1
|
Ngambia Freitas FS, De Vooght L, Njiokou F, Abeele JVD, Bossard G, Tchicaya B, Corrales RM, Ravel S, Geiger A, Berthier-Teyssedre D. Evaluation of two candidate molecules-TCTP and cecropin-on the establishment of Trypanosoma brucei gambiense into the gut of Glossina palpalis gambiensis. INSECT SCIENCE 2025. [PMID: 40090966 DOI: 10.1111/1744-7917.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 03/19/2025]
Abstract
Trypanosomiasis, transmitted by tsetse flies (Glossina spp.), poses a significant health threat in 36 sub-Saharan African countries. Current control methods targeting tsetse flies, while effective, allow reinfestation. This study investigates paratransgenesis, a novel strategy to engineer symbiotic bacteria in tsetse flies, Sodalis glossinidius, to deliver anti-trypanosome compounds. Disrupting the trypanosome life cycle within the fly and reducing parasite transmission could offer a sustainable solution for trypanosomiasis control. In this context, we tested the effect of cecropin, reported to be lethal for Trypanosoma cruzi (Chagas disease) and TbgTCTP (Translationally Controlled Tumor Protein from Trypanosoma brucei gambiense), previously reported to modulate the growth of bacteria isolated from the fly microbiome, to delay the first peak of parasitemia and the death of trypanosome-infected mice. We have successfully cloned and transfected the genes encoding the two proteins into Sodalis strains. These Sodalis recombinant strains (recSodalisTbgTCTP and recSodaliscecropin) have been then microinjected into the L3 larval stage of Glossina palpalis gambiensis flies. The stability of the cloned genes was checked up to the 20th day after microinjection of recSodalis. The rate of fly emergence from untreated pupae was 95%; it was reduced by nearly 50% due to the mechanical injury caused by microinjection. It decreased to nearly 7% when larvae were injected with recSodalisTbgTCTP, which suggests TCTP could have a lethal impact to larvae development. When challenged with T. brucei gambiense, a slightly lower, but statistically non-significant, infection rate was recorded in flies harboring recSodaliscecropin compared to control flies. The effect of recSodalisTbgTCTP could not be measured due to the very low rate of fly emergence after corresponding treatment of the larvae. The results do not allow to conclude on the effect of cecropin or TCTP, delivered by para-transgenesis into the fly's gut, on the fly infection by the trypanosome. Nevertheless, the results are encouraging insofar as the technical approach works on the couple G. p. gambiensis/T. brucei gambiense. The next step will be to optimize the system and test other targets chosen among the ESPs (Excreted-Secreted Proteins) of the trypanosome secretum, or the differentially expressed genes associated with the sensitivity/resistance of the fly to trypanosome infection.
Collapse
Affiliation(s)
- François Sougal Ngambia Freitas
- Laboratory of Parasitology and Ecology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- IRD-CIRAD, UMR INTERTRYP, Univ Montpellier, Cirad, IRD, Montpellier, France
| | - Linda De Vooght
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Flobert Njiokou
- Laboratory of Parasitology and Ecology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Jan Van Den Abeele
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Géraldine Bossard
- IRD-CIRAD, UMR INTERTRYP, Univ Montpellier, Cirad, IRD, Montpellier, France
| | | | | | - Sophie Ravel
- IRD-CIRAD, UMR INTERTRYP, Univ Montpellier, Cirad, IRD, Montpellier, France
| | - Anne Geiger
- IRD-CIRAD, UMR INTERTRYP, Univ Montpellier, Cirad, IRD, Montpellier, France
| | | |
Collapse
|
2
|
Crump RE, Aliee M, Sutherland SA, Huang CI, Crowley EH, Spencer SEF, Keeling MJ, Shampa C, Mwamba Miaka E, Rock KS. Modelling timelines to elimination of sleeping sickness in the Democratic Republic of Congo, accounting for possible cryptic human and animal transmission. Parasit Vectors 2024; 17:332. [PMID: 39123265 PMCID: PMC11313002 DOI: 10.1186/s13071-024-06404-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/13/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Sleeping sickness (gambiense human African trypanosomiasis, gHAT) is a vector-borne disease targeted for global elimination of transmission (EoT) by 2030. There are, however, unknowns that have the potential to hinder the achievement and measurement of this goal. These include asymptomatic gHAT infections (inclusive of the potential to self-cure or harbour skin-only infections) and whether gHAT infection in animals can contribute to the transmission cycle in humans. METHODS Using modelling, we explore how cryptic (undetected) transmission impacts the monitoring of progress towards and the achievement of the EoT goal. We have developed gHAT models that include either asymptomatic or animal transmission, and compare these to a baseline gHAT model without either of these transmission routes, to explore the potential role of cryptic infections on the EoT goal. Each model was independently calibrated to five different health zones in the Democratic Republic of the Congo (DRC) using available historical human case data for 2000-2020 (obtained from the World Health Organization's HAT Atlas). We applied a novel Bayesian sequential updating approach for the asymptomatic model to enable us to combine statistical information about this type of transmission from each health zone. RESULTS Our results suggest that, when matched to past case data, we estimated similar numbers of new human infections between model variants, although human infections were slightly higher in the models with cryptic infections. We simulated the continuation of screen-confirm-and-treat interventions, and found that forward projections from the animal and asymptomatic transmission models produced lower probabilities of EoT than the baseline model; however, cryptic infections did not prevent EoT from being achieved eventually under this approach. CONCLUSIONS This study is the first to simulate an (as-yet-to-be available) screen-and-treat strategy and found that removing a parasitological confirmation step was predicted to have a more noticeable benefit to transmission reduction under the asymptomatic model compared with the others. Our simulations suggest vector control could greatly impact all transmission routes in all models, although this resource-intensive intervention should be carefully prioritised.
Collapse
Affiliation(s)
- Ronald E Crump
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK
- Mathematics Institute, University of Warwick, Academic Loop Road, Coventry, UK
| | - Maryam Aliee
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK
- Mathematics Institute, University of Warwick, Academic Loop Road, Coventry, UK
| | - Samuel A Sutherland
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Ching-I Huang
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK
- Mathematics Institute, University of Warwick, Academic Loop Road, Coventry, UK
| | - Emily H Crowley
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK
- Mathematics Institute, University of Warwick, Academic Loop Road, Coventry, UK
| | - Simon E F Spencer
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK
- Department of Statistics, University of Warwick, Academic Loop Road, Coventry, UK
| | - Matt J Keeling
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK
- Mathematics Institute, University of Warwick, Academic Loop Road, Coventry, UK
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Chansy Shampa
- Programme National de Lutte Contre la Trypanosomiase Humaine Africaine (PNLTHA)-DRC, Kinshasa, Democratic Republic of Congo
| | - Erick Mwamba Miaka
- Programme National de Lutte Contre la Trypanosomiase Humaine Africaine (PNLTHA)-DRC, Kinshasa, Democratic Republic of Congo
| | - Kat S Rock
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK.
- Mathematics Institute, University of Warwick, Academic Loop Road, Coventry, UK.
| |
Collapse
|
3
|
Soumah AM, Camara M, Kaboré JW, Sadissou I, Ilboudo H, Travaillé C, Camara O, Tichit M, Kaboré J, Boiro S, Crouzols A, Ngoune JMT, Hardy D, Camara A, Jamonneau V, MacLeod A, Bart JM, Camara M, Bucheton B, Rotureau B. Prevalence of dermal trypanosomes in suspected and confirmed cases of gambiense human African trypanosomiasis in Guinea. PLoS Negl Trop Dis 2024; 18:e0012436. [PMID: 39159265 PMCID: PMC11361743 DOI: 10.1371/journal.pntd.0012436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/29/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
The skin is an anatomical reservoir for African trypanosomes, yet the prevalence of extravascular parasite carriage in the population at risk of gambiense Human African Trypanosomiasis (gHAT) remains unclear. Here, we conducted a prospective observational cohort study in the HAT foci of Forecariah and Boffa, Republic of Guinea. Of the 18,916 subjects serologically screened for gHAT, 96 were enrolled into our study. At enrolment and follow-up visits, participants underwent a dermatological examination and had blood samples and superficial skin snip biopsies taken for examination by molecular and immuno-histological methods. In seropositive individuals, dermatological symptoms were significantly more frequent as compared to seronegative controls. Trypanosoma brucei DNA was detected in the blood of 67% of confirmed cases (22/33) and 9% of unconfirmed seropositive individuals (3/32). However, parasites were detected in the extravascular dermis of up to 71% of confirmed cases (25/35) and 41% of unconfirmed seropositive individuals (13/32) by PCR and/or immuno-histochemistry. Six to twelve months after treatment, trypanosome detection in the skin dropped to 17% of confirmed cases (5/30), whereas up to 25% of unconfirmed, hence untreated, seropositive individuals (4/16) were still found positive. Dermal trypanosomes were observed in subjects from both transmission foci, however, the occurrence of pruritus and the PCR positivity rates were significantly higher in unconfirmed seropositive individuals in Forecariah. The lower sensitivity of superficial skin snip biopsies appeared critical for detecting trypanosomes in the basal dermis. These results are discussed in the context of the planned elimination of gHAT.
Collapse
Affiliation(s)
- Alseny M’mah Soumah
- Programme National de Lutte contre les Maladies Tropicales Négligées, Ministère de la Santé, Conakry, Guinea
| | - Mariame Camara
- Programme National de Lutte contre les Maladies Tropicales Négligées, Ministère de la Santé, Conakry, Guinea
| | - Justin Windingoudi Kaboré
- Programme National de Lutte contre les Maladies Tropicales Négligées, Ministère de la Santé, Conakry, Guinea
| | - Ibrahim Sadissou
- INTERTRYP, Université de Montpellier, CIRAD, IRD, Montpellier, France
| | - Hamidou Ilboudo
- INTERTRYP, Université de Montpellier, CIRAD, IRD, Montpellier, France
- Institut de Recherche en Sciences de la Santé - Unité de Recherche Clinique de Nanoro, Nanoro, Burkina-Faso
| | - Christelle Travaillé
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France
| | - Oumou Camara
- Programme National de Lutte contre les Maladies Tropicales Négligées, Ministère de la Santé, Conakry, Guinea
| | - Magali Tichit
- Histopathology Core Facility, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jacques Kaboré
- Unité de recherches sur les bases biologiques de la lutte intégrée, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Salimatou Boiro
- Parasitology Unit, Institut Pasteur of Guinea, Conakry, Guinea
| | - Aline Crouzols
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jean Marc Tsagmo Ngoune
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France
| | - David Hardy
- Histopathology Core Facility, Institut Pasteur, Université Paris Cité, Paris, France
| | - Aïssata Camara
- Parasitology Unit, Institut Pasteur of Guinea, Conakry, Guinea
| | - Vincent Jamonneau
- INTERTRYP, Université de Montpellier, CIRAD, IRD, Montpellier, France
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary, and Life Sciences, Henry Wellcome Building for Comparative Medical Sciences, Glasgow, Scotland, United Kingdom
| | - Jean-Mathieu Bart
- Programme National de Lutte contre les Maladies Tropicales Négligées, Ministère de la Santé, Conakry, Guinea
- INTERTRYP, Université de Montpellier, CIRAD, IRD, Montpellier, France
| | - Mamadou Camara
- Programme National de Lutte contre les Maladies Tropicales Négligées, Ministère de la Santé, Conakry, Guinea
| | - Bruno Bucheton
- Programme National de Lutte contre les Maladies Tropicales Négligées, Ministère de la Santé, Conakry, Guinea
- INTERTRYP, Université de Montpellier, CIRAD, IRD, Montpellier, France
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France
- Parasitology Unit, Institut Pasteur of Guinea, Conakry, Guinea
| |
Collapse
|
4
|
Rock KS, Chapman LAC, Dobson AP, Adams ER, Hollingsworth TD. The Hidden Hand of Asymptomatic Infection Hinders Control of Neglected Tropical Diseases: A Modeling Analysis. Clin Infect Dis 2024; 78:S175-S182. [PMID: 38662705 PMCID: PMC11045017 DOI: 10.1093/cid/ciae096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Neglected tropical diseases are responsible for considerable morbidity and mortality in low-income populations. International efforts have reduced their global burden, but transmission is persistent and case-finding-based interventions rarely target asymptomatic individuals. METHODS We develop a generic mathematical modeling framework for analyzing the dynamics of visceral leishmaniasis in the Indian sub-continent (VL), gambiense sleeping sickness (gHAT), and Chagas disease and use it to assess the possible contribution of asymptomatics who later develop disease (pre-symptomatics) and those who do not (non-symptomatics) to the maintenance of infection. Plausible interventions, including active screening, vector control, and reduced time to detection, are simulated for the three diseases. RESULTS We found that the high asymptomatic contribution to transmission for Chagas and gHAT and the apparently high basic reproductive number of VL may undermine long-term control. However, the ability to treat some asymptomatics for Chagas and gHAT should make them more controllable, albeit over relatively long time periods due to the slow dynamics of these diseases. For VL, the toxicity of available therapeutics means the asymptomatic population cannot currently be treated, but combining treatment of symptomatics and vector control could yield a quick reduction in transmission. CONCLUSIONS Despite the uncertainty in natural history, it appears there is already a relatively good toolbox of interventions to eliminate gHAT, and it is likely that Chagas will need improvements to diagnostics and their use to better target pre-symptomatics. The situation for VL is less clear, and model predictions could be improved by additional empirical data. However, interventions may have to improve to successfully eliminate this disease.
Collapse
Affiliation(s)
- Kat S Rock
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - Lloyd A C Chapman
- Department of Mathematics and Statistics, Lancaster University, Lancaster, United Kingdom
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andrew P Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Emily R Adams
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - T Déirdre Hollingsworth
- Nuffield Department of Medicine, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Protozoan agents and nematode agents (5th section). Transfusion 2024; 64 Suppl 1:S271-S287. [PMID: 38394043 DOI: 10.1111/trf.17694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 02/25/2024]
|
6
|
Reuter C, Hauf L, Imdahl F, Sen R, Vafadarnejad E, Fey P, Finger T, Jones NG, Walles H, Barquist L, Saliba AE, Groeber-Becker F, Engstler M. Vector-borne Trypanosoma brucei parasites develop in artificial human skin and persist as skin tissue forms. Nat Commun 2023; 14:7660. [PMID: 37996412 PMCID: PMC10667367 DOI: 10.1038/s41467-023-43437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Transmission of Trypanosoma brucei by tsetse flies involves the deposition of the cell cycle-arrested metacyclic life cycle stage into mammalian skin at the site of the fly's bite. We introduce an advanced human skin equivalent and use tsetse flies to naturally infect the skin with trypanosomes. We detail the chronological order of the parasites' development in the skin by single-cell RNA sequencing and find a rapid activation of metacyclic trypanosomes and differentiation to proliferative parasites. Here we show that after the establishment of a proliferative population, the parasites enter a reversible quiescent state characterized by slow replication and a strongly reduced metabolism. We term these quiescent trypanosomes skin tissue forms, a parasite population that may play an important role in maintaining the infection over long time periods and in asymptomatic infected individuals.
Collapse
Affiliation(s)
- Christian Reuter
- Department of Cell and Developmental Biology, Biocenter, Julius-Maximilians-Universitaet of Wuerzburg, Wuerzburg, Germany
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Laura Hauf
- Department of Cell and Developmental Biology, Biocenter, Julius-Maximilians-Universitaet of Wuerzburg, Wuerzburg, Germany
| | - Fabian Imdahl
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Wuerzburg, Germany
- Core Unit Systems Medicine, Julius-Maximilians-Universitaet of Wuerzburg, Wuerzburg, Germany
| | - Rituparno Sen
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Wuerzburg, Germany
| | - Ehsan Vafadarnejad
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Wuerzburg, Germany
| | - Philipp Fey
- Translational Center Regenerative Therapies, Fraunhofer ISC, Wuerzburg, Germany
| | - Tamara Finger
- Translational Center Regenerative Therapies, Fraunhofer ISC, Wuerzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, Julius-Maximilians-Universitaet of Wuerzburg, Wuerzburg, Germany
| | - Heike Walles
- Translational Center Regenerative Therapies, Fraunhofer ISC, Wuerzburg, Germany
- Core Facility Tissue Engineering, Otto-von-Guericke University, Magdeburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Wuerzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Wuerzburg, Germany
- Institute of Molecular Infection Biology (IMIB), Faculty of Medicine, Julius-Maximilians-Universitaet of Wuerzburg, Wuerzburg, Germany
| | - Florian Groeber-Becker
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, Wuerzburg, Germany
- Translational Center Regenerative Therapies, Fraunhofer ISC, Wuerzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, Julius-Maximilians-Universitaet of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
7
|
Nascimento IJDS, Cavalcanti MDAT, de Moura RO. Exploring N-myristoyltransferase as a promising drug target against parasitic neglected tropical diseases. Eur J Med Chem 2023; 258:115550. [PMID: 37336067 DOI: 10.1016/j.ejmech.2023.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Neglected tropical diseases (NTDs) constitute a group of approximately 20 infectious diseases that mainly affect the impoverished population without basic sanitation in tropical countries. These diseases are responsible for many deaths worldwide, costing billions of dollars in public health investment to treat and control these infections. Among them are the diseases caused by protozoa of the Trypanosomatid family, which constitute Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (sleeping sickness), and Leishmaniasis. In addition, there is a classification of other diseases, called the big three, AIDS, tuberculosis, and malaria, which are endemic in countries with tropical conditions. Despite the high mortality rates, there is still a gap in the treatment. The drugs have a high incidence of side effects and protozoan resistance, justifying the investment in developing new alternatives. In fact, the Target-Based Drug Design (TBDD) approach is responsible for identifying several promising compounds, and among the targets explored through this approach, N-myristoyltransferase (NMT) stands out. It is an enzyme related to the co-translational myristoylation of N-terminal glycine in various peptides. The myristoylation process is a co-translation that occurs after removing the initiator methionine. This process regulates the assembly of protein complexes and stability, which justifies its potential as a drug target. In order to propose NMT as a potential target for parasitic diseases, this review will address the entire structure and function of this enzyme and the primary studies demonstrating its promising potential against Leishmaniasis, T. cruzi, T. brucei, and malaria. We hope our information can help researchers worldwide search for potential drugs against these diseases that have been threatening the health of the world's population.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Cesmac University Center, Pharmacy Departament, Maceió, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil.
| | - Misael de Azevedo Teotônio Cavalcanti
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
8
|
Meisner J, Kato A, Lemerani MM, Miaka EM, Ismail AT, Wakefield J, Rowhani-Rahbar A, Pigott D, Mayer JD, Lorton C, Rabinowitz PM. Does a One Health approach to human African trypanosomiasis control hasten elimination? A stochastic compartmental modeling approach. Acta Trop 2023; 240:106804. [PMID: 36682395 PMCID: PMC9992224 DOI: 10.1016/j.actatropica.2022.106804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND . In response to large strides in the control of human African trypanosomiasis (HAT), in the early 2000s the WHO set targets for elimination of both the gambiense (gHAT) and rhodesiense (rHAT) forms as a public health (EPHP) problem by 2020, and elimination of gHAT transmisson (EOT) by 2030. While global EPHP targets have been met, and EOT appears within reach, current control strategies may fail to achieve gHAT EOT in the presence of animal reservoirs, the role of which is currently uncertain. Furthermore, rHAT is not targeted for EOT due to the known importance of animal reservoirs for this form. METHODS . To evaluate the utility of a One Health approach to gHAT and rHAT EOT, we built and parameterized a compartmental stochastic model, using the Institute for Disease Modeling's Compartmental Modeling Software, to six HAT epidemics: the national rHAT epidemics in Uganda and Malawi, the national gHAT epidemics in Uganda and South Sudan, and two separate gHAT epidemics in Democratic Republic of Congo distinguished by dominant vector species. In rHAT foci the reservoir animal sub-model was stratified on four species groups, while in gHAT foci domestic swine were assumed to be the only competent reservoir. The modeled time horizon was 2005-2045, with calibration performed using HAT surveillance data and Optuna. Interventions included insecticide and trypanocide treatment of domestic animal reservoirs at varying coverage levels. RESULTS . Validation against HAT surveillance data indicates favorable performance overall, with the possible exception of DRC. EOT was not observed in any modeled scenarios for rHAT, however insecticide treatment consistently performed better than trypanocide treatment in terms of rHAT control. EOT was not observed for gHAT at 0% coverage of domestic reservoirs with trypanocides or insecticides, but was observed by 2030 in all test scenarios; again, insecticides demonstrated superior performance to trypanocides. CONCLUSIONS EOT likely cannot be achieved for rHAT without control of wildlife reservoirs, however insecticide treatment of domestic animals holds promise for improved control. In the presence of domestic animal reservoirs, gHAT EOT may not be achieved under current control strategies.
Collapse
Affiliation(s)
- Julianne Meisner
- Department of Global Health, University of Washington, Seattle, WA, USA.
| | | | - Marshall M Lemerani
- Trypanosomiasis Control Programme, Malawi Ministry of Health, Lilongwe, Malawi
| | - Erick M Miaka
- Trypanosomiasis Control Programme, Malawi Ministry of Health, Lilongwe, Malawi
| | - Acaga T Ismail
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Kinshasa, DRC
| | - Jonathan Wakefield
- Department of Statistics, University of Washington, Seattle, WA, USA; Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | - David Pigott
- Department of Health Metrics Sciences, University of Washington, Seattle, WA, USA
| | - Jonathan D Mayer
- Department of Epidemiology, University of Washington, Seattle, WA, USA; Department of Geography, University of Washington, Seattle, WA, USA
| | | | - Peter M Rabinowitz
- Department of Environmental and Occupational Health Sciences, Seattle, WA, USA
| |
Collapse
|
9
|
Abstract
Leishmaniasis (visceral and cutaneous), Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries. Although the situation has improved for human African trypanosomiasis, there remains an urgent need for new medicines to treat leishmaniasis and Chagas disease; the clinical development pipeline is particularly sparse for Chagas disease. In this Review, we describe recent advances in our understanding of the biology of the causative pathogens, particularly from the drug discovery perspective, and we explore the progress that has been made in the development of new drug candidates and the identification of promising molecular targets. We also explore the challenges in developing new clinical candidates and discuss potential solutions to overcome such hurdles.
Collapse
|
10
|
Mabille D, Dirkx L, Thys S, Vermeersch M, Montenye D, Govaerts M, Hendrickx S, Takac P, Van Weyenbergh J, Pintelon I, Delputte P, Maes L, Pérez-Morga D, Timmermans JP, Caljon G. Impact of pulmonary African trypanosomes on the immunology and function of the lung. Nat Commun 2022; 13:7083. [PMID: 36400767 PMCID: PMC9674601 DOI: 10.1038/s41467-022-34757-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
Approximately 20% of sleeping sickness patients exhibit respiratory complications, however, with a largely unknown role of the parasite. Here we show that tsetse fly-transmitted Trypanosoma brucei parasites rapidly and permanently colonize the lungs and occupy the extravascular spaces surrounding the blood vessels of the alveoli and bronchi. They are present as nests of multiplying parasites exhibiting close interactions with collagen and active secretion of extracellular vesicles. The local immune response shows a substantial increase of monocytes, macrophages, dendritic cells and γδ and activated αβ T cells and a later influx of neutrophils. Interestingly, parasite presence results in a significant reduction of B cells, eosinophils and natural killer cells. T. brucei infected mice show no infection-associated pulmonary dysfunction, mirroring the limited pulmonary clinical complications during sleeping sickness. However, the substantial reduction of the various immune cells may render individuals more susceptible to opportunistic infections, as evident by a co-infection experiment with respiratory syncytial virus. Collectively, these observations provide insights into a largely overlooked target organ, and may trigger new diagnostic and supportive therapeutic approaches for sleeping sickness.
Collapse
Affiliation(s)
- Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Laura Dirkx
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Sofie Thys
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Gosselies, Belgium
- Laboratory of Molecular Parasitology, IBMM, Université libre de Bruxelles, Gosselies, Belgium
| | - Daniel Montenye
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Gosselies, Belgium
- Laboratory of Molecular Parasitology, IBMM, Université libre de Bruxelles, Gosselies, Belgium
| | - Matthias Govaerts
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Peter Takac
- Institute of Zoology, Slovak Academy of Sciences, 84506, Bratislava, Slovakia
- Scientica, Ltd., 83106, Bratislava, Slovakia
| | - Johan Van Weyenbergh
- Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute of Medical Research, KU Leuven, Leuven, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - David Pérez-Morga
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Gosselies, Belgium
- Laboratory of Molecular Parasitology, IBMM, Université libre de Bruxelles, Gosselies, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
11
|
Sima N, Dujeancourt-Henry A, Perlaza BL, Ungeheuer MN, Rotureau B, Glover L. SHERLOCK4HAT: A CRISPR-based tool kit for diagnosis of Human African Trypanosomiasis. EBioMedicine 2022; 85:104308. [PMCID: PMC9626900 DOI: 10.1016/j.ebiom.2022.104308] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/09/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022] Open
Abstract
Background To achieve elimination of Human African Trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense (gHAT), the development of highly sensitive diagnostics is needed. We have developed a CRISPR based diagnostic for HAT using SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKing) that is readily adaptable to a field-based setting. Methods We adapted SHERLOCK for the detection of T. brucei species. We targeted 7SLRNA, TgSGP and SRA genes and tested SHERLOCK against RNA from blood, buffy coat, dried blood spots (DBS), and clinical samples. Findings The pan-Trypanozoon 7SLRNA and T. b. gambiense-specific TgSGP SHERLOCK assays had a sensitivity of 0.1 parasite/μL and a limit of detection 100 molecules/μL. T. b. rhodesiense-specific SRA had a sensitivity of 0.1 parasite/μL and a limit of detection of 10 molecules/μL. TgSGP SHERLOCK and SRA SHERLOCK detected 100% of the field isolated strains. Using clinical specimens from the WHO HAT cryobank, the 7SLRNA SHERLOCK detected trypanosomes in gHAT samples with 56.1%, 95% CI [46.25–65.53] sensitivity and 98.4%, 95% CI [91.41–99.92] specificity, and rHAT samples with 100%, 95% CI [83.18–100] sensitivity and 94.1%, 95% CI [80.91–98.95] specificity. The species-specific TgSGP and SRA SHERLOCK discriminated between the gambiense/rhodesiense HAT infections with 100% accuracy. Interpretation The 7SLRNA, TgSGP and SRA SHERLOCK discriminate between gHAT and rHAT infections, and could be used for epidemiological surveillance and diagnosis of HAT in the field after further technical development. Funding Institut Pasteur (PTR-175 SHERLOCK4HAT), French Government's Investissement d’Avenir program Laboratoire d’Excellence Integrative Biology of Emerging Infectious Diseases (LabEx IBEID), and Agence Nationale pour la Recherche (ANR-PRC 2021 SherPa).
Collapse
Affiliation(s)
- Núria Sima
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, F-75015, Paris, France,Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201 & Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Sorbonne, Paris, France
| | - Annick Dujeancourt-Henry
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Blanca Liliana Perlaza
- Institut Pasteur, ICAReB Platform (Clinical Investigation & Access to Research Bioresources) of the Center for Translational Science, Paris, France
| | - Marie-Noelle Ungeheuer
- Institut Pasteur, ICAReB Platform (Clinical Investigation & Access to Research Bioresources) of the Center for Translational Science, Paris, France
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201 & Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Sorbonne, Paris, France,Parasitology Unit, Institut Pasteur of Guinea, Conakry, Guinea,Corresponding author.
| | - Lucy Glover
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, F-75015, Paris, France,Corresponding author.
| |
Collapse
|
12
|
Crump RE, Huang CI, Spencer SEF, Brown PE, Shampa C, Mwamba Miaka E, Rock KS. Modelling to infer the role of animals in gambiense human African trypanosomiasis transmission and elimination in the DRC. PLoS Negl Trop Dis 2022; 16:e0010599. [PMID: 35816487 PMCID: PMC9302778 DOI: 10.1371/journal.pntd.0010599] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/21/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
Gambiense human African trypanosomiasis (gHAT) has been targeted for elimination of transmission (EoT) to humans by 2030. Whilst this ambitious goal is rapidly approaching, there remain fundamental questions about the presence of non-human animal transmission cycles and their potential role in slowing progress towards, or even preventing, EoT. In this study we focus on the country with the most gHAT disease burden, the Democratic Republic of Congo (DRC), and use mathematical modelling to assess whether animals may contribute to transmission in specific regions, and if so, how their presence could impact the likelihood and timing of EoT. By fitting two model variants-one with, and one without animal transmission-to the human case data from 2000-2016 we estimate model parameters for 158 endemic health zones of the DRC. We evaluate the statistical support for each model variant in each health zone and infer the contribution of animals to overall transmission and how this could impact predicted time to EoT. We conclude that there are 24/158 health zones where there is substantial to decisive statistical support for some animal transmission. However-even in these regions-we estimate that animals would be extremely unlikely to maintain transmission on their own. Animal transmission could hamper progress towards EoT in some settings, with projections under continuing interventions indicating that the number of health zones expected to achieve EoT by 2030 reduces from 68/158 to 61/158 if animal transmission is included in the model. With supplementary vector control (at a modest 60% tsetse reduction) added to medical screening and treatment interventions, the predicted number of health zones meeting the goal increases to 147/158 for the model including animal transmission. This is due to the impact of vector reduction on transmission to and from all hosts.
Collapse
Affiliation(s)
- Ronald E. Crump
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | - Ching-I Huang
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | - Simon E. F. Spencer
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- The Department of Statistics, The University of Warwick, Coventry, United Kingdom
| | - Paul E. Brown
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | - Chansy Shampa
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Erick Mwamba Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Kat S. Rock
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
13
|
Tettey MD, Rojas F, Matthews KR. Extracellular release of two peptidases dominates generation of the trypanosome quorum-sensing signal. Nat Commun 2022; 13:3322. [PMID: 35680928 PMCID: PMC9184580 DOI: 10.1038/s41467-022-31057-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/31/2022] [Indexed: 01/22/2023] Open
Abstract
Trypanosomes causing African sleeping sickness use quorum-sensing (QS) to generate transmission-competent stumpy forms in mammalian hosts. This density-dependent process is signalled by oligopeptides that stimulate the signal transduction pathway leading to stumpy formation. Here, using mass spectrometry analysis, we identify peptidases released by trypanosomes and, for 12 peptidases, confirm their extracellular delivery. Thereafter, we determine the contribution of each peptidase to QS signal production using systematic inducible overexpression in vivo, and confirm this activity operates through the physiological QS signalling pathway. Gene knockout of the QS-active peptidases identifies two enzymes, oligopeptidase B and metallocarboxypeptidase 1, that significantly reduce QS when ablated individually. Further, combinatorial gene knockout of both peptidases confirms their dominance in the generation of the QS signal, with peptidase release of oligopeptidase B mediated via an unconventional protein secretion pathway. This work identifies how the QS signal driving trypanosome virulence and transmission is generated in mammalian hosts.
Collapse
Affiliation(s)
- Mabel Deladem Tettey
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH93FL, UK
| | - Federico Rojas
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH93FL, UK.
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4AT, UK.
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH93FL, UK.
| |
Collapse
|
14
|
African trypanosome strategies for conquering new hosts and territories: the end of monophyly? Trends Parasitol 2022; 38:724-736. [DOI: 10.1016/j.pt.2022.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
|
15
|
Huang CI, Crump RE, Brown PE, Spencer SEF, Miaka EM, Shampa C, Keeling MJ, Rock KS. Identifying regions for enhanced control of gambiense sleeping sickness in the Democratic Republic of Congo. Nat Commun 2022; 13:1448. [PMID: 35304479 PMCID: PMC8933483 DOI: 10.1038/s41467-022-29192-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Gambiense human African trypanosomiasis (sleeping sickness, gHAT) is a disease targeted for elimination of transmission by 2030. While annual new cases are at a historical minimum, the likelihood of achieving the target is unknown. We utilised modelling to study the impacts of four strategies using currently available interventions, including active and passive screening and vector control, on disease burden and transmission across 168 endemic health zones in the Democratic Republic of the Congo. Median projected years of elimination of transmission show only 98 health zones are on track despite significant reduction in disease burden under medical-only strategies (64 health zones if > 90% certainty required). Blanket coverage with vector control is impractical, but is predicted to reach the target in all heath zones. Utilising projected disease burden under the uniform medical-only strategy, we provide a priority list of health zones for consideration for supplementary vector control alongside medical interventions.
Collapse
Affiliation(s)
- Ching-I Huang
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, UK.
- Mathematics Institute, The University of Warwick, Coventry, UK.
| | - Ronald E Crump
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, UK
- Mathematics Institute, The University of Warwick, Coventry, UK
- The School of Life Sciences, The University of Warwick, Coventry, UK
| | - Paul E Brown
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, UK
- Mathematics Institute, The University of Warwick, Coventry, UK
| | - Simon E F Spencer
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, UK
- The Department of Statistics, The University of Warwick, Coventry, UK
| | - Erick Mwamba Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Chansy Shampa
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Matt J Keeling
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, UK
- Mathematics Institute, The University of Warwick, Coventry, UK
- The School of Life Sciences, The University of Warwick, Coventry, UK
| | - Kat S Rock
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, UK
- Mathematics Institute, The University of Warwick, Coventry, UK
| |
Collapse
|
16
|
Lisack J, Morriswood B, Engstler M. Response to comment on 'Unexpected plasticity in the life cycle of Trypanosoma Brucei'. eLife 2022; 11:e75922. [PMID: 35103593 PMCID: PMC8806184 DOI: 10.7554/elife.75922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/20/2021] [Indexed: 01/23/2023] Open
Abstract
We thank Keith Matthews and Stephen Larcombe for their thoughtful comment, which follows the good tradition of public scientific discourse (Matthews and Larcombe, 2022). While their remarks have prompted us to take another critical look at our data, we think that they neither alter our conclusions nor offer a practical alternative explanation. In essence, we see two possible interpretations of our experiments: either the trypanosome life cycle can accommodate a more flexible role for the slender stage, or the definition of the stumpy stage needs to be radically changed. While the first interpretation - which we favour - would not falsify any published work, the second one - which Matthews and Larcombe are proposing - would contradict the literature. Hence, we favour a model with an unexpected phenotypic plasticity for the slender stage and a certain degree of stochasticity in the trypanosome life cycle.
Collapse
Affiliation(s)
- Jaime Lisack
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Brooke Morriswood
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Matthews KR, Larcombe S. Comment on 'Unexpected plasticity in the life cycle of Trypanosoma brucei'. eLife 2022; 11:74985. [PMID: 35103595 PMCID: PMC8806180 DOI: 10.7554/elife.74985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Schuster et al. make the important observation that small numbers of trypanosomes can infect tsetse flies, and further argue that this can occur whether the infecting parasites are developmentally ‘slender’ or ‘stumpy’(Schuster et al., 2021). We welcome their careful experiments but disagree that they require a rethink of the trypanosome life-cycle. Instead, the study reveals that stumpy forms are more likely to successfully infect flies, the key limit on parasite transmission, and we predict this advantage would be greatly amplified in tsetse infections in the field. Further, we argue that stumpy forms are defined by a suite of molecular adaptations for life-cycle progression, with morphology being a secondary feature. Finally, their dominance in chronic infections means most natural tsetse infections would involve stumpy forms, even in small numbers. Our interpretation does not require re-evaluation of the obligatory life cycle of the parasite, where stumpy forms are selected to sustain transmission.
Collapse
Affiliation(s)
- Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen Larcombe
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Aliee M, Keeling MJ, Rock KS. Modelling to explore the potential impact of asymptomatic human infections on transmission and dynamics of African sleeping sickness. PLoS Comput Biol 2021; 17:e1009367. [PMID: 34516544 PMCID: PMC8459990 DOI: 10.1371/journal.pcbi.1009367] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/23/2021] [Accepted: 08/20/2021] [Indexed: 01/20/2023] Open
Abstract
Gambiense human African trypanosomiasis (gHAT, sleeping sickness) is one of several neglected tropical diseases (NTDs) where there is evidence of asymptomatic human infection but there is uncertainty of the role it plays in transmission and maintenance. To explore possible consequences of asymptomatic infections, particularly in the context of elimination of transmission—a goal set to be achieved by 2030—we propose a novel dynamic transmission model to account for the asymptomatic population. This extends an established framework, basing infection progression on a number of experimental and observation gHAT studies. Asymptomatic gHAT infections include those in people with blood-dwelling trypanosomes, but no discernible symptoms, or those with parasites only detectable in skin. Given current protocols, asymptomatic infection with blood parasites may be diagnosed and treated, based on observable parasitaemia, in contrast to many other diseases for which treatment (and/or diagnosis) may be based on symptomatic infection. We construct a model in which exposed people can either progress to either asymptomatic skin-only parasite infection, which would not be diagnosed through active screening algorithms, or blood-parasite infection, which is likely to be diagnosed if tested. We add extra parameters to the baseline model including different self-cure, recovery, transmission and detection rates for skin-only or blood infections. Performing sensitivity analysis suggests all the new parameters introduced in the asymptomatic model can impact the infection dynamics substantially. Among them, the proportion of exposures resulting in initial skin or blood infection appears the most influential parameter. For some plausible parameterisations, an initial fall in infection prevalence due to interventions could subsequently stagnate even under continued screening due to the formation of a new, lower endemic equilibrium. Excluding this scenario, our results still highlight the possibility for asymptomatic infection to slow down progress towards elimination of transmission. Location-specific model fitting will be needed to determine if and where this could pose a threat. Gambiense African sleeping sickness is an infectious disease targeted for elimination of transmission by 2030. Despite this there is still some uncertainty how frequently some infected people who may not have symptoms could “self-cure” without ever having disease and whether some types of infections, such as infections only in the skin, but not the blood, could still contribute to transmission, yet go undiagnosed. To explore how problematic these asymptomatic infections could be in terms of the elimination goal, we use a mathematical model which quantitatively describes changes to infection and transmission over time and includes these different types of infection. We use results of published experimental or field studies as inputs for the model parameters governing asymptomatic infections. We examined the impact of asymptomatic infections when control interventions are put in place. Compared to a baseline model with no asymptomatics, including asymptomatic infection using plausible biological parameters can have a profound impact on transmission and slow progress towards elimination. In some instances it could be possible that even after initial decline in sleeping sickness cases, progress could stagnate without reaching the elimination goal at all, however location-specific modelling will be needed to determine if and where this could pose a threat.
Collapse
Affiliation(s)
- Maryam Aliee
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
- * E-mail:
| | - Matt J. Keeling
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Kat S. Rock
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
19
|
Abstract
Trypanosoma brucei is a protozoan parasite that causes human and animal African trypanosomiases (HAT and AAT). In the mammalian host, the parasite lives entirely extracellularly, in both the blood and interstitial spaces in tissues. Although most T. brucei research has focused on the biology of blood- and central nervous system (CNS)-resident parasites, a number of recent studies have highlighted parasite reservoirs in the dermis and adipose tissue, leading to a renewed interest in tissue-resident parasite populations. In light of this renewed interest, work describing tissue-resident parasites can serve as a valuable resource to inform future investigations of tissue-resident T. brucei. Here, we review this body of literature, which describes infections in humans, natural hosts, and experimental animal models, providing a wealth of information on the distribution and biology of extravascular parasites, the corresponding immune response in each tissue, and resulting host pathology. We discuss the implications of these studies and future questions in the study of extravascular T. brucei.
Collapse
Affiliation(s)
- Nathan P. Crilly
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Molecular and Comparative Pathology, Johns Hopkins School of Medicine, Baltimore Maryland, United States of America
| | - Monica R. Mugnier
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
20
|
Schuster S, Lisack J, Subota I, Zimmermann H, Reuter C, Mueller T, Morriswood B, Engstler M. Unexpected plasticity in the life cycle of Trypanosoma brucei. eLife 2021; 10:66028. [PMID: 34355698 PMCID: PMC8448533 DOI: 10.7554/elife.66028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 08/05/2021] [Indexed: 12/22/2022] Open
Abstract
African trypanosomes cause sleeping sickness in humans and nagana in cattle. These unicellular parasites are transmitted by the bloodsucking tsetse fly. In the mammalian host’s circulation, proliferating slender stage cells differentiate into cell cycle-arrested stumpy stage cells when they reach high population densities. This stage transition is thought to fulfil two main functions: first, it auto-regulates the parasite load in the host; second, the stumpy stage is regarded as the only stage capable of successful vector transmission. Here, we show that proliferating slender stage trypanosomes express the mRNA and protein of a known stumpy stage marker, complete the complex life cycle in the fly as successfully as the stumpy stage, and require only a single parasite for productive infection. These findings suggest a reassessment of the traditional view of the trypanosome life cycle. They may also provide a solution to a long-lasting paradox, namely the successful transmission of parasites in chronic infections, despite low parasitemia.
Collapse
Affiliation(s)
- Sarah Schuster
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Jaime Lisack
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Ines Subota
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Henriette Zimmermann
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Christian Reuter
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | | | | | - Markus Engstler
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Abstract
African trypanosomes are responsible for important diseases of humans and animals in sub-Saharan Africa. The best-studied species is Trypanosoma brucei, which is characterized by development in the mammalian host between morphologically slender and stumpy forms. The latter are adapted for transmission by the parasite's vector, the tsetse fly. The development of stumpy forms is driven by density-dependent quorum-sensing (QS), the molecular basis for which is now coming to light. In this review, I discuss the historical context and biological features of trypanosome QS and how it contributes to the parasite's infection dynamics within its mammalian host. Also, I discuss how QS can be lost in different trypanosome species, such as T. brucei evansi and T. brucei equiperdum, or modulated when parasites find themselves competing with others of different genotypes or of different trypanosome species in the same host. Finally, I consider the potential to exploit trypanosome QS therapeutically. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Keith R Matthews
- Institute for Immunology and Infection Research, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| |
Collapse
|
22
|
Camara M, Soumah AM, Ilboudo H, Travaillé C, Clucas C, Cooper A, Kuispond Swar NR, Camara O, Sadissou I, Calvo Alvarez E, Crouzols A, Bart JM, Jamonneau V, Camara M, MacLeod A, Bucheton B, Rotureau B. Extravascular Dermal Trypanosomes in Suspected and Confirmed Cases of gambiense Human African Trypanosomiasis. Clin Infect Dis 2021; 73:12-20. [PMID: 32638003 PMCID: PMC8246823 DOI: 10.1093/cid/ciaa897] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/25/2020] [Indexed: 11/18/2022] Open
Abstract
Background The diagnosis of gambiense human African trypanosomiasis (gHAT) typically involves 2 steps: a serological screen, followed by the detection of living trypanosome parasites in the blood or lymph node aspirate. Live parasites can, however, remain undetected in some seropositive individuals, who, we hypothesize, are infected with Trypanosoma brucei gambiense parasites in their extravascular dermis. Methods To test this hypothesis, we conducted a prospective observational cohort study in the gHAT focus of Forecariah, Republic of Guinea. Of the 5417 subjects serologically screened for gHAT, 66 were enrolled into our study and underwent a dermatological examination. At enrollment, 11 seronegative, 8 unconfirmed seropositive, and 18 confirmed seropositive individuals had blood samples and skin biopsies taken and examined for trypanosomes by molecular and immunohistological methods. Results In seropositive individuals, dermatological symptoms were significantly more frequent, relative to seronegative controls. T.b. gambiense parasites were present in the blood of all confirmed cases (n = 18) but not in unconfirmed seropositive individuals (n = 8). However, T. brucei parasites were detected in the extravascular dermis of all unconfirmed seropositive individuals and all confirmed cases. Skin biopsies of all treated cases and most seropositive untreated individuals progressively became negative for trypanosomes 6 and 20 months later. Conclusions Our results highlight the skin as a potential reservoir for African trypanosomes, with implications for our understanding of this disease’s epidemiology in the context of its planned elimination and underlining the skin as a novel target for gHAT diagnostics.
Collapse
Affiliation(s)
- Mariame Camara
- Programme National de Lutte Contre la Trypanosomiase Humaine Africaine, Ministère de la Santé, Conakry, Guinea
| | - Alseny M'mah Soumah
- Programme National de Lutte Contre la Trypanosomiase Humaine Africaine, Ministère de la Santé, Conakry, Guinea.,Service de Dermatologie, Hôpital de Donka,Conakry, Guinea
| | - Hamidou Ilboudo
- Programme National de Lutte Contre la Trypanosomiase Humaine Africaine, Ministère de la Santé, Conakry, Guinea.,Institut de Recherche en Sciences de la Santé (IRSS)-Unité de Recherche Clinique de Nanoro (URCN), Nanoro, Burkina-Faso.,Institut de Recherche pour le Développement, Unité Mixte de Recherche Institut de Recherche pour le Développement (IRD)-CIRAD 177 InterTryp, Campus International de Baillarguet, Montpellier, France
| | - Christelle Travaillé
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Institut National de la Santé et de la Recherche Médicale (INSERM) U1201 and Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Caroline Clucas
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary, and Life Sciences, Henry Wellcome Building for Comparative Medical Sciences, Glasgow, Scotland, United Kingdom
| | - Anneli Cooper
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary, and Life Sciences, Henry Wellcome Building for Comparative Medical Sciences, Glasgow, Scotland, United Kingdom
| | - Nono-Raymond Kuispond Swar
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary, and Life Sciences, Henry Wellcome Building for Comparative Medical Sciences, Glasgow, Scotland, United Kingdom.,Department of Parasitology, National Institute of Biomedical Research (INRB), Kinshasa, Democratic Republic of the Congo
| | - Oumou Camara
- Programme National de Lutte Contre la Trypanosomiase Humaine Africaine, Ministère de la Santé, Conakry, Guinea
| | - Ibrahim Sadissou
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Institut de Recherche pour le Développement (IRD)-CIRAD 177 InterTryp, Campus International de Baillarguet, Montpellier, France
| | - Estefania Calvo Alvarez
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Institut National de la Santé et de la Recherche Médicale (INSERM) U1201 and Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Aline Crouzols
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Institut National de la Santé et de la Recherche Médicale (INSERM) U1201 and Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Jean-Mathieu Bart
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Institut de Recherche pour le Développement (IRD)-CIRAD 177 InterTryp, Campus International de Baillarguet, Montpellier, France
| | - Vincent Jamonneau
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Institut de Recherche pour le Développement (IRD)-CIRAD 177 InterTryp, Campus International de Baillarguet, Montpellier, France
| | - Mamadou Camara
- Programme National de Lutte Contre la Trypanosomiase Humaine Africaine, Ministère de la Santé, Conakry, Guinea
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary, and Life Sciences, Henry Wellcome Building for Comparative Medical Sciences, Glasgow, Scotland, United Kingdom
| | - Bruno Bucheton
- Programme National de Lutte Contre la Trypanosomiase Humaine Africaine, Ministère de la Santé, Conakry, Guinea.,Institut de Recherche pour le Développement, Unité Mixte de Recherche Institut de Recherche pour le Développement (IRD)-CIRAD 177 InterTryp, Campus International de Baillarguet, Montpellier, France
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Institut National de la Santé et de la Recherche Médicale (INSERM) U1201 and Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| |
Collapse
|
23
|
Davis CN, Castaño MS, Aliee M, Patel S, Miaka EM, Keeling MJ, Spencer SEF, Chitnis N, Rock KS. Modelling to Quantify the Likelihood that Local Elimination of Transmission has Occurred Using Routine Gambiense Human African Trypanosomiasis Surveillance Data. Clin Infect Dis 2021; 72:S146-S151. [PMID: 33905480 PMCID: PMC8201550 DOI: 10.1093/cid/ciab190] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background The gambiense human African trypanosomiasis (gHAT) elimination programme in the Democratic Republic of Congo (DRC) routinely collects case data through passive surveillance and active screening, with several regions reporting no cases for several years, despite being endemic in the early 2000s. Methods We use mathematical models fitted to longitudinal data to estimate the probability that selected administrative regions have already achieved elimination of transmission (EOT) of gHAT. We examine the impact of active screening coverage on the certainty of model estimates for transmission and therefore the role of screening in the measurement of EOT. Results In 3 example health zones of Sud-Ubangi province, we find there is a moderate (>40%) probability that EOT has been achieved by 2018, based on 2000–2016 data. Budjala and Mbaya reported zero cases during 2017–18, and this further increases our respective estimates to 99.9% and 99.6% (model S) and to 87.3% and 92.1% (model W). Bominenge had recent case reporting, however, that if zero cases were found in 2021, it would substantially raise our certainty that EOT has been met there (99.0% for model S and 88.5% for model W); this could be higher with 50% coverage screening that year (99.1% for model S and 94.0% for model W). Conclusions We demonstrate how routine surveillance data coupled with mechanistic modeling can estimate the likelihood that EOT has already been achieved. Such quantitative assessment will become increasingly important for measuring local achievement of EOT as 2030 approaches.
Collapse
Affiliation(s)
- Christopher N Davis
- Mathematics Institute, University of Warwick, Coventry, United Kingdom.,Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom
| | - María Soledad Castaño
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Maryam Aliee
- Mathematics Institute, University of Warwick, Coventry, United Kingdom.,Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom
| | - Swati Patel
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom.,Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Erick Mwamba Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Kinshasa, the Democratic Republic of the Congo
| | - Matt J Keeling
- Mathematics Institute, University of Warwick, Coventry, United Kingdom.,Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom.,School of Life Science, University of Warwick, Coventry, United Kingdom
| | - Simon E F Spencer
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom.,Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Nakul Chitnis
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Kat S Rock
- Mathematics Institute, University of Warwick, Coventry, United Kingdom.,Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom
| |
Collapse
|
24
|
Dean S. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies. Curr Pharm Des 2021; 27:1650-1670. [PMID: 33463458 DOI: 10.2174/1381612827666210119105008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause the lethal human disease African sleeping sickness and the economically devastating disease of cattle, Nagana. African sleeping sickness, also known as Human African Trypanosomiasis (HAT), threatens 65 million people and animal trypanosomiasis makes large areas of farmland unusable. There is no vaccine and licensed therapies against the most severe, late-stage disease are toxic, impractical and ineffective. Trypanosomes are transmitted by tsetse flies, and HAT is therefore predominantly confined to the tsetse fly belt in sub-Saharan Africa. They are exclusively extracellular and they differentiate between at least seven developmental forms that are highly adapted to host and vector niches. In the mammalian (human) host they inhabit the blood, cerebrospinal fluid (late-stage disease), skin, and adipose fat. In the tsetse fly vector they travel from the tsetse midgut to the salivary glands via the ectoperitrophic space and proventriculus. Trypanosomes are evolutionarily divergent compared with most branches of eukaryotic life. Perhaps most famous for their extraordinary mechanisms of monoallelic gene expression and antigenic variation, they have also been investigated because much of their biology is either highly unconventional or extreme. Moreover, in addition to their importance as pathogens, many researchers have been attracted to the field because trypanosomes have some of the most advanced molecular genetic tools and database resources of any model system. The following will cover just some aspects of trypanosome biology and how its divergent biochemistry has been leveraged to develop drugs to treat African sleeping sickness. This is by no means intended to be a comprehensive survey of trypanosome features. Rather, I hope to present trypanosomes as one of the most fascinating and tractable systems to do discovery biology.
Collapse
Affiliation(s)
- Samuel Dean
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
25
|
Olaide OY, Tchouassi DP, Yusuf AA, Pirk CW, Masiga DK, Saini RK, Torto B. Effect of zebra skin-derived compounds on field catches of the human African trypanosomiasis vector Glossina fuscipes fuscipes. Acta Trop 2021; 213:105745. [PMID: 33160957 DOI: 10.1016/j.actatropica.2020.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
The riverine tsetse fly Glossina fuscipes fuscipes is a major vector of trypanosome pathogens causing African trypanosomiasis. This fly species uses a combination of olfactory and visual cues to locate its hosts. Previously, traps and targets baited with visual cues have been used in vector control, but the development of olfactory-based tools has been challenging. Recently, repellents have shown promise as olfactory-based tools in tsetse vector control. Here, we evaluated a three-component blend comprising 6-methyl-5-hepten-2-one, acetophenone and geranyl acetone (blend K), previously identified as a repellent for savannah tsetse flies in zebra skin odor, on G. f. fuscipes populations. Using a series of 6 × 6 randomized Latin square-designed experiments, G. f. fuscipes catches in biconical traps were monitored on four islands of Lake Victoria in western Kenya between July and September 2019, after the long rainy season. Traps were baited with blend K and individual components of this blend. The known tsetse repellent blend WRC (waterbuck repellent compounds) and trap alone were included as controls. Daily catch data in thirty-six replicate trials were analyzed using generalized linear model with negative binomial error structure using the package "MASS" in R. Treatment, day and site were set as predictor variables. Our results showed that, blend K significantly reduced G. f. fuscipes catches by 25.6% (P < 0.01) compared to the control trap alone but was not significantly different from WRC which reduced catches by 20.7% (P < 0.05). Of the individual compounds, geranyl acetone solely significantly reduced catches by 29.1% (P < 0.01) which did not differ from blend K or WRC. We conclude that geranyl acetone accounts for the repellent effect of blend K on the riverine tsetse fly, G. f. fuscipes, demonstrating the ecological importance of animal skin odors in the host-seeking behavior of medically-important tsetse fly vectors.
Collapse
|
26
|
Sterkel M, Haines LR, Casas-Sánchez A, Owino Adung’a V, Vionette-Amaral RJ, Quek S, Rose C, Silva dos Santos M, García Escude N, Ismail HM, Paine MI, Barribeau SM, Wagstaff S, MacRae JI, Masiga D, Yakob L, Oliveira PL, Acosta-Serrano Á. Repurposing the orphan drug nitisinone to control the transmission of African trypanosomiasis. PLoS Biol 2021; 19:e3000796. [PMID: 33497373 PMCID: PMC7837477 DOI: 10.1371/journal.pbio.3000796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/30/2020] [Indexed: 12/02/2022] Open
Abstract
Tsetse transmit African trypanosomiasis, which is a disease fatal to both humans and animals. A vaccine to protect against this disease does not exist so transmission control relies on eliminating tsetse populations. Although neurotoxic insecticides are the gold standard for insect control, they negatively impact the environment and reduce populations of insect pollinator species. Here we present a promising, environment-friendly alternative to current insecticides that targets the insect tyrosine metabolism pathway. A bloodmeal contains high levels of tyrosine, which is toxic to haematophagous insects if it is not degraded and eliminated. RNA interference (RNAi) of either the first two enzymes in the tyrosine degradation pathway (tyrosine aminotransferase (TAT) and 4-hydroxyphenylpyruvate dioxygenase (HPPD)) was lethal to tsetse. Furthermore, nitisinone (NTBC), an FDA-approved tyrosine catabolism inhibitor, killed tsetse regardless if the drug was orally or topically applied. However, oral administration of NTBC to bumblebees did not affect their survival. Using a novel mathematical model, we show that NTBC could reduce the transmission of African trypanosomiasis in sub-Saharan Africa, thus accelerating current disease elimination programmes.
Collapse
Affiliation(s)
- Marcos Sterkel
- Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Lee R. Haines
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Aitor Casas-Sánchez
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Vincent Owino Adung’a
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Biochemistry and Molecular Biology, Egerton University, Kenya
| | | | - Shannon Quek
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | | | | | - Hanafy M. Ismail
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Mark I. Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Seth M. Barribeau
- Department of Ecology Evolution & Behaviour, Institute of Integrative Biology, University of Liverpool, United Kingdom
| | - Simon Wagstaff
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, United Kingdom
| | | | - Daniel Masiga
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Laith Yakob
- Department of Disease Control, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Pedro L. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Álvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, United Kingdom
| |
Collapse
|
27
|
Tukulula M, Louw S, Njoroge M, Chibale K. Synthesis and In Vitro Antiprotozoan Evaluation of 4-/8-Aminoquinoline-based Lactams and Tetrazoles. Molecules 2020; 25:E5941. [PMID: 33333924 PMCID: PMC7765388 DOI: 10.3390/molecules25245941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022] Open
Abstract
A second generation of 4-aminoquinoline- and 8-aminoquinoline-based tetrazoles and lactams were synthesized via the Staudinger and Ugi multicomponent reactions. These compounds were subsequently evaluated in vitro for their potential antiplasmodium activity against a multidrug-resistant K1 strain and for their antitrypanosomal activity against a cultured T. b. rhodesiense STIB900 strain. Several of these compounds (4a-g) displayed good antiplasmodium activities (IC50 = 0.20-0.62 µM) that were comparable to the reference drugs, while their antitrypanosomal activity was moderate (<20 µM). Compound 4e was 2-fold more active than primaquine and was also the most active (IC50 = 7.01 µM) against T. b. rhodesiense and also exhibited excellent aqueous solubility (>200 µM) at pH 7.
Collapse
Affiliation(s)
| | - Stefan Louw
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; (S.L.); (M.N.); (K.C.)
- Department of Chemistry and Biochemistry, University of Namibia, Windhoek 10005, Namibia
| | - Mathew Njoroge
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; (S.L.); (M.N.); (K.C.)
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; (S.L.); (M.N.); (K.C.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
28
|
Hulpia F, Campagnaro GD, Alzahrani KJ, Alfayez IA, Ungogo MA, Mabille D, Maes L, de Koning HP, Caljon G, Van Calenbergh S. Structure-Activity Relationship Exploration of 3'-Deoxy-7-deazapurine Nucleoside Analogues as Anti- Trypanosoma brucei Agents. ACS Infect Dis 2020; 6:2045-2056. [PMID: 32568511 DOI: 10.1021/acsinfecdis.0c00105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human African trypanosomiasis is a neglected tropical disease caused by Trypanosoma brucei parasites. These protists are unable to produce the purine ring, making them vulnerable to the effects of purine nucleoside analogues. Starting from 3'-deoxytubercidin (5), a lead compound with activity against central-nervous-stage human African trypanosomiasis, we investigate the structure-activity relationships of the purine and ribofuranose rings. The purine ring tolerated only modifications at C7, while from the many alterations of the 3'-deoxyribofuranosyl moiety only the arabino analogue 48 showed pronounced antitrypanosomal activity. Profiling of the most potent analogues against resistant T. brucei strains (resistant to pentamidine, diminazene, and isometamidium) showed reduced dependence on uptake mediated by the P2 aminopurine transporter relative to 5. The introduction of a 7-substituent confers up to 10-fold increased affinity for the P1 nucleoside transporter while generally retaining high affinity for P2. Four of the most promising analogues were found to be metabolically stable, earmarking them as suitable backup analogues for lead 5.
Collapse
Affiliation(s)
- Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Gustavo D. Campagnaro
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Khalid J. Alzahrani
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
- Department of Clinical Laboratory, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Ibrahim A. Alfayez
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Marzuq A. Ungogo
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, 810211 Zaria, Kaduna State, Nigeria
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610 Wilrijk, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610 Wilrijk, Belgium
| | - Harry P. de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610 Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| |
Collapse
|
29
|
Adungo F, Mokaya T, Makwaga O, Mwau M. Tsetse distribution, trypanosome infection rates, and small-holder livestock producers' capacity enhancement for sustainable tsetse and trypanosomiasis control in Busia, Kenya. Trop Med Health 2020; 48:62. [PMID: 32760194 PMCID: PMC7393918 DOI: 10.1186/s41182-020-00249-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/21/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Tsetse flies are the cyclical vectors of both human and animal diseases. Kenya's commitment to eradicate tsetse and trypanosomiasis dates to the 1980s through various control approaches which were spearheaded by the African Union. The aggressive control programmes together with climatic, land-use, and socio-economic changes immensely contributed to the reduction of African trypanosomiasis. Since 2012, Kenya has not recorded a case of human trypanosomiasis. However, African animal trypanosomiasis remains a major challenge to livestock production in 38 out of 47 counties. We aimed to determine the prevalence of tsetse flies and trypanosome infection rate and to build the capacity of small-holder livestock producers in vector control activities in Busia county. METHODS This cross-sectional study was conducted between May 2018 and December 2018 in Busia county, a beneficiary of the previous African Union-led trypanosomiasis and tsetse control initiatives. Odour-baited biconical traps were deployed for 48 h in five sampling areas. Captured tsetse flies were analysed by microscopy for trypanosome infections. Additionally, training and field demonstrations were conducted as part of capacity building to enhance participation of small-holder livestock producers in tsetse control activities. RESULTS A total of 94 tsetse flies mainly Glossina fuscipes fuscipes were captured from the five sampling areas. The apparent fly densities range from 0.08 to 1.55 tsetse per trap per day. Additionally, 75 biting flies mainly Stomoxys spp. were also trapped. An overall tsetse infection rate of 1.39% and 4.17% was observed for Trypanosoma congolense and Trypanosoma vivax, respectively. Regarding capacity building, a total of 26 small-holder livestock producers were trained on tsetse and trypanosomiasis control activities. Out of which, five were selected as focal persons and were further trained on integrated vector management techniques and tsetse survey methods. CONCLUSIONS Our findings revealed the existence of trypanosome-infected tsetse flies which could potentially spread to other parts of the county. Training of small-holder livestock producers in tsetse and trypanosomiasis control activities should be supported and integrated in the county animal health and veterinary services. Given the observed low tsetse densities and trypanosome infection rates, the elimination of trypanosomiasis in Busia county is feasible.
Collapse
Affiliation(s)
- Ferdinard Adungo
- Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Tom Mokaya
- Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Olipher Makwaga
- Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Matilu Mwau
- Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| |
Collapse
|
30
|
Quintana JF, Bueren-Calabuig J, Zuccotto F, de Koning HP, Horn D, Field MC. Instability of aquaglyceroporin (AQP) 2 contributes to drug resistance in Trypanosoma brucei. PLoS Negl Trop Dis 2020; 14:e0008458. [PMID: 32644992 PMCID: PMC7413563 DOI: 10.1371/journal.pntd.0008458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/07/2020] [Accepted: 06/05/2020] [Indexed: 12/26/2022] Open
Abstract
Defining mode of action is vital for both developing new drugs and predicting potential resistance mechanisms. Sensitivity of African trypanosomes to pentamidine and melarsoprol is predominantly mediated by aquaglyceroporin 2 (TbAQP2), a channel associated with water/glycerol transport. TbAQP2 is expressed at the flagellar pocket membrane and chimerisation with TbAQP3 renders parasites resistant to both drugs. Two models for how TbAQP2 mediates pentamidine sensitivity have emerged; that TbAQP2 mediates pentamidine translocation across the plasma membrane or via binding to TbAQP2, with subsequent endocytosis and presumably transport across the endosomal/lysosomal membrane, but as trafficking and regulation of TbAQPs is uncharacterised this remains unresolved. We demonstrate that TbAQP2 is organised as a high order complex, is ubiquitylated and is transported to the lysosome. Unexpectedly, mutation of potential ubiquitin conjugation sites, i.e. cytoplasmic-oriented lysine residues, reduced folding and tetramerization efficiency and triggered ER retention. Moreover, TbAQP2/TbAQP3 chimerisation, as observed in pentamidine-resistant parasites, also leads to impaired oligomerisation, mislocalisation and increased turnover. These data suggest that TbAQP2 stability is highly sensitive to mutation and that instability contributes towards the emergence of drug resistance.
Collapse
Affiliation(s)
- Juan F. Quintana
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Juan Bueren-Calabuig
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Fabio Zuccotto
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Harry P. de Koning
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| |
Collapse
|
31
|
Alfituri OA, Quintana JF, MacLeod A, Garside P, Benson RA, Brewer JM, Mabbott NA, Morrison LJ, Capewell P. To the Skin and Beyond: The Immune Response to African Trypanosomes as They Enter and Exit the Vertebrate Host. Front Immunol 2020; 11:1250. [PMID: 32595652 PMCID: PMC7304505 DOI: 10.3389/fimmu.2020.01250] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
African trypanosomes are single-celled extracellular protozoan parasites transmitted by tsetse fly vectors across sub-Saharan Africa, causing serious disease in both humans and animals. Mammalian infections begin when the tsetse fly penetrates the skin in order to take a blood meal, depositing trypanosomes into the dermal layer. Similarly, onward transmission occurs when differentiated and insect pre-adapted forms are ingested by the fly during a blood meal. Between these transmission steps, trypanosomes access the systemic circulation of the vertebrate host via the skin-draining lymph nodes, disseminating into multiple tissues and organs, and establishing chronic, and long-lasting infections. However, most studies of the immunobiology of African trypanosomes have been conducted under experimental conditions that bypass the skin as a route for systemic dissemination (typically via intraperitoneal or intravenous routes). Therefore, the importance of these initial interactions between trypanosomes and the skin at the site of initial infection, and the implications for these processes in infection establishment, have largely been overlooked. Recent studies have also demonstrated active and complex interactions between the mammalian host and trypanosomes in the skin during initial infection and revealed the skin as an overlooked anatomical reservoir for transmission. This highlights the importance of this organ when investigating the biology of trypanosome infections and the associated immune responses at the initial site of infection. Here, we review the mechanisms involved in establishing African trypanosome infections and potential of the skin as a reservoir, the role of innate immune cells in the skin during initial infection, and the subsequent immune interactions as the parasites migrate from the skin. We suggest that a thorough identification of the mechanisms involved in establishing African trypanosome infections in the skin and their progression through the host is essential for the development of novel approaches to interrupt disease transmission and control these important diseases.
Collapse
Affiliation(s)
- Omar A. Alfituri
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Juan F. Quintana
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Paul Garside
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Robert A. Benson
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - James M. Brewer
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Neil A. Mabbott
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Liam J. Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Capewell
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
32
|
Inflammation following trypanosome infection and persistence in the skin. Curr Opin Immunol 2020; 66:65-73. [PMID: 32446136 DOI: 10.1016/j.coi.2020.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
Human African trypanosomes rely for their transmission on tsetse flies (Glossina sp.) that inoculate parasites into the skin during blood feeding. The absence of a protective vaccine, limited knowledge about the infection immunology, and the existence of asymptomatic carriers sustaining transmission are major outstanding challenges towards elimination. All these relate to the skin where (i) parasites persist and transmit to tsetse flies and (ii) a successful vaccination strategy should ideally be effective. Host immune processes and parasite strategies that underlie early infection and skin tropism are essential aspects to comprehend the transmission-success of trypanosomes and the failure in vaccine development. Recent insights into the early infection establishment may pave the way to novel strategies aimed at blocking transmission.
Collapse
|
33
|
Abstract
Parasitic diseases, such as sleeping sickness, Chagas disease and malaria, remain a major cause of morbidity and mortality worldwide, but particularly in tropical, developing countries. Controlling these diseases requires a better understanding of host-parasite interactions, including a deep appreciation of parasite distribution in the host. The preferred accumulation of parasites in some tissues of the host has been known for many years, but recent technical advances have allowed a more systematic analysis and quantifications of such tissue tropisms. The functional consequences of tissue tropism remain poorly studied, although it has been associated with important aspects of disease, including transmission enhancement, treatment failure, relapse and clinical outcome. Here, we discuss current knowledge of tissue tropism in Trypanosoma infections in mammals, describe potential mechanisms of tissue entry, comparatively discuss relevant findings from other parasitology fields where tissue tropism has been extensively investigated, and reflect on new questions raised by recent discoveries and their potential impact on clinical treatment and disease control strategies.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Sandra Trindade
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|
34
|
Insights from quantitative and mathematical modelling on the proposed 2030 goal for gambiense human African trypanosomiasis (gHAT). Gates Open Res 2020; 3:1553. [PMID: 32411945 PMCID: PMC7193711 DOI: 10.12688/gatesopenres.13070.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2020] [Indexed: 11/20/2022] Open
Abstract
Gambiense human African trypanosomiasis (gHAT) is a parasitic, vector-borne neglected tropical disease that has historically affected populations across West and Central Africa and can result in death if untreated. Following from the success of recent intervention programmes against gHAT, the World Health Organization (WHO) has defined a 2030 goal of global elimination of transmission (EOT). The key proposed indicator to measure achievement of the goal is zero reported cases. Results of previous mathematical modelling and quantitative analyses are brought together to explore both the implications of the proposed indicator and the feasibility of achieving the WHO goal. Whilst the indicator of zero case reporting is clear and measurable, it is an imperfect proxy for EOT and could arise either before or after EOT is achieved. Lagging reporting of infection and imperfect diagnostic specificity could result in case reporting after EOT, whereas the converse could be true due to underreporting, lack of coverage, and cryptic human and animal reservoirs. At the village-scale, the WHO recommendation of continuing active screening until there are three years of zero cases yields a high probability of local EOT, but extrapolating this result to larger spatial scales is complex. Predictive modelling of gHAT has consistently found that EOT by 2030 is unlikely across key endemic regions if current medical-only strategies are not bolstered by improved coverage, reduced time to detection and/or complementary vector control. Unfortunately, projected costs for strategies expected to meet EOT are high in the short term and strategies that are cost-effective in reducing burden are unlikely to result in EOT by 2030. Future modelling work should aim to provide predictions while taking into account uncertainties in stochastic dynamics and infection reservoirs, as well as assessment of multiple spatial scales, reactive strategies, and measurable proxies of EOT.
Collapse
|
35
|
Cunningham LJ, Lingley JK, Tirados I, Esterhuizen J, Opiyo M, Mangwiro CTN, Lehane MJ, Torr SJ. Evidence of the absence of human African trypanosomiasis in two northern districts of Uganda: Analyses of cattle, pigs and tsetse flies for the presence of Trypanosoma brucei gambiense. PLoS Negl Trop Dis 2020; 14:e0007737. [PMID: 32255793 PMCID: PMC7164673 DOI: 10.1371/journal.pntd.0007737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/17/2020] [Accepted: 02/20/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Large-scale control of sleeping sickness has led to a decline in the number of cases of Gambian human African trypanosomiasis (g-HAT) to <2000/year. However, achieving complete and lasting interruption of transmission may be difficult because animals may act as reservoir hosts for T. b. gambiense. Our study aims to update our understanding of T. b. gambiense in local vectors and domestic animals of N.W. Uganda. METHODS We collected blood from 2896 cattle and 400 pigs and In addition, 6664 tsetse underwent microscopical examination for the presence of trypanosomes. Trypanosoma species were identified in tsetse from a subsample of 2184 using PCR. Primers specific for T. brucei s.l. and for T. brucei sub-species were used to screen cattle, pig and tsetse samples. RESULTS In total, 39/2,088 (1.9%; 95% CI = 1.9-2.5) cattle, 25/400 (6.3%; 95% CI = 4.1-9.1) pigs and 40/2,184 (1.8%; 95% CI = 1.3-2.5) tsetse, were positive for T. brucei s.l.. Of these samples 24 cattle (61.5%), 15 pig (60%) and 25 tsetse (62.5%) samples had sufficient DNA to be screened using the T. brucei sub-species PCR. Further analysis found no cattle or pigs positive for T. b. gambiense, however, 17/40 of the tsetse samples produced a band suggestive of T. b. gambiense. When three of these 17 PCR products were sequenced the sequences were markedly different to T. b. gambiense, indicating that these flies were not infected with T. b. gambiense. CONCLUSION The lack of T. b. gambiense positives in cattle, pigs and tsetse accords with the low prevalence of g-HAT in the human population. We found no evidence that livestock are acting as reservoir hosts. However, this study highlights the limitations of current methods of detecting and identifying T. b. gambiense which relies on a single copy-gene to discriminate between the different sub-species of T. brucei s.l.
Collapse
Affiliation(s)
- Lucas J. Cunningham
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jessica K. Lingley
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Iñaki Tirados
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Johan Esterhuizen
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Mercy Opiyo
- Institute for Global Health, University of Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Clement T. N. Mangwiro
- Department of Animal Science, Bindura University of Science Education, Bindura, Zimbabwe
| | - Mike J. Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Stephen J. Torr
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
36
|
Domagalska MA, Dujardin JC. Next-Generation Molecular Surveillance of TriTryp Diseases. Trends Parasitol 2020; 36:356-367. [PMID: 32191850 DOI: 10.1016/j.pt.2020.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
Elimination programs targeting TriTryp diseases (Leishmaniasis, Chagas' disease, human African trypanosomiasis) significantly reduced the number of cases. Continued surveillance is crucial to sustain this progress, but parasite molecular surveillance by genotyping is currently lacking. We explain here which epidemiological questions of public health and clinical relevance could be answered by means of molecular surveillance. Whole-genome sequencing (WGS) for molecular surveillance will be an important added value, where we advocate that preference should be given to direct sequencing of the parasite's genome in host tissues instead of analysis of cultivated isolates. The main challenges here, and recent technological advances, are discussed. We conclude with a series of recommendations for implementing whole-genome sequencing for molecular surveillance.
Collapse
Affiliation(s)
- Malgorzata Anna Domagalska
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, B-2000 Antwerp, Belgium.
| | - Jean-Claude Dujardin
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, B-2000 Antwerp, Belgium
| |
Collapse
|
37
|
Gambiense Human African Trypanosomiasis Sequelae after Treatment: A Follow-Up Study 12 Years after Treatment. Trop Med Infect Dis 2020; 5:tropicalmed5010010. [PMID: 31940846 PMCID: PMC7157708 DOI: 10.3390/tropicalmed5010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/01/2020] [Accepted: 01/08/2020] [Indexed: 11/16/2022] Open
Abstract
The clinical presentation of Human African Trypanosomiasis (HAT) due to Trypanosoma brucei gambiense is well known, but knowledge on long-term sequelae is limited. In the frame of studies conducted between 2004 and 2005 in the Democratic Republic of the Congo (DRC), the prevalence of HAT related signs and symptoms were evaluated before the start of treatment and at the end of treatment. To explore possible long-term sequelae, the same clinical parameters were assessed in 2017 in 51 first stage and 18 second stage HAT patients. Signs and symptoms 12–13 years after treatment were compared to before and immediately after treatment and to controls matched for sex and age (±5 years). In first stage HAT patients, the prevalence of all signs and symptoms decreased compared to before treatment but were still higher after 12–13 years than immediately at the end of treatment and in the control group. In second stage HAT patients, all HAT-specific findings had continuously decreased to the point where they were in the range of the healthy control group. In a selection of oligosymptomatic first stage HAT patients, no trypanosomes were detected in the blood by microscopic examination or PCR. An oligosymptomatic presentation of HAT due to the persistence of parasites in compartments, where first stage HAT medications do not penetrate, could not be ruled out.
Collapse
|
38
|
Ndeffo-Mbah ML, Pandey A, Atkins KE, Aksoy S, Galvani AP. The impact of vector migration on the effectiveness of strategies to control gambiense human African trypanosomiasis. PLoS Negl Trop Dis 2019; 13:e0007903. [PMID: 31805051 PMCID: PMC6894748 DOI: 10.1371/journal.pntd.0007903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Background Several modeling studies have been undertaken to assess the feasibility of the WHO goal of eliminating gambiense human African trypanosomiasis (g-HAT) by 2030. However, these studies have generally overlooked the effect of vector migration on disease transmission and control. Here, we evaluated the impact of vector migration on the feasibility of interrupting transmission in different g-HAT foci. Methods We developed a g-HAT transmission model of a single tsetse population cluster that accounts for migration of tsetse fly into this population. We used a model calibration approach to constrain g-HAT incidence to ranges expected for high, moderate and low transmission settings, respectively. We used the model to evaluate the effectiveness of current intervention measures, including medical intervention through enhanced screening and treatment, and vector control, for interrupting g-HAT transmission in disease foci under each transmission setting. Results We showed that, in low transmission settings, under enhanced medical intervention alone, at least 70% treatment coverage is needed to interrupt g-HAT transmission within 10 years. In moderate transmission settings, a combination of medical intervention and a vector control measure with a daily tsetse mortality greater than 0.03 is required to achieve interruption of disease transmission within 10 years. In high transmission settings, interruption of disease transmission within 10 years requires a combination of at least 70% medical intervention coverage and at least 0.05 tsetse daily mortality rate from vector control. However, the probability of achieving elimination in high transmission settings decreases with an increased tsetse migration rate. Conclusion Our results suggest that the WHO 2030 goal of G-HAT elimination is, at least in theory, achievable. But the presence of tsetse migration may reduce the probability of interrupting g-HAT transmission in moderate and high transmission foci. Therefore, optimal vector control programs should incorporate monitoring and controlling of vector density in buffer areas around foci of g-HAT control efforts. Gambian human African trypanosomiasis (g-HAT), also known as sleeping sickness, is a vector-borne parasitic disease transmitted by tsetse flies. If untreated, g-HAT infection will usually result in death. Recently, the World Health Organization (WHO) has targeted g-HAT for elimination through achieving interruption of transmission by 2030. To help inform elimination efforts, mathematical models have been used to evaluate the feasibility of the WHO goals in different g-HAT transmission foci. However, these mathematical models have generally ignored the role that tsetse migration may have in the spread and reemergence of g-HAT. Using a mathematical model, we evaluate the impact of tsetse migration on the effectiveness of current intervention measures for achieving interruption of g-HAT transmission in different transmission foci. We consider different interventions such as enhanced screening and treatment and vector control. We show that vector control has a great potential for reducing transmission. Still, the presence and intensity of tsetse migration can undermine its effectiveness for interrupting disease transmission, especially in high transmission foci. Our results indicate the need of accounting for tsetse surveillance and migration data in designing vector control efforts for g-HAT elimination.
Collapse
Affiliation(s)
- Martial L. Ndeffo-Mbah
- Department of Veterinary Integrative Biosciences, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Department of Epidemiology and Biostatistics, Texas A&M School of Public Health, College Station, TX, United States of America
- * E-mail:
| | - Abhishek Pandey
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, United States of America
- Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Katherine E. Atkins
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for Global Health, The Usher Institute for Population Health Sciences and Informatics, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Serap Aksoy
- Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Alison P. Galvani
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, United States of America
- Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| |
Collapse
|
39
|
Insights from quantitative and mathematical modelling on the proposed 2030 goal for gambiense human African trypanosomiasis (gHAT). Gates Open Res 2019; 3:1553. [PMID: 32411945 PMCID: PMC7193711 DOI: 10.12688/gatesopenres.13070.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2019] [Indexed: 03/29/2024] Open
Abstract
Gambiense human African trypanosomiasis (gHAT) is a parasitic, vector-borne neglected tropical disease that has historically affected populations across West and Central Africa and can result in death if untreated. Following from the success of recent intervention programmes against gHAT, the World Health Organization (WHO) has defined a 2030 goal of global elimination of transmission (EOT). The key proposed indicator to measure achievement of the goal is to have zero reported cases. Results of previous mathematical modelling and quantitative analyses are brought together to explore both the implications of the proposed indicator and the feasibility of achieving the WHO goal. Whilst the indicator of zero case reporting is clear and measurable, it is an imperfect proxy for EOT and could arise either before or after EOT is achieved. Lagging reporting of infection and imperfect diagnostic specificity could result in case reporting after EOT, whereas the converse could be true due to underreporting, lack of coverage, and cryptic human and animal reservoirs. At the village-scale, the WHO recommendation of continuing active screening until there are three years of zero cases yields a high probability of local EOT, but extrapolating this result to larger spatial scales is complex. Predictive modelling of gHAT has consistently found that EOT by 2030 is unlikely across key endemic regions if current medical-only strategies are not bolstered by improved coverage, reduced time to detection and/or complementary vector control. Unfortunately, projected costs for strategies expected to meet EOT are high in the short term and strategies that are cost-effective in reducing burden are unlikely to result in EOT by 2030. Future modelling work should aim to provide predictions while taking into account uncertainties in stochastic dynamics and infection reservoirs, as well as assessment of multiple spatial scales, reactive strategies, and measurable proxies of EOT.
Collapse
|