microscopy structures of capsids and in situ portals of DNA-devoid capsids of human cytomegalovirus. Nat Commun 2023; 14:2025. [PMID: 37041152 PMCID: PMC10090080 DOI: 10.1038/s41467-023-37779-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/30/2023] [Indexed: 04/13/2023] Open
Abstract
The portal-scaffold complex is believed to nucleate the assembly of herpesvirus procapsids. During capsid maturation, two events occur: scaffold expulsion and DNA incorporation. The portal-scaffold interaction and the conformational changes that occur to the portal during the different stages of capsid formation have yet to be elucidated structurally. Here we present high-resolution structures of the A- and B-capsids and in-situ portals of human cytomegalovirus. We show that scaffolds bind to the hydrophobic cavities formed by the dimerization and Johnson-fold domains of the major capsid proteins. We further show that 12 loop-helix-loop fragments-presumably from the scaffold domain-insert into the hydrophobic pocket of the portal crown domain. The portal also undergoes significant changes both positionally and conformationally as it accompanies DNA packaging. These findings unravel the mechanism by which the portal interacts with the scaffold to nucleate capsid assembly and further our understanding of scaffold expulsion and DNA incorporation.
Collapse
Affiliation(s)
- Zhihai Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Cryo-Electron Microscopy Research Center, Chinese Academy of Sciences, Shanghai, 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jingjing Pang
- Cryo-Electron Microscopy Research Center, Chinese Academy of Sciences, Shanghai, 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Rongchao Gao
- Cryo-Electron Microscopy Research Center, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qingxia Wang
- Cryo-Electron Microscopy Research Center, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Maoyan Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Xuekui Yu
- Cryo-Electron Microscopy Research Center, Chinese Academy of Sciences, Shanghai, 201203, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
15
|
Taherpoor A, Vojdani A, Hashemi SMA, Amali A, Mardani MR, Ghayour Mobarhan M, Esmaily H, Shakeri MT, Bakhshi M, Meshkat M, Hooshyar Chechaklou A, Abolbashari S, Gholoobi A, Meshkat Z. Seroprevalence of Herpes Simplex Viruses Types 1 and 2 in a Population, Age 15-35 Years, of Mashhad City. IRANIAN BIOMEDICAL JOURNAL 2023; 27:152-7. [PMID: 37070598 PMCID: PMC10314764 DOI: 10.61186/ibj.3828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 02/07/2023] [Indexed: 12/17/2023]
Abstract
Background Considering the high prevalence and clinical importance of herpes simplex virus (HSV) infection worldwide, we aimed to evaluate the seroprevalence of HSV-1 and HSV-2 in a population aged between 15 and 35 years in Mashhad, Iran. Methods This cross-sectional study was conducted on 916 cases composed of 288 (31.4%) men and 628 (68.6%) women. Using ELISA method, the presence of IgM and IgG antibodies against HSV-1 and HSV-2 was assessed. Results Among the population studied, 681 (74.3%) cases were positive for anti-HSV antibodies, while 235 (25.7%) cases were negative. Moreover, no IgMs were found and all positive subjects had IgG antibodies. Age (p < 0.001), occupation (p < 0.001), education (p = 0.006), smoking (p = 0.029), and BMI (p = 0.004) demonstrated a significant association with HSV-1 and HSV-2 infection. Conclusion Our study indicates a high seroprevalence of HSV infection; however, there was no cases positive for IgM antibodies, suggesting the high prevalence of latent infection.
Collapse
Affiliation(s)
- Ahmad Taherpoor
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Contributed equally as first authors
| | - Arastoo Vojdani
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Contributed equally as first authors
| | - Seyed Mohamad Ali Hashemi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Contributed equally as first authors
| | - Arian Amali
- Student Research Committee, Paramedical Department, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammad Reza Mardani
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour Mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habibollah Esmaily
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taghi Shakeri
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mansoureh Bakhshi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Meshkat
- Department of Community Medicine, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | | | - Samaneh Abolbashari
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aida Gholoobi
- Metabolic Syndrome Research Center and Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Sun M, Liu M, Shan H, Li K, Wang P, Guo H, Zhao Y, Wang R, Tao Y, Yang L, Zhang Y, Su X, Liu Y, Li C, Lin J, Chen XL, Zhang YZ, Shen QT. Ring-stacked capsids of white spot syndrome virus and structural transitions with genome ejection. SCIENCE ADVANCES 2023; 9:eadd2796. [PMID: 36812312 PMCID: PMC9946344 DOI: 10.1126/sciadv.add2796] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
White spot syndrome virus (WSSV) is one of the largest DNA viruses and the major pathogen responsible for white spot syndrome in crustaceans. The WSSV capsid is critical for genome encapsulation and ejection and exhibits the rod-shaped and oval-shaped structures during the viral life cycle. However, the detailed architecture of the capsid and the structural transition mechanism remain unclear. Here, using cryo-electron microscopy (cryo-EM), we obtained a cryo-EM model of the rod-shaped WSSV capsid and were able to characterize its ring-stacked assembly mechanism. Furthermore, we identified an oval-shaped WSSV capsid from intact WSSV virions and analyzed the structural transition mechanism from the oval-shaped to rod-shaped capsids induced by high salinity. These transitions, which decrease internal capsid pressure, always accompany DNA release and mostly eliminate the infection of the host cells. Our results demonstrate an unusual assembly mechanism of the WSSV capsid and offer structural insights into the pressure-driven genome release.
Collapse
Affiliation(s)
- Meiling Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Mingdong Liu
- School of Life Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hong Shan
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kang Li
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Peng Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Huarong Guo
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yaqi Zhao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Rui Wang
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yiwen Tao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Liuyan Yang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Ying Zhang
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoming Su
- High Performance Computing Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunhui Liu
- School of Life Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chunyang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - James Lin
- High Performance Computing Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Yu-Zhong Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
- Corresponding author. (Q.-T.S.); (Y.-Z.Z.)
| | - Qing-Tao Shen
- School of Life Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Corresponding author. (Q.-T.S.); (Y.-Z.Z.)
| |
Collapse
|
17
|
Vijayakrishnan S. In Situ Imaging of Virus-Infected Cells by Cryo-Electron Tomography: An Overview. Subcell Biochem 2023; 106:3-36. [PMID: 38159222 DOI: 10.1007/978-3-031-40086-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Cryo-electron tomography (cryo-ET) has emerged as a powerful tool in structural biology to study viruses and is undergoing a resolution revolution. Enveloped viruses comprise several RNA and DNA pleomorphic viruses that are pathogens of clinical importance to humans and animals. Considerable efforts in cryogenic correlative light and electron microscopy (cryo-CLEM), cryogenic focused ion beam milling (cryo-FIB), and integrative structural techniques are helping to identify virus structures within cells leading to a rise of in situ discoveries shedding light on how viruses interact with their hosts during different stages of infection. This chapter reviews recent advances in the application of cryo-ET in imaging enveloped viruses and the structural and mechanistic insights revealed studying the viral infection cycle within their eukaryotic cellular hosts, with particular attention to viral entry, replication, assembly, and egress during infection.
Collapse
Affiliation(s)
- Swetha Vijayakrishnan
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK.
| |
Collapse
|
18
|
Borst EM, Harmening S, Sanders S, Caragliano E, Wagner K, Lenac Roviš T, Jonjić S, Bosse JB, Messerle M. A Unique Role of the Human Cytomegalovirus Small Capsid Protein in Capsid Assembly. mBio 2022; 13:e0100722. [PMID: 36066102 PMCID: PMC9600257 DOI: 10.1128/mbio.01007-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
Morphogenesis of herpesvirus particles is highly conserved; however, the capsid assembly and genome packaging of human cytomegalovirus (HCMV) exhibit unique features. Examples of these include the essential role of the small capsid protein (SCP) and the existence of the β-herpesvirus-specific capsid-associated protein pp150. SCP and pp150, as well as the UL77 and UL93 proteins, are important capsid constituents, yet their precise mechanism of action is elusive. Here, we analyzed how deletion of the open reading frames (ORFs) encoding pUL77, pUL93, pp150, or SCP affects the protein composition of nuclear capsids. This was achieved by generating HCMV genomes lacking the respective genes, combined with a highly efficient transfection technique that allowed us to directly analyze these mutants in transfected cells. While no obvious effects were observed when pUL77, pUL93, or pp150 was missing, the absence of SCP impeded capsid assembly due to strongly reduced amounts of major capsid protein (MCP). Vice versa, when MCP was lacking, SCP became undetectable, indicating a mutual dependence of SCP and MCP for establishing appropriate protein levels. The SCP domain mediating stable MCP levels could be narrowed down to a C-terminal helix known to convey MCP binding. Interestingly, an SCP-EGFP (enhanced green fluorescent protein) fusion protein which also impaired the production of infectious progeny acted in a different manner, as capsid assembly was not abolished; however, SCP-EGFP-harboring capsids were devoid of DNA and trapped in paracrystalline nuclear structures. These results indicate that SCP is essential in HCMV because of its impact on MCP levels and reveal SCP as a potential target for antiviral inhibitors. IMPORTANCE Human cytomegalovirus (HCMV) is a ubiquitous pathogen causing life-threatening disease in immunocompromised individuals. Virus-specific processes such as capsid assembly and genome packaging can be exploited to design new antiviral strategies. Here, we report on a novel function of the HCMV small capsid protein (SCP), namely, ensuring stable levels of major capsid protein (MCP), thereby governing capsid assembly. Furthermore, we discovered a mutual dependence of the small and major capsid proteins to guarantee appropriate levels of the other respective protein and were able to pin down the SCP domain responsible for this effect to a region previously shown to mediate binding to the major capsid protein. In summary, our data contribute to the understanding of how SCP plays an essential part in the HCMV infection cycle. Moreover, disrupting the SCP-MCP interface may provide a starting point for the development of novel antiviral drugs.
Collapse
Affiliation(s)
- Eva Maria Borst
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Sarah Harmening
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Saskia Sanders
- Department of Virology, Hannover Medical School, Hannover, Germany
- Leibniz-Institute for Experimental Virology, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Enrico Caragliano
- Department of Virology, Hannover Medical School, Hannover, Germany
- Leibniz-Institute for Experimental Virology, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Karen Wagner
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Tihana Lenac Roviš
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jens Bernhard Bosse
- Department of Virology, Hannover Medical School, Hannover, Germany
- Leibniz-Institute for Experimental Virology, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Department of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Partner Site Hannover Braunschweig, Hannover, Germany
| |
Collapse
|
19
|
Hao Y, Chen M, Othman Y, Xie XQ, Feng Z. Virus-CKB 2.0: Viral-Associated Disease-Specific Chemogenomics Knowledgebase. ACS OMEGA 2022; 7:37476-37484. [PMID: 36312370 PMCID: PMC9609052 DOI: 10.1021/acsomega.2c04258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Transmissible and infectious viruses can cause large-scale epidemics around the world. This is because the virus can constantly mutate and produce different variants and subvariants to counter existing treatments. Therefore, a variety of treatments are urgently needed to keep up with the mutation of the viruses. To facilitate the research of such treatment, we updated our Virus-CKB 1.0 to Virus-CKB 2.0, which contains 10 kinds of viruses, including enterovirus, dengue virus, hepatitis C virus, Zika virus, herpes simplex virus, Andes orthohantavirus, human immunodeficiency virus, Ebola virus, Lassa virus, influenza virus, coronavirus, and norovirus. To date, Virus-CKB 2.0 archived at least 65 antiviral drugs (such as remdesivir, telaprevir, acyclovir, boceprevir, and nelfinavir) in the market, 178 viral-related targets with 292 available 3D crystal or cryo-EM structures, and 3766 chemical agents reported for these target proteins. Virus-CKB 2.0 is integrated with established tools for target prediction and result visualization; these include HTDocking, TargetHunter, blood-brain barrier (BBB) predictor, Spider Plot, etc. The Virus-CKB 2.0 server is accessible at https://www.cbligand.org/g/virus-ckb. By using the established chemogenomic tools and algorithms and newly developed tools, we can screen FDA-approved drugs and chemical compounds that may bind to these proteins involved in viral-associated disease regulation. If the virus strain mutates and the vaccine loses its effect, we can still screen drugs that can be used to treat the mutated virus in a fleeting time. In some cases, we can even repurpose FDA-approved drugs through Virus-CKB 2.0.
Collapse
Affiliation(s)
| | | | - Yasmin Othman
- Department of Pharmaceutical
Sciences and Computational Chemical Genomics Screening Center, School
of Pharmacy; National Center of Excellence for Computational Drug
Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical
Sciences and Computational Chemical Genomics Screening Center, School
of Pharmacy; National Center of Excellence for Computational Drug
Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhiwei Feng
- Department of Pharmaceutical
Sciences and Computational Chemical Genomics Screening Center, School
of Pharmacy; National Center of Excellence for Computational Drug
Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
20
|
Woodbury BM, Motwani T, Leroux MN, Barnes LF, Lyktey NA, Banerjee S, Dedeo CL, Jarrold MF, Teschke CM. Tryptophan Residues Are Critical for Portal Protein Assembly and Incorporation in Bacteriophage P22. Viruses 2022; 14:1400. [PMID: 35891382 PMCID: PMC9320234 DOI: 10.3390/v14071400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
The oligomerization and incorporation of the bacteriophage P22 portal protein complex into procapsids (PCs) depends upon an interaction with scaffolding protein, but the region of the portal protein that interacts with scaffolding protein has not been defined. In herpes simplex virus 1 (HSV-1), conserved tryptophan residues located in the wing domain are required for portal-scaffolding protein interactions. In this study, tryptophan residues (W) present at positions 41, 44, 207 and 211 within the wing domain of the bacteriophage P22 portal protein were mutated to both conserved and non-conserved amino acids. Substitutions at each of these positions were shown to impair portal function in vivo, resulting in a lethal phenotype by complementation. The alanine substitutions caused the most severe defects and were thus further characterized. An analysis of infected cell lysates for the W to A mutants revealed that all the portal protein variants except W211A, which has a temperature-sensitive incorporation defect, were successfully recruited into procapsids. By charge detection mass spectrometry, all W to A mutant portal proteins were shown to form stable dodecameric rings except the variant W41A, which dissociated readily to monomers. Together, these results suggest that for P22 conserved tryptophan, residues in the wing domain of the portal protein play key roles in portal protein oligomerization and incorporation into procapsids, ultimately affecting the functionality of the portal protein at specific stages of virus assembly.
Collapse
Affiliation(s)
- Brianna M. Woodbury
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
| | - Tina Motwani
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
| | - Makayla N. Leroux
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
| | - Lauren F. Barnes
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA; (L.F.B.); (N.A.L.); (M.F.J.)
| | - Nicholas A. Lyktey
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA; (L.F.B.); (N.A.L.); (M.F.J.)
| | - Sanchari Banerjee
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
| | - Corynne L. Dedeo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
| | - Martin F. Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA; (L.F.B.); (N.A.L.); (M.F.J.)
| | - Carolyn M. Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
21
|
Pedrazini MC, da Silva MH, Groppo FC. L-lysine: its antagonism with L-arginine in controlling viral infection. Narrative Literature Review. Br J Clin Pharmacol 2022; 88:4708-4723. [PMID: 35723628 DOI: 10.1111/bcp.15444] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
Knowledge about viral characteristics, mechanisms of entry into the host cell and multiplication/dissemination can help in the control and treatment of viral pathologies. Several nutritional factors linked to the host may favor viral multiplication and their control, may lead to new prophylactic alternatives and/or antiviral therapies. The objective of this review is to discuss the relationship between the amino acid L-lysine and the control of viral infections, aiming at a possible therapeutic property. This research used databases such as PubMed, Web of Science, Scielo, Medline and Google Scholar, as well as searching for references cited by journals. The time frame covered the period between 1964 and January 2022. The observed studies have shown that the usual antiviral therapies are not able to interfere with the viruses in their latent state, however, they can interfere with the adhesion and fusion of viral particles or the production of proteins, which play an important role in viral epidemiology and control, particularly in the initial moment and in the reactivation. Lysine is an amino acid that can interfere mainly in the formation of capsid proteins and DNA by a competitive antagonism with amino acid arginine, which is an essential amino acid for some viruses and also by promoting the increase of arginase, increasing the catabolism of arginine. Although there is evidence of the importance of L-lysine in viral control, more studies are needed, with a view to new antiviral therapies.
Collapse
Affiliation(s)
- Maria Cristina Pedrazini
- Department of Biosciences, Piracicaba Dental School, FOP, UNICAMP, Campinas, São Paulo State, Brazil.,Department of Dental Sciences, São Leopoldo Mandic Research Center Campinas, São Paulo State, Brazil
| | - Mariliza Henrique da Silva
- Department of Infectology Diagnosis, IST/AIDS State Program, ITD/AIDS Reference and Training Center, São Paulo, São Paulo State, Brazil
| | - Francisco Carlos Groppo
- Department of Biosciences, Piracicaba Dental School, FOP, UNICAMP, Campinas, São Paulo State, Brazil
| |
Collapse
|
22
|
Tale of Viruses in Male Infertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:275-323. [PMID: 35641875 DOI: 10.1007/978-3-030-89340-8_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Male infertility is a condition where the males either become sterile or critically infertile. The World Health Organisation assessed that approximately 9% of the couple have fertility issues where the contribution of the male partner was estimated to be 50%. There are several factors that can amalgamate to give rise to male infertility. Among them are lifestyle factors, genetic factors and as well as several environmental factors. The causes of male infertility may be acquired, congenital or sometimes idiopathic. All these factors adversely affect the spermatogenesis process as well as they impart serious threats to male genital organs thus resulting in infertility. Viruses are submicroscopic pathogenic agents that rely on host for their replication and survival. They enter the host cell, hijack the host cell machinery to aid their own replication and exit the cell for a new round of infection. With the growing abundance of different types of viruses and the havoc they have stirred in the form of pandemics, it is very essential to decipher their route of entry inside the human body and understand their diverse functional roles in order to combat them. In this chapter, we will review how viruses invade the male genital system thus in turn leading to detrimental consequence on male fertility. We will discuss the tropism of various viruses in the male genital organs and explore their sexual transmissibility. This chapter will summarise the functional and mechanistic approaches employed by the viruses in inducing oxidative stress inside spermatozoa thus leading to male infertility. Moreover, we will also highlight the various antiviral therapies that have been studied so far in order to ameliorate viral infection in order to combat the harmful consequences leading to male infertility.
Collapse
|
23
|
Jose J, Hafenstein SL. Asymmetry in icosahedral viruses. Curr Opin Virol 2022; 54:101230. [DOI: 10.1016/j.coviro.2022.101230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 01/24/2023]
|
24
|
Serrero MC, Girault V, Weigang S, Greco TM, Ramos-Nascimento A, Anderson F, Piras A, Hickford Martinez A, Hertzog J, Binz A, Pohlmann A, Prank U, Rehwinkel J, Bauerfeind R, Cristea IM, Pichlmair A, Kochs G, Sodeik B. The interferon-inducible GTPase MxB promotes capsid disassembly and genome release of herpesviruses. eLife 2022; 11:e76804. [PMID: 35475759 PMCID: PMC9150894 DOI: 10.7554/elife.76804] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
Host proteins sense viral products and induce defence mechanisms, particularly in immune cells. Using cell-free assays and quantitative mass spectrometry, we determined the interactome of capsid-host protein complexes of herpes simplex virus and identified the large dynamin-like GTPase myxovirus resistance protein B (MxB) as an interferon-inducible protein interacting with capsids. Electron microscopy analyses showed that cytosols containing MxB had the remarkable capability to disassemble the icosahedral capsids of herpes simplex viruses and varicella zoster virus into flat sheets of connected triangular faces. In contrast, capsids remained intact in cytosols with MxB mutants unable to hydrolyse GTP or to dimerize. Our data suggest that MxB senses herpesviral capsids, mediates their disassembly, and thereby restricts the efficiency of nuclear targeting of incoming capsids and/or the assembly of progeny capsids. The resulting premature release of viral genomes from capsids may enhance the activation of DNA sensors, and thereby amplify the innate immune responses.
Collapse
Affiliation(s)
- Manutea C Serrero
- Institute of Virology, Hannover Medical SchoolHannoverGermany
- RESIST - Cluster of Excellence, Hannover Medical SchoolHannoverGermany
| | | | - Sebastian Weigang
- Institute of Virology, Freiburg University Medical Center, University of FreiburgFreiburgGermany
| | - Todd M Greco
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | | | - Fenja Anderson
- Institute of Virology, Hannover Medical SchoolHannoverGermany
| | - Antonio Piras
- Institute of Virology, Technical University MunichMunichGermany
| | | | - Jonny Hertzog
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Anne Binz
- Institute of Virology, Hannover Medical SchoolHannoverGermany
- RESIST - Cluster of Excellence, Hannover Medical SchoolHannoverGermany
- German Center for Infection Research (DZIF), Hannover-Braunschweig Partner SiteHannoverGermany
| | - Anja Pohlmann
- Institute of Virology, Hannover Medical SchoolHannoverGermany
- RESIST - Cluster of Excellence, Hannover Medical SchoolHannoverGermany
- German Center for Infection Research (DZIF), Hannover-Braunschweig Partner SiteHannoverGermany
| | - Ute Prank
- Institute of Virology, Hannover Medical SchoolHannoverGermany
| | - Jan Rehwinkel
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Rudolf Bauerfeind
- Research Core Unit Laser Microscopy, Hannover Medical SchoolHannoverGermany
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Andreas Pichlmair
- Institute of Virology, Technical University MunichMunichGermany
- German Center for Infection Research (DZIF), Munich Partner siteMunichGermany
| | - Georg Kochs
- Institute of Virology, Freiburg University Medical Center, University of FreiburgFreiburgGermany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical SchoolHannoverGermany
- RESIST - Cluster of Excellence, Hannover Medical SchoolHannoverGermany
- German Center for Infection Research (DZIF), Hannover-Braunschweig Partner SiteHannoverGermany
| |
Collapse
|
25
|
David Hou CF, Swanson NA, Li F, Yang R, Lokareddy RK, Cingolani G. Cryo-EM structure of a kinetically trapped dodecameric portal protein from the Pseudomonas-phage PaP3. J Mol Biol 2022; 434:167537. [DOI: 10.1016/j.jmb.2022.167537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/09/2022] [Accepted: 03/04/2022] [Indexed: 10/18/2022]
|
26
|
Patel N, Clark S, Weiß EU, Mata CP, Bohon J, Farquhar ER, Maskell DP, Ranson NA, Twarock R, Stockley PG. In vitro functional analysis of gRNA sites regulating assembly of hepatitis B virus. Commun Biol 2021; 4:1407. [PMID: 34916604 PMCID: PMC8677749 DOI: 10.1038/s42003-021-02897-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The roles of RNA sequence/structure motifs, Packaging Signals (PSs), for regulating assembly of an HBV genome transcript have been investigated in an efficient in vitro assay containing only core protein (Cp) and RNA. Variants of three conserved PSs, within the genome of a strain not used previously, preventing correct presentation of a Cp-recognition loop motif are differentially deleterious for assembly of nucleocapsid-like particles (NCPs). Cryo-electron microscopy reconstruction of the T = 4 NCPs formed with the wild-type gRNA transcript, reveal that the interior of the Cp shell is in contact with lower resolution density, potentially encompassing the arginine-rich protein domains and gRNA. Symmetry relaxation followed by asymmetric reconstruction reveal that such contacts are made at every symmetry axis. We infer from their regulation of assembly that some of these contacts would involve gRNA PSs, and confirmed this by X-ray RNA footprinting. Mutation of the ε stem-loop in the gRNA, where polymerase binds in vivo, produces a poor RNA assembly substrate with Cp alone, largely due to alterations in its conformation. The results show that RNA PSs regulate assembly of HBV genomic transcripts in vitro, and therefore may play similar roles in vivo, in concert with other molecular factors.
Collapse
Affiliation(s)
- Nikesh Patel
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sam Clark
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Eva U Weiß
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Str. 2/D15, D-97080, Würzburg, Germany
| | - Carlos P Mata
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Electron and Confocal Microscopy Unit (UCCTs), National Centre for Microbiology (ISCIII). Majadahonda, Madrid, Spain
| | - Jen Bohon
- CWRU Center for Synchrotron Biosciences, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Erik R Farquhar
- CWRU Center for Synchrotron Biosciences, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Daniel P Maskell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Reidun Twarock
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
27
|
Role of HSV-1 Capsid Vertex-Specific Component (CVSC) and Viral Terminal DNA in Capsid Docking at the Nuclear Pore. Viruses 2021; 13:v13122515. [PMID: 34960783 PMCID: PMC8704396 DOI: 10.3390/v13122515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/18/2023] Open
Abstract
Penetration of the viral genome into a host cell nucleus is critical for initiation of viral replication for most DNA viruses and a few RNA viruses. For herpesviruses, viral DNA ejection into a nucleus occurs when the capsid docks at the nuclear pore complex (NPC) basket with the correct orientation of the unique capsid portal vertex. It has been shown that capsid vertex-specific component (CVSC) proteins, which are located at the twelve vertices of the human herpes simplex virus type 1 (HSV-1) capsid, interact with nucleoporins (Nups) of NPCs. However, it remained unclear whether CVSC proteins determine capsid-to-NPC binding. Furthermore, it has been speculated that terminal DNA adjacent to the portal complex of DNA-filled C-capsids forms a structural motif with the portal cap (which retains DNA in the capsid), which mediates capsid-NPC binding. We demonstrate that terminal viral DNA adjacent to the portal proteins does not present a structural element required for capsid-NPC binding. Our data also show that level of CVSC proteins on the HSV-1 capsid affects level of NPC binding. To elucidate the capsid-binding process, we use an isolated, reconstituted cell nucleus system that recapitulates capsid-nucleus binding in vivo without interference from trafficking kinetics of capsids moving toward the nucleus. This allows binding of non-infectious capsid maturation intermediates with varying levels of vertex-specific components. This experimental system provides a platform for investigating virus-host interaction at the nuclear membrane.
Collapse
|
28
|
Naniima P, Naimo E, Koch S, Curth U, Alkharsah KR, Ströh LJ, Binz A, Beneke JM, Vollmer B, Böning H, Borst EM, Desai P, Bohne J, Messerle M, Bauerfeind R, Legrand P, Sodeik B, Schulz TF, Krey T. Assembly of infectious Kaposi's sarcoma-associated herpesvirus progeny requires formation of a pORF19 pentamer. PLoS Biol 2021; 19:e3001423. [PMID: 34735435 PMCID: PMC8568140 DOI: 10.1371/journal.pbio.3001423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022] Open
Abstract
Herpesviruses cause severe diseases particularly in immunocompromised patients. Both genome packaging and release from the capsid require a unique portal channel occupying one of the 12 capsid vertices. Here, we report the 2.6 Å crystal structure of the pentameric pORF19 of the γ-herpesvirus Kaposi’s sarcoma-associated herpesvirus (KSHV) resembling the portal cap that seals this portal channel. We also present the structure of its β-herpesviral ortholog, revealing a striking structural similarity to its α- and γ-herpesviral counterparts despite apparent differences in capsid association. We demonstrate pORF19 pentamer formation in solution and provide insights into how pentamerization is triggered in infected cells. Mutagenesis in its lateral interfaces blocked pORF19 pentamerization and severely affected KSHV capsid assembly and production of infectious progeny. Our results pave the way to better understand the role of pORF19 in capsid assembly and identify a potential novel drug target for the treatment of herpesvirus-induced diseases. In herpesviruses, genome packaging and release from the capsid require a unique portal channel. Here, the authors have resolved the crystal structure of a pentameric KSHV pORF19 assembly and find that it resembles the herpesviral portal cap and provides insights how the viral genome is retained within the capsid.
Collapse
Affiliation(s)
- Peter Naniima
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner sites Hannover-Braunschweig and Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
| | - Eleonora Naimo
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner sites Hannover-Braunschweig and Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
| | - Sandra Koch
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner sites Hannover-Braunschweig and Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
| | - Ute Curth
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Khaled R. Alkharsah
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Luisa J. Ströh
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anne Binz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover, Germany
| | - Jan-Marc Beneke
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany
| | - Benjamin Vollmer
- Centre for Structural Systems Biology, Leibniz-Institut für Experimentelle Virologie (HPI), Hamburg, Germany
| | - Heike Böning
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Eva Maria Borst
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Prashant Desai
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jens Bohne
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner sites Hannover-Braunschweig and Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover, Germany
| | - Rudolf Bauerfeind
- Research Core Unit Laser Microscopy, Hannover Medical School, Hannover, Germany
| | - Pierre Legrand
- Synchrotron SOLEIL, L’Orme des Merisiers, Gif-sur-Yvette, France
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner sites Hannover-Braunschweig and Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover, Germany
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner sites Hannover-Braunschweig and Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover, Germany
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner sites Hannover-Braunschweig and Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover, Germany
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- * E-mail:
| |
Collapse
|
29
|
Gatherer D, Depledge DP, Hartley CA, Szpara ML, Vaz PK, Benkő M, Brandt CR, Bryant NA, Dastjerdi A, Doszpoly A, Gompels UA, Inoue N, Jarosinski KW, Kaul R, Lacoste V, Norberg P, Origgi FC, Orton RJ, Pellett PE, Schmid DS, Spatz SJ, Stewart JP, Trimpert J, Waltzek TB, Davison AJ. ICTV Virus Taxonomy Profile: Herpesviridae 2021. J Gen Virol 2021; 102. [PMID: 34704922 PMCID: PMC8604186 DOI: 10.1099/jgv.0.001673] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the family Herpesviridae have enveloped, spherical virions with characteristic complex structures consisting of symmetrical and non-symmetrical components. The linear, double-stranded DNA genomes of 125–241 kbp contain 70–170 genes, of which 43 have been inherited from an ancestral herpesvirus. In general, herpesviruses have coevolved with and are highly adapted to their hosts, which comprise many mammalian, avian and reptilian species. Following primary infection, they are able to establish lifelong latent infection, during which there is limited viral gene expression. Severe disease is usually observed only in the foetus, the very young, the immunocompromised or following infection of an alternative host. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Herpesviridae, which is available at ictv.global/report/herpesviridae.
Collapse
Affiliation(s)
| | | | | | | | - Paola K Vaz
- The University of Melbourne, Victoria, Australia
| | - Mária Benkő
- Veterinary Medical Research Institute, Eötvös Loránd Research Network, Budapest, Hungary
| | | | | | - Akbar Dastjerdi
- Animal and Plant Health Agency-Weybridge, Addlestone, Surrey, UK
| | - Andor Doszpoly
- Veterinary Medical Research Institute, Eötvös Loránd Research Network, Budapest, Hungary
| | - Ursula A Gompels
- Virokine Therapeutics, London BioScience Innovation Centre, Royal Veterinary College, London, UK
| | | | | | - Rajeev Kaul
- University of Delhi South Campus, New Delhi, India
| | | | | | | | | | - Philip E Pellett
- Wayne State University School of Medicine, Detroit, Michigan, USA
| | - D Scott Schmid
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
30
|
Draganova EB, Valentin J, Heldwein EE. The Ins and Outs of Herpesviral Capsids: Divergent Structures and Assembly Mechanisms across the Three Subfamilies. Viruses 2021; 13:v13101913. [PMID: 34696343 PMCID: PMC8539031 DOI: 10.3390/v13101913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Human herpesviruses, classified into three subfamilies, are double-stranded DNA viruses that establish lifelong latent infections within most of the world’s population and can cause severe disease, especially in immunocompromised people. There is no cure, and current preventative and therapeutic options are limited. Therefore, understanding the biology of these viruses is essential for finding new ways to stop them. Capsids play a central role in herpesvirus biology. They are sophisticated vehicles that shelter the pressurized double-stranded-DNA genomes while ensuring their delivery to defined cellular destinations on the way in and out of the host cell. Moreover, the importance of capsids for multiple key steps in the replication cycle makes their assembly an attractive therapeutic target. Recent cryo-electron microscopy reconstructions of capsids from all three subfamilies of human herpesviruses revealed not only conserved features but also remarkable structural differences. Furthermore, capsid assembly studies have suggested subfamily-specific roles of viral capsid protein homologs. In this review, we compare capsid structures, assembly mechanisms, and capsid protein functions across human herpesvirus subfamilies, highlighting the differences.
Collapse
Affiliation(s)
- Elizabeth B. Draganova
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Jonathan Valentin
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32603, USA;
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA;
- Correspondence:
| |
Collapse
|
31
|
The journey of herpesvirus capsids and genomes to the host cell nucleus. Curr Opin Virol 2021; 50:147-158. [PMID: 34464845 DOI: 10.1016/j.coviro.2021.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023]
Abstract
Starting a herpesviral infection is a steeplechase across membranes, cytosol, and nuclear envelopes and against antiviral defence mechanisms. Here, we highlight recent insights on capsid stabilization at the portals during assembly, early capsid-host interactions ensuring nuclear targeting of incoming capsids, and genome uncoating. After fusion with a host membrane, incoming capsids recruit microtubule motors for traveling to the centrosome, and by unknown mechanisms get forward towards the nucleus. The interaction of capsid-associated tegument proteins with nucleoporins orients the capsid portal towards the nuclear pore, and presumably after removal of the portal caps the genomes that have been packaged under pressure can be injected into the nucleoplasm for transcription and replication. Some cell types disarm the incoming capsids or silence the incoming genomes to reduce the likelihood of infection.
Collapse
|
32
|
UL25 capsid binding facilitates mechanical maturation of the Herpesvirus capsid and allows retention of pressurized DNA. J Virol 2021; 95:e0075521. [PMID: 34346766 DOI: 10.1128/jvi.00755-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The maturation process that occurs in most viruses is evolutionarily driven as it resolves several conflicting virion assembly requirements. During herpesvirus assembly in a host cell nucleus, micron-long double-stranded herpes DNA is packaged into a nanometer-sized procapsid. This leads to strong confinement of the viral genome with resulting tens of atmospheres of intra-capsid DNA pressure. Yet, the procapsid is unstable due to weak, reversible interactions between its protein subunits, which ensures free energy minimization and reduces assembly errors. In this work we show that herpesviruses resolve these contradictory capsid requirements through a mechanical capsid maturation process facilitated by multi-functional auxiliary protein UL25. Through mechanical interrogation of herpes simplex virus type 1 (HSV-1) capsid with atomic force microscopy nano-indentation, we show that UL25 binding at capsid vertices post-assembly provides the critical capsid reinforcement required for stable DNA encapsidation; the absence of UL25 binding leads to capsid rupture. Furthermore, we demonstrate that gradual capsid reinforcement is a feasible maturation mechanism facilitated by progressive UL25 capsid binding, which is likely correlated with DNA packaging progression. This work provides insight into elegantly programmed viral assembly machinery where targeting of capsid assembly mechanics presents a new antiviral strategy that is resilient to development of drug resistance. Importance: Most viruses undergo a maturation process from a weakly assembled particle to a stable virion. Herpesvirus capsid undergoes mechanical maturation to withstand tens of atmospheres of DNA pressure. We demonstrate that this mechanical capsid maturation is mainly facilitated through binding of auxiliary protein UL25 in HSV-1 capsid vertices. We show that UL25 binding provides the critical capsid reinforcement required for stable DNA encapsidation. Our data also suggests that gradual capsid reinforcement by progressive UL25 binding is a feasible capsid maturation mechanism, correlated with DNA packaging progression.
Collapse
|
33
|
Structural basis for genome packaging, retention, and ejection in human cytomegalovirus. Nat Commun 2021; 12:4538. [PMID: 34315863 PMCID: PMC8316551 DOI: 10.1038/s41467-021-24820-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/12/2021] [Indexed: 12/27/2022] Open
Abstract
How the human cytomegalovirus (HCMV) genome—the largest among human herpesviruses—is packaged, retained, and ejected remains unclear. We present the in situ structures of the symmetry-mismatched portal and the capsid vertex-specific components (CVSCs) of HCMV. The 5-fold symmetric 10-helix anchor—uncommon among known portals—contacts the portal-encircling DNA, which is presumed to squeeze the portal as the genome packaging proceeds. We surmise that the 10-helix anchor dampens this action to delay the portal reaching a “head-full” packaging state, thus facilitating the large genome to be packaged. The 6-fold symmetric turret, latched via a coiled coil to a helix from a major capsid protein, supports the portal to retain the packaged genome. CVSCs at the penton vertices—presumed to increase inner capsid pressure—display a low stoichiometry, which would aid genome retention. We also demonstrate that the portal and capsid undergo conformational changes to facilitate genome ejection after viral cell entry. Human cytomegalovirus (HCMV) is the prototypical member of the β-herpesvirinae subfamily and the leading viral cause of congenital infections that can lead to birth defects and it can also cause life-threatening disease in immunocompromised individuals. Here, the authors present the in-situ cryo-EM structures of the symmetry-mismatched portal and the capsid vertex-specific components (CVSCs) of HCMV and discuss the mechanistic implications for genome package, retention and ejection.
Collapse
|
34
|
Blanco-Rodriguez G, Di Nunzio F. The Viral Capsid: A Master Key to Access the Host Nucleus. Viruses 2021; 13:v13061178. [PMID: 34203080 PMCID: PMC8234750 DOI: 10.3390/v13061178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Viruses are pathogens that have evolved to hijack the cellular machinery to replicate themselves and spread to new cells. During the course of evolution, viruses developed different strategies to overcome the cellular defenses and create new progeny. Among them, some RNA and many DNA viruses require access to the nucleus to replicate their genome. In non-dividing cells, viruses can only access the nucleus through the nuclear pore complex (NPC). Therefore, viruses have developed strategies to usurp the nuclear transport machinery and gain access to the nucleus. The majority of these viruses use the capsid to manipulate the nuclear import machinery. However, the particular tactics employed by each virus to reach the host chromatin compartment are very different. Nevertheless, they all require some degree of capsid remodeling. Recent notions on the interplay between the viral capsid and cellular factors shine new light on the quest for the nuclear entry step and for the fate of these viruses. In this review, we describe the main components and function of nuclear transport machinery. Next, we discuss selected examples of RNA and DNA viruses (HBV, HSV, adenovirus, and HIV) that remodel their capsid as part of their strategies to access the nucleus and to replicate.
Collapse
Affiliation(s)
- Guillermo Blanco-Rodriguez
- Advanced Molecular Virology and Retroviral Dynamics Group, Department of Virology, Pasteur Institute, 75015 Paris, France;
- Immunity and Cancer Department, Curie Institute, PSL Research University, INSERM U932, 75005 Paris, France
| | - Francesca Di Nunzio
- Advanced Molecular Virology and Retroviral Dynamics Group, Department of Virology, Pasteur Institute, 75015 Paris, France;
- Correspondence:
| |
Collapse
|
35
|
Serwer P, Wright ET, De La Chapa J, Gonzales CB. Basics for Improved Use of Phages for Therapy. Antibiotics (Basel) 2021; 10:antibiotics10060723. [PMID: 34208477 PMCID: PMC8234457 DOI: 10.3390/antibiotics10060723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
Blood-borne therapeutic phages and phage capsids increasingly reach therapeutic targets as they acquire more persistence, i.e., become more resistant to non-targeted removal from blood. Pathogenic bacteria are targets during classical phage therapy. Metastatic tumors are potential future targets, during use of drug delivery vehicles (DDVs) that are phage derived. Phage therapy has, to date, only sometimes been successful. One cause of failure is low phage persistence. A three-step strategy for increasing persistence is to increase (1) the speed of lytic phage isolation, (2) the diversity of phages isolated, and (3) the effectiveness and speed of screening phages for high persistence. The importance of high persistence-screening is illustrated by our finding here of persistence dramatically higher for coliphage T3 than for its relative, coliphage T7, in murine blood. Coliphage T4 is more persistent, long-term than T3. Pseudomonas chlororaphis phage 201phi2-1 has relatively low persistence. These data are obtained with phages co-inoculated and separately assayed. In addition, highly persistent phage T3 undergoes dispersal to several murine organs and displays tumor tropism in epithelial tissue (xenografted human oral squamous cell carcinoma). Dispersal is an asset for phage therapy, but a liability for phage-based DDVs. We propose increased focus on phage persistence—and dispersal—screening.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry and Structural Biology, The University of Texas Health Center, San Antonio, TX 78229-3900, USA;
- Correspondence: ; Tel.: +1-210-567-3765
| | - Elena T. Wright
- Department of Biochemistry and Structural Biology, The University of Texas Health Center, San Antonio, TX 78229-3900, USA;
| | - Jorge De La Chapa
- Department of Comprehensive Dentistry, The University of Texas Health Center, San Antonio, TX 78229-3900, USA; (J.D.L.C.); (C.B.G.)
| | - Cara B. Gonzales
- Department of Comprehensive Dentistry, The University of Texas Health Center, San Antonio, TX 78229-3900, USA; (J.D.L.C.); (C.B.G.)
| |
Collapse
|
36
|
The Portal Vertex of KSHV Promotes Docking of Capsids at the Nuclear Pores. Viruses 2021; 13:v13040597. [PMID: 33807444 PMCID: PMC8065994 DOI: 10.3390/v13040597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a cancer-related herpesvirus. Like other herpesviruses, the KSHV icosahedral capsid includes a portal vertex, composed of 12 protein subunits encoded by open reading frame (ORF) 43, which enables packaging and release of the viral genome into the nucleus through the nuclear pore complex (NPC). Capsid vertex-specific component (CVSC) tegument proteins, which directly mediate docking at the NPCs, are organized on the capsid vertices and are enriched on the portal vertex. Whether and how the portal vertex is selected for docking at the NPC is unknown. Here, we investigated the docking of incoming ORF43-null KSHV capsids at the NPCs, and describe a significantly lower fraction of capsids attached to the nuclear envelope compared to wild-type (WT) capsids. Like WT capsids, nuclear envelope-associated ORF43-null capsids co-localized with different nucleoporins (Nups) and did not detach upon salt treatment. Inhibition of nuclear export did not alter WT capsid docking. As ORF43-null capsids exhibit lower extent of association with the NPCs, we conclude that although not essential, the portal has a role in mediating the interaction of the CVSC proteins with Nups, and suggest a model whereby WT capsids can dock at the nuclear envelope through a non-portal penton vertex, resulting in an infection 'dead end'.
Collapse
|
37
|
Cryo-Electron Tomography of the Herpesvirus Procapsid Reveals Interactions of the Portal with the Scaffold and a Shift on Maturation. mBio 2021; 12:mBio.03575-20. [PMID: 33727359 PMCID: PMC8092310 DOI: 10.1128/mbio.03575-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) infects a majority of humans, causing mostly mild disease but in some cases progressing toward life-threatening encephalitis. Understanding the life cycle of the virus is important to devise countermeasures. Herpes simplex virus 1 (HSV-1) requires seven proteins to package its genome through a vertex in its capsid, one of which is the portal protein, pUL6. The portal protein is also thought to facilitate assembly of the procapsid. While the portal has been visualized in mature capsids, we aimed to elucidate its role in the assembly and maturation of procapsids using cryo-electron tomography (cryoET). We identified the portal vertex in individual procapsids, calculated a subtomogram average, and compared that with the portal vertex in empty mature capsids (A-capsids). The resulting maps show the portal on the interior surface with its narrower end facing outwards, while maintaining close contact with the capsid shell. In the procapsid, the portal is embedded in the underlying scaffold, suggesting that assembly involves a portal-scaffold complex. During maturation, the capsid shell angularizes with a corresponding outward movement of the vertices. We found that in A-capsids, the portal translocates outward further than the adjacent capsomers and strengthens its contacts with the capsid shell. Our methodology also allowed us to determine the number of portal vertices in each capsid, with most having one per capsid, but some none or two, and rarely three. The predominance of a single portal per capsid supports facilitation of the assembly of the procapsid.
Collapse
|
38
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021; 11:603224. [PMID: 33763351 PMCID: PMC7982729 DOI: 10.3389/fonc.2021.603224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
Affiliation(s)
- Alejandra Suares
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Victoria Medina
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Omar Coso
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
39
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021. [DOI: 10.3389/fonc.2021.603224
expr 816899697 + 824303767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
|
40
|
Lee JH, Shim J, Kim SJ. Stunning symmetries involved in the self-assembly of the HSV-1 capsid. THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY 2021; 78:357-364. [PMID: 33584000 PMCID: PMC7871024 DOI: 10.1007/s40042-020-00044-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Herpes simplex virus-1 (HSV-1) is an enveloped dsDNA virus, infecting ~ 67% of humans. Here, we present the essential components of the HSV-1, focusing on stunning symmetries on the capsid. However, little is known about how the symmetries are involved dynamically in the self-assembly process. We suggest small angle X-ray scattering as a suitable method to capture the dynamics of self-assembly. Furthermore, our understanding of the viruses can be expanded by using an integrative approach that combines heterogeneous types of data, thus promoting new diagnostic tools and a cure for viral infections.
Collapse
Affiliation(s)
- Joo-hyeon Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Jaehyu Shim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Seung Joong Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| |
Collapse
|
41
|
A Protein Assembly Hypothesis for Population-Specific Decrease in Dementia with Time. BIOPHYSICA 2021. [DOI: 10.3390/biophysica1010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A recent report in the journal, Neurology, documents age-normalized, nation-specific (e.g., United States and Western Europe), progressive decrease of dementia, beginning about 25 years ago. This observation has, thus far, not had explanation. We begin our proposed explanation with the following previous disease construct. (1) Some dementia is caused by innate immune over-response to infections. (2) The innate immune over-response occurs via excessive conversion of amyloid protein to α-sheet conformation. (3) This conversion evolved to inhibit invading microbes by binding microbe-associated α-sheet, e.g., in hyper-expanded capsid intermediates of some viruses. The rarity of human α-sheet makes this inhibition specific for microbial invaders. As foundation, here we observe directly, for the first time, extreme, sheet-like outer shell thinness in a hyper-expanded capsid of phage T3. Based on phage/herpesvirus homology, we propose the following. The above decrease in dementia is caused by varicella-zoster virus (VZV) vaccination, USFDA-approved about 25 years ago; VZV is a herpesvirus and causes chickenpox and shingles. In China and Japan, a cotemporaneous non-decrease is explained by lower anti-VZV vaccination. Co-assembly extension of α-sheet is relatively independent of amino acid sequence. Thus, we project that additional dementia is suppressible by vaccination against other viruses, including other herpesviruses.
Collapse
|
42
|
Wang N, Chen W, Zhu L, Zhu D, Feng R, Wang J, Zhu B, Zhang X, Chen X, Liu X, Yan R, Ni D, Zhou GG, Liu H, Rao Z, Wang X. Structures of the portal vertex reveal essential protein-protein interactions for Herpesvirus assembly and maturation. Protein Cell 2020; 11:366-373. [PMID: 32285350 PMCID: PMC7196605 DOI: 10.1007/s13238-020-00711-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Nan Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenyuan Chen
- Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China
| | - Ling Zhu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dongjie Zhu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rui Feng
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jialing Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin Zhu
- Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China
| | - Xinzheng Zhang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoqing Chen
- ImmVira Co., Ltd, Silver Star Hi-tech Industrial Park, Longhua District, Shenzhen, 518116, China
| | - Xianjie Liu
- ImmVira Co., Ltd, Silver Star Hi-tech Industrial Park, Longhua District, Shenzhen, 518116, China
| | - Runbin Yan
- ImmVira Co., Ltd, Silver Star Hi-tech Industrial Park, Longhua District, Shenzhen, 518116, China
| | - Dongyao Ni
- ImmVira Co., Ltd, Silver Star Hi-tech Industrial Park, Longhua District, Shenzhen, 518116, China
| | - Grace Guoying Zhou
- ImmVira Co., Ltd, Silver Star Hi-tech Industrial Park, Longhua District, Shenzhen, 518116, China
| | - Hongrong Liu
- Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China.
| | - Zihe Rao
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Laboratory of Structural Biology, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300353, China.
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
43
|
Jana AK, May ER. Structural and dynamic asymmetry in icosahedrally symmetric virus capsids. Curr Opin Virol 2020; 45:8-16. [PMID: 32615360 PMCID: PMC7746594 DOI: 10.1016/j.coviro.2020.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
A common characteristic of virus capsids is icosahedral symmetry, yet these highly symmetric structures can display asymmetric features within their virions and undergo asymmetric dynamics. The fields of structural and computational biology have entered a new realm in the investigation of virus infection mechanisms, with the ability to observe symmetry-breaking features. This review will cover important studies on icosahedral virus structure and dynamics, covering both symmetric and asymmetric conformational changes. However, the main emphasis of the review will be towards recent studies employing cryo-electron microscopy or molecular dynamics simulations, which can uncover asymmetric aspects of these systems relevant to understanding viral physical-chemical properties and their biological impact.
Collapse
Affiliation(s)
- Asis K Jana
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
44
|
Role of the Herpes Simplex Virus CVSC Proteins at the Capsid Portal Vertex. J Virol 2020; 94:JVI.01534-20. [PMID: 32967953 DOI: 10.1128/jvi.01534-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/16/2020] [Indexed: 12/31/2022] Open
Abstract
The packaging of DNA into preformed capsids is a critical step during herpesvirus infection. For herpes simplex virus, this process requires the products of seven viral genes: the terminase proteins pUL15, pUL28, and pUL33; the capsid vertex-specific component (CVSC) proteins pUL17 and pUL25; and the portal proteins pUL6 and pUL32. The pUL6 portal dodecamer is anchored at one vertex of the capsid by interactions with the adjacent triplexes as well as helical density attributed to the pUL17 and pUL25 subunits of the CVSC. To define the roles and structures of the CVSC proteins in virus assembly and DNA packaging, we isolated a number of recombinant viruses expressing pUL25, pUL17, and pUL36 fused with green or red fluorescent proteins as well as viruses with specific deletions in the CVSC genes. Biochemical and structural studies of these mutants demonstrated that (i) four of the helices in the CVSC helix bundle can be attributed to two copies each of pUL36 and pUL25, (ii) pUL17 and pUL6 are required for capsid binding of the terminase complex in the nucleus, (iii) pUL17 is important for determining the site of the first cleavage reaction generating replicated genomes with termini derived from the long-arm component of the herpes simplex virus 1 (HSV-1) genome, (iv) pUL36 serves no direct role in cleavage/packaging, (v) cleavage and stable packaging of the viral genome involve an ordered interaction of the terminase complex and pUL25 with pUL17 at the portal vertex, and (vi) packaging of the viral genome results in a dramatic displacement of the portal.IMPORTANCE Herpes simplex virus 1 (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. A critical step during productive HSV-1 infection is the cleavage and packaging of replicated, concatemeric viral DNA into preformed capsids. A key knowledge gap is how the capsid engages the replicated viral genome and the subsequent packaging of a unit-length HSV genome. Here, biochemical and structural studies focused on the unique portal vertex of wild-type HSV and packaging mutants provide insights into the mechanism of HSV genome packaging. The significance of our research is in identifying the portal proteins pUL6 and pUL17 as key viral factors for engaging the terminase complex with the capsid and the subsequent cleavage, packaging, and stable incorporation of the viral genome in the HSV-1 capsid.
Collapse
|
45
|
Wu W, Cheng N, Black LW, Dietz H, Steven AC. Biphasic Packing of DNA and Internal Proteins in Bacteriophage T4 Heads Revealed by Bubblegram Imaging. Viruses 2020; 12:v12111282. [PMID: 33182609 PMCID: PMC7697877 DOI: 10.3390/v12111282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 11/17/2022] Open
Abstract
The virions of tailed bacteriophages and the evolutionarily related herpesviruses contain, in addition to highly condensed DNA, substantial quantities of internal proteins. These proteins (“ejection proteins”) have roles in scaffolding, maturational proteolysis, and cell-to-cell delivery. Whereas capsids are amenable to analysis at high resolution by cryo-electron microscopy, internal proteins have proved difficult to localize. In this study, we investigated the distribution of internal proteins in T4 by bubblegram imaging. Prior work has shown that at suitably high electron doses, radiation damage generates bubbles of hydrogen gas in nucleoprotein specimens. Using DNA origami as a test specimen, we show that DNA does not bubble under these conditions; it follows that bubbles represent markers for proteins. The interior of the prolate T4 head, ~1000 Å long by ~750 Å wide, has a bubble-free zone that is ~100–110 Å thick, underlying the capsid shell from which proteins are excluded by highly ordered DNA. Inside this zone, which is plausibly occupied by ~4 layers of coaxial spool, bubbles are generated at random locations in a disordered ensemble of internal proteins and the remainder of the genome.
Collapse
Affiliation(s)
- Weimin Wu
- Laboratory of Structural Biology Research, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-8025, USA;
| | - Naiqian Cheng
- Laboratory of Structural Biology Research, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-8025, USA;
| | - Lindsay W. Black
- Department of Biochemistry and Molecular Biology, University of Maryland Medical School, Baltimore, MD 21201-1503, USA;
| | - Hendrik Dietz
- Physics Department, Technische Universität München, 85748 Garching-bei-München, Germany;
| | - Alasdair C. Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-8025, USA;
- Correspondence: ; Tel.: +1-(301)-496-0132; Fax: +1-(301)-443-7651
| |
Collapse
|
46
|
Vijayakrishnan S, McElwee M, Loney C, Rixon F, Bhella D. In situ structure of virus capsids within cell nuclei by correlative light and cryo-electron tomography. Sci Rep 2020; 10:17596. [PMID: 33077791 PMCID: PMC7572381 DOI: 10.1038/s41598-020-74104-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/24/2020] [Indexed: 12/02/2022] Open
Abstract
Cryo electron microscopy (cryo-EM), a key method for structure determination involves imaging purified material embedded in vitreous ice. Images are then computationally processed to obtain three-dimensional structures approaching atomic resolution. There is increasing interest in extending structural studies by cryo-EM into the cell, where biological structures and processes may be imaged in context. The limited penetrating power of electrons prevents imaging of thick specimens (> 500 nm) however. Cryo-sectioning methods employed to overcome this are technically challenging, subject to artefacts or involve specialised and costly equipment. Here we describe the first structure of herpesvirus capsids determined by sub-tomogram averaging from nuclei of eukaryotic cells, achieved by cryo-electron tomography (cryo-ET) of re-vitrified cell sections prepared using the Tokuyasu method. Our reconstructions confirm that the capsid associated tegument complex is present on capsids prior to nuclear egress. We demonstrate that this method is suited to both 3D structure determination and correlative light/electron microscopy, thus expanding the scope of cryogenic cellular imaging.
Collapse
Affiliation(s)
- Swetha Vijayakrishnan
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK.
| | - Marion McElwee
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Frazer Rixon
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| |
Collapse
|
47
|
Shah PNM, Filman DJ, Karunatilaka KS, Hesketh EL, Groppelli E, Strauss M, Hogle JM. Cryo-EM structures reveal two distinct conformational states in a picornavirus cell entry intermediate. PLoS Pathog 2020; 16:e1008920. [PMID: 32997730 PMCID: PMC7549760 DOI: 10.1371/journal.ppat.1008920] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 10/12/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
The virions of enteroviruses such as poliovirus undergo a global conformational change after binding to the cellular receptor, characterized by a 4% expansion, and by the opening of holes at the two and quasi-three-fold symmetry axes of the capsid. The resultant particle is called a 135S particle or A-particle and is thought to be on the pathway to a productive infection. Previously published studies have concluded that the membrane-interactive peptides, namely VP4 and the N-terminus of VP1, are irreversibly externalized in the 135S particle. However, using established protocols to produce the 135S particle, and single particle cryo-electron microscopy methods, we have identified at least two unique states that we call the early and late 135S particle. Surprisingly, only in the "late" 135S particles have detectable levels of the VP1 N-terminus been trapped outside the capsid. Moreover, we observe a distinct density inside the capsid that can be accounted for by VP4 that remains associated with the genome. Taken together our results conclusively demonstrate that the 135S particle is not a unique conformation, but rather a family of conformations that could exist simultaneously.
Collapse
Affiliation(s)
- Pranav N. M. Shah
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - David J. Filman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Krishanthi S. Karunatilaka
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Emma L. Hesketh
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Elisabetta Groppelli
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Mike Strauss
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - James M. Hogle
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
48
|
Cryo-EM structure of the varicella-zoster virus A-capsid. Nat Commun 2020; 11:4795. [PMID: 32963252 PMCID: PMC7508878 DOI: 10.1038/s41467-020-18537-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Varicella-zoster virus (VZV), a member of the Alphaherpesvirinae subfamily, causes severe diseases in humans of all ages. The viral capsids play critical roles in herpesvirus infection, making them potential antiviral targets. Here, we present the 3.7-Å-resolution structure of the VZV A-capsid and define the molecular determinants underpinning the assembly of this complicated viral machinery. Overall, the VZV capsid has a similar architecture to that of other known herpesviruses. The major capsid protein (MCP) assembles into pentons and hexons, forming extensive intra- and inter-capsomer interaction networks that are further secured by the small capsid protein (SCP) and the heterotriplex. The structure reveals a pocket beneath the floor of MCP that could potentially be targeted by antiviral inhibitors. In addition, we identified two alphaherpesvirus-specific structural features in SCP and Tri1 proteins. These observations highlight the divergence of different herpesviruses and provide an important basis for developing antiviral drugs. Varicella-zoster virus (VZV) is the causative agent of chickenpox and herpes zoster (shingles). Cryo-EM structure of VZV capsid provides insights into the capsid assembly and reveals a pocket that could potentially be targeted by antiviral drugs.
Collapse
|
49
|
Abstract
During viral replication, herpesviruses utilize a unique strategy, termed nuclear egress, to translocate capsids from the nucleus into the cytoplasm. This initial budding step transfers a newly formed capsid from within the nucleus, too large to fit through nuclear pores, through the inner nuclear membrane to the perinuclear space. The perinuclear enveloped virion must then fuse with the outer nuclear membrane to be released into the cytoplasm for further maturation, undergoing budding once again at the trans-Golgi network or early endosomes, and ultimately exit the cell non-lytically to spread infection. This first budding process is mediated by two conserved viral proteins, UL31 and UL34, that form a heterodimer called the nuclear egress complex (NEC). This review focuses on what we know about how the NEC mediates capsid transport to the perinuclear space, including steps prior to and after this budding event. Additionally, we discuss the involvement of other viral proteins in this process and how NEC-mediated budding may be regulated during infection.
Collapse
Affiliation(s)
- Elizabeth B Draganova
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Michael K Thorsen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
50
|
Liu W, Cui Y, Wang C, Li Z, Gong D, Dai X, Bi GQ, Sun R, Zhou ZH. Structures of capsid and capsid-associated tegument complex inside the Epstein-Barr virus. Nat Microbiol 2020; 5:1285-1298. [PMID: 32719506 DOI: 10.1038/s41564-020-0758-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022]
Abstract
As the first discovered human cancer virus, Epstein-Barr virus (EBV) causes Burkitt's lymphoma and nasopharyngeal carcinoma. Isolating virions for determining high-resolution structures has been hindered by latency-a hallmark of EBV infection-and atomic structures are thus available only for recombinantly expressed EBV proteins. In the present study, by symmetry relaxation and subparticle reconstruction, we have determined near-atomic-resolution structures of the EBV capsid with an asymmetrically attached DNA-translocating portal and capsid-associated tegument complexes from cryogenic electron microscopy images of just 2,048 EBV virions obtained by chemical induction. The resulting atomic models reveal structural plasticity among the 20 conformers of the major capsid protein, 2 conformers of the small capsid protein (SCP), 4 conformers of the triplex monomer proteins and 2 conformers of the triplex dimer proteins. Plasticity reaches the greatest level at the capsid-tegument interfaces involving SCP and capsid-associated tegument complexes (CATC): SCPs crown pentons/hexons and mediate tegument protein binding, and CATCs bind and rotate all five periportal triplexes, but notably only about one peri-penton triplex. These results offer insights into the EBV capsid assembly and a mechanism for recruiting cell-regulating factors into the tegument compartment as 'cargoes', and should inform future anti-EBV strategies.
Collapse
Affiliation(s)
- Wei Liu
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.,Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yanxiang Cui
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Caiyan Wang
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zihang Li
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Danyang Gong
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Therapeutics Discovery, Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | - Xinghong Dai
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Guo-Qiang Bi
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ren Sun
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA. .,Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|