1
|
Rahman SMR, Alzan HF, Laughery JM, Bastos RG, Ueti MW, Suarez CE. Structural and antigenic characterization of Babesia Bovis HAP2 domains. Sci Rep 2025; 15:7781. [PMID: 40044720 PMCID: PMC11882828 DOI: 10.1038/s41598-025-91359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
The tick-borne apicomplexan parasite Babesia bovis causes bovine babesiosis which leads to enormous food and economic losses around the world. The existing resources to manage this disease are limited and have pitfalls, therefore, introduction of new strategies is urgently needed. B. bovis reproduces sexually in the midgut of its tick vector. HAP2, a well conserved ancient protein, plays a crucial role in the gamete fusion of this parasite and is a strong candidate for developing transmission-blocking vaccines. We previously demonstrated that immunization of cattle with full size B. bovis HAP2 blocks transmission of the parasite by Rhipicephalus microplus. Understanding the conserved structural features and antigenicity of HAP2 protein and its domains will facilitate developing effective methods to control pathogen transmission. In this study, we analyzed and compared AlphaFold2-predicted 3D structure of B. bovis HAP2 with the well-characterized crystal structures of HAP2 of Chlamydomonas reinhardtii and Arabidopsis thaliana. The comparisons and structural analysis resulted in the definition of three domains' sequences, fusion loops, and disulfide bonds in the B. bovis HAP2. In addition, recombinant versions of each three predicted HAP2 domains were recognized by antibodies from HAP2 immunized and transmission-protected cattle, confirming their antigenicity. Remarkably, domain II was highly recognized compared to the other two domains. This study introduces new directions in designing novel functional assays and improved vaccine design through targeting the HAP2 protein.
Collapse
Affiliation(s)
- S M Raihan Rahman
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Heba F Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt
| | - Jacob M Laughery
- Animal Disease Research Unit, United States Department of Agriculture - Agricultural Research Service, Pullman, WA, USA
| | - Reginaldo G Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Animal Disease Research Unit, United States Department of Agriculture - Agricultural Research Service, Pullman, WA, USA
| | - Massaro W Ueti
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Animal Disease Research Unit, United States Department of Agriculture - Agricultural Research Service, Pullman, WA, USA
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
- Animal Disease Research Unit, United States Department of Agriculture - Agricultural Research Service, Pullman, WA, USA.
| |
Collapse
|
2
|
Ouonkap SVY, Palaniappan M, Pryze K, Jong E, Foteh Ali M, Styler B, Althiab Almasaud R, Harkey AF, Reid RW, Loraine AE, Smith SE, Pease JB, Muday GK, Palanivelu R, Johnson MA. Enhanced pollen tube performance at high temperature contributes to thermotolerant fruit and seed production in tomato. Curr Biol 2024; 34:5319-5333.e5. [PMID: 39510073 DOI: 10.1016/j.cub.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/16/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
Rising temperature extremes during critical reproductive periods threaten the yield of major grain and fruit crops. Flowering plant reproduction depends on the ability of pollen grains to generate a pollen tube, which elongates through the pistil to deliver sperm cells to female gametes for double fertilization. We used tomato as a model fruit crop to determine how high temperature affects the pollen tube growth phase, taking advantage of cultivars noted for fruit production in exceptionally hot growing seasons. We found that exposure to high temperature solely during the pollen tube growth phase limits fruit biomass and seed set more significantly in thermosensitive cultivars than in thermotolerant cultivars. Importantly, we found that pollen tubes from the thermotolerant Tamaulipas cultivar have enhanced growth in vivo and in vitro under high temperature. Analysis of the pollen tube transcriptome's response to high temperature allowed us to define two response modes (enhanced induction of stress responses and higher basal levels of growth pathways repressed by heat stress) associated with reproductive thermotolerance. Importantly, we define key components of the pollen tube stress response, identifying enhanced reactive oxygen species (ROS) homeostasis and pollen tube callose synthesis and deposition as important components of reproductive thermotolerance in Tamaulipas. Our work identifies the pollen tube growth phase as a viable target to enhance reproductive thermotolerance and delineates key pathways that are altered in crop varieties capable of fruiting under high-temperature conditions.
Collapse
Affiliation(s)
- Sorel V Yimga Ouonkap
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 60 Olive Street, Providence, RI 02912, USA
| | - Meenakshisundaram Palaniappan
- School of Plant Sciences, University of Arizona, 1140 E S Campus Drive, Forbes 303B, Tucson, AZ 85721, USA; Department of Biotechnology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, India
| | - Kelsey Pryze
- School of Plant Sciences, University of Arizona, 1140 E S Campus Drive, Forbes 303B, Tucson, AZ 85721, USA
| | - Emma Jong
- School of Plant Sciences, University of Arizona, 1140 E S Campus Drive, Forbes 303B, Tucson, AZ 85721, USA
| | - Mohammad Foteh Ali
- Department of Biology, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109, USA
| | - Benjamin Styler
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 60 Olive Street, Providence, RI 02912, USA
| | - Rasha Althiab Almasaud
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 60 Olive Street, Providence, RI 02912, USA
| | - Alexandria F Harkey
- Department of Biology, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109, USA
| | - Robert W Reid
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Ann E Loraine
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Steven E Smith
- School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell Street, Tucson, AZ 85721, USA
| | - James B Pease
- Department of Biology, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109, USA; Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Gloria K Muday
- Department of Biology, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109, USA
| | - Ravishankar Palanivelu
- School of Plant Sciences, University of Arizona, 1140 E S Campus Drive, Forbes 303B, Tucson, AZ 85721, USA.
| | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 60 Olive Street, Providence, RI 02912, USA.
| |
Collapse
|
3
|
Wang W, Xiong H, Sun MX. Gamete activation for fertilization and seed development in flowering plants. Curr Top Dev Biol 2024; 162:1-31. [PMID: 40180506 DOI: 10.1016/bs.ctdb.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Double fertilization is a defining feature of flowering plants, in which two male gametes (sperm cells) fuse with two female gametes (egg and central cell) to trigger embryogenesis and endosperm development. Gamete activation before fertilization is essential for the success of fertilization, while gamete activation after fertilization is the prerequisite for embryo and endosperm development. The two phases of activation are an associated and continuous process. In this review, we focus on current understanding of gamete activation both before and after fertilization in flowering plants, summarize and discuss the detailed cellular and molecular mechanisms underlying gamete activation for fertilization or initiation of embryogenesis and endosperm development.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, P.R. China
| | - Hanxian Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, P.R. China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, P.R. China.
| |
Collapse
|
4
|
Rizos I, Frada MJ, Bittner L, Not F. Life cycle strategies in free-living unicellular eukaryotes: Diversity, evolution, and current molecular tools to unravel the private life of microorganisms. J Eukaryot Microbiol 2024; 71:e13052. [PMID: 39085163 PMCID: PMC11603280 DOI: 10.1111/jeu.13052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
An astonishing range of morphologies and life strategies has arisen across the vast diversity of protists, allowing them to thrive in most environments. In model protists, like Tetrahymena, Dictyostelium, or Trypanosoma, life cycles involving multiple life stages with different morphologies have been well characterized. In contrast, knowledge of the life cycles of free-living protists, which primarily consist of uncultivated environmental lineages, remains largely fragmentary. Various life stages and lineage-specific cellular innovations have been observed in the field for uncultivated protists, but such innovations generally lack functional characterization and have unknown physiological and ecological roles. In the actual state of knowledge, evidence of sexual processes is confirmed for 20% of free-living protist lineages. Nevertheless, at the onset of eukaryotic diversification, common molecular trends emerged to promote genetic recombination, establishing sex as an inherent feature of protists. Here, we review protist life cycles from the viewpoint of life cycle transitions and genetics across major eukaryotic lineages. We focus on the scarcely observed sexual cycle of free-living protists, summarizing evidence for its existence and describing key genes governing its progression, as well as, current methods for studying the genetics of sexual cycles in both cultivable and uncultivated protist groups.
Collapse
Affiliation(s)
- Iris Rizos
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHEUniversité Des AntillesParisFrance
- CNRS, AD2M‐UMR7144 Station Biologique de RoscoffSorbonne UniversitéRoscoffFrance
| | - Miguel J. Frada
- Department of Ecology, Evolution and Behavior, Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Interuniversity Institute for Marine Sciences in EilatEilatIsrael
| | - Lucie Bittner
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHEUniversité Des AntillesParisFrance
- Institut Universitaire de FranceParisFrance
| | - Fabrice Not
- CNRS, AD2M‐UMR7144 Station Biologique de RoscoffSorbonne UniversitéRoscoffFrance
| |
Collapse
|
5
|
Chen X, Li Y, Liu M, Ai G, Zhang X, Wang J, Tian S, Yuan L. A sexually and vegetatively reproducible diploid seedless watermelon inducer via ClHAP2 mutation. NATURE PLANTS 2024; 10:1446-1452. [PMID: 39367255 DOI: 10.1038/s41477-024-01799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/09/2024] [Indexed: 10/06/2024]
Abstract
Seedless watermelon production relies on triploid cultivation or the application of plant growth regulators. However, challenges such as chromosomal imbalances in triploid varieties and concerns about food safety with growth regulator application impede progress. To tackle these challenges, we developed a sexually and vegetatively reproducible inducer line of diploid seedless watermelon by disrupting the double fertilization process. This innovative approach has enabled the successful induction of diploid seedless watermelon across diverse varieties.
Collapse
Affiliation(s)
- Xiner Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Yuxiu Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Man Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Gongli Ai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Xian Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Jiafa Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Shujuan Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Li Yuan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China.
| |
Collapse
|
6
|
Ouonkap SVY, Palaniappan M, Pryze K, Jong E, Ali MF, Styler B, Almasaud RA, Harkey AF, Reid RW, Loraine AE, Smith SE, Muday GK, Pease JB, Palanivelu R, Johnson MA. Enhanced pollen tube performance at high temperature contributes to thermotolerant fruit production in tomato. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606234. [PMID: 39149357 PMCID: PMC11326152 DOI: 10.1101/2024.08.01.606234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Rising temperature extremes during critical reproductive periods threaten the yield of major grain and fruit crops. Flowering plant reproduction depends on development of sufficient numbers of pollen grains and on their ability to generate a cellular extension, the pollen tube, which elongates through the pistil to deliver sperm cells to female gametes for double fertilization. These critical phases of the life cycle are sensitive to temperature and limit productivity under high temperature (HT). Previous studies have investigated the effects of HT on pollen development, but little is known about how HT applied during the pollen tube growth phase affects fertility. Here, we used tomato as a model fruit crop to determine how HT affects the pollen tube growth phase, taking advantage of cultivars noted for fruit production in exceptionally hot growing seasons. We found that exposure to HT solely during the pollen tube growth phase limits fruit biomass and seed set more significantly in thermosensitive cultivars than in thermotolerant cultivars. Importantly, we found that pollen tubes from the thermotolerant Tamaulipas cultivar have enhanced growth in vivo and in vitro under HT. Analysis of the pollen tube transcriptome's response to HT allowed us to develop hypotheses for the molecular basis of cellular thermotolerance in the pollen tube and we define two response modes (enhanced induction of stress responses, and higher basal levels of growth pathways repressed by heat stress) associated with reproductive thermotolerance. Importantly, we define key components of the pollen tube stress response identifying enhanced ROS homeostasis and pollen tube callose synthesis and deposition as important components of reproductive thermotolerance in Tamaulipas. Our work identifies the pollen tube growth phase as a viable target to enhance reproductive thermotolerance and delineates key pathways that are altered in crop varieties capable of fruiting under HT conditions.
Collapse
Affiliation(s)
| | | | | | - Emma Jong
- School of Plant Sciences; University of Arizona
| | | | - Benjamin Styler
- Department of Molecular Biology, Cell Biology, and Biochemistry; Brown University
| | | | | | - Robert W Reid
- Department of Bioinformatics and Genomics; UNC Charlotte
| | - Ann E Loraine
- Department of Bioinformatics and Genomics; UNC Charlotte
| | - Steven E Smith
- School of Natural Resources and the Environment; University of Arizona
| | | | - James B Pease
- Department of Evolution, Ecology and Organismal Biology; The Ohio State University
| | | | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry; Brown University
| |
Collapse
|
7
|
Pinello JF, Loidl J, Seltzer ES, Cassidy-Hanley D, Kolbin D, Abdelatif A, Rey FA, An R, Newberger NJ, Bisharyan Y, Papoyan H, Byun H, Aguilar HC, Lai AL, Freed JH, Maugel T, Cole ES, Clark TG. Novel requirements for HAP2/GCS1-mediated gamete fusion in Tetrahymena. iScience 2024; 27:110146. [PMID: 38904066 PMCID: PMC11187246 DOI: 10.1016/j.isci.2024.110146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
The ancestral gamete fusion protein, HAP2/GCS1, plays an essential role in fertilization in a broad range of taxa. To identify factors that may regulate HAP2/GCS1 activity, we screened mutants of the ciliate Tetrahymena thermophila for behaviors that mimic Δhap2/gcs1 knockout phenotypes in this species. Using this approach, we identified two new genes, GFU1 and GFU2, whose products are necessary for membrane pore formation following mating type recognition and adherence. GFU2 is predicted to be a single-pass transmembrane protein, while GFU1, though lacking obvious transmembrane domains, has the potential to interact directly with membrane phospholipids in the cytoplasm. Like Tetrahymena HAP2/GCS1, expression of GFU1 is required in both cells of a mating pair for efficient fusion to occur. To explain these bilateral requirements, we propose a model that invokes cooperativity between the fusion machinery on apposed membranes of mating cells and accounts for successful fertilization in Tetrahymena's multiple mating type system.
Collapse
Affiliation(s)
- Jennifer F. Pinello
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Josef Loidl
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Ethan S. Seltzer
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Donna Cassidy-Hanley
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Daniel Kolbin
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Anhar Abdelatif
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Félix A. Rey
- Unité de Virologie Structurale, Institut Pasteur, 75724 Paris, France
- CNRS UMR 3569, 75724 Paris, France
| | - Rocky An
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Nicole J. Newberger
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Yelena Bisharyan
- Office of Technology Development, Harvard University, Cambridge, MA 02138, USA
| | - Hayk Papoyan
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Haewon Byun
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Alex L. Lai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | - Jack H. Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | - Timothy Maugel
- Department of Biology, Laboratory for Biological Ultrastructure, University of Maryland, College Park, MD 20742, USA
| | - Eric S. Cole
- Biology Department, St. Olaf College, Northfield, MN 55057, USA
| | - Theodore G. Clark
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Krauchunas AR, Marcello MR, Looper A, Mei X, Putiri E, Singaravelu G, Ahmed II, Singson A. The EGF-motif-containing protein SPE-36 is a secreted sperm protein required for fertilization in C. elegans. Curr Biol 2023; 33:3056-3064.e5. [PMID: 37453426 PMCID: PMC10529607 DOI: 10.1016/j.cub.2023.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Identified through forward genetics, spe-9 was the first gene to be identified in C. elegans as necessary for fertilization.1 Since then, genetic screens in C. elegans have led to the identification of nine additional sperm genes necessary for fertilization (including spe-51 reported by Mei et al.2 and the spe-36 gene reported here).3,4,5,6,7,8,9 This includes spe-45, which encodes an immunoglobulin-containing protein similar to the mammalian protein IZUMO1, and spe-42 and spe-49, which are homologous to vertebrate DCST2 and DCST1, respectively.4,7,8,10,11,12,13 Mutations in any one of these genes result in healthy adult animals that are sterile. Sperm from these mutants have normal morphology, migrate to and maintain their position at the site of fertilization in the reproductive tract, and make contact with eggs but fail to fertilize the eggs. This same phenotype is observed in mammals lacking Izumo1, Spaca6, Tmem95, Sof1, FIMP, or Dcst1 and Dcst2.10,14,15,16,17,18,19 Here we report the discovery of SPE-36 as a sperm-derived secreted protein that is necessary for fertilization. Mutations in the Caenorhabditis elegans spe-36 gene result in a sperm-specific fertilization defect. Sperm from spe-36 mutants look phenotypically normal, are motile, and can migrate to the site of fertilization. However, sperm that do not produce SPE-36 protein cannot fertilize. Surprisingly, spe-36 encodes a secreted EGF-motif-containing protein that functions cell autonomously. The genetic requirement for secreted sperm-derived proteins for fertilization sheds new light on the complex nature of fertilization and represents a paradigm-shifting discovery in the molecular understanding of fertilization.
Collapse
Affiliation(s)
- Amber R Krauchunas
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | | | - A'Maya Looper
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Xue Mei
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Emily Putiri
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Iqra I Ahmed
- Department of Biology, Pace University, New York, NY 11231, USA
| | - Andrew Singson
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
9
|
Azimi FC, Dean TT, Minari K, Basso LGM, Vance TDR, Serrão VHB. A Frame-by-Frame Glance at Membrane Fusion Mechanisms: From Viral Infections to Fertilization. Biomolecules 2023; 13:1130. [PMID: 37509166 PMCID: PMC10377500 DOI: 10.3390/biom13071130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Viral entry and fertilization are distinct biological processes that share a common mechanism: membrane fusion. In viral entry, enveloped viruses attach to the host cell membrane, triggering a series of conformational changes in the viral fusion proteins. This results in the exposure of a hydrophobic fusion peptide, which inserts into the host membrane and brings the viral and host membranes into close proximity. Subsequent structural rearrangements in opposing membranes lead to their fusion. Similarly, membrane fusion occurs when gametes merge during the fertilization process, though the exact mechanism remains unclear. Structural biology has played a pivotal role in elucidating the molecular mechanisms underlying membrane fusion. High-resolution structures of the viral and fertilization fusion-related proteins have provided valuable insights into the conformational changes that occur during this process. Understanding these mechanisms at a molecular level is essential for the development of antiviral therapeutics and tools to influence fertility. In this review, we will highlight the biological importance of membrane fusion and how protein structures have helped visualize both common elements and subtle divergences in the mechanisms behind fusion; in addition, we will examine the new tools that recent advances in structural biology provide researchers interested in a frame-by-frame understanding of membrane fusion.
Collapse
Affiliation(s)
- Farshad C. Azimi
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Trevor T. Dean
- Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Karine Minari
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Luis G. M. Basso
- Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil;
| | - Tyler D. R. Vance
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Vitor Hugo B. Serrão
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
- Department of Chemistry and Biochemistry, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
10
|
Gert KRB, Panser K, Surm J, Steinmetz BS, Schleiffer A, Jovine L, Moran Y, Kondrashov F, Pauli A. Divergent molecular signatures in fish Bouncer proteins define cross-fertilization boundaries. Nat Commun 2023; 14:3506. [PMID: 37316475 DOI: 10.1038/s41467-023-39317-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
Molecular compatibility between gametes is a prerequisite for successful fertilization. As long as a sperm and egg can recognize and bind each other via their surface proteins, gamete fusion may occur even between members of separate species, resulting in hybrids that can impact speciation. The egg membrane protein Bouncer confers species specificity to gamete interactions between medaka and zebrafish, preventing their cross-fertilization. Here, we leverage this specificity to uncover distinct amino acid residues and N-glycosylation patterns that differentially influence the function of medaka and zebrafish Bouncer and contribute to cross-species incompatibility. Curiously, in contrast to the specificity observed for medaka and zebrafish Bouncer, seahorse and fugu Bouncer are compatible with both zebrafish and medaka sperm, in line with the pervasive purifying selection that dominates Bouncer's evolution. The Bouncer-sperm interaction is therefore the product of seemingly opposing evolutionary forces that, for some species, restrict fertilization to closely related fish, and for others, allow broad gamete compatibility that enables hybridization.
Collapse
Affiliation(s)
- Krista R B Gert
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030, Vienna, Austria
| | - Karin Panser
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Joachim Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Benjamin S Steinmetz
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093, Zürich, Switzerland
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Fyodor Kondrashov
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Evolutionary and Synthetic Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
| |
Collapse
|
11
|
Shiba Y, Takahashi T, Ohashi Y, Ueda M, Mimuro A, Sugimoto J, Noguchi Y, Igawa T. Behavior of Male Gamete Fusogen GCS1/HAP2 and the Regulation in Arabidopsis Double Fertilization. Biomolecules 2023; 13:biom13020208. [PMID: 36830580 PMCID: PMC9953686 DOI: 10.3390/biom13020208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
In the sexual reproduction of flowering plants, two independent fertilization events occur almost simultaneously: two identical sperm cells fuse with either the egg cell or the central cell, resulting in embryo and endosperm development to produce a seed. GCS1/HAP2 is a sperm cell membrane protein essential for plasma membrane fusion with both female gametes. Other sperm membrane proteins, DMP8 and DMP9, are more important for egg cell fertilization than that of the central cell, suggesting its regulatory mechanism in GCS1/HAP2-driving gamete membrane fusion. To assess the GCS1/HAP2 regulatory cascade in the double fertilization system of flowering plants, we produced Arabidopsis transgenic lines expressing different GCS1/HAP2 variants and evaluated the fertilization in vivo. The fertilization pattern observed in GCS1_RNAi transgenic plants implied that sperm cells over the amount of GCS1/HAP2 required for fusion on their surface could facilitate membrane fusion with both female gametes. The cytological analysis of the dmp8dmp9 sperm cell arrested alone in an embryo sac supported GCS1/HAP2 distribution on the sperm surface. Furthermore, the fertilization failures with both female gametes were caused by GCS1/HAP2 secretion from the egg cell. These results provided a possible scenario of GCS1/HAP2 regulation, showing a potential scheme for capturing additional GCS1/HAP2-interacting proteins.
Collapse
Affiliation(s)
- Yuka Shiba
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Taro Takahashi
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Yukino Ohashi
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Minako Ueda
- Graduate School of Life Sciences, Department of Ecological Developmental Adaptability Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Sendai 980-8578, Japan
| | - Amane Mimuro
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Jin Sugimoto
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Yuka Noguchi
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Tomoko Igawa
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
- Plant Molecular Science Center, Chiba University, 1-33 Yayoi, Chiba-shi 263-8522, Japan
- Correspondence:
| |
Collapse
|
12
|
Abstract
In sexually reproducing organisms, the genetic information is transmitted from one generation to the next via the merger of male and female gametes. Gamete fusion is a two-step process involving membrane recognition and apposition through ligand-receptor interactions and lipid mixing mediated by fusion proteins. HAP2 (also known as GCS1) is a bona fide gamete fusogen in flowering plants and protists. In vertebrates, a multitude of surface proteins have been demonstrated to be pivotal for sperm-egg fusion, yet none of them exhibit typical fusogenic features. In this Cell Science at a Glance article and the accompanying poster, we summarize recent advances in the mechanistic understanding of gamete fusion in eukaryotes, with a particular focus on mammalian species.
Collapse
Affiliation(s)
- Yonggang Lu
- Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Laboratory of Reproductive Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
13
|
DMP8 and 9 regulate HAP2/GCS1 trafficking for the timely acquisition of sperm fusion competence. Proc Natl Acad Sci U S A 2022; 119:e2207608119. [PMID: 36322734 PMCID: PMC9659367 DOI: 10.1073/pnas.2207608119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sexual reproduction involves the fusion of two gametes of opposite sex. Although the sperm-expressed fusogen HAPLESS 2 (HAP2) or GENERATIVE CELL SPECIFIC 1 (GCS1) plays a vital role in this process in many eukaryotic organisms and an understanding of its regulation is emerging in unicellular systems [J. Zhang et al., Nat. Commun. 12, 4380 (2021); J. F. Pinello et al. Dev. Cell 56, 3380-3392.e9 (2021)], neither HAP2/GCS1 interactors nor mechanisms for delivery and activation at the fusion site are known in multicellular plants. Here, we show that Arabidopsis thaliana HAP2/GCS1 interacts with two sperm DUF679 membrane proteins (DMP8 and DMP9), which are required for the EGG CELL 1 (EC1)-induced translocation of HAP2/GCS1 from internal storage vesicle to the sperm plasma membrane to ensure successful fertilization. Our studies in Arabidopsis and tobacco provide evidence for a conserved function of DMP8/9-like proteins as HAP2/GCS1 partner in seed plants. Our data suggest that seed plants evolved a DMP8/9-dependent fusogen translocation process to achieve timely acquisition of sperm fusion competence in response to egg cell-derived signals, revealing a previously unknown critical step for successful fertilization.
Collapse
|
14
|
Kumar S, Valansi C, Haile MT, Li X, Flyak K, Dwivedy A, Abatiyow BA, Leeb AS, Kennedy SY, Camargo NM, Vaughan AM, Brukman NG, Podbilewicz B, Kappe SHI. Malaria parasites utilize two essential plasma membrane fusogens for gamete fertilization. Cell Mol Life Sci 2022; 79:549. [PMID: 36241929 PMCID: PMC9568910 DOI: 10.1007/s00018-022-04583-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/23/2022]
Abstract
Cell fusion of female and male gametes is the climax of sexual reproduction. In many organisms, the Hapless 2 (HAP2) family of proteins play a critical role in gamete fusion. We find that Plasmodium falciparum, the causative agent of human malaria, expresses two HAP2 proteins: PfHAP2 and PfHAP2p. These proteins are present in stage V gametocytes and localize throughout the flagellum of male gametes. Gene deletion analysis and genetic crosses show that PfHAP2 and PfHAP2p individually are essential for male fertility and thereby, parasite transmission to the mosquito. Using a cell fusion assay, we demonstrate that PfHAP2 and PfHAP2p are both authentic plasma membrane fusogens. Our results establish nonredundant essential roles for PfHAP2 and PfHAP2p in mediating gamete fusion in Plasmodium and suggest avenues in the design of novel strategies to prevent malaria parasite transmission from humans to mosquitoes.
Collapse
Affiliation(s)
- Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Clari Valansi
- The Technion-Israel Institute of Technology, Haifa, Israel
| | - Meseret T Haile
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Xiaohui Li
- The Technion-Israel Institute of Technology, Haifa, Israel
| | - Kateryna Flyak
- The Technion-Israel Institute of Technology, Haifa, Israel
| | - Abhisek Dwivedy
- Nucleic Acids Programming Laboratory, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Biley A Abatiyow
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Amanda S Leeb
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Spencer Y Kennedy
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nelly M Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, USA
| | | | | | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA. .,Department of Pediatrics, University of Washington, Seattle, USA. .,Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
15
|
Snell WJ. Uncovering an ancestral green ménage à trois: Contributions of Chlamydomonas to the discovery of a broadly conserved triad of plant fertilization proteins. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102275. [PMID: 36007296 PMCID: PMC9899528 DOI: 10.1016/j.pbi.2022.102275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 05/10/2023]
Abstract
During sexual reproduction in the unicellular green alga Chlamydomonas, gametes undergo the conserved cellular events that define fertilization across the tree of life. After initial ciliary adhesion, plus and minus gametes attach to each other at plasma membrane sites specialized for fusion, their bilayers merge, and cell coalescence into a quadri-ciliated cell signals for nuclear fusion. Recent findings show that these conserved cellular events are driven by 3 conserved protein families, FUS1/GEX2, HAP2/GCS1, and KAR5/GEX1. New results also show that species-specific recognition in Chlamydomonas activates the ancestral, viral-like fusogen HAP2 to drive fusion; that the conserved nuclear envelope fusion protein KAR5/GEX1 is also essential for nuclear fusion in Arabidopsis; and that heterodimerization of BELL-KNOX proteins signals for nuclear fusion in Chlamydomonas through early diverging land plants. This review outlines how Chlamydomonas's Janus-like position in evolution along with the ease of working with its gametes have revealed broadly conserved mechanisms.
Collapse
Affiliation(s)
- William J Snell
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
16
|
Feng J, Dong X, Su Y, Lu C, Springer TA. Monomeric prefusion structure of an extremophile gamete fusogen and stepwise formation of the postfusion trimeric state. Nat Commun 2022; 13:4064. [PMID: 35831325 PMCID: PMC9279424 DOI: 10.1038/s41467-022-31744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Here, we study the gamete fusogen HAP2 from Cyanidioschyzon merolae (Cyani), an extremophile red algae that grows at acidic pH at 45 °C. HAP2 has a trimeric postfusion structure with similarity to viral class II fusion proteins, but its prefusion structure has been elusive. The crystal structure of a monomeric prefusion state of Cyani HAP2 shows it is highly extended with three domains in the order D2, D1, and D3. Three hydrophobic fusion loops at the tip of D2 are each required for postfusion state formation. We followed by negative stain electron microscopy steps in the process of detergent micelle-stimulated postfusion state formation. In an intermediate state, two or three linear HAP2 monomers associate at the end of D2 bearing its fusion loops. Subsequently, D2 and D1 line the core of a trimer and D3 folds back over the exterior of D1 and D2. D3 is not required for formation of intermediate or postfusion-like states.
Collapse
Affiliation(s)
- Juan Feng
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology and Harvard Medical School, Boston, MA, USA
| | - Xianchi Dong
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology and Harvard Medical School, Boston, MA, USA
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Su
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology and Harvard Medical School, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Chafen Lu
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology and Harvard Medical School, Boston, MA, USA
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Moi D, Nishio S, Li X, Valansi C, Langleib M, Brukman NG, Flyak K, Dessimoz C, de Sanctis D, Tunyasuvunakool K, Jumper J, Graña M, Romero H, Aguilar PS, Jovine L, Podbilewicz B. Discovery of archaeal fusexins homologous to eukaryotic HAP2/GCS1 gamete fusion proteins. Nat Commun 2022; 13:3880. [PMID: 35794124 PMCID: PMC9259645 DOI: 10.1038/s41467-022-31564-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/22/2022] [Indexed: 12/26/2022] Open
Abstract
Sexual reproduction consists of genome reduction by meiosis and subsequent gamete fusion. The presence of genes homologous to eukaryotic meiotic genes in archaea and bacteria suggests that DNA repair mechanisms evolved towards meiotic recombination. However, fusogenic proteins resembling those found in gamete fusion in eukaryotes have so far not been found in prokaryotes. Here, we identify archaeal proteins that are homologs of fusexins, a superfamily of fusogens that mediate eukaryotic gamete and somatic cell fusion, as well as virus entry. The crystal structure of a trimeric archaeal fusexin (Fusexin1 or Fsx1) reveals an archetypical fusexin architecture with unique features such as a six-helix bundle and an additional globular domain. Ectopically expressed Fusexin1 can fuse mammalian cells, and this process involves the additional globular domain and a conserved fusion loop. Furthermore, archaeal fusexin genes are found within integrated mobile elements, suggesting potential roles in cell-cell fusion and gene exchange in archaea, as well as different scenarios for the evolutionary history of fusexins.
Collapse
Affiliation(s)
- David Moi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Buenos Aires, Argentina
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Shunsuke Nishio
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Xiaohui Li
- Department of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | - Clari Valansi
- Department of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | - Mauricio Langleib
- Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Nicolas G Brukman
- Department of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | - Kateryna Flyak
- Department of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
- Department of Computer Science, University College London, London, UK
| | | | | | | | - Martin Graña
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| | - Héctor Romero
- Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
- Centro Universitario Regional Este - CURE, Centro Interdisciplinario de Ciencia de Datos y Aprendizaje Automático - CICADA, Universidad de la República, Montevideo, Uruguay.
| | - Pablo S Aguilar
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Buenos Aires, Argentina.
- Instituto de Investigaciones Biotecnológicas Universidad Nacional de San Martín (IIB-CONICET), San Martín, Buenos Aires, Argentina.
| | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| | | |
Collapse
|
18
|
Live imaging-based assay for visualising species-specific interactions in gamete adhesion molecules. Sci Rep 2022; 12:9609. [PMID: 35688940 PMCID: PMC9187738 DOI: 10.1038/s41598-022-13547-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/25/2022] [Indexed: 11/08/2022] Open
Abstract
Successful gamete fusion requires species-specific membrane adhesion. However, the interaction of adhesion molecules in gametes is difficult to study in real time through low-throughput microscopic observation. Therefore, we developed a live imaging-based adhesion molecule (LIAM) assay to study gamete adhesion molecule interactions in cultured cells. First, we modified a fusion assay previously established for fusogens introduced into cultured cells, and confirmed that our live imaging technique could visualise cell-cell fusion in the modified fusion assay. Next, instead of fusogen, we introduced adhesion molecules including a mammalian gamete adhesion molecule pair, IZUMO1 and JUNO, and detected their temporal accumulation at the contact interfaces of adjacent cells. Accumulated IZUMO1 or JUNO was partly translocated to the opposite cells as discrete spots; the mutation in amino acids required for their interaction impaired accumulation and translocation. By using the LIAM assay, we investigated the species specificity of IZUMO1 and JUNO of mouse, human, hamster, and pig in all combinations. IZUMO1 and JUNO accumulation and translocation were observed in conspecific, and some interspecific, combinations, suggesting potentially interchangeable combinations of IZUMO1 and JUNO from different species.
Collapse
|
19
|
Merchant M, Mata CP, Liu Y, Zhai H, Protasio AV, Modis Y. A bioactive phlebovirus-like envelope protein in a hookworm endogenous virus. SCIENCE ADVANCES 2022; 8:eabj6894. [PMID: 35544562 PMCID: PMC9094657 DOI: 10.1126/sciadv.abj6894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/25/2022] [Indexed: 05/02/2023]
Abstract
Endogenous viral elements (EVEs), accounting for 15% of our genome, serve as a genetic reservoir from which new genes can emerge. Nematode EVEs are particularly diverse and informative of virus evolution. We identify Atlas virus-an intact retrovirus-like EVE in the human hookworm Ancylostoma ceylanicum, with an envelope protein genetically related to GN-GC glycoproteins from the family Phenuiviridae. A cryo-EM structure of Atlas GC reveals a class II viral membrane fusion protein fold not previously seen in retroviruses. Atlas GC has the structural hallmarks of an active fusogen. Atlas GC trimers insert into membranes with endosomal lipid compositions and low pH. When expressed on the plasma membrane, Atlas GC has cell-cell fusion activity. With its preserved biological activities, Atlas GC has the potential to acquire a cellular function. Our work reveals structural plasticity in reverse-transcribing RNA viruses.
Collapse
Affiliation(s)
- Monique Merchant
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge CB2 0AW, UK
| | - Carlos P. Mata
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge CB2 0AW, UK
| | - Yangci Liu
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge CB2 0AW, UK
| | - Haoming Zhai
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge CB2 0AW, UK
| | - Anna V. Protasio
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
- Christ’s College, University of Cambridge, St Andrew’s Street, Cambridge, CB2 3BU, UK
| | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge CB2 0AW, UK
| |
Collapse
|
20
|
Chumakov MI, Mazilov SI. Genetic Control of Maize Gynogenesis. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Brukman NG, Li X, Podbilewicz B. Fusexins, HAP2/GCS1 and Evolution of Gamete Fusion. Front Cell Dev Biol 2022; 9:824024. [PMID: 35083224 PMCID: PMC8784728 DOI: 10.3389/fcell.2021.824024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
Gamete fusion is the climax of fertilization in all sexually reproductive organisms, from unicellular fungi to humans. Similarly to other cell-cell fusion events, gamete fusion is mediated by specialized proteins, named fusogens, that overcome the energetic barriers during this process. In recent years, HAPLESS 2/GENERATIVE CELL-SPECIFIC 1 (HAP2/GCS1) was identified as the fusogen mediating sperm-egg fusion in flowering plants and protists, being both essential and sufficient for the membrane merger in some species. The identification of HAP2/GCS1 in invertebrates, opens the possibility that a similar fusogen may be used in vertebrate fertilization. HAP2/GCS1 proteins share a similar structure with two distinct families of exoplasmic fusogens: the somatic Fusion Family (FF) proteins discovered in nematodes, and class II viral glycoproteins (e.g., rubella and dengue viruses). Altogether, these fusogens form the Fusexin superfamily. While some attributes are shared among fusexins, for example the overall structure and the possibility of assembly into trimers, some other characteristics seem to be specific, such as the presence or not of hydrophobic loops or helices at the distal tip of the protein. Intriguingly, HAP2/GCS1 or other fusexins have neither been identified in vertebrates nor in fungi, raising the question of whether these genes were lost during evolution and were replaced by other fusion machinery or a significant divergence makes their identification difficult. Here, we discuss the biology of HAP2/GCS1, its involvement in gamete fusion and the structural, mechanistic and evolutionary relationships with other fusexins.
Collapse
Affiliation(s)
- Nicolas G Brukman
- Department of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | - Xiaohui Li
- Department of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
22
|
Pinello JF, Clark TG. HAP2-Mediated Gamete Fusion: Lessons From the World of Unicellular Eukaryotes. Front Cell Dev Biol 2022; 9:807313. [PMID: 35071241 PMCID: PMC8777248 DOI: 10.3389/fcell.2021.807313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/29/2023] Open
Abstract
Most, if not all the cellular requirements for fertilization and sexual reproduction arose early in evolution and are retained in extant lineages of single-celled organisms including a number of important model organism species. In recent years, work in two such species, the green alga, Chlamydomonas reinhardtii, and the free-living ciliate, Tetrahymena thermophila, have lent important new insights into the role of HAP2/GCS1 as a catalyst for gamete fusion in organisms ranging from protists to flowering plants and insects. Here we summarize the current state of knowledge around how mating types from these algal and ciliate systems recognize, adhere and fuse to one another, current gaps in our understanding of HAP2-mediated gamete fusion, and opportunities for applying what we know in practical terms, especially for the control of protozoan parasites.
Collapse
Affiliation(s)
- Jennifer F. Pinello
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Theodore G. Clark
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
23
|
Feng J, Dong X, DeCosta A, Su Y, Angrisano F, Sala KA, Blagborough AM, Lu C, Springer TA. Structural basis of malaria transmission blockade by a monoclonal antibody to gamete fusogen HAP2. eLife 2021; 10:74707. [PMID: 34939934 PMCID: PMC8806182 DOI: 10.7554/elife.74707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
HAP2 is a transmembrane gamete fusogen found in multiple eukaryotic kingdoms and is structurally homologous to viral class II fusogens. Studies in Plasmodium have suggested that HAP2 is an attractive target for vaccines that block transmission of malaria. HAP2 has three extracellular domains, arranged in the order D2, D1, and D3. Here, we report monoclonal antibodies against the D3 fragment of Plasmodium berghei HAP2 and crystal structures of D3 in complex with Fab fragments of two of these antibodies, one of which blocks fertilization of Plasmodium berghei in vitro and transmission of malaria in mosquitoes. We also show how this Fab binds the complete HAP2 ectodomain with electron microscopy. The two antibodies cross-react with HAP2 among multiple plasmodial species. Our characterization of the Plasmodium D3 structure, HAP2 ectodomain architecture, and mechanism of inhibition provide insights for the development of a vaccine to block malaria transmission.
Collapse
Affiliation(s)
- Juan Feng
- Program in Cellular and Molecular Medicine, Boston Children's Hospital
| | | | - Adam DeCosta
- Program in Cellular and Molecular Medicine, Boston Children's Hospital
| | - Yang Su
- Program in Cellular and Molecular Medicine, Boston Children's Hospital
| | | | | | | | - Chafen Lu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital
| | | |
Collapse
|
24
|
Pinello JF, Liu Y, Snell WJ. MAR1 links membrane adhesion to membrane merger during cell-cell fusion in Chlamydomonas. Dev Cell 2021; 56:3380-3392.e9. [PMID: 34813735 DOI: 10.1016/j.devcel.2021.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 09/22/2021] [Accepted: 10/28/2021] [Indexed: 01/17/2023]
Abstract
Union of two gametes to form a zygote is a defining event in the life of sexual eukaryotes, yet the mechanisms that underlie cell-cell fusion during fertilization remain poorly characterized. Here, in studies of fertilization in the green alga, Chlamydomonas, we report identification of a membrane protein on minus gametes, Minus Adhesion Receptor 1 (MAR1), that is essential for the membrane attachment with plus gametes that immediately precedes lipid bilayer merger. We show that MAR1 forms a receptor pair with previously identified receptor FUS1 on plus gametes, whose ectodomain architecture we find is identical to a sperm adhesion protein conserved throughout plant lineages. Strikingly, before fusion, MAR1 is biochemically and functionally associated with the ancient, evolutionarily conserved eukaryotic Class II fusion protein HAP2 on minus gametes. Thus, the integral membrane protein MAR1 provides a molecular link between membrane adhesion and bilayer merger during fertilization in Chlamydomonas.
Collapse
Affiliation(s)
- Jennifer F Pinello
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Yanjie Liu
- Department of Cell Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9039, USA
| | - William J Snell
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
25
|
Sharma V, Clark AJ, Kawashima T. Insights into the molecular evolution of fertilization mechanism in land plants. PLANT REPRODUCTION 2021; 34:353-364. [PMID: 34061252 DOI: 10.1007/s00497-021-00414-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/14/2021] [Indexed: 05/27/2023]
Abstract
Comparative genetics and genomics among green plants, including algae, provide deep insights into the evolution of land plant sexual reproduction. Land plants have evolved successive changes during their conquest of the land and innovations in sexual reproduction have played a major role in their terrestrialization. Recent years have seen many revealing dissections of the molecular mechanisms of sexual reproduction and much new genomics data from the land plant lineage, including early diverging land plants, as well as algae. This new knowledge is being integrated to further understand how sexual reproduction in land plants evolved, identifying highly conserved factors and pathways, but also molecular changes that underpinned the emergence of new modes of sexual reproduction. Here, we review recent advances in the knowledge of land plant sexual reproduction from an evolutionary perspective and also revisit the evolution of angiosperm double fertilization.
Collapse
Affiliation(s)
- Vijyesh Sharma
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Anthony J Clark
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
26
|
Guardado-Calvo P, Rey FA. The Viral Class II Membrane Fusion Machinery: Divergent Evolution from an Ancestral Heterodimer. Viruses 2021; 13:v13122368. [PMID: 34960636 PMCID: PMC8706100 DOI: 10.3390/v13122368] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
A key step during the entry of enveloped viruses into cells is the merger of viral and cell lipid bilayers. This process is driven by a dedicated membrane fusion protein (MFP) present at the virion surface, which undergoes a membrane–fusogenic conformational change triggered by interactions with the target cell. Viral MFPs have been extensively studied structurally, and are divided into three classes depending on their three-dimensional fold. Because MFPs of the same class are found in otherwise unrelated viruses, their intra-class structural homology indicates horizontal gene exchange. We focus this review on the class II fusion machinery, which is composed of two glycoproteins that associate as heterodimers. They fold together in the ER of infected cells such that the MFP adopts a conformation primed to react to specific clues only upon contact with a target cell, avoiding premature fusion in the producer cell. We show that, despite having diverged in their 3D fold during evolution much more than the actual MFP, the class II accompanying proteins (AP) also derive from a distant common ancestor, displaying an invariant core formed by a β-ribbon and a C-terminal immunoglobulin-like domain playing different functional roles—heterotypic interactions with the MFP, and homotypic AP/AP contacts to form spikes, respectively. Our analysis shows that class II APs are easily identifiable with modern structural prediction algorithms, providing useful information in devising immunogens for vaccine design.
Collapse
|
27
|
Zhang J, Pinello JF, Fernández I, Baquero E, Fedry J, Rey FA, Snell WJ. Species-specific gamete recognition initiates fusion-driving trimer formation by conserved fusogen HAP2. Nat Commun 2021; 12:4380. [PMID: 34282138 PMCID: PMC8289870 DOI: 10.1038/s41467-021-24613-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/15/2021] [Indexed: 12/02/2022] Open
Abstract
Recognition and fusion between gametes during fertilization is an ancient process. Protein HAP2, recognized as the primordial eukaryotic gamete fusogen, is a structural homolog of viral class II fusion proteins. The mechanisms that regulate HAP2 function, and whether virus-fusion-like conformational changes are involved, however, have not been investigated. We report here that fusion between plus and minus gametes of the green alga Chlamydomonas indeed requires an obligate conformational rearrangement of HAP2 on minus gametes from a labile, prefusion form into the stable homotrimers observed in structural studies. Activation of HAP2 to undergo its fusogenic conformational change occurs only upon species-specific adhesion between the two gamete membranes. Following a molecular mechanism akin to fusion of enveloped viruses, the membrane insertion capacity of the fusion loop is required to couple formation of trimers to gamete fusion. Thus, species-specific membrane attachment is the gateway to fusion-driving HAP2 rearrangement into stable trimers. HAP2 is essential for gamete fusion during fertilization and is conserved among eukaryotes. Here the authors show that species-specific adhesion between Chlamydomonas plus and minus gametes initiates HAP2 to undergo a fusogenic conformational change into homotrimers via a molecular mechanism akin to that of enveloped viruses.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Jennifer F Pinello
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Ignacio Fernández
- Unité de Virologie Structurale, Virology Department and CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Eduard Baquero
- Unité de Virologie Structurale, Virology Department and CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Juliette Fedry
- Unité de Virologie Structurale, Virology Department and CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Félix A Rey
- Unité de Virologie Structurale, Virology Department and CNRS UMR 3569, Institut Pasteur, Paris, France
| | - William J Snell
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| |
Collapse
|
28
|
Abstract
The gametophyte represents the sexual phase in the alternation of generations in plants; the other, nonsexual phase is the sporophyte. Here, we review the evolutionary origins of the male gametophyte among land plants and, in particular, its ontogenesis in flowering plants. The highly reduced male gametophyte of angiosperm plants is a two- or three-celled pollen grain. Its task is the production of two male gametes and their transport to the female gametophyte, the embryo sac, where double fertilization takes place. We describe two phases of pollen ontogenesis-a developmental phase leading to the differentiation of the male germline and the formation of a mature pollen grain and a functional phase representing the pollen tube growth, beginning with the landing of the pollen grain on the stigma and ending with double fertilization. We highlight recent advances in the complex regulatory mechanisms involved, including posttranscriptional regulation and transcript storage, intracellular metabolic signaling, pollen cell wall structure and synthesis, protein secretion, and phased cell-cell communication within the reproductive tissues.
Collapse
Affiliation(s)
- Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| |
Collapse
|
29
|
Peacock L, Kay C, Farren C, Bailey M, Carrington M, Gibson W. Sequential production of gametes during meiosis in trypanosomes. Commun Biol 2021; 4:555. [PMID: 33976359 PMCID: PMC8113336 DOI: 10.1038/s42003-021-02058-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 03/24/2021] [Indexed: 02/03/2023] Open
Abstract
Meiosis is a core feature of eukaryotes that occurs in all major groups, including the early diverging excavates. In this group, meiosis and production of haploid gametes have been described in the pathogenic protist, Trypanosoma brucei, and mating occurs in the salivary glands of the insect vector, the tsetse fly. Here, we searched for intermediate meiotic stages among trypanosomes from tsetse salivary glands. Many different cell types were recovered, including trypanosomes in Meiosis I and gametes. Significantly, we found trypanosomes containing three nuclei with a 1:2:1 ratio of DNA contents. Some of these cells were undergoing cytokinesis, yielding a mononucleate gamete and a binucleate cell with a nuclear DNA content ratio of 1:2. This cell subsequently produced three more gametes in two further rounds of division. Expression of the cell fusion protein HAP2 (GCS1) was not confined to gametes, but also extended to meiotic intermediates. We propose a model whereby the two nuclei resulting from Meiosis I undergo asynchronous Meiosis II divisions with sequential production of haploid gametes.
Collapse
Affiliation(s)
- Lori Peacock
- School of Biological Sciences University of Bristol, Bristol, UK
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Chris Kay
- School of Biological Sciences University of Bristol, Bristol, UK
| | - Chloe Farren
- School of Biological Sciences University of Bristol, Bristol, UK
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Wendy Gibson
- School of Biological Sciences University of Bristol, Bristol, UK.
| |
Collapse
|
30
|
Gibson W. The sexual side of parasitic protists. Mol Biochem Parasitol 2021; 243:111371. [PMID: 33872659 DOI: 10.1016/j.molbiopara.2021.111371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 01/09/2023]
Abstract
Much of the vast evolutionary landscape occupied by Eukaryotes is dominated by protists. Though parasitism has arisen in many lineages, there are three main groups of parasitic protists of relevance to human and livestock health: the Apicomplexa, including the malaria parasite Plasmodium and coccidian pathogens of livestock such as Eimeria; the excavate flagellates, encompassing a diverse range of protist pathogens including trypanosomes, Leishmania, Giardia and Trichomonas; and the Amoebozoa, including pathogenic amoebae such as Entamoeba. These three groups represent separate, deep branches of the eukaryote tree, underlining their divergent evolutionary histories. Here, I explore what is known about sex in these three main groups of parasitic protists.
Collapse
Affiliation(s)
- Wendy Gibson
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, BS8 1TQ, United Kingdom.
| |
Collapse
|
31
|
Exaptation of Retroviral Syncytin for Development of Syncytialized Placenta, Its Limited Homology to the SARS-CoV-2 Spike Protein and Arguments against Disturbing Narrative in the Context of COVID-19 Vaccination. BIOLOGY 2021; 10:biology10030238. [PMID: 33808658 PMCID: PMC8003504 DOI: 10.3390/biology10030238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
Simple Summary The anti-vaccination movement claims an alleged danger of the COVID-19 vaccine based on the presupposed similarity between syncytin, which plays a role in human placentation and the SARS-CoV-2 spike protein. We argue that because of very low sequence similarity between human syncytin-1 and the SARS-CoV-2 S protein, it is unlikely that any S protein-specific SARS-CoV-2 vaccine would generate an immune response which would affect fertility and pregnancy. However, further evaluation of potential impacts of COVID-19 vaccines on fertility, placentation, pregnancy and general health of mother and newborn is required. Abstract Human placenta formation relies on the interaction between fused trophoblast cells of the embryo with uterine endometrium. The fusion between trophoblast cells, first into cytotrophoblast and then into syncytiotrophoblast, is facilitated by the fusogenic protein syncytin. Syncytin derives from an envelope glycoprotein (ENV) of retroviral origin. In exogenous retroviruses, the envelope glycoproteins coded by env genes allow fusion of the viral envelope with the host cell membrane and entry of the virus into a host cell. During mammalian evolution, the env genes have been repeatedly, and independently, captured by various mammalian species to facilitate the formation of the placenta. Such a shift in the function of a gene, or a trait, for a different purpose during evolution is called an exaptation (co-option). We discuss the structure and origin of the placenta, the fusogenic and non-fusogenic functions of syncytin, and the mechanism of cell fusion. We also comment on an alleged danger of the COVID-19 vaccine based on the presupposed similarity between syncytin and the SARS-CoV-2 spike protein.
Collapse
|
32
|
Flagging fusion: Phosphatidylserine signaling in cell-cell fusion. J Biol Chem 2021; 296:100411. [PMID: 33581114 PMCID: PMC8005811 DOI: 10.1016/j.jbc.2021.100411] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Formations of myofibers, osteoclasts, syncytiotrophoblasts, and fertilized zygotes share a common step, cell–cell fusion. Recent years have brought about considerable progress in identifying some of the proteins involved in these and other cell-fusion processes. However, even for the best-characterized cell fusions, we still do not know the mechanisms that regulate the timing of cell-fusion events. Are they fully controlled by the expression of fusogenic proteins or do they also depend on some triggering signal that activates these proteins? The latter scenario would be analogous to the mechanisms that control the timing of exocytosis initiated by Ca2+ influx and virus-cell fusion initiated by low pH- or receptor interaction. Diverse cell fusions are accompanied by the nonapoptotic exposure of phosphatidylserine at the surface of fusing cells. Here we review data on the dependence of membrane remodeling in cell fusion on phosphatidylserine and phosphatidylserine-recognizing proteins and discuss the hypothesis that cell surface phosphatidylserine serves as a conserved “fuse me” signal regulating the time and place of cell-fusion processes.
Collapse
|
33
|
Adhikari PB, Liu X, Wu X, Zhu S, Kasahara RD. Fertilization in flowering plants: an odyssey of sperm cell delivery. PLANT MOLECULAR BIOLOGY 2020; 103:9-32. [PMID: 32124177 DOI: 10.1007/s11103-020-00987-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/26/2020] [Indexed: 05/22/2023]
Abstract
In light of the available discoveries in the field, this review manuscript discusses on plant reproduction mechanism and molecular players involved in the process. Sperm cells in angiosperms are immotile and are physically distant to the female gametophytes (FG). To secure the production of the next generation, plants have devised a clever approach by which the two sperm cells in each pollen are safely delivered to the female gametophyte where two fertilization events occur (by each sperm cell fertilizing an egg cell and central cell) to give rise to embryo and endosperm. Each of the successfully fertilized ovules later develops into a seed. Sets of macromolecules play roles in pollen tube (PT) guidance, from the stigma, through the transmitting tract and funiculus to the micropylar end of the ovule. Other sets of genetic players are involved in PT reception and in its rupture after it enters the ovule, and yet other sets of genes function in gametic fusion. Angiosperms have come long way from primitive reproductive structure development to today's sophisticated, diverse, and in most cases flamboyant organ. In this review, we will be discussing on the intricate yet complex molecular mechanism of double fertilization and how it might have been shaped by the evolutionary forces focusing particularly on the model plant Arabidopsis.
Collapse
Affiliation(s)
- Prakash B Adhikari
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoyan Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoyan Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shaowei Zhu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ryushiro D Kasahara
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
34
|
Qiu Y, Zhao Y, Liu F, Ye B, Zhao Z, Thongpoon S, Roobsoong W, Sattabongkot J, Cui L, Fan Q, Cao Y. Evaluation of Plasmodium vivax HAP2 as a transmission-blocking vaccine candidate. Vaccine 2020; 38:2841-2848. [PMID: 32093983 DOI: 10.1016/j.vaccine.2020.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022]
Abstract
Transmission-blocking vaccine (TBV) is a promising strategy to interfere with the transmission of malaria. To date, only limited TBV candidate antigens have been identified for Plasmodium vivax. HAP2 is a gamete membrane fusion protein, with homology to the class II viral fusion proteins. Herein we reported the characterization of the PvHAP2 for its potential as a TBV candidate for P. vivax. The HAP2/GCS1 domain of PvHAP2 was expressed in the baculovirus expression system and the recombinant protein was used to raise antibodies in rabbits. Indirect immunofluorescence assays showed that anti-PvHAP2 antibodies reacted only with the male gametocytes on blood smears. Direct membrane feeding assays were conducted using four field P. vivax isolates in Anopheles dirus. At a mean infection intensity of 72.4, 70.7, 51.3, and 15.6 oocysts/midgut with the control antibodies, anti-PvHAP2 antibodies significantly reduced the midgut oocyst intensity by 40.3, 44.4, 61.9, and 89.7%. Whereas the anti-PvHAP2 antibodies were not effective in reducing the infection prevalence at higher parasite exposure (51.3-72.4 oocysts/midgut in the control group), the anti-PvHAP2 antibodies reduced infection prevalence by 50% at a low challenge (15.6 oocysts/midgut). Multiple sequence alignment showed 100% identity among these Thai P. vivax isolates, suggesting that polymorphism may not be an impediment for the utilization of PvHAP2 as a TBV antigen. In conclusion, our results suggest that PvHAP2 could serve as a TBV candidate for P. vivax, and further optimization and evaluation are warranted.
Collapse
Affiliation(s)
- Yue Qiu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Bo Ye
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Zhenjun Zhao
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Sataporn Thongpoon
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL 33612, USA
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
35
|
Sprunck S. Twice the fun, double the trouble: gamete interactions in flowering plants. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:106-116. [PMID: 31841779 DOI: 10.1016/j.pbi.2019.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 05/13/2023]
Abstract
During sexual reproduction two gametes of opposite sex unite to produce a zygote. Gamete fusion is a highly controlled process and it has become evident that, across species, common concepts apply to this ancient and fundamental event. Sexual reproduction in flowering plants is even more complex in that two sperm cells fertilize two female reproductive cells (egg and central cell) in a process called double fertilization. Due to the coordinated developmental progression and mutual dependency of the two fertilization products (embryo and endosperm), the success and timing of the two fusion events substantially affects seed set. So far, four proteins are known to act on the surfaces of Arabidopsis gametes to accomplish double fertilization. The molecular and evolutionary characteristics of these players prove that flowering plants integrate plant-specific and widely conserved mechanisms to accomplish the timely fusion of each sperm cell with one female reproductive cell.
Collapse
Affiliation(s)
- Stefanie Sprunck
- Cell Biology and Plant Biochemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| |
Collapse
|
36
|
Bloomfield G. The molecular foundations of zygosis. Cell Mol Life Sci 2020; 77:323-330. [PMID: 31203379 PMCID: PMC11105095 DOI: 10.1007/s00018-019-03187-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
Zygosis is the generation of new biological individuals by the sexual fusion of gamete cells. Our current understanding of eukaryotic phylogeny indicates that sex is ancestral to all extant eukaryotes. Although sexual development is extremely diverse, common molecular elements have been retained. HAP2-GCS1, a protein that promotes the fusion of gamete cell membranes that is related in structure to certain viral fusogens, is conserved in many eukaryotic lineages, even though gametes vary considerably in form and behaviour between species. Similarly, although zygotes have dramatically different forms and fates in different organisms, diverse eukaryotes share a common developmental programme in which homeodomain-containing transcription factors play a central role. These common mechanistic elements suggest possible common evolutionary histories that, if correct, would have profound implications for our understanding of eukaryogenesis.
Collapse
|
37
|
Toda E, Okamoto T. Polyspermy in angiosperms: Its contribution to polyploid formation and speciation. Mol Reprod Dev 2019; 87:374-379. [PMID: 31736192 DOI: 10.1002/mrd.23295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Polyploidization has played a major role in the long-term diversification and evolutionary success of angiosperms. Triploid formation among diploid plants, which is generally considered to be achieved by fertilization of an unreduced gamete with a reduced one, has been accepted as a means of polyploid production. In addition, it has been supposed that polyspermy also contributes to the triploid formation in maize, wheat, and some orchids; however, such a mechanism has been considered uncommon because reproducing the polyspermic situation and unambiguously investigating developmental profiles of polyspermic zygotes are difficult. To overcome these problems, rice polyspermic zygotes have been successfully produced by electrofusion of an egg cell with two sperm cells, and their developmental profiles have been monitored. The triploid zygotes progress through karyogamy and divide into two-celled embryos via a typical bipolar mitotic division; the two-celled embryos further develop into triploid plants, indicating that polyspermic plant zygotes, unlike those of animals, can develop normally. Furthermore, progenies consisting of triparental genetic materials have been successfully obtained in Arabidopsis through the pollination of two different kinds of male parents with a female parent. These different pieces of evidence for development and emergence of polyspermic zygotes in vitro and in planta suggest that polyspermy is a key event in polyploidization and species diversification.
Collapse
Affiliation(s)
- Erika Toda
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| |
Collapse
|
38
|
Genetic and genomic evolution of sexual reproduction: echoes from LECA to the fungal kingdom. Curr Opin Genet Dev 2019; 58-59:70-75. [PMID: 31473482 DOI: 10.1016/j.gde.2019.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/28/2019] [Accepted: 07/16/2019] [Indexed: 12/30/2022]
Abstract
Sexual reproduction is vastly diverse and yet highly conserved across the eukaryotic domain. This ubiquity suggests that the last eukaryotic common ancestor (LECA) was sexual. It is hypothesized that several critical processes in sexual reproduction, including cell fusion and meiosis, were acquired during the evolution from the first eukaryotic common ancestor (FECA) to the sexual LECA. However, it is challenging to delineate the exact origin and evolution of sexual reproduction given that both FECA and LECA are extinct. Studies of diverse eukaryotes have helped to shed light on this sexual evolutionary trajectory, revealing that a primordial sexual ploidy cycle likely involved endoreplication followed by concerted chromosome loss and that cell-cell fusion, meiosis, and sex determination later arose to shape modern sexual reproduction. Despite the general conservation of sexual reproduction processes throughout eukaryotes, modern sexual cycles are immensely diverse and complex. This diversity and complexity has become readily apparent in the fungal kingdom with the recent rapid expansion of whole-genome sequencing. This abundance of data, the variety of genetic tools available to manipulate and characterize fungi, and the thorough characterization of many fungal sexual cycles make the fungal kingdom an excellent forum, in which to study the conservation and diversification of sexual reproduction.
Collapse
|
39
|
Lobov AA, Maltseva AL, Mikhailova NA, Granovitch AI. The Molecular Mechanisms of Gametic Incompatibility in Invertebrates. Acta Naturae 2019; 11:4-15. [PMID: 31720011 PMCID: PMC6826153 DOI: 10.32607/20758251-2019-11-3-4-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/09/2019] [Indexed: 12/02/2022] Open
Abstract
Fertilization (gamete fusion followed by zygote formation) is a multistage process. Each stage is mediated by ligand-receptor recognition of gamete interaction molecules. This recognition includes the movement of sperm in the gradient of egg chemoattractants, destruction of the egg envelope by acrosomal proteins, etc. Gametic incompatibility is one of the mechanisms of reproductive isolation. It is based on species-specific molecular interactions that prevent heterospecific fertilization. Although gametic incompatibility may occur in any sexually reproducing organism, it has been studied only in a few model species. Gamete interactions in different taxa involve generally similar processes, but they often employ non-homologous molecules. Gamete recognition proteins evolve rapidly, like immunity proteins, and include many taxon-specific families. In fact, recently appeared proteins particularly contribute to reproductive isolation via gametic incompatibility. Thus, we can assume a multiple, independent origin of this type of reproductive isolation throughout animal evolution. Gametic incompatibility can be achieved at any fertilization stage and entails different consequences at different taxonomic levels and ranges, from complete incompatibility between closely related species to partial incompatibility between distantly related taxa.
Collapse
Affiliation(s)
- A. A. Lobov
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, Universitetskaya Emb. 7/9, St. Petersburg, 199034, Russia
- Laboratory of Regenerative Biomedicine, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russia
| | - A. L. Maltseva
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, Universitetskaya Emb. 7/9, St. Petersburg, 199034, Russia
| | - N. A. Mikhailova
- Centre of Cell Technologies, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russia
| | - A. I. Granovitch
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, Universitetskaya Emb. 7/9, St. Petersburg, 199034, Russia
| |
Collapse
|
40
|
Johnson MA, Harper JF, Palanivelu R. A Fruitful Journey: Pollen Tube Navigation from Germination to Fertilization. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:809-837. [PMID: 30822112 DOI: 10.1146/annurev-arplant-050718-100133] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In flowering plants, pollen tubes undergo tip growth to deliver two nonmotile sperm to the ovule where they fuse with an egg and central cell to achieve double fertilization. This extended journey involves rapid growth and changes in gene activity that manage compatible interactions with at least seven different cell types. Nearly half of the genome is expressed in haploid pollen, which facilitates genetic analysis, even of essential genes. These unique attributes make pollen an ideal system with which to study plant cell-cell interactions, tip growth, cell migration, the modulation of cell wall integrity, and gene expression networks. We highlight the signaling systems required for pollen tube navigation and the potential roles of Ca2+ signals. The dynamics of pollen development make sexual reproduction highly sensitive to heat stress. Understanding this vulnerability may generate strategies to improve seed crop yields that are under threat from climate change.
Collapse
Affiliation(s)
- Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA;
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA;
| | | |
Collapse
|
41
|
Brukman NG, Uygur B, Podbilewicz B, Chernomordik LV. How cells fuse. J Cell Biol 2019; 218:1436-1451. [PMID: 30936162 PMCID: PMC6504885 DOI: 10.1083/jcb.201901017] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Brukman et al. review cell–cell fusion mechanisms, focusing on the identity of the fusogens that mediate these processes and the regulation of their activities. Cell–cell fusion remains the least understood type of membrane fusion process. However, the last few years have brought about major advances in understanding fusion between gametes, myoblasts, macrophages, trophoblasts, epithelial, cancer, and other cells in normal development and in diseases. While different cell fusion processes appear to proceed via similar membrane rearrangements, proteins that have been identified as necessary and sufficient for cell fusion (fusogens) use diverse mechanisms. Some fusions are controlled by a single fusogen; other fusions depend on several proteins that either work together throughout the fusion pathway or drive distinct stages. Furthermore, some fusions require fusogens to be present on both fusing membranes, and in other fusions, fusogens have to be on only one of the membranes. Remarkably, some of the proteins that fuse cells also sculpt single cells, repair neurons, promote scission of endocytic vesicles, and seal phagosomes. In this review, we discuss the properties and diversity of the known proteins mediating cell–cell fusion and highlight their different working mechanisms in various contexts.
Collapse
Affiliation(s)
- Nicolas G Brukman
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Berna Uygur
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | | | - Leonid V Chernomordik
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
42
|
Cyprys P, Lindemeier M, Sprunck S. Gamete fusion is facilitated by two sperm cell-expressed DUF679 membrane proteins. NATURE PLANTS 2019; 5:253-257. [PMID: 30850817 DOI: 10.1038/s41477-019-0382-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/06/2019] [Indexed: 05/02/2023]
Abstract
Successful double fertilization in flowering plants relies on two coordinated gamete fusion events, but the underlying molecular processes are not well understood. We show that two sperm-specific DOMAIN OF UNKNOWN FUNCTION 679 membrane proteins (DMP8 and DMP9) facilitate gamete fusion, with a greater effect on sperm-egg fusion than on sperm-central cell fusion. We also show that sperm adhesion and sperm cell separation depend on egg cell-secreted EGG CELL 1 proteins.
Collapse
Affiliation(s)
- Philipp Cyprys
- Cell Biology and Plant Biochemistry, Biochemistry Centre Regensburg, University of Regensburg, Regensburg, Germany
| | - Maria Lindemeier
- Cell Biology and Plant Biochemistry, Biochemistry Centre Regensburg, University of Regensburg, Regensburg, Germany
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, Biochemistry Centre Regensburg, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
43
|
Baquero E, Fedry J, Legrand P, Krey T, Rey FA. Species-Specific Functional Regions of the Green Alga Gamete Fusion Protein HAP2 Revealed by Structural Studies. Structure 2018; 27:113-124.e4. [PMID: 30416037 PMCID: PMC6327110 DOI: 10.1016/j.str.2018.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/28/2018] [Accepted: 09/28/2018] [Indexed: 12/25/2022]
Abstract
The cellular fusion protein HAP2, which is structurally homologous to viral class II fusion proteins, drives gamete fusion across several eukaryotic kingdoms. Gamete fusion is a highly controlled process in eukaryotes, and is allowed only between same species gametes. In spite of a conserved architecture, HAP2 displays several species-specific functional regions that were not resolved in the available X-ray structure of the green alga Chlamydomonas reinhardtii HAP2 ectodomain. Here we present an X-ray structure resolving these regions, showing a target membrane interaction surface made by three amphipathic helices in a horseshoe-shaped arrangement. HAP2 from green algae also features additional species-specific motifs inserted in regions that in viral class II proteins are critical for the fusogenic conformational change. Such insertions include a cystine ladder-like module evocative of EGF-like motifs responsible for extracellular protein-protein interactions in animals, and a mucin-like region. These features suggest potential HAP2 interaction sites involved in gamete fusion control. Unprecedented organization of amphipathic α helices in the algal HAP2 fusion loops An inserted EGF-like motif suggests a potential algal-specific fusion control site An adjacent mucin-like region potentially modulates algal-specific interactions Inter-chain stem/domain II interactions stabilize the post-fusion hairpin conformation
Collapse
Affiliation(s)
- Eduard Baquero
- Institut Pasteur, Unité de Virologie Structurale, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS UMR 3569, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Juliette Fedry
- Institut Pasteur, Unité de Virologie Structurale, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS UMR 3569, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif-sur-Yvette, France
| | - Thomas Krey
- Institut Pasteur, Unité de Virologie Structurale, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS UMR 3569, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Felix A Rey
- Institut Pasteur, Unité de Virologie Structurale, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS UMR 3569, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
44
|
Abstract
Sex has consequences—indeed, where would we be without it? Yet for all its importance, remarkably little is known about how sex evolved, why it has persisted, or even what mechanisms allow sperm–egg fusion to occur. Fortunately, answers to these questions are beginning to emerge with studies of hapless 2/generative cell specific1 (HAP2/GCS1), a molecular machine that promotes gamete fusion in organisms ranging from protists to flowering plants and insects. In studies by Fedry and colleagues, key structural features of the HAP2 protein are revealed for the first time, lending new insights into its mode of action and reinforcing its relationship to viral proteins that accomplish a similar task and may be intimately linked to the origins of cell–cell fusion events (including sexual reproduction) across evolutionary time. Close structural relationships between proteins that mediate gamete fusion and class II viral fusogens support older theoretical arguments that sexual reproduction in eukaryotes arose with the horizontal transfer of a viral gene to a primordial cell early in the course of evolution.
Collapse
Affiliation(s)
- Theodore Clark
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
45
|
Abstract
Jaffe underscores new research that identifies key roles for IP3 and TMEM16a in the fast block to polyspermy.
Collapse
Affiliation(s)
- Laurinda A Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|