1
|
Ni H, Yong-Villalobos L, Gu M, López-Arredondo DL, Chen M, Geng L, Xu G, Herrera-Estrella LR. Adaptive dynamics of extrachromosomal circular DNA in rice under nutrient stress. Nat Commun 2025; 16:4150. [PMID: 40320403 PMCID: PMC12050283 DOI: 10.1038/s41467-025-59572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) have been identified in various eukaryotic organisms and are known to play crucial roles in genomic plasticity. However, in crop plants, the role of eccDNAs in responses to environmental cues, particularly nutritional stresses, remains unexplored. Rice (Oryza sativa ssp. japonica), a vital crop for over half the world's population and an excellent model plant for genomic studies, faces numerous environmental challenges during growth. Therefore, we conduct comprehensive studies investigating the distribution, sequence, and potential responses of rice eccDNAs to nutritional stresses. We describe the changes in the eccDNA landscape at various developmental stages of rice in optimal growth. We also identify eccDNAs overlapping with genes (ecGenes), transposable elements (ecTEs), and full-length repeat units (full-length ecRepeatUnits), whose prevalence responds to nitrogen (N) and phosphorus (P) deficiency. We analyze multiple-fragment eccDNAs and propose a potential TE-mediated homologous recombination mechanism as the origin of rice's multiple-fragment eccDNAs. We provide evidence for the role of eccDNAs in the rice genome plasticity under nutritional stresses and underscore the significance of their abundance and specificity.
Collapse
Affiliation(s)
- Hanfang Ni
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Lenin Yong-Villalobos
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, USA
| | - Mian Gu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Damar Lizbeth López-Arredondo
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, USA
| | - Min Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Liyan Geng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Guohua Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China.
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China.
| | - Luis Rafael Herrera-Estrella
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, USA.
- Unidad de Genómica Avanzada/Langebio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Gto, Mexico.
| |
Collapse
|
2
|
Jiang L, Song M, Song F, Wang S, Zhou Y, Wang Z, Sun C, Yao H, Zhang Z, Wang X, Liao M, Wang Y, Luo H. Global characterization of extrachromosomal circular DNAs in four body fluids. Int J Legal Med 2025; 139:1053-1062. [PMID: 39945904 DOI: 10.1007/s00414-025-03442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/04/2025] [Indexed: 03/17/2025]
Abstract
Determination of the type of body fluids is highly desired in forensic investigations. Extrachromosomal circular DNA (eccDNA) is a double-stranded, circular type of nucleic acid molecule that exists outside chromosomes and is ubiquitous in eukaryotic cells, which is widely explored in clinical research. The use of eccDNA for body fluid identification has remained relatively unexplored. As such, peripheral blood, menstrual blood, semen, and saliva samples (each = 3) from healthy individuals were detected, using Circle-seq, to identify potential markers for body fluid identification. In total, 263,036 eccDNAs were identified, widely distributed throughout the genome, and most of them were within 1000 base pairs in size. The study combined eccDNA with RNA analysis in an attempt to observe the relationship between eccDNA and gene expression in healthy individuals. We performed outward PCR on selected eccDNAs using library samples and validated the predicted junction sites by Sanger sequencing. In short, this pilot study demonstrated for the first time the characterization of eccDNA profiles from four body fluids of healthy individuals. It provided a novel direction for body fluid identification. In the future, breaking the low abundance and high heterogeneity of eccDNA will lead to new possibilities in the forensic field.
Collapse
Affiliation(s)
- Lanrui Jiang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Mengyuan Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Song
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Shuangshuang Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Yuxiang Zhou
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Zefei Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Chaoran Sun
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Hewen Yao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Zhirui Zhang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Xindi Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Miao Liao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Yanyun Wang
- Laboratory of Molecular Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Haibo Luo
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
3
|
Carvalho-Moore P, Borgato EA, Cutti L, Porri A, Meiners I, Lerchl J, Norsworthy JK, Patterson EL. A rearranged Amaranthus palmeri extrachromosomal circular DNA confers resistance to glyphosate and glufosinate. THE PLANT CELL 2025; 37:koaf069. [PMID: 40152451 PMCID: PMC11985328 DOI: 10.1093/plcell/koaf069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/07/2025] [Accepted: 02/22/2025] [Indexed: 03/29/2025]
Abstract
Some herbicide-resistant weeds become resistant by generating additional copies of specific loci. For example, amplification of the locus encoding chloroplastic glutamine synthetase (GS2) produces herbicide resistance in the glufosinate-resistant Palmer amaranth (Amaranthus palmeri) accession MSR2. Previously, overamplification of the glyphosate-resistant gene encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in Palmer amaranth was determined to be driven by an extrachromosomal circular DNA (eccDNA). Here, we describe a rearranged eccDNA that confers resistance to both glyphosate and glufosinate ammonium due to the coduplication of the native chromosomal regions that contain the genes that encode for these herbicides target proteins. In addition to EPSPS, the replicon carries 2 GS2 isoforms (GS2.1 and GS2.2) and other genes. MSR2 samples harbored eccDNA carrying only EPSPS coexisting with eccDNAs harboring both EPSPS and GS2. A second glufosinate-resistant Palmer amaranth accession (MSR1) showed distinct GS2.1 and GS2.2 amplification patterns from MSR2, suggesting the existence of diverse replicons in Palmer amaranth. EPSPS copy number was correlated with both GS2 isoforms copy number in MSR2, further supporting the coexistence of these genes in the same replicon. These findings shed light on the complexity of eccDNA formation in plant systems, with the collection and accumulation of extra pieces of DNA.
Collapse
Affiliation(s)
- Pâmela Carvalho-Moore
- Crop, Soil and Environmental Science Department, University of Arkansas, Fayetteville, AR 72703, USA
| | - Ednaldo A Borgato
- Agronomy Department, West Florida Research and Education Center, University of Florida, Jay, FL 32565, USA
| | - Luan Cutti
- Department of Plant, Soil, and Microbial Science, Michigan State University, East Lansing, MI 48823, USA
| | - Aimone Porri
- Global Research & Development Agricultural Solutions, BASF SE, Ludwigshafen 67063, Germany
| | - Ingo Meiners
- Agricultural Solutions North America, BASF Corporation, Research Triangle Park, NC 27709, USA
| | - Jens Lerchl
- Global Research & Development Agricultural Solutions, BASF SE, Ludwigshafen 67063, Germany
| | - Jason K Norsworthy
- Crop, Soil and Environmental Science Department, University of Arkansas, Fayetteville, AR 72703, USA
| | - Eric L Patterson
- Department of Plant, Soil, and Microbial Science, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
4
|
Mao X, Rao G, Li G, Chen S. Insights into Extrachromosomal DNA in Cancer: Biogenesis, Methodologies, Functions, and Therapeutic Potential. Adv Biol (Weinh) 2025; 9:e2400433. [PMID: 39945006 DOI: 10.1002/adbi.202400433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/01/2025] [Indexed: 03/17/2025]
Abstract
Originating from, but independent of, linear chromosomes, extrachromosomal DNA (ecDNA) exists in a more active state of transcription and autonomous replication. It plays a crucial role in the development of malignancies and therapy resistance. Since its discovery in eukaryotic cells more than half a century ago, the biological characteristics and functions of ecDNA have remained unclear due to limitations in detection methods. However, recent advancements in research tools have transformed ecDNA research. It is believed that ecDNA exhibits greater activity in the abnormal amplification of oncogenes, thereby driving cancer progression through their overexpression. Notably, compared to linear DNA, ecDNA can also function as a genomic element with regulatory roles, including both trans- and cis-acting functions. Its critical roles in tumorigenesis, evolution, progression, and drug resistance in malignant tumors are increasingly recognized. This review provides a comprehensive summary of the evolutionary context of ecDNA and highlights significant progress in understanding its biological functions and potential applications as a therapeutic target in malignant tumors.
Collapse
Affiliation(s)
- Xudong Mao
- Department of Urology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, P. R. China
| | - Guocheng Rao
- Department of Endocrinology & Metabolism, Daepartment of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610000, P. R. China
| | - Gonghui Li
- Department of Urology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, P. R. China
| | - Shihan Chen
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, P. R. China
| |
Collapse
|
5
|
Xiang W, Zhang T, Li S, Gong Y, Luo X, Yuan J, Wu Y, Yan X, Xiong Y, Lian J, Zhao G, Gao C, Kuang L, Ni Z. Cir-DNA Sequencing Revealed the Landscape of Extrachromosomal Circular DNA in Articular Cartilage and the Potential Roles in Osteoarthritis. Cartilage 2025; 16:100-107. [PMID: 37846064 PMCID: PMC11744593 DOI: 10.1177/19476035231205690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 10/18/2023] Open
Abstract
OBJECTIVE Extrachromosomal circular DNA (eccDNA) has been shown to be involved in several physiological and pathological processes including immunity, inflammation, aging, and tumor. However, the expression of eccDNA in cartilage has not been reported until now. In this study, we aimed to investigate the landscape of eccDNA in articular cartilage and analyze the potential roles in osteoarthritis (OA). METHODS The samples of articular cartilage were obtained from total knee arthroplasty (TKA) donors with OA. The mitochondrial DNA (mtDNAs) and the linear DNAs from chondrocytes of articular cartilage were removed. Then the eccDNAs were enriched for cir-DNA sequencing. After quality control evaluation, we systematically revealed the identified eccDNA data including size distribution, the size range, and sequence pattern. Moreover, we explored and discussed the potential roles of eccDNA in OA via motif analysis and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. RESULTS The chondrocytes from OA cartilage contained an abundance of eccDNAs, which was termed as OC-eccDNAs (OA cartilage-derived eccDNA). The characteristics of OC-eccDNAs were tissue-specific, including the distribution, the size range, and sequence pattern. Moreover, the functional analysis indicated that eccDNA may be involved in the homeostasis maintenance of chondrocytes and participated in the process of OA. CONCLUSIONS Our data first showed the landscape of eccDNA in articular cartilage and preliminarily indicated the potential roles of eccDNA in OA.
Collapse
Affiliation(s)
- Wei Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Tongyi Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, China
- Department of General practice, Chinese PLA General Hospital of the Central Theater Command, Wuhan, China
| | - Song Li
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yunquan Gong
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoqing Luo
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yuan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yaran Wu
- Department of Pharmacy and Clinical Laboratory, Army Medical University, Chongqing, China
| | - Xiaojing Yan
- Department of Pharmacy and Clinical Laboratory, Army Medical University, Chongqing, China
| | - Yan Xiong
- Department of Orthopedics, Daping Hospital, Army Medical University, Chongqing, China
| | - Jiqin Lian
- Department of Pharmacy and Clinical Laboratory, Army Medical University, Chongqing, China
| | - Guangyu Zhao
- Seventeen Squadron Five Brigade, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Changyue Gao
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Liang Kuang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhong Ni
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Eugen-Olsen RB, Hariprakash J, Oestergaard V, Regenberg B. Molecular mechanisms of extrachromosomal circular DNA formation. Nucleic Acids Res 2025; 53:gkaf122. [PMID: 40037708 PMCID: PMC11879418 DOI: 10.1093/nar/gkaf122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
Recent research reveals that eukaryotic genomes form circular DNA from all parts of their genome, some large enough to carry whole genes. In organisms like yeast and in human cancers, it is often observed that extrachromosomal circular DNA (eccDNA) benefits the individual cell by providing resources for rapid cellular growth. However, our comprehension of eccDNA remains incomplete, primarily due to their transient nature. Early studies suggest they arise when DNA breaks and is subsequently repaired incorrectly. In this review, we provide an overview of the evidence for molecular mechanisms that lead to eccDNA formation in human cancers and yeast, focusing on nonhomologous end joining, alternative end joining, and homologous recombination repair pathways. Furthermore, we present hypotheses in the form of molecular eccDNA formation models and consider cellular conditions which may affect eccDNA generation. Finally, we discuss the framework for future experimental evidence.
Collapse
Affiliation(s)
- Rasmus A B Eugen-Olsen
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Judith M Hariprakash
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Vibe H Oestergaard
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Birgitte Regenberg
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
7
|
Liang X, Arrey G, Qin Y, Álvarez-González L, Hariprakash JM, Ma J, Holt S, Han P, Luo Y, Li H, Ruiz-Herrera A, Pilegaard H, Regenberg B. EccDNA atlas in male mice reveals features protecting genes against transcription-induced eccDNA formation. Nat Commun 2025; 16:1872. [PMID: 39984484 PMCID: PMC11845583 DOI: 10.1038/s41467-025-57042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 01/29/2025] [Indexed: 02/23/2025] Open
Abstract
eccDNA is a driver of many cancers and a potential intermediate in other age-related disorders. However, little is known about the mechanisms underlying eccDNA formation in healthy tissue and how aging affects these processes. Here, we present an atlas of eccDNA across seven tissues of male mice spanning four ages. EccDNA correlates with open chromatin characterized by signatures of H3K27ac and H3K4me1. Additionally, the mutational load of eccDNA on genes correlates with tissue-specific transcription and increases logarithmically as a function of transcript level. Still, a population of intron-dense genes with many splice forms remains sheltered from eccDNA formation. We also find that the total number of eccDNA molecules does not increase as mice age, unlike other types of mutations. Our data reveal a link between eccDNA formation and transcript level that may drive gene architecture in mammals.
Collapse
Affiliation(s)
- Xue Liang
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China
| | - Gerard Arrey
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yating Qin
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China
| | - Lucía Álvarez-González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Judith Mary Hariprakash
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jie Ma
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China
| | - Sylvester Holt
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Peng Han
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Hanbo Li
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Regenberg
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Sergeev AV, Kisil OV, Eremin AA, Petrov AS, Zvereva ME. "Aging Clocks" Based on Cell-Free DNA. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S342-S355. [PMID: 40164165 DOI: 10.1134/s0006297924604076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 04/02/2025]
Abstract
Aging is associated with systemic changes in the physiological and molecular parameters of the body. These changes are referred to as biomarkers of aging. Statistical models that link changes in individual biomarkers to biological age are called aging clocks. These tools facilitate a comprehensive evaluation of bodily health and permit the quantitative determination of the rate of aging. A particularly promising area for the development of aging clocks is the analysis of cell-free DNA (cfDNA), which is present in the blood and contains numerous potential biomarkers. This review explores in detail the fragmentomics, topology, and epigenetic landscape of cfDNA as possible biomarkers of aging. The review further underscores the potential of leveraging single-molecule sequencing of cfDNA in conjunction with long-read technologies to simultaneously profile multiple biomarkers, a strategy that could lead to the development of more precise aging clocks.
Collapse
Affiliation(s)
- Aleksandr V Sergeev
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Orekhovich Scientific Research Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - Olga V Kisil
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Gauze Scientific Research Institute of New Antibiotics, Moscow, 119021, Russia
| | - Andrey A Eremin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Aleksandr S Petrov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maria E Zvereva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
9
|
Hu F, Qiu Z. Spotlight on the function and trends on extrachromosomal circular DNA (eccDNA): A bibliometric analysis from 2008 - 2023. Exp Cell Res 2025; 444:114318. [PMID: 39547353 DOI: 10.1016/j.yexcr.2024.114318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Extrachromosomal circular DNA (eccDNA),a type of circular DNA that has a nucleosomal structure, is widely distributed in eukaryotic chromosomes and has been found to modulate genome instability and plasticity, playing a role in regulating gene expression and genome evolution. To comprehensively outline the stages of eccDNA research development, including author collaborations, research topics and hotspots, and their temporal evolution trends, we conducted a bibliometric analysis of 242 publications related to eccDNA research published from 2008 to 2023 in the Web of Science Core Collection. The bibliometric analysis was performed using CiteSpace, the R package Bibliometrix, and VOSviewer. The USA, the University of California system, and Turner Km were found to be the most influential nation, organization, and author in this field, respectively. The exploration of Characterization and Diagnosis, Heterochromatin,Circ-Seq and Cancer Drug Resistance on eccDNA are the most concerned hotspots. EccDNA research has become a rapidly growing hotspot, receiving extensive attention from scholars in recent years. This study is the first to investigate the development and current challenges of eccDNA research through bibliometric analysis.The research on eccDNA has advanced from disorder to more intricate molecular functions. At present, the rapid growth of eccDNA studies in cancer has not been accompanied by an intuitive analysis of its evolutionary patterns. This review provides an overview of eccDNA's biological characteristics and functions, with a focus on its role in cancer research.
Collapse
Affiliation(s)
- Fan Hu
- Zhuhai Jingyuan Biomedical Technology Co., LTD, Zhuhai, Guangdong, 519000, People's Republic of China.
| | - Zhengqi Qiu
- Faculty of Medicine, Macau University of Science and Technology, Est. Seak Pai Van Praia Park, Rés-Do-Chão R, Coloane, Macao, 999078, People's Republic of China
| |
Collapse
|
10
|
Zhu H, Huangfu L, Chen J, Ji J, Xing X. Exploring the potential of extrachromosomal DNA as a novel oncogenic driver. SCIENCE CHINA. LIFE SCIENCES 2025; 68:144-157. [PMID: 39349791 DOI: 10.1007/s11427-024-2710-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/13/2024] [Indexed: 01/03/2025]
Abstract
Extrachromosomal DNA (ecDNA) is a form of circular DNA mostly found in tumor cells. Unlike the typical chromosomal DNA, ecDNA is circular, self-replicating, and carries complete or partial gene fragments. Although ecDNA occurrence remains a rare event in cancer, recent studies have shown that oncogene amplification on ecDNA is widespread throughout many types of cancer, implying that ecDNA plays a central role in accelerating tumor evolution. ecDNA has also been associated with increased tumor mutation burden, chromosomal instability, and even tumor microenvironment remodeling. ecDNA may be crucial in influencing tumor heterogeneity, drug sensitivity, oncogenic senescence, and tumor immunogenicity, leading to a worsening prognosis for tumor patients. In this way, several clinical trials have been conducted to investigate the importance of ecDNA in clinical treatment. In this review, we summarize the biogenesis, characteristics, and current research methods of ecDNA, discuss the vital role of ecDNA-caused tumor heterogeneity in cancers, and highlight the potential role of ecDNA in cancer therapy.
Collapse
Affiliation(s)
- Huanbo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Longtao Huangfu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Junbing Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Jiafu Ji
- Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Xiaofang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
11
|
Wang Z, Yu J, Zhu W, Hong X, Xu Z, Mao S, Huang L, Han P, He C, Song C, Xiang X. Unveiling the mysteries of extrachromosomal circular DNA: from generation to clinical relevance in human cancers and health. Mol Cancer 2024; 23:276. [PMID: 39707444 DOI: 10.1186/s12943-024-02187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are a type of circular DNAs originating from but independent of chromosomal DNAs. Nowadays, with the rapid development of sequencing and bioinformatics, the accuracy of eccDNAs detection has significantly improved. This advancement has consequently enhanced the feasibility of exploring the biological characteristics and functions of eccDNAs. This review elucidates the potential mechanisms of eccDNA generation, the existing methods for their detection and analysis, and their basic features. Furthermore, it focuses on the biological functions of eccDNAs in regulating gene expression under both physiological and pathological conditions. Additionally, the review summarizes the clinical implications of eccDNAs in human cancers and health.
Collapse
Affiliation(s)
- Zilong Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaying Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenli Zhu
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xiaoning Hong
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhen Xu
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Shuang Mao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Lei Huang
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Peng Han
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- Department of Biology, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Chunxiao He
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Changze Song
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Xi Xiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
12
|
Yu J, Zhang H, Han P, Jiang X, Li J, Li B, Yang S, He C, Mao S, Dang Y, Xiang X. Circle-seq based method for eccDNA synthesis and its application as a canonical promoter independent vector for robust microRNA overexpression. Comput Struct Biotechnol J 2024; 23:358-368. [PMID: 38223344 PMCID: PMC10788182 DOI: 10.1016/j.csbj.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024] Open
Abstract
Extrachromosomal circular DNA (eccDNA) has recently gained increasing attention due to its significant role in cancer and other pathophysiologic states. The majority of circular DNAs detected by Circle-seq are small-size eccDNAs with enigmatic functions. One major technical hurdle is to synthesize eccDNA for functional identification. Here, we describe CAES (Circle-seq based Artificial EccDNA Synthesis), a promising and reliable method for artificial eccDNA synthesis. Eight eccDNAs carrying different microRNA genes (eccMIR) found in gastric cancer tissues, ranging from 329 bp to 2189 bp in size, were created utilizing the CAES method. Exonuclease V and single restriction-endonuclease digestion identified the circular structure of synthetic eccDNAs. The DNA circularization efficiency afforded by CAES ranged from 15.6% to 31.1%, which was negatively correlated with the eccDNA length. In addition, we demonstrated that CAES-synthesized eccMIRs can express both miRNA-3p and - 5p molecules efficiently independent of a canonical promoter in human cell lines. Further assays proved that these eccMIRs were functional as they were able to repress the luciferase gene containing a miRNA-target sequence in the 3'UTR as well as the endogenous mRNA targets. Finally, kinetics study revealed that eccDNA exhibited a decay rate similar to the standard plasmids and linear DNA in cultured cells. Together, this study offers a rapid and convenient method for Circle-seq users to synthesize artificial eccDNAs. It also demonstrates the promising potential of eccMIR as a bacterial DNA-free vector for safe and robust miRNA overexpression in both basic research and therapeutic applications.
Collapse
Affiliation(s)
- Jiaying Yu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Guangdong–Hong Kong–Macau University Joint Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Haoran Zhang
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Peng Han
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Xianming Jiang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jing Li
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Bo Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Guangdong–Hong Kong–Macau University Joint Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Shaohua Yang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Guangdong–Hong Kong–Macau University Joint Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Chunxiao He
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Shuang Mao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yonghui Dang
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xi Xiang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Guangdong–Hong Kong–Macau University Joint Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
13
|
Ma YN, Xia Y, Karako K, Song P, Hu X. Extrachromosomal DNA: Molecular perspectives in aging and neurodegenerative diseases. Intractable Rare Dis Res 2024; 13:251-254. [PMID: 39628626 PMCID: PMC11609041 DOI: 10.5582/irdr.2024.01058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
Extrachromosomal DNA (ecDNA) refers to a class of circular, non-chromosomal DNA that has recently gained widespread attention due to its potential role in aging and neurodegenerative diseases. The generation of ecDNA is closely associated with processes such as double-strand breaks, micronuclei formation, and the breakage-fusion-bridge (BFB) cycle, all of which are integral to regulation of gene expression, genetic stability, and clonal evolution. In neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, the aberrant formation of ecDNA is closely linked to defects in DNA repair, alterations in synaptic plasticity, and neuronal dysfunction. The distinct distribution and functional roles of ecDNA in these conditions make it a potential diagnostic biomarker and therapeutic target. This review provides an overview of the mechanisms underlying ecDNA formation and its functions in the nervous system. Additionally, it explores the clinical potential of ecDNA in disease diagnosis, targeted therapy, and personalized medicine, offering new insights for future research and treatment strategies.
Collapse
Affiliation(s)
- Ya-nan Ma
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| | - Kenji Karako
- Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Peipei Song
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Xiqi Hu
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| |
Collapse
|
14
|
Lin Z, Dai F, Li B, Zhao Y, Wang C. Integrating Circle-Seq with transcriptomics reveals genome-wide characterization of extrachromosomal circular DNA for dilated cardiomyopathy. Biol Direct 2024; 19:125. [PMID: 39614284 DOI: 10.1186/s13062-024-00556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Extrachromosomal circular DNAs (eccDNAs) are commonly found in various tumors and play a critical role in promoting oncogenesis. However, little is known about the characteristics and nature of eccDNAs in human heart failure. The aim of this study was to comprehensively analyze eccDNAs in human heart failure caused by dilated cardiomyopathy (DCM) and explore their potential functions. METHODS Circle-Seq and RNA-Seq were performed in cardiac tissue samples obtained from patients with DCM and healthy controls to identify eccDNAs and corresponding genes. Inward PCR, outward PCR and Sanger sequencing were conducted to validate the circular structure of eccDNAs. Bioinformatics was employed to probe the transcriptional activity of eccDNAs and their potential roles in the development of DCM. Ligase assisted minicircle accumulation strategy was used to synthesize a 500 bp circular DNA with a random sequence. RESULTS EccDNAs originated from all chromosomes, with the majority being less than 1 kb in size and about half containing genes or gene fragments. They were derived from specific repeat elements and primarily mapped to 5'UTR, 3'UTR, and CpG islands. Gene-rich chromosomes 17 and 19 exhibited higher eccDNA enrichment. Sequence motifs flanking eccDNA junction sites displayed frequent nucleotide repeats. The circular structure of eccDNAs were confirmed. Integration of Circle-Seq and RNA-Seq data identified that large eccDNAs can be directly transcribed in non-dividing cardiomyocytes, indicating their potential roles in gene expression. Small circular DNA elicited a stronger cytokine response than linear DNA with the same sequence. CONCLUSIONS Our work provided a detailed profiling of eccDNAs in both healthy and DCM hearts and demonstrated the potential functions of both large and small eccDNAs. These findings enhance the comprehension of the role of eccDNAs in cardiac pathophysiology and establish a theoretical foundation for future investigations on eccDNAs in DCM.
Collapse
Affiliation(s)
- Zhenhao Lin
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Fangjie Dai
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Bo Li
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563099, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200030, China.
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.
| |
Collapse
|
15
|
Ling X, Jiao Q, Lin D, Chen J, Han Y, Meng J, Zhong B, Zhang H, Zhang G, Zhu F, Qin J, Ruan Y, Liu L. Extrachromosomal circular DNA containing DTX1 promotes cell growth in hydroquinone-induced malignantly transformed cells by regulating the transcription of DTX1. BMC Cancer 2024; 24:1448. [PMID: 39587541 PMCID: PMC11587744 DOI: 10.1186/s12885-024-13177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 11/09/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Extrachromosomal circular DNA (eccDNA), a novel class of DNA with a circular topological structure, is present in a variety of cancer cells and tissues and may play broad roles in processes ranging from aging to cancer cell heterogeneity through multiple mechanisms. EccDNA has been characterized by profile, structure and function in several prominent studies but its effect on hydroquinone (HQ)-induced malignantly transformed cells (TK6-HQ) is still elusive. METHODS Circle-seq was applied to determine the eccDNA counts and characteristics of TK6-HQ cells. DNA-fluorescence in situ hybridization was used to measure the abundance of eccDNA_DTX1. Differential gene expression analysis was carried out by RNA-seq. Gene expression was quantified by wertern blot and qPCR. Decircularization of eccDNA_DTX1 was achieved by CRISPR/Cas9. Tumorigenicity was evaluated by xenograft assay in BALB/c nude mice. RESULTS In this study, we characterized the structure of eccDNAs and the function of DTX1-containing eccDNA (eccDNA_DTX1) in TK6-HQ cells. A total of 669,179 eccDNAs were identified, including 901 eccDNAs with different counts. Most of the eccDNAs were < 1000 bp in length and were enriched in four periodic peaks starting at 186 bp with an interval of ~ 180 bp. The genomic distribution of eccDNAs confirmed that eccDNAs could be observed across all chromosomes and had greater enrichment on chromosomes 17, 19, 20, and 22, with abundant Alu repeat elements, introns and CpG islands. By combining the results of the integrated circle-seq analysis of eccDNAs with those from the RNA-seq analysis (differentially expressed genes, 1064 upregulated and 427 downregulated), the authors showed that the transcription of 20 potential coding genes might be driven by eccDNAs. Finally, the knockdown of eccDNA_DTX1 by CRISPR/Cas9 inhibited the growth of TK6-HQ cells in vitro and in vivo by inhibiting the transcription of DTX1 and promoting ferroptosis, and ferroptosis inhibior, Ferrostatin-1, abrogated the proliferation inhibition of eccDNA_DTX1 knockdown. CONCLUSIONS EccDNA_DTX1 promotes cell growth in hydroquinone-induced malignantly transformed cells by regulating the transcription of DTX1 and ferroptosis. This study profiles eccDNA characteristics and defines the role and mechanism of eccDNA_DTX1 for the first time, shedding new light on the relationship between eccDNAs and carcinogenesis.
Collapse
Affiliation(s)
- Xiaoxuan Ling
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Qunfang Jiao
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Daifan Lin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Jialong Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Yali Han
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Jinxue Meng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Bohuan Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - He Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Gongda Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Fangling Zhu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Jiheng Qin
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Meidical University, Dongguan, 523808, P.R. China
| | - Yongdui Ruan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523722, P.R. China
| | - Linhua Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China.
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China.
| |
Collapse
|
16
|
Li Y, Ge F, Liu C, Pu W, Lv W, Zeng Z, Yin L, Liu D, Li Y, Tang D, Han P, Dai Y. Genome-wide characterization of extrachromosomal circular DNA in SLE and functional analysis reveal their association with apoptosis. Transl Res 2024; 273:115-126. [PMID: 39173965 DOI: 10.1016/j.trsl.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Extrachromosomal circular DNA (eccDNA) derived from linear chromosomes, are showed typical nucleosomal ladder pattern in agarose gel which as a known feature of apoptosis and demonstrated to be immunogenicity. In systemic lupus erythematosus (SLE) patients, elevated levels of cell-free DNA (cfDNA) can be found in either linear forms or circular forms, while circular ones are much less common and harder to detect. The molecular characteristics and function of circular forms in plasma SLE patients remains elusive. Herein, we characterized the hallmarks of plasma eccDNA in SLE patients, including the lower normalized number and GC content of eccDNA in SLE plasma than in the healthy, and SLE eccDNA number positively correlated with C3 and negatively with anti-dsDNA antibodies. The differential eccGenes (eccDNAs carrying the protein coding gene sequence) of SLE was significantly enriched in apoptosis-related pathways. The artificially synthesized eccDNA with sequences of the PRF1 exon region could promote transcriptional expression of PRF1, IFNA and IFIT3 and inhibit early-stage apoptosis. Plasma eccDNA can serve as a novel autoantigen in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Yixi Li
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People' s Hospital (Affiliated People' s Hospital), Hangzhou Medical College, Hangzhou 310000, China; Guangdong Provincial Autoimmune Disease Precision Medicine Engineering Research Center, Shenzhen Autoimmune Disease Engineering Research Center, Shenzhen Geriatrics Clinical Research Center, Shenzhen People 's Hospital, the Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Fangfang Ge
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao 266555, China
| | - Chengxun Liu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao 266555, China
| | - Wenjun Pu
- Guangdong Provincial Autoimmune Disease Precision Medicine Engineering Research Center, Shenzhen Autoimmune Disease Engineering Research Center, Shenzhen Geriatrics Clinical Research Center, Shenzhen People 's Hospital, the Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Wei Lv
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao 266555, China
| | - Zhipeng Zeng
- Guangdong Provincial Autoimmune Disease Precision Medicine Engineering Research Center, Shenzhen Autoimmune Disease Engineering Research Center, Shenzhen Geriatrics Clinical Research Center, Shenzhen People 's Hospital, the Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, Shenzhen People's Hospital, the Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Yasong Li
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People' s Hospital (Affiliated People' s Hospital), Hangzhou Medical College, Hangzhou 310000, China
| | - Donge Tang
- Guangdong Provincial Autoimmune Disease Precision Medicine Engineering Research Center, Shenzhen Autoimmune Disease Engineering Research Center, Shenzhen Geriatrics Clinical Research Center, Shenzhen People 's Hospital, the Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Peng Han
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao 266555, China..
| | - Yong Dai
- The First Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China; Comprehensive Health Industry Research Center, Southern University of Science and Technology Taizhou Research Institute, Taizhou 318000, China.
| |
Collapse
|
17
|
Li F, Ming W, Lu W, Wang Y, Dong X, Bai Y. Bioinformatics advances in eccDNA identification and analysis. Oncogene 2024; 43:3021-3036. [PMID: 39209966 DOI: 10.1038/s41388-024-03138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Extrachromosomal circular DNAs (eccDNAs) are a unique class of chromosome-originating circular DNA molecules, which are closely linked to oncogene amplification. Due to recent technological advances, particularly in high-throughput sequencing technology, bioinformatics methods based on sequencing data have become primary approaches for eccDNA identification and functional analysis. Currently, eccDNA-relevant databases incorporate previously identified eccDNA and provide thorough functional annotations and predictions, thereby serving as a valuable resource for eccDNA research. In this review, we collected around 20 available eccDNA-associated bioinformatics tools, including identification tools and annotation databases, and summarized their properties and capabilities. We evaluated some of the eccDNA detection methods in simulated data to offer recommendations for future eccDNA detection. We also discussed the current limitations and prospects of bioinformatics methodologies in eccDNA research.
Collapse
Affiliation(s)
- Fuyu Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Wenlong Ming
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| | - Wenxiang Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Ying Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Xianjun Dong
- Adams Center of Parkinson's Disease Research, Yale School of Medicine, Yale University, 100 College St, New Haven, CT, 06511, USA.
- Department of Neurology, Yale School of Medicine, Yale University, 100 College St, New Haven, CT, 06511, USA.
| | - Yunfei Bai
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China.
| |
Collapse
|
18
|
Peng Y, Tao H, Wang G, Wu M, Xu T, Wen C, Zheng X, Dai Y. Exploring the Role of Extrachromosomal Circular DNA in Human Diseases. Cytogenet Genome Res 2024; 164:181-193. [PMID: 39348807 DOI: 10.1159/000541563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND Extrachromosomal circular DNA (eccDNA) has emerged as a central focus in molecular biology, with various types being found across species through advanced techniques, including high-throughput sequencing. This dynamic molecule exerts a significant influence on aging and immune function and plays pivotal roles in autoimmune diseases, type 2 diabetes mellitus, cancer, and genetic disorders. SUMMARY This comprehensive review investigates the classification, characteristics, formation processes, and multifaceted functions of eccDNA, providing an in-depth exploration of its mechanisms in diverse diseases. KEY MESSAGES The goal of this review was to establish a robust theoretical foundation for a more comprehensive understanding of eccDNA, offering valuable insights for the development of clinical diagnostics and innovative therapeutic strategies in the context of related diseases.
Collapse
Affiliation(s)
- Yali Peng
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Huihui Tao
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, China
| | - Guoying Wang
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Mengyao Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Tinatin Xu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Chunmei Wen
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Xuejia Zheng
- The First Hospital of Anhui University of Science and Technology, Huainan, China
| | - Yong Dai
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, China
- The First Hospital of Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
19
|
Roulet ME, Ceriotti LF, Gatica-Soria L, Sanchez-Puerta MV. Horizontally transferred mitochondrial DNA tracts become circular by microhomology-mediated repair pathways. THE NEW PHYTOLOGIST 2024; 243:2442-2456. [PMID: 39044460 DOI: 10.1111/nph.19984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024]
Abstract
The holoparasitic plant Lophophytum mirabile exhibits remarkable levels of mitochondrial horizontal gene transfer (HGT). Gathering comparative data from other individuals and host plants can provide insights into the HGT process. We sequenced the mitochondrial genome (mtDNA) from individuals of two species of Lophophytum and from mimosoid hosts. We applied a stringent phylogenomic approach to elucidate the origin of the whole mtDNAs, estimate the timing of the transfers, and understand the molecular mechanisms involved. Ancestral and recent HGT events replaced and enlarged the multichromosomal mtDNA of Lophophytum spp., with the foreign DNA ascending to 74%. A total of 14 foreign mitochondrial chromosomes originated from continuous regions in the host mtDNA flanked by short direct repeats. These foreign tracts are circularized by microhomology-mediated repair pathways and replicate independently until they are lost or they eventually recombine with other chromosomes. The foreign noncoding chromosomes are variably present in the population and likely evolve by genetic drift. We present the 'circle-mediated HGT' model in which foreign mitochondrial DNA tracts become circular and are maintained as plasmid-like molecules. This model challenges the conventional belief that foreign DNA must be integrated into the recipient genome for successful HGT.
Collapse
Affiliation(s)
- M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
| | - Luis Federico Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| | - Leonardo Gatica-Soria
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| |
Collapse
|
20
|
Lv W, Pan X, Han P, Wu S, Zeng Y, Wang Q, Guo L, Xu M, Qi Y, Deng L, Xu Z, Li C, Yu T, Cui X, Teng H, Xiang C, Tan H, Li Y, Liang N, Tao H, Gao Q, Yu G, Mi J, Xu F, Gong B, Shi L, Wang T, Yang H, Dong W, Bolund L, Lin L, Wang W, Li H, Huang J, Lin C, Luo Y. Extrachromosomal circular DNA orchestrates genome heterogeneity in urothelial bladder carcinoma. Theranostics 2024; 14:5102-5122. [PMID: 39267784 PMCID: PMC11388072 DOI: 10.7150/thno.99563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/03/2024] [Indexed: 09/15/2024] Open
Abstract
Rationale: Extrachromosomal circular DNA is a hallmark of cancer, but its role in shaping the genome heterogeneity of urothelial bladder carcinoma (UBC) remains poorly understood. Here, we comprehensively analyzed the features of extrachromosomal circular DNA in 80 UBC patients. Methods: We performed whole-genome/exome sequencing (WGS/WES), Circle-Seq, single-molecule real-time (SMRT) long-read sequencing of circular DNA, and RNA sequencing (RNA-Seq) on 80 pairs of tumor and AT samples. We used our newly developed circular DNA analysis software, Circle-Map++ to detect small extrachromosomal circular DNA from Circle-Seq data. Results: We observed a high load and significant heterogeneity of extrachromosomal circular DNAs in UBC, including numerous single-locus and complex chimeric circular DNAs originating from different chromosomes. This includes highly chimeric circular DNAs carrying seven oncogenes and circles from nine chromosomes. We also found that large tumor-specific extrachromosomal circular DNAs could influence genome-wide gene expression, and are detectable in time-matched urinary sediments. Additionally, we found that the extrachromosomal circular DNA correlates with hypermutation, copy number variation, oncogene amplification, and clinical outcome. Conclusions: Overall, our study provides a comprehensive extrachromosomal circular DNA map of UBC, along with valuable data resources and bioinformatics tools for future cancer and extrachromosomal circular DNA research.
Collapse
Affiliation(s)
- Wei Lv
- Lars Bolund Institute of Regenerative Medicine, HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
| | - Xiaoguang Pan
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Research, Qingdao 266555, China
- BGI-Research, Shenzhen, 518083, China
| | - Peng Han
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Research, Qingdao 266555, China
- BGI-Research, Shenzhen, 518083, China
| | - Shuang Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
| | - Yuchen Zeng
- Lars Bolund Institute of Regenerative Medicine, HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Qingqing Wang
- College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
| | - Lidong Guo
- College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
- BGI-Research, Shenzhen, 518083, China
| | | | - Yanwei Qi
- BGI-Research, Shenzhen, 518083, China
| | - Li Deng
- BGI-Research, Shenzhen, 518083, China
| | - Zhe Xu
- College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
| | - Conghui Li
- Lars Bolund Institute of Regenerative Medicine, HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Tianxi Yu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
- School of Clinical Medicine, Weifang Medical University, Weifang, 261042, China
| | - Xin Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
- School of Clinical Medicine, Weifang Medical University, Weifang, 261042, China
| | - Huajing Teng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chongjun Xiang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
- The 2nd Medical College of Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Haotian Tan
- Department of Urology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
| | - Yue Li
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
- The 2nd Medical College of Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Ning Liang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
- School of Clinical Medicine, Weifang Medical University, Weifang, 261042, China
| | - Huiying Tao
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
- The 2nd Medical College of Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Qingqing Gao
- Lars Bolund Institute of Regenerative Medicine, HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
| | - Guohua Yu
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Fuyi Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Benjiao Gong
- Department of Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Lei Shi
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
| | - Tao Wang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
| | - Huanming Yang
- Lars Bolund Institute of Regenerative Medicine, HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Research, Qingdao 266555, China
- BGI-Research, Shenzhen, 518083, China
| | - Wei Dong
- Lars Bolund Institute of Regenerative Medicine, HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Lars Bolund
- Lars Bolund Institute of Regenerative Medicine, HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Research, Qingdao 266555, China
| | - Lin Lin
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Research, Qingdao 266555, China
| | - Wenting Wang
- Department of Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Hanbo Li
- BGI-Research, Shenzhen, 518083, China
| | | | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Research, Qingdao 266555, China
| |
Collapse
|
21
|
Yang W, Ji W, Liao B, Li Z, Wang J, Lin H, Wang J, He Q. Genome-wide sequencing identified extrachromosomal circular DNA as a transcription factor-binding motif of the senescence genes that govern replicative senescence in human mesenchymal stem cells. Front Cell Neurosci 2024; 18:1421342. [PMID: 39157757 PMCID: PMC11327076 DOI: 10.3389/fncel.2024.1421342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) have long been postulated as an important source cell in regenerative medicine. During subculture expansion, mesenchymal stem cell (MSC) senescence diminishes their multi-differentiation capabilities, leading to a loss of therapeutic potential. Up to date, the extrachromosomal circular DNAs (eccDNAs) have been demonstrated to be involved in senescence but the roles of eccDNAs during MSC. Methods Here we explored eccDNA profiles in human bone marrow MSCs (BM-MSCs). EccDNA and mRNA was purified and sequenced, followed by quantification and functional annotation. Moreover, we mapped our datasets with the downloading enhancer and transcription factor-regulated genes to explore the potential role of eccDNAs. Results Sequentially, gene annotation analysis revealed that the majority of eccDNA were mapped in the intron regions with limited BM-MSC enhancer overlaps. We discovered that these eccDNA motifs in senescent BMSCs acted as motifs for binding transcription factors (TFs) of senescence-related genes. Discussion These findings are highly significant for identifying biomarkers of senescence and therapeutic targets in mesenchymal stem cells (MSCs) for future clinical applications. The potential of eccDNA as a stable therapeutic target for senescence-related disorders warrants further investigation, particularly exploring chemically synthesized eccDNAs as transcription factor regulatory elements to reverse cellular senescence.
Collapse
Affiliation(s)
- Wei Yang
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China
| | - Wei Ji
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Boyu Liao
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhongbo Li
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Jian Wang
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Haishu Lin
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jingbo Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Qian He
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China
| |
Collapse
|
22
|
Tsiakanikas P, Athanasopoulou K, Darioti IA, Agiassoti VT, Theocharis S, Scorilas A, Adamopoulos PG. Beyond the Chromosome: Recent Developments in Decoding the Significance of Extrachromosomal Circular DNA (eccDNA) in Human Malignancies. Life (Basel) 2024; 14:922. [PMID: 39202666 PMCID: PMC11355349 DOI: 10.3390/life14080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is a form of a circular double-stranded DNA that exists independently of conventional chromosomes. eccDNA exhibits a broad and random distribution across eukaryotic cells and has been associated with tumor-related properties due to its ability to harbor the complete gene information of oncogenes. The complex and multifaceted mechanisms underlying eccDNA formation include pathways such as DNA damage repair, breakage-fusion-bridge (BFB) mechanisms, chromothripsis, and cell apoptosis. Of note, eccDNA plays a pivotal role in tumor development, genetic heterogeneity, and therapeutic resistance. The high copy number and transcriptional activity of oncogenes carried by eccDNA contribute to the accelerated growth of tumors. Notably, the amplification of oncogenes on eccDNA is implicated in the malignant progression of cancer cells. The improvement of high-throughput sequencing techniques has greatly enhanced our knowledge of eccDNA by allowing for a detailed examination of its genetic structures and functions. However, we still lack a comprehensive and efficient annotation for eccDNA, while challenges persist in the study and understanding of the functional role of eccDNA, emphasizing the need for the development of robust methodologies. The potential clinical applications of eccDNA, such as its role as a measurable biomarker or therapeutic target in diseases, particularly within the spectrum of human malignancies, is a promising field for future research. In conclusion, eccDNA represents a quite dynamic and multifunctional genetic entity with far-reaching implications in cancer pathogenesis and beyond. Further research is essential to unravel the molecular pathways of eccDNA formation, elucidate its functional roles, and explore its clinical applications. Addressing these aspects is crucial for advancing our understanding of genomic instability and developing novel strategies for tailored therapeutics, especially in cancer.
Collapse
Affiliation(s)
- Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Konstantina Athanasopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Ioanna A. Darioti
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Vasiliki Taxiarchoula Agiassoti
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece; (V.T.A.)
| | - Stamatis Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece; (V.T.A.)
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Panagiotis G. Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
23
|
Gumińska N, Hałakuc P, Zakryś B, Milanowski R. Circular extrachromosomal DNA in Euglena gracilis under normal and stress conditions. Protist 2024; 175:126033. [PMID: 38574508 DOI: 10.1016/j.protis.2024.126033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/10/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Extrachromosomal circular DNA (eccDNA) enhances genomic plasticity, augmenting its coding and regulatory potential. Advances in high-throughput sequencing have enabled the investigation of these structural variants. Although eccDNAs have been investigated in numerous taxa, they remained understudied in euglenids. Therefore, we examined eccDNAs predicted from Illumina sequencing data of Euglena gracilis Z SAG 1224-5/25, grown under optimal photoperiod and exposed to UV irradiation. We identified approximately 1000 unique eccDNA candidates, about 20% of which were shared across conditions. We also observed a significant enrichment of mitochondrially encoded eccDNA in the UV-irradiated sample. Furthermore, we found that the heterogeneity of eccDNA was reduced in UV-exposed samples compared to cells that were grown in optimal conditions. Hence, eccDNA appears to play a role in the response to oxidative stress in Euglena, as it does in other studied organisms. In addition to contributing to the understanding of Euglena genomes, our results contribute to the validation of bioinformatics pipelines on a large, non-model genome.
Collapse
Affiliation(s)
- Natalia Gumińska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, 101 Żwirki i Wigury Street, 02-089 Warsaw, Poland; Laboratory of RNA Biology, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland.
| | - Paweł Hałakuc
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, 101 Żwirki i Wigury Street, 02-089 Warsaw, Poland
| | - Bożena Zakryś
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, 101 Żwirki i Wigury Street, 02-089 Warsaw, Poland
| | - Rafał Milanowski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, 101 Żwirki i Wigury Street, 02-089 Warsaw, Poland.
| |
Collapse
|
24
|
Li Q, Zhang RX, Yang JJ, Huang HB, Feng G, Li GR. Characterization of extrachromosomal circular DNAs in plasma of patients with clear cell renal cell carcinoma. World J Urol 2024; 42:328. [PMID: 38753087 DOI: 10.1007/s00345-024-05031-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/06/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND AND PURPOSE Extrachromosomal circular DNAs (eccDNAs) have been recognized for their significant involvement in numerous biological processes. Nonetheless, the existence and molecular characteristics of eccDNA in the peripheral blood of patients diagnosed with clear cell renal cell carcinoma (ccRCC) have not yet been reported. Our aim was to identify potentially marked plasma eccDNAs in ccRCC patients. METHODS AND MATERIALS The detection of plasma eccDNA in ccRCC patients and healthy controls was performed using the Tn5-tagmentation and next-generation sequencing (NGS) method. Comparisons were made between ccRCC patients and healthy controls regarding the distribution of length, gene annotation, pattern of junctional nucleotide motif, and expression pattern of plasma eccDNA. RESULTS We found 8,568 and 8,150 plasma eccDNAs in ccRCC patients and healthy controls, respectively. There were no statistical differences in the length distribution, gene annotation, and motif signature of plasma eccDNAs between the two groups. A total of 701 differentially expressed plasma eccDNAs were identified, and 25 plasma eccDNAs with potential diagnostic value for ccRCC have been successfully screened. These up-regulated plasma eccDNAs also be indicated to originate from the genomic region of the tumor-associated genes. CONCLUSION This work demonstrates the characterization of plasma eccDNAs in ccRCC and suggests that the up-regulated plasma eccDNAs could be considered as a promising non-invasive biomarker in ccRCC.
Collapse
Affiliation(s)
- Qing Li
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No.2, West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Rui-Xuan Zhang
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No.2, West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Jing-Jing Yang
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No.2, West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Hou-Bao Huang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Gang Feng
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No.2, West Zheshan Road, Wuhu, 241001, Anhui, China.
- Department of Urology, North Hospital, CHU of Saint-Etienne, 42055, Saint-Etienne, France.
| | - Guo-Rong Li
- Department of Urology, North Hospital, CHU of Saint-Etienne, 42055, Saint-Etienne, France
| |
Collapse
|
25
|
Li Z, Qian D. Extrachromosomal circular DNA (eccDNA): from carcinogenesis to drug resistance. Clin Exp Med 2024; 24:83. [PMID: 38662139 PMCID: PMC11045593 DOI: 10.1007/s10238-024-01348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Extrachromosomal circular DNA (eccDNA) is a circular form of DNA that exists outside of the chromosome. Although it has only been a few decades since its discovery, in recent years, it has been found to have a close relationship with cancer, which has attracted widespread attention from researchers. Thus far, under the persistent research of researchers from all over the world, eccDNA has been found to play an important role in a variety of tumors, including breast cancer, lung cancer, ovarian cancer, etc. Herein, we review the sources of eccDNA, classifications, and the mechanisms responsible for their biogenesis. In addition, we introduce the relationship between eccDNA and various cancers and the role of eccDNA in the generation and evolution of cancer. Finally, we summarize the research significance and importance of eccDNA in cancer, and highlight new prospects for the application of eccDNA in the future detection and treatment of cancer.
Collapse
Affiliation(s)
- Zhaoxing Li
- Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Daohai Qian
- Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
26
|
Piguet B, Houseley J. Transcription as source of genetic heterogeneity in budding yeast. Yeast 2024; 41:171-185. [PMID: 38196235 DOI: 10.1002/yea.3926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
Transcription presents challenges to genome stability both directly, by altering genome topology and exposing single-stranded DNA to chemical insults and nucleases, and indirectly by introducing obstacles to the DNA replication machinery. Such obstacles include the RNA polymerase holoenzyme itself, DNA-bound regulatory factors, G-quadruplexes and RNA-DNA hybrid structures known as R-loops. Here, we review the detrimental impacts of transcription on genome stability in budding yeast, as well as the mitigating effects of transcription-coupled nucleotide excision repair and of systems that maintain DNA replication fork processivity and integrity. Interactions between DNA replication and transcription have particular potential to induce mutation and structural variation, but we conclude that such interactions must have only minor effects on DNA replication by the replisome with little if any direct mutagenic outcome. However, transcription can significantly impair the fidelity of replication fork rescue mechanisms, particularly Break Induced Replication, which is used to restart collapsed replication forks when other means fail. This leads to de novo mutations, structural variation and extrachromosomal circular DNA formation that contribute to genetic heterogeneity, but only under particular conditions and in particular genetic contexts, ensuring that the bulk of the genome remains extremely stable despite the seemingly frequent interactions between transcription and DNA replication.
Collapse
|
27
|
Wu N, Wei L, Zhu Z, Liu Q, Li K, Mao F, Qiao J, Zhao X. Innovative insights into extrachromosomal circular DNAs in gynecologic tumors and reproduction. Protein Cell 2024; 15:6-20. [PMID: 37233789 PMCID: PMC10762679 DOI: 10.1093/procel/pwad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Originating but free from chromosomal DNA, extrachromosomal circular DNAs (eccDNAs) are organized in circular form and have long been found in unicellular and multicellular eukaryotes. Their biogenesis and function are poorly understood as they are characterized by sequence homology with linear DNA, for which few detection methods are available. Recent advances in high-throughput sequencing technologies have revealed that eccDNAs play crucial roles in tumor formation, evolution, and drug resistance as well as aging, genomic diversity, and other biological processes, bringing it back to the research hotspot. Several mechanisms of eccDNA formation have been proposed, including the breakage-fusion-bridge (BFB) and translocation-deletion-amplification models. Gynecologic tumors and disorders of embryonic and fetal development are major threats to human reproductive health. The roles of eccDNAs in these pathological processes have been partially elucidated since the first discovery of eccDNA in pig sperm and the double minutes in ovarian cancer ascites. The present review summarized the research history, biogenesis, and currently available detection and analytical methods for eccDNAs and clarified their functions in gynecologic tumors and reproduction. We also proposed the application of eccDNAs as drug targets and liquid biopsy markers for prenatal diagnosis and the early detection, prognosis, and treatment of gynecologic tumors. This review lays theoretical foundations for future investigations into the complex regulatory networks of eccDNAs in vital physiological and pathological processes.
Collapse
Affiliation(s)
- Ning Wu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Ling Wei
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Qiang Liu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Kailong Li
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Xiaolu Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| |
Collapse
|
28
|
Zhu M, Tong X, Qiu Q, Pan J, Wei S, Ding Y, Feng Y, Hu X, Gong C. Identification and characterization of extrachromosomal circular DNA in the silk gland of Bombyx mori. INSECT SCIENCE 2023; 30:1565-1578. [PMID: 36826848 DOI: 10.1111/1744-7917.13191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The silk gland cells of silkworm are special cells which only replicate DNA in the nucleus without cell division throughout the larval stage. The extrachromosomal circular DNAs (eccDNAs) have not yet been reported in the silk gland of silkworms. Herein, we have explored the characterization of eccDNAs in the posterior silk gland of silkworms. A total of 35 346 eccDNAs were identified with sizes ranging from 30 to 13 569 549 bp. Motif analysis revealed that dual direct repeats are flanking the 5' and 3' breaking points of eccDNA. The sequences exceeding 1 kb length in eccDNAs present palindromic sequence characteristics flanking the 5' and 3' breaking points of the eccDNA. These motifs might support possible models for eccDNA generation. Genomic annotation of the eccDNA population revealed that most eccDNAs (58.6%) were derived from intergenic regions, whereas full or partial genes were carried by 41.4% of eccDNAs. It was found that silk protein genes fib-H, fib-L, and P25, as well as the transcription factors SGF and sage, which play an important regulatory role in silk protein synthesis, could be carried by eccDNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that the genes carried by eccDNAs were mainly associated with the development and metabolism-related signaling pathways. Moreover, it was found that eccDNAfib-L could promote the transcription of fib-L gene. Overall, the results of the present study not only provide a novel perspective on the mechanism of silk gland development and silk protein synthesis but also complement previously reported genome-scale eccDNA data supporting that eccDNAs are common in eukaryotes.
Collapse
Affiliation(s)
- Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
| | - Xinyu Tong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
| | - Qunnan Qiu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
| | - Shulin Wei
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
| | - Yuming Ding
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
| | - Yongjie Feng
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, China
| |
Collapse
|
29
|
Ren S, Wu D, Shen X, Wu Q, Li C, Xiong H, Xiong Z, Gong R, Liu Z, Wang W, Chen J. Deciphering the role of extrachromosomal circular DNA in adipose stem cells from old and young donors. Stem Cell Res Ther 2023; 14:341. [PMID: 38017497 PMCID: PMC10683086 DOI: 10.1186/s13287-023-03575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND The functional impairment of adipose stem cells (ASCs) during aging limits their clinical transformation. Studies have shown that extrachromosomal circular DNAs (eccDNAs) are associated with tumor progression and cell aging, but the roles of eccDNAs in ASCs remain unknown. METHOD We conducted Circle sequencing (Circle-seq) to identify eccDNAs in ASCs isolated from young and old donors. The differentially expressed eccDNAs were calculated, annotated and validated via polymerase chain reaction. RESULTS Thousands of eccDNAs were identified and comprehensively characterized. Most of them were GC-rich, < 1000 base pairs in size, and were enriched on chromosome 19 and 17 with a high density of Alu elements and genes, 2 kb upstream/downstream of genes and satellites. In total, 3025 eccDNAs were differentially expressed among the two ASC groups. Conjoint analysis of the Circle-seq results and previous RNA-seq results revealed that 73 eccDNAs and 55 genes exhibited the same differential expression between the two groups. KEGG and GO analyses revealed that genes encoding differentially expressed eccDNAs were enriched for cell adhesion, cellular senescence and TGF-β receptor signaling pathway. We also found that aged ASCs exhibited loss of eccDNAs, including CAMK2G (chr10: 75577899-75578176), TRABD2B (chr1: 48305638-48307008) and TRABD2B (chr1: 48305425-48307091). CONCLUSION In this study, we elucidated the first eccDNA profile relating to ASCs and demonstrated that three eccDNAs are lost in aged ASCs, which may be potential biomarkers of stem cell aging and valuable targets for stem cell rejuvenation.
Collapse
Affiliation(s)
- Sen Ren
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Du Wu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaoyong Shen
- Hospital of Stomatology Wuhan University, Wuhan, 430079, China
| | - Qian Wu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chengcheng Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hewei Xiong
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhongwei Xiong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Rui Gong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zheng Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Wei Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
30
|
Blount BA, Lu X, Driessen MR, Jovicevic D, Sanchez MI, Ciurkot K, Zhao Y, Lauer S, McKiernan RM, Gowers GOF, Sweeney F, Fanfani V, Lobzaev E, Palacios-Flores K, Walker RS, Hesketh A, Cai J, Oliver SG, Cai Y, Stracquadanio G, Mitchell LA, Bader JS, Boeke JD, Ellis T. Synthetic yeast chromosome XI design provides a testbed for the study of extrachromosomal circular DNA dynamics. CELL GENOMICS 2023; 3:100418. [PMID: 38020971 PMCID: PMC10667340 DOI: 10.1016/j.xgen.2023.100418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/13/2023] [Accepted: 09/08/2023] [Indexed: 12/01/2023]
Abstract
We describe construction of the synthetic yeast chromosome XI (synXI) and reveal the effects of redesign at non-coding DNA elements. The 660-kb synthetic yeast genome project (Sc2.0) chromosome was assembled from synthesized DNA fragments before CRISPR-based methods were used in a process of bug discovery, redesign, and chromosome repair, including precise compaction of 200 kb of repeat sequence. Repaired defects were related to poor centromere function and mitochondrial health and were associated with modifications to non-coding regions. As part of the Sc2.0 design, loxPsym sequences for Cre-mediated recombination are inserted between most genes. Using the GAP1 locus from chromosome XI, we show that these sites can facilitate induced extrachromosomal circular DNA (eccDNA) formation, allowing direct study of the effects and propagation of these important molecules. Construction and characterization of synXI contributes to our understanding of non-coding DNA elements, provides a useful tool for eccDNA study, and will inform future synthetic genome design.
Collapse
Affiliation(s)
- Benjamin A. Blount
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Xinyu Lu
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Maureen R.M. Driessen
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Dejana Jovicevic
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Mateo I. Sanchez
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Klaudia Ciurkot
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Yu Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Stephanie Lauer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Robert M. McKiernan
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Glen-Oliver F. Gowers
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Fiachra Sweeney
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Viola Fanfani
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Evgenii Lobzaev
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
- School of Informatics, The University of Edinburgh, Edinburgh, UK
| | - Kim Palacios-Flores
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Querétaro, México
| | - Roy S.K. Walker
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, UK
| | - Andy Hesketh
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jitong Cai
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Yizhi Cai
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | | | - Leslie A. Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Joel S. Bader
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jef D. Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
31
|
Scieszka D, Bolt AM, McCormick MA, Brigman JL, Campen MJ. Aging, longevity, and the role of environmental stressors: a focus on wildfire smoke and air quality. FRONTIERS IN TOXICOLOGY 2023; 5:1267667. [PMID: 37900096 PMCID: PMC10600394 DOI: 10.3389/ftox.2023.1267667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Aging is a complex biological process involving multiple interacting mechanisms and is being increasingly linked to environmental exposures such as wildfire smoke. In this review, we detail the hallmarks of aging, emphasizing the role of telomere attrition, cellular senescence, epigenetic alterations, proteostasis, genomic instability, and mitochondrial dysfunction, while also exploring integrative hallmarks - altered intercellular communication and stem cell exhaustion. Within each hallmark of aging, our review explores how environmental disasters like wildfires, and their resultant inhaled toxicants, interact with these aging mechanisms. The intersection between aging and environmental exposures, especially high-concentration insults from wildfires, remains under-studied. Preliminary evidence, from our group and others, suggests that inhaled wildfire smoke can accelerate markers of neurological aging and reduce learning capabilities. This is likely mediated by the augmentation of circulatory factors that compromise vascular and blood-brain barrier integrity, induce chronic neuroinflammation, and promote age-associated proteinopathy-related outcomes. Moreover, wildfire smoke may induce a reduced metabolic, senescent cellular phenotype. Future interventions could potentially leverage combined anti-inflammatory and NAD + boosting compounds to counter these effects. This review underscores the critical need to study the intricate interplay between environmental factors and the biological mechanisms of aging to pave the way for effective interventions.
Collapse
Affiliation(s)
- David Scieszka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Alicia M. Bolt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Mark A. McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Jonathan L. Brigman
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
32
|
Zylstra A, Hadj-Moussa H, Horkai D, Whale AJ, Piguet B, Houseley J. Senescence in yeast is associated with amplified linear fragments of chromosome XII rather than ribosomal DNA circle accumulation. PLoS Biol 2023; 21:e3002250. [PMID: 37643194 PMCID: PMC10464983 DOI: 10.1371/journal.pbio.3002250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 07/12/2023] [Indexed: 08/31/2023] Open
Abstract
The massive accumulation of extrachromosomal ribosomal DNA circles (ERCs) in yeast mother cells has been long cited as the primary driver of replicative ageing. ERCs arise through ribosomal DNA (rDNA) recombination, and a wealth of genetic data connects rDNA instability events giving rise to ERCs with shortened life span and other ageing pathologies. However, we understand little about the molecular effects of ERC accumulation. Here, we studied ageing in the presence and absence of ERCs, and unexpectedly found no evidence of gene expression differences that might indicate stress responses or metabolic feedback caused by ERCs. Neither did we observe any global change in the widespread disruption of gene expression that accompanies yeast ageing, altogether suggesting that ERCs are largely inert. Much of the differential gene expression that accompanies ageing in yeast was actually associated with markers of the senescence entry point (SEP), showing that senescence, rather than age, underlies these changes. Cells passed the SEP irrespective of ERCs, but we found the SEP to be associated with copy number amplification of a region of chromosome XII between the rDNA and the telomere (ChrXIIr) forming linear fragments up to approximately 1.8 Mb size, which arise in aged cells due to rDNA instability but through a different mechanism to ERCs. Therefore, although rDNA copy number increases dramatically with age due to ERC accumulation, our findings implicate ChrXIIr, rather than ERCs, as the primary driver of senescence during budding yeast ageing.
Collapse
Affiliation(s)
- Andre Zylstra
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Dorottya Horkai
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Alex J. Whale
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Baptiste Piguet
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
33
|
Wright GM, Menzel J, Tatman PD, Black JC. Transition from Transient DNA Rereplication to Inherited Gene Amplification Following Prolonged Environmental Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539886. [PMID: 37214911 PMCID: PMC10197558 DOI: 10.1101/2023.05.08.539886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cells require the ability to adapt to changing environmental conditions, however, it is unclear how these changes elicit stable permanent changes in genomes. We demonstrate that, in response to environmental metal exposure, the metallothionein (MT) locus undergoes DNA rereplication generating transient site-specific gene amplifications (TSSGs). Chronic metal exposure allows transition from MT TSSG to inherited MT gene amplification through homologous recombination within and outside of the MT locus. DNA rereplication of the MT locus is suppressed by H3K27me3 and EZH2. Long-term ablation of EZH2 activity eventually leads to integration and inheritance of MT gene amplifications without the selective pressure of metal exposure. The rereplication and inheritance of MT gene amplification is an evolutionarily conserved response to environmental metal from yeast to human. Our results describe a new paradigm for adaptation to environmental stress where targeted, transient DNA rereplication precedes stable inherited gene amplification.
Collapse
|
34
|
Guo J, Zhang Z, Li Q, Chang X, Liu X. TeCD: The eccDNA Collection Database for extrachromosomal circular DNA. BMC Genomics 2023; 24:47. [PMID: 36707765 PMCID: PMC9881285 DOI: 10.1186/s12864-023-09135-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Extrachromosomal circular DNA (eccDNA) is a kind of DNA that widely exists in eukaryotic cells. Studies in recent years have shown that eccDNA is often enriched during tumors and aging, and participates in the development of cell physiological activities in a special way, so people have paid more and more attention to the eccDNA, and it has also become a critical new topic in modern biological research. DESCRIPTION We built a database to collect eccDNA, including animals, plants and fungi, and provide researchers with an eccDNA retrieval platform. The collected eccDNAs were processed in a uniform format and classified according to the species to which it belongs and the chromosome of the source. Each eccDNA record contained sequence length, start and end sites on the corresponding chromosome, order of the bases, genomic elements such as genes and transposons, and other information in the respective sequencing experiment. All the data were stored into the TeCD (The eccDNA Collection Database) and the BLAST (Basic Local Alignment Search Tool) sequence alignment function was also added into the database for analyzing the potential eccDNA sequences. CONCLUSION We built TeCD, a platform for users to search and obtain eccDNA data, and analyzed the possible potential functions of eccDNA. These findings may provide a basis and direction for researchers to further explore the biological significance of eccDNA in the future.
Collapse
Affiliation(s)
- Jing Guo
- grid.410726.60000 0004 1797 8419Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013 China ,grid.410726.60000 0004 1797 8419Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013 China ,grid.464226.00000 0004 1760 7263Institute of Statistics and Applied Mathematics, Anhui University of Finance & Economics, Bengbu, 233030 China ,grid.27255.370000 0004 1761 1174School of Mathematics and Statistics, Shandong University, Weihai, 264209 Shandong China
| | - Ze Zhang
- grid.410726.60000 0004 1797 8419Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013 China ,grid.410726.60000 0004 1797 8419Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013 China ,grid.410726.60000 0004 1797 8419School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013 China
| | - Qingcui Li
- grid.410726.60000 0004 1797 8419School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013 China
| | - Xiao Chang
- grid.464226.00000 0004 1760 7263Institute of Statistics and Applied Mathematics, Anhui University of Finance & Economics, Bengbu, 233030 China
| | - Xiaoping Liu
- grid.410726.60000 0004 1797 8419Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013 China ,grid.410726.60000 0004 1797 8419Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013 China ,grid.27255.370000 0004 1761 1174School of Mathematics and Statistics, Shandong University, Weihai, 264209 Shandong China
| |
Collapse
|
35
|
Chitwood DG, Wang Q, Klaubert SR, Green K, Wu CH, Harcum SW, Saski CA. Microevolutionary dynamics of eccDNA in Chinese hamster ovary cells grown in fed-batch cultures under control and lactate-stressed conditions. Sci Rep 2023; 13:1200. [PMID: 36681715 PMCID: PMC9862248 DOI: 10.1038/s41598-023-27962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Chinese hamster ovary (CHO) cell lines are widely used to manufacture biopharmaceuticals. However, CHO cells are not an optimal expression host due to the intrinsic plasticity of the CHO genome. Genome plasticity can lead to chromosomal rearrangements, transgene exclusion, and phenotypic drift. A poorly understood genomic element of CHO cell line instability is extrachromosomal circular DNA (eccDNA) in gene expression and regulation. EccDNA can facilitate ultra-high gene expression and are found within many eukaryotes including humans, yeast, and plants. EccDNA confers genetic heterogeneity, providing selective advantages to individual cells in response to dynamic environments. In CHO cell cultures, maintaining genetic homogeneity is critical to ensuring consistent productivity and product quality. Understanding eccDNA structure, function, and microevolutionary dynamics under various culture conditions could reveal potential engineering targets for cell line optimization. In this study, eccDNA sequences were investigated at the beginning and end of two-week fed-batch cultures in an ambr®250 bioreactor under control and lactate-stressed conditions. This work characterized structure and function of eccDNA in a CHO-K1 clone. Gene annotation identified 1551 unique eccDNA genes including cancer driver genes and genes involved in protein production. Furthermore, RNA-seq data is integrated to identify transcriptionally active eccDNA genes.
Collapse
Affiliation(s)
- Dylan G Chitwood
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Qinghua Wang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Stephanie R Klaubert
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Kiana Green
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Cathy H Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Sarah W Harcum
- Department of Bioengineering, Clemson University, Clemson, SC, USA
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
36
|
Pecorino LT, Verhaak RG, Henssen A, Mischel PS. Extrachromosomal DNA (ecDNA): an origin of tumor heterogeneity, genomic remodeling, and drug resistance. Biochem Soc Trans 2022; 50:1911-1920. [PMID: 36355400 PMCID: PMC9788557 DOI: 10.1042/bst20221045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2022]
Abstract
The genome of cancer cells contains circular extrachromosomal DNA (ecDNA) elements not found in normal cells. Analysis of clinical samples reveal they are common in most cancers and their presence indicates poor prognosis. They often contain enhancers and driver oncogenes that are highly expressed. The circular ecDNA topology leads to an open chromatin conformation and generates new gene regulatory interactions, including with distal enhancers. The absence of centromeres leads to random distribution of ecDNAs during cell division and genes encoded on them are transmitted in a non-mendelian manner. ecDNA can integrate into and exit from chromosomal DNA. The numbers of specific ecDNAs can change in response to treatment. This dynamic ability to remodel the cancer genome challenges long-standing fundamentals, providing new insights into tumor heterogeneity, cancer genome remodeling, and drug resistance.
Collapse
Affiliation(s)
| | | | - Anton Henssen
- Department of Pediatric Hematology and Oncology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Paul S. Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, U.S.A
- Sarafan ChEM-H, Standford, CA, U.S.A
| |
Collapse
|
37
|
Joubert PM, Krasileva KV. The extrachromosomal circular DNAs of the rice blast pathogen Magnaporthe oryzae contain a wide variety of LTR retrotransposons, genes, and effectors. BMC Biol 2022; 20:260. [PMID: 36424609 PMCID: PMC9694575 DOI: 10.1186/s12915-022-01457-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND One of the ways genomes respond to stress is by producing extrachromosomal circular DNAs (eccDNAs). EccDNAs can contain genes and dramatically increase their copy number. They can also reinsert into the genome, generating structural variation. They have been shown to provide a source of phenotypic and genotypic plasticity in several species. However, whole circularome studies have so far been limited to a few model organisms. Fungal plant pathogens are a serious threat to global food security in part because of their rapid adaptation to disease prevention strategies. Understanding the mechanisms fungal pathogens use to escape disease control is paramount to curbing their threat. RESULTS We present a whole circularome sequencing study of the rice blast pathogen, Magnaporthe oryzae. We find that M. oryzae has a highly diverse circularome that contains many genes and shows evidence of large LTR retrotransposon activity. We find that genes enriched on eccDNAs in M. oryzae occur in genomic regions prone to presence-absence variation and that disease-associated genes are frequently on eccDNAs. Finally, we find that a subset of genes is never present on eccDNAs in our data, which indicates that the presence of these genes on eccDNAs is selected against. CONCLUSIONS Our study paves the way to understanding how eccDNAs contribute to adaptation in M. oryzae. Our analysis also reveals how M. oryzae eccDNAs differ from those of other species and highlights the need for further comparative characterization of eccDNAs across species to gain a better understanding of these molecules.
Collapse
Affiliation(s)
- Pierre M Joubert
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
38
|
Zhu Y, Liu Z, Guo Y, Li S, Qu Y, Dai L, Chen Y, Ning W, Zhang H, Ma L. Whole-genome sequencing of extrachromosomal circular DNA of cerebrospinal fluid of medulloblastoma. Front Oncol 2022; 12:934159. [PMID: 36452490 PMCID: PMC9703567 DOI: 10.3389/fonc.2022.934159] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/12/2022] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Medulloblastoma (MB) is a malignant tumor associated with a poor prognosis in part due to a lack of effective detection methods. Extrachromosomal circular DNA (eccDNA) has been associated with multiple tumors. Nonetheless, little is currently known on eccDNA in MB. METHODS Genomic features of eccDNAs were identified in MB tissues and matched cerebrospinal fluid (CSF) and compared with corresponding normal samples using Circle map. The nucleotides on both sides of the eccDNAs' breakpoint were analyzed to understand the mechanisms of eccDNA formation. Bioinformatics analysis combined with the Gene Expression Omnibus (GEO) database identified features of eccDNA-related genes in MB. Lasso Cox regression model, univariate and multivariate Cox regression analysis, time-dependent ROC, and Kaplan-Meier curve were used to assess the potential diagnostic and prognostic value of the hub genes. RESULTS EccDNA was profiled in matched tumor and CSF samples from MB patients, and control, eccDNA-related genes enriched in MB were identified. The distribution of eccDNAs in the genome was closely related to gene density and the mechanism of eccDNA formation was evaluated. EccDNAs in CSF exhibited similar distribution with matched MB tissues but were differentially expressed between tumor and normal. Ten hub genes prominent in both the eccDNA dataset and the GEO database were selected to classify MB patients to either high- or low-risk groups, and a prognostic nomogram was thus established. CONCLUSIONS This study provides preliminary evidence of the characteristics and formation mechanism of eccDNAs in MB and CSF. Importantly, eccDNA-associated hub genes in CSF could be used as diagnostic and prognostic biomarkers for MB.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, China
| | - Zhihui Liu
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yuduo Guo
- Chinese Academy of Sciences (CAS) Key Laboratory of Infection and Immunity, Institute of biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shenglun Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yanming Qu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Lin Dai
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, China
| | - Yujia Chen
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Weihai Ning
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Lixin Ma
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Wu M, Rai K. Demystifying extrachromosomal DNA circles: Categories, biogenesis, and cancer therapeutics. Comput Struct Biotechnol J 2022; 20:6011-6022. [PMID: 36382182 PMCID: PMC9647416 DOI: 10.1016/j.csbj.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2022] Open
Abstract
Since the advent of sequencing technologies in the 1990s, researchers have focused on the association between aberrations in chromosomal DNA and disease. However, not all forms of the DNA are linear and chromosomal. Extrachromosomal circular DNAs (eccDNAs) are double-stranded, closed-circled DNA constructs free from the chromosome that reside in the nuclei. Although widely overlooked, the eccDNAs have recently gained attention for their potential roles in physiological response, intratumoral heterogeneity and cancer therapeutics. In this review, we summarize the history, classifications, biogenesis, and highlight recent progresses on the emerging topic of eccDNAs and comment on their potential application as biomarkers in clinical settings.
Collapse
Affiliation(s)
- Manrong Wu
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kunal Rai
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
40
|
Bergin SA, Zhao F, Ryan AP, Müller CA, Nieduszynski CA, Zhai B, Rolling T, Hohl TM, Morio F, Scully J, Wolfe KH, Butler G. Systematic Analysis of Copy Number Variations in the Pathogenic Yeast Candida parapsilosis Identifies a Gene Amplification in RTA3 That is Associated with Drug Resistance. mBio 2022; 13:e0177722. [PMID: 36121151 PMCID: PMC9600344 DOI: 10.1128/mbio.01777-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023] Open
Abstract
We analyzed the genomes of 170 C. parapsilosis isolates and identified multiple copy number variations (CNVs). We identified two genes, RTA3 (CPAR2_104610) and ARR3 (CPAR2_601050), each of which was the target of multiple independent amplification events. Phylogenetic analysis shows that most of these amplifications originated only once. For ARR3, which encodes a putative arsenate transporter, 8 distinct CNVs were identified, ranging in size from 2.3 kb to 10.5 kb with 3 to 23 copies. For RTA3, 16 distinct CNVs were identified, ranging in size from 0.3 kb to 4.5 kb with 2 to ~50 copies. One unusual amplification resulted in a DUP-TRP/INV-DUP structure similar to some human CNVs. RTA3 encodes a putative phosphatidylcholine (PC) floppase which is known to regulate the inward translocation of PC in Candida albicans. We found that an increased copy number of RTA3 correlated with resistance to miltefosine, an alkylphosphocholine drug that affects PC metabolism. Additionally, we conducted an adaptive laboratory evolution experiment in which two C. parapsilosis isolates were cultured in increasing concentrations of miltefosine. Two genes, CPAR2_303950 and CPAR2_102700, coding for putative PC flippases homologous to S. cerevisiae DNF1 gained homozygous protein-disrupting mutations in the evolved strains. Overall, our results show that C. parapsilosis can gain resistance to miltefosine, a drug that has recently been granted orphan drug designation approval by the United States Food and Drug Administration for the treatment of invasive candidiasis, through both CNVs or loss-of-function alleles in one of the flippase genes. IMPORTANCE Copy number variations (CNVs) are an important source of genomic diversity that have been associated with drug resistance. We identify two unusual CNVs in the human fungal pathogen Candida parapsilosis. Both target a single gene (RTA3 or ARR3), and they have occurred multiple times in multiple isolates. The copy number of RTA3, a putative floppase that controls the inward translocation of lipids in the cell membrane, correlates with resistance to miltefosine, a derivative of phosphatidylcholine (PC) that was originally developed as an anticancer drug. In 2021, miltefosine was designated an orphan drug by the United States Food and Drug Administration for the treatment of invasive candidiasis. Importantly, we find that resistance to miltefosine is also caused by mutations in flippases, which control the outward movement of lipids, and that many C. parapsilosis isolates are prone to easily acquiring an increased resistance to miltefosine.
Collapse
Affiliation(s)
- Sean A. Bergin
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Fang Zhao
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Adam P. Ryan
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Carolin A. Müller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Conrad A. Nieduszynski
- Earlham Institute, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Bing Zhai
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Thierry Rolling
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tobias M. Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Florent Morio
- Nantes Université, CHU de Nantes, Cibles et Médicaments des Infections et de l'Immunité, IICiMed, Nantes, France
| | - Jillian Scully
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Kenneth H. Wolfe
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
41
|
Zhao Y, Yu L, Zhang S, Su X, Zhou X. Extrachromosomal circular DNA: Current status and future prospects. eLife 2022; 11:81412. [PMID: 36256570 PMCID: PMC9578701 DOI: 10.7554/elife.81412] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is a double-stranded DNA molecule found in various organisms, including humans. In the past few decades, the research on eccDNA has mainly focused on cancers and their associated diseases. Advancements in modern omics technologies have reinvigorated research on eccDNA and shed light on the role of these molecules in a range of diseases and normal cell phenotypes. In this review, we first summarize the formation of eccDNA and its modes of action in eukaryotic cells. We then outline eccDNA as a disease biomarker and reveal its regulatory mechanism. We finally discuss the future prospects of eccDNA, including basic research and clinical application. Thus, with the deepening of understanding and exploration of eccDNAs, they hold great promise in future biomedical research and clinical translational application.
Collapse
Affiliation(s)
- Yiheng Zhao
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Linchan Yu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuchen Zhang
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiangyu Su
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
42
|
Extrachromosomal circular DNA: biogenesis, structure, functions and diseases. Signal Transduct Target Ther 2022; 7:342. [PMID: 36184613 PMCID: PMC9527254 DOI: 10.1038/s41392-022-01176-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 11/08/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA), ranging in size from tens to millions of base pairs, is independent of conventional chromosomes. Recently, eccDNAs have been considered an unanticipated major source of somatic rearrangements, contributing to genomic remodeling through chimeric circularization and reintegration of circular DNA into the linear genome. In addition, the origin of eccDNA is considered to be associated with essential chromatin-related events, including the formation of super-enhancers and DNA repair machineries. Moreover, our understanding of the properties and functions of eccDNA has continuously and greatly expanded. Emerging investigations demonstrate that eccDNAs serve as multifunctional molecules in various organisms during diversified biological processes, such as epigenetic remodeling, telomere trimming, and the regulation of canonical signaling pathways. Importantly, its special distribution potentiates eccDNA as a measurable biomarker in many diseases, especially cancers. The loss of eccDNA homeostasis facilitates tumor initiation, malignant progression, and heterogeneous evolution in many cancers. An in-depth understanding of eccDNA provides novel insights for precision cancer treatment. In this review, we summarized the discovery history of eccDNA, discussed the biogenesis, characteristics, and functions of eccDNA. Moreover, we emphasized the role of eccDNA during tumor pathogenesis and malignant evolution. Therapeutically, we summarized potential clinical applications that target aberrant eccDNA in multiple diseases.
Collapse
|
43
|
Peng H, Mirouze M, Bucher E. Extrachromosomal circular DNA: A neglected nucleic acid molecule in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102263. [PMID: 35872391 DOI: 10.1016/j.pbi.2022.102263] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Throughout the years, most plant genomic studies were focused on nuclear chromosomes. Extrachromosomal circular DNA (eccDNA) has largely been neglected for decades since its discovery in 1965. While initial research showed that eccDNAs can originate from highly repetitive sequences, recent findings show that many regions of the genome can contribute to the eccDNA pool. Currently, the biological functions of eccDNAs, if any, are a mystery but recent studies have indicated that they can be regulated by different genomic loci and contribute to stress response and adaptation. In this review, we outline current relevant technological developments facilitating eccDNA identification and the latest discoveries about eccDNAs in plants. Finally, we explore the probable functions and future research directions that could be undertaken with respect to different eccDNA sources.
Collapse
Affiliation(s)
- Haoran Peng
- Crop Genome Dynamics Group, Agroscope Changins, 1260, Nyon, Switzerland; Department of Botany and Plant Biology, Section of Biology, Faculty of Science, University of Geneva, 1211, Geneva, Switzerland
| | - Marie Mirouze
- Institut de Recherche pour le Développement (IRD), EMR269 MANGO, Université de Perpignan, 66860 Perpignan, France; Laboratory of Plant Genome and Development, Université de Perpignan, 66860, Perpignan, France.
| | - Etienne Bucher
- Crop Genome Dynamics Group, Agroscope Changins, 1260, Nyon, Switzerland.
| |
Collapse
|
44
|
Zhu Y, Gong L, Wei CL. Guilt by association: EcDNA as a mobile transactivator in cancer. Trends Cancer 2022; 8:747-758. [PMID: 35753910 PMCID: PMC9388558 DOI: 10.1016/j.trecan.2022.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/10/2022] [Accepted: 04/28/2022] [Indexed: 10/17/2022]
Abstract
Extrachromosomal DNA (ecDNA), first described in the 1960s, is emerging as a prevalent but poorly characterized oncogenic alteration in cancer. ecDNA is a reservoir for oncogene amplification and is associated with an aggressive tumor phenotype and poor patient outcome. Despite the long-held knowledge of its existence, little is known about how ecDNA affects tumor cell behavior. Recent data reveal that ecDNA hubs are mobile transcriptional enhancers which can transactivate gene expression through chromatin interactions. Given its prevalence, structural complexity, and unequal segregation into daughter cells, ecDNA can offer selective growth advantages, contribute to intratumor heterogeneity (ITH), and accelerate tumor evolution. Future technology development is expected to transform the current paradigm for studying ecDNA and lead to therapeutic strategies targeting ecDNA vulnerabilities.
Collapse
Affiliation(s)
- Yanfen Zhu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Liang Gong
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang 311121, China
| | - Chia-Lin Wei
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
| |
Collapse
|
45
|
A feedback mechanism controls rDNA copy number evolution in yeast independently of natural selection. PLoS One 2022; 17:e0272878. [PMID: 36048821 PMCID: PMC9436098 DOI: 10.1371/journal.pone.0272878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
Ribosomal DNA (rDNA) is the genetic loci that encodes rRNA in eukaryotes. It is typically arranged as tandem repeats that vary in copy number within the same species. We have recently shown that rDNA repeats copy number in the yeast Saccharomyces cerevisiae is controlled by cell volume via a feedback circuit that senses cell volume by means of the concentration of the free upstream activator factor (UAF). The UAF strongly binds the rDNA gene promoter, but is also able to repress SIR2 deacetylase gene transcription that, in turn, represses rDNA amplification. In this way, the cells with a smaller DNA copy number than what is optimal evolve to increase that copy number until they reach a number that sequestrates free UAF and provokes SIR2 derepression that, in turn, blocks rDNA amplification. Here we propose a mathematical model to show that this evolutionary process can amplify rDNA repeats independently of the selective advantage of yeast cells having bigger or smaller rDNA copy numbers. We test several variants of this process and show that it can explain the observed experimental results independently of natural selection. These results predict that an autoregulated feedback circuit may, in some instances, drive to non Darwinian deterministic evolution for a limited time period.
Collapse
|
46
|
Arrey G, Keating ST, Regenberg B. A unifying model for extrachromosomal circular DNA load in eukaryotic cells. Semin Cell Dev Biol 2022; 128:40-50. [PMID: 35292190 DOI: 10.1016/j.semcdb.2022.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023]
Abstract
Extrachromosomal circular DNA (eccDNA) with exons and whole genes are common features of eukaryotic cells. Work from especially tumours and the yeast Saccharomyces cerevisiae has revealed that eccDNA can provide large selective advantages and disadvantages. Besides the phenotypic effect due to expression of an eccDNA fragment, eccDNA is different from other mutations in that it is released from 1:1 segregation during cell division. This means that eccDNA can quickly change copy number, pickup secondary mutations and reintegrate into a chromosome to establish substantial genetic variation that could not have evolved via canonical mechanisms. We propose a unifying 5-factor model for conceptualizing the eccDNA load of a eukaryotic cell, emphasizing formation, replication, segregation, selection and elimination. We suggest that the magnitude of these sequential events and their interactions determine the copy number of eccDNA in mitotically dividing cells. We believe that our model will provide a coherent framework for eccDNA research, to understand its biology and the factors that can be manipulated to modulate eccDNA load in eukaryotic cells.
Collapse
Affiliation(s)
- Gerard Arrey
- Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
| | - Samuel T Keating
- Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Regenberg
- Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
47
|
Li R, Wang Y, Li J, Zhou X. Extrachromosomal circular DNA (eccDNA): an emerging star in cancer. Biomark Res 2022; 10:53. [PMID: 35883211 PMCID: PMC9327165 DOI: 10.1186/s40364-022-00399-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/13/2022] [Indexed: 02/08/2023] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is defined as a type of circular DNA that exists widely in nature and is independent of chromosomes. EccDNA has attracted the attention of researchers due to its broad, random distribution, complex biogenesis and tumor-relevant functions. EccDNA can carry complete gene information, especially the oncogenic driver genes that are often carried in tumors, with increased copy number and high transcriptional activity. The high overexpression of oncogenes by eccDNA leads to malignant growth of tumors. Regardless, the exact generation and functional mechanisms of eccDNA in disease progression are not yet clear. There is, however, an emerging body of evidence characterizing that eccDNA can be generated from multiple pathways, including DNA damage repair pathways, breakage-fusion-bridge (BFB) mechanisms, chromothripsis and cell apoptosis, and participates in the regulation of tumor progression with multiplex functions. This up-to-date review summarizes and discusses the origins, biogenesis and functions of eccDNA, including its contribution to the formation of oncogene instability and mutations, the heterogeneity and cellular senescence of tumor cells, and the proinflammatory response of tumors. We highlight the possible cancer-related applications of eccDNA, such as its potential use in the diagnosis, targeted therapy and prognostic assessment of cancer.
Collapse
Affiliation(s)
- Ruomeng Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Ying Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
48
|
Wu X, Li P, Yimiti M, Ye Z, Fang X, Chen P, Gu Z. Identification and Characterization of Extrachromosomal Circular DNA in Plasma of Lung Adenocarcinoma Patients. Int J Gen Med 2022; 15:4781-4791. [PMID: 35592538 PMCID: PMC9113459 DOI: 10.2147/ijgm.s363425] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Xiaoqiong Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Pu Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Maimaitiaili Yimiti
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhiqiu Ye
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xuqian Fang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Peizhan Chen
- Clinical Research Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Peizhan Chen, Clinical Research Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201821, People’s Republic of China, Tel +86 13918550745, Email
| | - Zhidong Gu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Department of Laboratory Medicine, Ruijin-Hainan Hospital, Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Shanghai, People’s Republic of China
- Correspondence: Zhidong Gu, Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201821, People’s Republic of China, Tel +86 13801653534, Email
| |
Collapse
|
49
|
Lv W, Pan X, Han P, Wang Z, Feng W, Xing X, Wang Q, Qu K, Zeng Y, Zhang C, Xu Z, Li Y, Zheng T, Lin L, Liu C, Liu X, Li H, Henriksen RA, Bolund L, Lin L, Jin X, Yang H, Zhang X, Yin T, Regenberg B, He F, Luo Y. Circle-Seq reveals genomic and disease-specific hallmarks in urinary cell-free extrachromosomal circular DNAs. Clin Transl Med 2022; 12:e817. [PMID: 35474296 PMCID: PMC9042798 DOI: 10.1002/ctm2.817] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/08/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Extrachromosomal circular deoxyribonucleic acid (eccDNA) is evolving as a valuable biomarker, while little is known about its presence in urine. METHODS Here, we report the discovery and analysis of urinary cell-free eccDNAs (ucf-eccDNAs) in healthy controls and patients with advanced chronic kidney disease (CKD) by Circle-Seq. RESULTS Millions of unique ucf-eccDNAs were identified and comprehensively characterised. The ucf-eccDNAs are GC-rich. Most ucf-eccDNAs are less than 1000 bp and are enriched in four pronounced peaks at 207, 358, 553 and 732 bp. Analysis of the genomic distribution of ucf-eccDNAs shows that eccDNAs are found on all chromosomes but enriched on chromosomes 17, 19 and 20 with a high density of protein-coding genes, CpG islands, short interspersed transposable elements (SINEs) and simple repeat elements. Analysis of eccDNA junction sequences further suggests that microhomology and palindromic repeats might be involved in eccDNA formation. The ucf-eccDNAs in CKD patients are significantly higher than those in healthy controls. Moreover, eccDNA with miRNA genes is highly enriched in CKD ucf-eccDNA. CONCLUSIONS This work discovers and provides the first deep characterisation of ucf-eccDNAs and suggests ucf-eccDNA as a valuable noninnvasive biomarker for urogenital disorder diagnosis and monitoring.
Collapse
Affiliation(s)
- Wei Lv
- College of Life Sciences, University of Chinese Academy of Science, Beijing, China.,IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiaoguang Pan
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China
| | - Peng Han
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China.,Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ziyu Wang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Weijia Feng
- Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xue Xing
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Wang
- College of Life Sciences, University of Chinese Academy of Science, Beijing, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Kunli Qu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China.,Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yuchen Zeng
- IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,College of Life Sciences, Tianjin University, Tianjin, China
| | - Cailin Zhang
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Xu
- College of Life Sciences, University of Chinese Academy of Science, Beijing, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China
| | - Yi Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Tianyu Zheng
- College of Life Sciences, University of Chinese Academy of Science, Beijing, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China
| | - Ling Lin
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China
| | - Chengxun Liu
- College of Life Sciences, University of Chinese Academy of Science, Beijing, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China
| | - Xuemei Liu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China
| | - Hanbo Li
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China
| | - Rasmus Amund Henriksen
- Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Section for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Lars Bolund
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China.,BGI-Shenzhen, Shenzhen, China.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, China
| | - Huanming Yang
- College of Life Sciences, University of Chinese Academy of Science, Beijing, China.,IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China.,Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen, China
| | - Xiuqing Zhang
- College of Life Sciences, University of Chinese Academy of Science, Beijing, China.,IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,BGI-Shenzhen, Shenzhen, China
| | - Tailang Yin
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Birgitte Regenberg
- Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Fan He
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonglun Luo
- IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China.,BGI-Shenzhen, Shenzhen, China.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
50
|
Pang J, Pan X, Lin L, Li L, Yuan S, Han P, Ji X, Li H, Wang C, Chu Z, Wu H, Fan G, Du X, Ji A. Characterization of Plasma Extrachromosomal Circular DNA in Gouty Arthritis. Front Genet 2022; 13:859513. [PMID: 35464862 PMCID: PMC9019587 DOI: 10.3389/fgene.2022.859513] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/22/2022] [Indexed: 11/15/2022] Open
Abstract
Objective: Extrachromosomal circular DNA elements (eccDNAs) are known for their broad existence in cells and plasma, which may potentially play important roles in many biological processes. Our aim was to identify potentially functional or marked eccDNAs in gout patients. Methods: The Circle-Seq approach was applied for eccDNA detection from plasma in acute gout patients and healthy controls. Further analysis was performed on the distribution of genomic elements and eccDNA gene annotations in two groups. Results: We detected 57,216 and 109,683 eccDNAs from the acute gout and healthy control plasma, respectively. EccDNAs were mapped to the reference genome to identify diverse classes of genomic elements and there was no significant difference of eccDNAs on genomic element annotation between gout and control group. A total of 256 eccDNA-associated genes were detected as gout unique eccDNA genes, including COL1A1 and EPB42, which potentially contribute to hyperuricemia and gout, and a couple of genes involved in inflammation or immune response. Enrichment analysis showed that these eccDNA genes were highly correlated with defense response, stress response, and immune and inflammatory responses, including T cell receptor signaling pathway, Fc epsilon RI signaling pathway, and JAK-STAT signaling pathway. Conclusion: Our discovery reveals the novel potential biological roles of plasma eccDNAs in gouty arthritis.
Collapse
Affiliation(s)
- Jingyuan Pang
- Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoguang Pan
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China
| | - Ling Lin
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China
| | - Lei Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Yuan
- Emergency Department, Qingdao Third People's Hospital, Qingdao, China
| | - Peng Han
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China
| | - Xiaopeng Ji
- Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hailong Li
- Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, China.,Institute of Metabolic Diseases, Qingdao University, Qingdao, China
| | - Can Wang
- Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhaobin Chu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haoru Wu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,BGI-Shenzhen, Shenzhen, China
| | - Xiao Du
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,BGI-Shenzhen, Shenzhen, China
| | - Aichang Ji
- Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, China.,Institute of Metabolic Diseases, Qingdao University, Qingdao, China
| |
Collapse
|