1
|
Lin T, Wang X, Zhang Y, Li G, Huang X, Shi M. Developing safe and efficient CGBE editor based on Cas-embedding strategy. Synth Syst Biotechnol 2025; 10:504-510. [PMID: 40027845 PMCID: PMC11872432 DOI: 10.1016/j.synbio.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/26/2025] [Accepted: 02/02/2025] [Indexed: 03/05/2025] Open
Abstract
CGBE (C-to-G base editor) systems, pivotal components within the base editing arsenal, enable the precise conversion of cytosines to guanines. However, conventional cytidine deaminases possess non-specific single-stranded DNA binding properties, leading to off-target effects and safety concerns. The Cas-embedding strategy, which involves embedding functional proteins like deaminases within the Cas9 enzyme's architecture, emerges as a method to mitigate these off-target effects. Our study pioneers the application of the Cas-embedding strategy to CGBE systems, engineering a suite of novel CGBE editors, CE-CGBE. The CE-CGBE that incorporated eA3A, RBMX and Udgx excelled in editing efficiency, editing purity, and indel formation was named HF-CGBE. HF-CGBE showed no significant difference in off-target effects compared to the negative control group for both DNA and RNA. In summary, the novel HF-CGBE editors we propose expand the base editing toolbox and provide therapeutic approaches for related pathogenic mutations.
Collapse
Affiliation(s)
- Tian Lin
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Xin Wang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yu Zhang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200032 China
| | - Guanglei Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200032 China
| | - Xingxu Huang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200032 China
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| |
Collapse
|
2
|
Gómez-Escribano AP, García-García G, Pérez-Santamarina E, Aller-Mañas E, Vázquez-Manrique RP, Millán-Salvador JM. Innovative therapies for inherited retinal dystrophies: navigating DNA, RNA, and protein approaches. EBioMedicine 2025; 116:105751. [PMID: 40367639 DOI: 10.1016/j.ebiom.2025.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/30/2025] [Accepted: 04/25/2025] [Indexed: 05/16/2025] Open
Abstract
Gene therapy has become a promising treatment for inherited retinal dystrophies (IRDs), but understanding the genetic mechanisms involved is essential for its success. Various approaches, such as gene augmentation and DNA/RNA-based therapies, have shown effectiveness in some clinical trials. However, gene augmentation is not effective for some dominant mutations and genome editing produces off-target effects. Here, we review safer and viable alternatives that are being evaluated in preclinical models and clinical trials to address this challenge. We propose a novel perspective based on protein-targeting therapies, which although promising, remain unexplored. We suggest that frameshift variants, which produce novel epitopes, may allow for the development of mutant protein targeting agents for selective protein degradation. This approach could be useful for dominant variants, where gene replacement is ineffective. By examining these approaches, we aim to guide more targeted and effective gene therapies for IRDs, offering potential treatments where current methods fall short.
Collapse
Affiliation(s)
- Ana Pilar Gómez-Escribano
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Joint Unit for Rare Diseases IIS La Fe-CIPF, Valencia, Spain.
| | - Gema García-García
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Joint Unit for Rare Diseases IIS La Fe-CIPF, Valencia, Spain
| | | | - Elena Aller-Mañas
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Joint Unit for Rare Diseases IIS La Fe-CIPF, Valencia, Spain
| | - Rafael Pascual Vázquez-Manrique
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Joint Unit for Rare Diseases IIS La Fe-CIPF, Valencia, Spain
| | - José María Millán-Salvador
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Joint Unit for Rare Diseases IIS La Fe-CIPF, Valencia, Spain.
| |
Collapse
|
3
|
Matuszek Z, Brown BL, Yrigollen CM, Keiser MS, Davidson BL. Current trends in gene therapy to treat inherited disorders of the brain. Mol Ther 2025; 33:1988-2014. [PMID: 40181540 DOI: 10.1016/j.ymthe.2025.03.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025] Open
Abstract
Gene therapy development, re-engineering, and application to patients hold promise to revolutionize medicine, including therapies for disorders of the brain. Advances in delivery modalities, expression regulation, and improving safety profiles are of critical importance. Additionally, each inherited disorder has its own unique characteristics as to regions and cell types impacted and the temporal dynamics of that impact that are essential for the design of therapeutic design strategies. Here, we review the current state of the art in gene therapies for inherited brain disorders, summarizing key considerations for vector delivery, gene addition, gene silencing, gene editing, and epigenetic editing. We provide examples from animal models, human cell lines, and, where possible, clinical trials. This review also highlights the various tools available to researchers for basic research questions and discusses our views on the current limitations in the field.
Collapse
Affiliation(s)
- Zaneta Matuszek
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Brandon L Brown
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Epilepsy and Neurodevelopmental Disorders (ENDD), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Carolyn M Yrigollen
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Megan S Keiser
- Department of Neurological Surgery, The Ohio State Wexner Medical Center, Columbus, OH 43210, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Epilepsy and Neurodevelopmental Disorders (ENDD), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Mach RQ, Miller SM. Bacterial directed evolution of CRISPR base editors. Methods Enzymol 2025; 712:317-350. [PMID: 40121078 DOI: 10.1016/bs.mie.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Base editing and other precision editing agents have transformed the utility and therapeutic potential of CRISPR-based genome editing. While some native enzymes edit efficiently with their nature-derived function, many enzymes require rational engineering or directed evolution to enhance the compatibility with mammalian cell genome editing. While many methods of engineering and directed evolution exist, plate-based discrete evolution offers an ideal balance between ease of use and engineering power. Here, we describe a detailed method for the bacterial directed evolution of CRISPR base editors that compounds technical ease with flexibility of application.
Collapse
|
5
|
Zhang D, Parth F, da Silva LM, Ha TC, Schambach A, Boch J. Engineering a bacterial toxin deaminase from the DYW-family into a novel cytosine base editor for plants and mammalian cells. Genome Biol 2025; 26:18. [PMID: 39901278 PMCID: PMC11789416 DOI: 10.1186/s13059-025-03478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
Base editors are precise editing tools that employ deaminases to modify target DNA bases. The DYW-family of cytosine deaminases is structurally and phylogenetically distinct and might be harnessed for genome editing tools. We report a novel CRISPR/Cas9-cytosine base editor using SsdA, a DYW-like deaminase and bacterial toxin. A G103S mutation in SsdA enhances C-to-T editing efficiency while reducing its toxicity. Truncations result in an extraordinarily small enzyme. The SsdA-base editor efficiently converts C-to-T in rice and barley protoplasts and induces mutations in rice plants and mammalian cells. The engineered SsdA is a highly efficient genome editing tool.
Collapse
Affiliation(s)
- Dingbo Zhang
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
- Research Institute of Biology and Agriculture, University of Science and Technology, Beijing, 100083, China
| | - Fiona Parth
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Laura Matos da Silva
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Teng-Cheong Ha
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jens Boch
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany.
| |
Collapse
|
6
|
Patinios C, Gupta D, Bassett HV, Collins SP, Kamm C, Kibe A, Wang Y, Zhao C, Vollen K, Toussaint C, Polkoff KM, Nguyen T, Calvin I, Migur A, Al’Abri IS, Achmedov T, Del Re A, Saliba AE, Crook N, Stepanova AN, Alonso JM, Beisel CL. Targeted DNA ADP-ribosylation triggers templated repair in bacteria and base mutagenesis in eukaryotes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.17.623984. [PMID: 39605674 PMCID: PMC11601458 DOI: 10.1101/2024.11.17.623984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Base editors create precise genomic edits by directing nucleobase deamination or removal without inducing double-stranded DNA breaks. However, a vast chemical space of other DNA modifications remains to be explored for genome editing. Here, we harness the bacterial anti-phage toxin DarT2 to append ADP-ribosyl moieties to DNA, unlocking distinct editing outcomes in bacteria versus eukaryotes. Fusing an attenuated DarT2 to a Cas9 nickase, we program site-specific ADP-ribosylation of thymines within a target DNA sequence. In tested bacteria, targeting drives efficient homologous recombination in tested bacteria, offering flexible and scar-free genome editing without base replacement nor counterselection. In tested eukaryotes including yeast, plants and human cells, targeting drives substitution of the modified thymine to adenine or a mixture of adenine and cytosine with limited insertions or deletions, offering edits inaccessible to current base editors. Altogether, our approach, called append editing, leverages the addition of a chemical moiety to DNA to expand current modalities for precision gene editing.
Collapse
Affiliation(s)
- Constantinos Patinios
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
| | - Darshana Gupta
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
| | - Harris V. Bassett
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
| | - Scott P. Collins
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Charlotte Kamm
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
| | - Anuja Kibe
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
| | - Yanyan Wang
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
| | - Chengsong Zhao
- Department of Plant and Microbial Biology, North Carolina State University, Ralegh, NC 27695, USA
| | - Katie Vollen
- Department of Plant and Microbial Biology, North Carolina State University, Ralegh, NC 27695, USA
| | - Christophe Toussaint
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
| | - Kathryn M. Polkoff
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Thuan Nguyen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Irene Calvin
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
| | - Angela Migur
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
| | - Ibrahim S. Al’Abri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Tatjana Achmedov
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
| | - Alessandro Del Re
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
- Institute of Molecular Infection Biology, University of Würzburg, 97072 Würzburg, Germany
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Anna N. Stepanova
- Department of Plant and Microbial Biology, North Carolina State University, Ralegh, NC 27695, USA
| | - Jose M. Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Ralegh, NC 27695, USA
| | - Chase L. Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
- Medical Faculty, University of Würzburg, 97072 Würzburg, Germany
| |
Collapse
|
7
|
Alves CRR, Das S, Krishnan V, Ha LL, Fox LR, Stutzman HE, Shamber CE, Kalailingam P, McCarthy S, Lino Cardenas CL, Fong CE, Imai T, Mitra S, Yun S, Wood RK, Benning FMC, Lawton J, Kim N, Silverstein RA, da Silva JF, de la Cruz D, Richa R, Malhotra R, Chung DY, Chao LH, Tsai SQ, Maguire CA, Lindsay ME, Kleinstiver BP, Musolino PL. In vivo Treatment of a Severe Vascular Disease via a Bespoke CRISPR-Cas9 Base Editor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.621817. [PMID: 39605323 PMCID: PMC11601241 DOI: 10.1101/2024.11.11.621817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Genetic vascular disorders are prevalent diseases that have diverse etiologies and few treatment options. Pathogenic missense mutations in the alpha actin isotype 2 gene (ACTA2) primarily affect smooth muscle cell (SMC) function and cause multisystemic smooth muscle dysfunction syndrome (MSMDS), a genetic vasculopathy that is associated with stroke, aortic dissection, and death in childhood. Here, we explored genome editing to correct the most common MSMDS-causative mutation ACTA2 R179H. In a first-in-kind approach, we performed mutation-specific protein engineering to develop a bespoke CRISPR-Cas9 enzyme with enhanced on-target activity against the R179H sequence. To directly correct the R179H mutation, we screened dozens of configurations of base editors (comprised of Cas9 enzymes, deaminases, and gRNAs) to develop a highly precise corrective A-to-G edit with minimal deleterious bystander editing that is otherwise prevalent when using wild-type SpCas9 base editors. We then created a murine model of MSMDS that exhibits phenotypes consistent with human patients, including vasculopathy and premature death, to explore the in vivo therapeutic potential of this base editing strategy. Delivery of the customized base editor via an engineered SMC-tropic adeno-associated virus (AAV-PR) vector substantially prolonged survival and rescued systemic phenotypes across the lifespan of MSMDS mice, including in the vasculature, aorta, and brain. Together, our optimization of a customized base editor highlights how bespoke CRISPR-Cas enzymes can enhance on-target correction while minimizing bystander edits, culminating in a precise editing approach that may enable a long-lasting treatment for patients with MSMDS.
Collapse
Affiliation(s)
- Christiano R R Alves
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Sabyasachi Das
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Vijai Krishnan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Leillani L Ha
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Lauren R Fox
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Hannah E Stutzman
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Claire E Shamber
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Siobhan McCarthy
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Christian L Lino Cardenas
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Claire E Fong
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Takahiko Imai
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sunayana Mitra
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Shuqi Yun
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Rachael K Wood
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Friederike M C Benning
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Joseph Lawton
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nahye Kim
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Rachel A Silverstein
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Biological and Biomedical Sciences Program, Harvard, Boston, MA, USA
| | - Joana Ferreira da Silva
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Demitri de la Cruz
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Rashmi Richa
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rajeev Malhotra
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Y Chung
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Division of Neurocritical Care, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Shengdar Q Tsai
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Casey A Maguire
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Mark E Lindsay
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Patricia L Musolino
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Division of Neurocritical Care, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Clark M, Nguyen C, Nguyen H, Tay A, Beach SJ, Maselko M, López Del Amo V. Expanding the CRISPR base editing toolbox in Drosophila melanogaster. Commun Biol 2024; 7:1126. [PMID: 39266668 PMCID: PMC11392945 DOI: 10.1038/s42003-024-06848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
CRISPR base editors can introduce point mutations into DNA precisely, and cytosine base editors (CBEs) catalyze C to T transitions. While CBEs have been thoroughly explored in cell culture and organisms such as mice, little is known about DNA base editing in insects. In this study, we evaluated germline editing rates of three different CBEs expressed under actin (ubiquitous) or nanos (germline) promoters utilizing Drosophila melanogaster. The original Rattus norvegicus-derived cytosine deaminase APOBEC1 (rAPO-1) displayed high base editing rates (~99%) with undetectable indel formation. Additionally, we show that base editors can be used for generating male sterility and female lethality. Overall, this study highlights the importance of promoter choice and sex-specific transmission for efficient base editing in flies while providing new insights for future genetic biocontrol designs in insects.
Collapse
Affiliation(s)
- Michael Clark
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia
| | - Christina Nguyen
- Center for Infectious Diseases, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center, Houston, TX, USA
| | - Hung Nguyen
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia
| | - Aidan Tay
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia
| | - Samuel J Beach
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia
| | - Maciej Maselko
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia.
| | - Víctor López Del Amo
- Center for Infectious Diseases, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
9
|
Yin L, Shi K, Chen Y, Harris RS, Aihara H. Structural basis for sequence context-independent single-stranded DNA cytosine deamination by the bacterial toxin SsdA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.08.611884. [PMID: 39282293 PMCID: PMC11398452 DOI: 10.1101/2024.09.08.611884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
DNA deaminase toxins are involved in interbacterial antagonism and the generation of genetic diversity in surviving bacterial populations. These enzymes have also been adopted as genome engineering tools. The single-stranded (ss)DNA deaminase SsdA represents the bacterial deaminase toxin family-2 (BaDTF2) and it deaminates ssDNA cytosines with little sequence context dependence, which contrasts with the AID/APOBEC family of sequence-selective ssDNA cytosine deaminases. Here we report the crystal structure of SsdA in complex with a ssDNA substrate. The structure reveals a unique mode of substrate binding, in which a cluster of aromatic residues of SsdA engages ssDNA in a V-shaped conformation sharply bent across the target cytosine. The bases 5' or 3' to the target cytosine are stacked linearly and make few sequence-specific protein contacts, thus explaining the broad substrate selectivity of SsdA. Unexpectedly, SsdA contains a β-amino acid isoaspartate, which is important for enzymatic activity and may contribute to the stability of SsdA as a toxin. Structure- function studies helped to design SsdA mutants active in human cells, which could lead to future applications in genome engineering.
Collapse
|
10
|
Haikal Y, Blazeck J. Exploiting protein domain modularity to enable synthetic control of engineered cells. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2024; 31:100550. [PMID: 39430298 PMCID: PMC11486415 DOI: 10.1016/j.cobme.2024.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The ability to precisely control cellular function in response to external stimuli can enhance the function and safety of cell therapies. In this review, we will detail how the modularity of protein domains has been exploited for cellular control applications, specifically through design of multifunctional synthetic constructs and controllable split moieties. These advances, which build on techniques developed by biologists, protein chemists and drug developers, harness natural evolutionary tendencies of protein domain fusion and fission. In this light, we will highlight recent advances towards the development of novel immunoreceptors, base editors, and cytokines that have achieved intriguing therapeutic potential by taking advantage of well-known protein evolutionary phenomena and have helped cells learn new tricks via synthetic biology. In general, protein modularity, i.e., the relatively facile separation or (re)assembly of functional single protein domains or subdomains, is becoming an enabling phenomenon for cellular engineering by allowing enhanced control of phenotypic responses.
Collapse
Affiliation(s)
- Yusef Haikal
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta GA 303332, USA
| | - John Blazeck
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta GA 303332, USA
| |
Collapse
|
11
|
Simoni C, Barbon E, Muro AF, Cantore A. In vivo liver targeted genome editing as therapeutic approach: progresses and challenges. Front Genome Ed 2024; 6:1458037. [PMID: 39246827 PMCID: PMC11378722 DOI: 10.3389/fgeed.2024.1458037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
The liver is an essential organ of the body that performs several vital functions, including the metabolism of biomolecules, foreign substances, and toxins, and the production of plasma proteins, such as coagulation factors. There are hundreds of genetic disorders affecting liver functions and, for many of them, the only curative option is orthotopic liver transplantation, which nevertheless entails many risks and long-term complications. Some peculiar features of the liver, such as its large blood flow supply and the tolerogenic immune environment, make it an attractive target for in vivo gene therapy approaches. In recent years, several genome-editing tools mainly based on the clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) system have been successfully exploited in the context of liver-directed preclinical or clinical therapeutic applications. These include gene knock-out, knock-in, activation, interference, or base and prime editing approaches. Despite many achievements, important challenges still need to be addressed to broaden clinical applications, such as the optimization of the delivery methods, the improvement of the editing efficiency, and the risk of on-target or off-target unwanted effects and chromosomal rearrangements. In this review, we highlight the latest progress in the development of in vivo liver-targeted genome editing approaches for the treatment of genetic disorders. We describe the technological advancements that are currently under investigation, the challenges to overcome for clinical applicability, and the future perspectives of this technology.
Collapse
Affiliation(s)
- Chiara Simoni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Barbon
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrés F Muro
- International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
12
|
Hwu WL. Gene therapy for ultrarare diseases: a geneticist's perspective. J Biomed Sci 2024; 31:79. [PMID: 39138523 PMCID: PMC11321167 DOI: 10.1186/s12929-024-01070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Gene therapy has made considerable strides in recent years. More than 4000 protein-coding genes have been implicated in more than 6000 genetic diseases; next-generation sequencing has dramatically revolutionized the diagnosis of genetic diseases. Most genetic diseases are considered very rare or ultrarare, defined here as having fewer than 1:100,000 cases, but only one of the 12 approved gene therapies (excluding RNA therapies) targets an ultrarare disease. This article explores three gene supplementation therapy approaches suitable for various rare genetic diseases: lentiviral vector-modified autologous CD34+ hematopoietic stem cell transplantation, systemic delivery of adeno-associated virus (AAV) vectors to the liver, and local AAV delivery to the cerebrospinal fluid and brain. Together with RNA therapies, we propose a potential business model for these gene therapies.
Collapse
Affiliation(s)
- Wuh-Liang Hwu
- Center for Precision Medicine, China Medical University Hospital, Taichung City, Taiwan.
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, Taipei City, Taiwan.
| |
Collapse
|
13
|
Bauersachs D, Bomholtz L, del Rey Mateos S, Kühn R, Lisowski P. Novel human neurodevelopmental and neurodegenerative disease associated with IRF2BPL gene variants-mechanisms and therapeutic avenues. Front Neurosci 2024; 18:1426177. [PMID: 38903604 PMCID: PMC11187338 DOI: 10.3389/fnins.2024.1426177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
Recently a broad range of phenotypic abnormalities related to the neurodevelopmental and neurodegenerative disorder NEDAMSS (Neurodevelopmental Disorder with Regression, Abnormal Movements, Loss of Speech, and Seizures) have been associated with rare single-nucleotide polymorphisms (SNPs) or insertion and deletion variants (Indel) in the intron-less gene IRF2BPL. Up to now, 34 patients have been identified through whole exome sequencing carrying different heterozygous pathogenic variants spanning the intron-less gene from the first polyglutamine tract at the N-terminus to the C3HC4 RING domain of the C-terminus of the protein. As a result, the phenotypic spectrum of the patients is highly heterogeneous and ranges from abnormal neurocognitive development to severe neurodegenerative courses with developmental and seizure-related encephalopathies. While the treatment of IRF2BPL-related disorders has focused on alleviating the patient's symptoms by symptomatic multidisciplinary management, there has been no prospect of entirely relieving the symptoms of the individual patients. Yet, the recent advancement of CRISPR-Cas9-derived gene editing tools, leading to the generation of base editors (BEs) and prime editors (PEs), provide an encouraging new therapeutic avenue for treating NEDAMSS and other neurodevelopmental and neurodegenerative diseases, which contain SNPs or smaller Indels in post-mitotic cell populations of the central nervous system, due to its ability to generate site-specific DNA sequence modifications without creating double-stranded breaks, and recruiting the non-homologous DNA end joining repair mechanism.
Collapse
Affiliation(s)
- Daniel Bauersachs
- Genome Engineering & Disease Models, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Louise Bomholtz
- Genome Engineering & Disease Models, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sara del Rey Mateos
- Quantitative Stem Cell Biology, Berlin Institute for Medical Systems Biology (BIMSB) Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Ralf Kühn
- Genome Engineering & Disease Models, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Pawel Lisowski
- Quantitative Stem Cell Biology, Berlin Institute for Medical Systems Biology (BIMSB) Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Psychiatry, Neuropsychiatry Research Division, Translation and Neurotechnology Research Group, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
Feola M, Pulicani S, Tkach D, Boyne A, Hong R, Mayer L, Duclert A, Duchateau P, Juillerat A. Comprehensive analysis of the editing window of C-to-T TALE base editors. Sci Rep 2024; 14:12870. [PMID: 38834632 PMCID: PMC11150444 DOI: 10.1038/s41598-024-63203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
One of the most recent advances in the genome editing field has been the addition of "TALE Base Editors", an innovative platform for cell therapy that relies on the deamination of cytidines within double strand DNA, leading to the formation of an uracil (U) intermediate. These molecular tools are fusions of transcription activator-like effector domains (TALE) for specific DNA sequence binding, split-DddA deaminase halves that will, upon catalytic domain reconstitution, initiate the conversion of a cytosine (C) to a thymine (T), and an uracil glycosylase inhibitor (UGI). We developed a high throughput screening strategy capable to probe key editing parameters in a precisely defined genomic context in cellulo, excluding or minimizing biases arising from different microenvironmental and/or epigenetic contexts. Here we aimed to further explore how target composition and TALEB architecture will impact the editing outcomes. We demonstrated how the nature of the linker between TALE array and split DddAtox head allows us to fine tune the editing window, also controlling possible bystander activity. Furthermore, we showed that both the TALEB architecture and spacer length separating the two TALE DNA binding regions impact the target TC editing dependence by the surrounding bases, leading to more restrictive or permissive editing profiles.
Collapse
|
15
|
Lim SR, Lee SJ. Multiplex CRISPR-Cas Genome Editing: Next-Generation Microbial Strain Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11871-11884. [PMID: 38744727 PMCID: PMC11141556 DOI: 10.1021/acs.jafc.4c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Genome editing is a crucial technology for obtaining desired phenotypes in a variety of species, ranging from microbes to plants, animals, and humans. With the advent of CRISPR-Cas technology, it has become possible to edit the intended sequence by modifying the target recognition sequence in guide RNA (gRNA). By expressing multiple gRNAs simultaneously, it is possible to edit multiple targets at the same time, allowing for the simultaneous introduction of various functions into the cell. This can significantly reduce the time and cost of obtaining engineered microbial strains for specific traits. In this review, we investigate the resolution of multiplex genome editing and its application in engineering microorganisms, including bacteria and yeast. Furthermore, we examine how recent advancements in artificial intelligence technology could assist in microbial genome editing and engineering. Based on these insights, we present our perspectives on the future evolution and potential impact of multiplex genome editing technologies in the agriculture and food industry.
Collapse
Affiliation(s)
- Se Ra Lim
- Department of Systems Biotechnology
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic
of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic
of Korea
| |
Collapse
|
16
|
Guri-Lamce I, AlRokh Y, Kim Y, Maeshima R, Graham C, Hart SL, McGrath JA, Jacków-Malinowska J. Topical gene editing therapeutics using lipid nanoparticles: 'gene creams' for genetic skin diseases? Br J Dermatol 2024; 190:617-627. [PMID: 38149939 DOI: 10.1093/bjd/ljad528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
Patients living with inherited skin diseases have benefited from recent advances in DNA sequencing technologies that provide new or improved diagnostics. However, developing and delivering new treatments for the 'genodermatoses' remains challenging. The goal of creating topical preparations that can recover the inherent gene pathology remains largely aspirational. However, recent progress in two fields - the chemistry of topical delivery formulations (lipid nanoparticles) and the molecular biology of gene repair (CRISPR-Cas9, base and prime editing) - presents new opportunities to address this unmet need. In this review, we discuss how lipid nanoparticle delivery vehicles could be used to deliver gene-editing tools to formulate topical 'gene creams' suitable for the treatment of genodermatoses. We summarize the historical landscape of topical therapeutics and advances in gene editing that may herald an era of new therapies for patients with inherited skin disorders.
Collapse
Affiliation(s)
- Ina Guri-Lamce
- St John's Institute of Dermatology, King's College London, London, UK
| | - Yara AlRokh
- St John's Institute of Dermatology, King's College London, London, UK
| | - Youngah Kim
- St John's Institute of Dermatology, King's College London, London, UK
| | - Ruhina Maeshima
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Carina Graham
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Stephen L Hart
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - John A McGrath
- St John's Institute of Dermatology, King's College London, London, UK
| | | |
Collapse
|
17
|
Pomés A, Smith SA, Chruszcz M, Mueller GA, Brackett NF, Chapman MD. Precision engineering for localization, validation, and modification of allergenic epitopes. J Allergy Clin Immunol 2024; 153:560-571. [PMID: 38181840 PMCID: PMC10939758 DOI: 10.1016/j.jaci.2023.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
The allergen-IgE interaction is essential for the genesis of allergic responses, yet investigation of the molecular basis of these interactions is in its infancy. Precision engineering has unveiled the molecular features of allergen-antibody interactions at the atomic level. High-resolution technologies, including x-ray crystallography, nuclear magnetic resonance spectroscopy, and cryo-electron microscopy, determine allergen-antibody structures. X-ray crystallography of an allergen-antibody complex localizes in detail amino acid residues and interactions that define the epitope-paratope interface. Multiple structures involving murine IgG mAbs have recently been resolved. The number of amino acids forming the epitope broadly correlates with the epitope area. The production of human IgE mAbs from B cells of allergic subjects is an exciting recent development that has for the first time enabled an actual IgE epitope to be defined. The biologic activity of defined IgE epitopes can be validated in vivo in animal models or by measuring mediator release from engineered basophilic cell lines. Finally, gene-editing approaches using the Clustered Regularly Interspaced Short Palindromic Repeats technology to either remove allergen genes or make targeted epitope engineering at the source are on the horizon. This review presents an overview of the identification and validation of allergenic epitopes by precision engineering.
Collapse
Affiliation(s)
| | - Scott A Smith
- Vanderbilt University Medical Center, Nashville, Tenn
| | | | | | | | | |
Collapse
|
18
|
Kovalev MA, Davletshin AI, Karpov DS. Engineering Cas9: next generation of genomic editors. Appl Microbiol Biotechnol 2024; 108:209. [PMID: 38353732 PMCID: PMC10866799 DOI: 10.1007/s00253-024-13056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The Cas9 endonuclease of the CRISPR/Cas type IIA system from Streptococcus pyogenes is the heart of genome editing technology that can be used to treat human genetic and viral diseases. Despite its large size and other drawbacks, S. pyogenes Cas9 remains the most widely used genome editor. A vast amount of research is aimed at improving Cas9 as a promising genetic therapy. Strategies include directed evolution of the Cas9 protein, rational design, and domain swapping. The first generation of Cas9 editors comes directly from the wild-type protein. The next generation is obtained by combining mutations from the first-generation variants, adding new mutations to them, or refining mutations. This review summarizes and discusses recent advances and ways in the creation of next-generation genomic editors derived from S. pyogenes Cas9. KEY POINTS: • The next-generation Cas9-based editors are more active than in the first one. • PAM-relaxed variants of Cas9 are improved by increased specificity and activity. • Less mutagenic and immunogenic variants of Cas9 are created.
Collapse
Affiliation(s)
- Maxim A Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991, Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Artem I Davletshin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991, Moscow, Russia
| | - Dmitry S Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991, Moscow, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991, Moscow, Russia.
| |
Collapse
|
19
|
Bischof J, Hierl M, Koller U. Emerging Gene Therapeutics for Epidermolysis Bullosa under Development. Int J Mol Sci 2024; 25:2243. [PMID: 38396920 PMCID: PMC10889532 DOI: 10.3390/ijms25042243] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
The monogenetic disease epidermolysis bullosa (EB) is characterised by the formation of extended blisters and lesions on the patient's skin upon minimal mechanical stress. Causal for this severe condition are genetic mutations in genes, leading to the functional impairment, reduction, or absence of the encoded protein within the skin's basement membrane zone connecting the epidermis to the underlying dermis. The major burden of affected families justifies the development of long-lasting and curative therapies operating at the genomic level. The landscape of causal therapies for EB is steadily expanding due to recent breakthroughs in the gene therapy field, providing promising outcomes for patients suffering from this severe disease. Currently, two gene therapeutic approaches show promise for EB. The clinically more advanced gene replacement strategy was successfully applied in severe EB forms, leading to a ground-breaking in vivo gene therapy product named beremagene geperpavec (B-VEC) recently approved from the US Food and Drug Administration (FDA). In addition, the continuous innovations in both designer nucleases and gene editing technologies enable the efficient and potentially safe repair of mutations in EB in a potentially permanent manner, inspiring researchers in the field to define and reach new milestones in the therapy of EB.
Collapse
Affiliation(s)
- Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.B.); (M.H.)
| | - Markus Hierl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.B.); (M.H.)
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.B.); (M.H.)
| |
Collapse
|
20
|
Bell V, Varzakas T, Psaltopoulou T, Fernandes T. Sickle Cell Disease Update: New Treatments and Challenging Nutritional Interventions. Nutrients 2024; 16:258. [PMID: 38257151 PMCID: PMC10820494 DOI: 10.3390/nu16020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Sickle cell disease (SCD), a distinctive and often overlooked illness in the 21st century, is a congenital blood disorder characterized by considerable phenotypic diversity. It comprises a group of disorders, with sickle cell anemia (SCA) being the most prevalent and serious genotype. Although there have been some systematic reviews of global data, worldwide statistics regarding SCD prevalence, morbidity, and mortality remain scarce. In developed countries with a lower number of sickle cell patients, cutting-edge technologies have led to the development of new treatments. However, in developing settings where sickle cell disease (SCD) is more prevalent, medical management, rather than a cure, still relies on the use of hydroxyurea, blood transfusions, and analgesics. This is a disease that affects red blood cells, consequently affecting most organs in diverse manners. We discuss its etiology and the advent of new technologies, but the aim of this study is to understand the various types of nutrition-related studies involving individuals suffering from SCD, particularly in Africa. The interplay of the environment, food, gut microbiota, along with their respective genomes collectively known as the gut microbiome, and host metabolism is responsible for mediating host metabolic phenotypes and modulating gut microbiota. In addition, it serves the purpose of providing essential nutrients. Moreover, it engages in direct interactions with host homeostasis and the immune system, as well as indirect interactions via metabolites. Nutrition interventions and nutritional care are mechanisms for addressing increased nutrient expenditures and are important aspects of supportive management for patients with SCD. Underprivileged areas in Sub-Saharan Africa should be accompanied by efforts to define and promote of the nutritional aspects of SCD. Their importance is key to maintaining well-being and quality of life, especially because new technologies and products remain limited, while the use of native medicinal plant resources is acknowledged.
Collapse
Affiliation(s)
- Victoria Bell
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece
| | - Theodora Psaltopoulou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Tito Fernandes
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
| |
Collapse
|
21
|
Kim MY. Making normal hematopoiesis invisible to CAR T cells. Trends Cancer 2023; 9:983-984. [PMID: 37863719 DOI: 10.1016/j.trecan.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
Two recent studies, by Casirati et al. and Wellhausen et al., report genetically engineering normal hematopoietic stem and progenitor cells (HSPCs) to be resistant to chimeric antigen receptor (CAR)-T cells, by changing a single amino acid in the target protein that abrogates CAR binding, without compromising protein function. This allows for selective targeting of cancer cells without harming normal hematopoietic cells.
Collapse
Affiliation(s)
- Miriam Y Kim
- Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
22
|
Tyumentseva M, Tyumentsev A, Akimkin V. CRISPR/Cas9 Landscape: Current State and Future Perspectives. Int J Mol Sci 2023; 24:16077. [PMID: 38003266 PMCID: PMC10671331 DOI: 10.3390/ijms242216077] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 is a unique genome editing tool that can be easily used in a wide range of applications, including functional genomics, transcriptomics, epigenetics, biotechnology, plant engineering, livestock breeding, gene therapy, diagnostics, and so on. This review is focused on the current CRISPR/Cas9 landscape, e.g., on Cas9 variants with improved properties, on Cas9-derived and fusion proteins, on Cas9 delivery methods, on pre-existing immunity against CRISPR/Cas9 proteins, anti-CRISPR proteins, and their possible roles in CRISPR/Cas9 function improvement. Moreover, this review presents a detailed outline of CRISPR/Cas9-based diagnostics and therapeutic approaches. Finally, the review addresses the future expansion of genome editors' toolbox with Cas9 orthologs and other CRISPR/Cas proteins.
Collapse
Affiliation(s)
- Marina Tyumentseva
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia; (A.T.); (V.A.)
| | | | | |
Collapse
|
23
|
Fischer K, Schnieke A. How genome editing changed the world of large animal research. Front Genome Ed 2023; 5:1272687. [PMID: 37886655 PMCID: PMC10598601 DOI: 10.3389/fgeed.2023.1272687] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
The first genetically modified large animals were developed in 1985 by microinjection to increase the growth of agricultural livestock such as pigs. Since then, it has been a difficult trail due to the lack of genetic tools. Although methods and technologies were developed quickly for the main experimental mammal, the mouse, e.g., efficient pronuclear microinjection, gene targeting in embryonic stem cells, and omics data, most of it was-and in part still is-lacking when it comes to livestock. Over the next few decades, progress in genetic engineering of large animals was driven less by research for agriculture but more for biomedical applications, such as the production of pharmaceutical proteins in the milk of sheep, goats, or cows, xeno-organ transplantation, and modeling human diseases. Available technologies determined if a desired animal model could be realized, and efficiencies were generally low. Presented here is a short review of how genome editing tools, specifically CRISPR/Cas, have impacted the large animal field in recent years. Although there will be a focus on genome engineering of pigs for biomedical applications, the general principles and experimental approaches also apply to other livestock species or applications.
Collapse
Affiliation(s)
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
24
|
Adlat S, Vázquez Salgado AM, Lee M, Yin D, Wangensteen KJ. Emerging and potential use of CRISPR in human liver disease. Hepatology 2023:01515467-990000000-00538. [PMID: 37607734 PMCID: PMC10881897 DOI: 10.1097/hep.0000000000000578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/13/2023] [Indexed: 08/24/2023]
Abstract
CRISPR is a gene editing tool adapted from naturally occurring defense systems from bacteria. It is a technology that is revolutionizing the interrogation of gene functions in driving liver disease, especially through genetic screens and by facilitating animal knockout and knockin models. It is being used in models of liver disease to identify which genes are critical for liver pathology, especially in genetic liver disease, hepatitis, and in cancer initiation and progression. It holds tremendous promise in treating human diseases directly by editing DNA. It could disable gene function in the case of expression of a maladaptive protein, such as blocking transthyretin as a therapy for amyloidosis, or to correct gene defects, such as restoring the normal functions of liver enzymes fumarylacetoacetate hydrolase or alpha-1 antitrypsin. It is also being studied for treatment of hepatitis B infection. CRISPR is an exciting, evolving technology that is facilitating gene characterization and discovery in liver disease and holds the potential to treat liver diseases safely and permanently.
Collapse
Affiliation(s)
- Salah Adlat
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | |
Collapse
|
25
|
Hodge R. The future is bright, the future is biotechnology. PLoS Biol 2023; 21:e3002135. [PMID: 37115754 PMCID: PMC10146504 DOI: 10.1371/journal.pbio.3002135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
As PLOS Biology celebrates its 20th anniversary, our April issue focuses on biotechnology with articles covering different aspects of the field, from genome editing to synthetic biology. With them, we emphasize our interest in expanding our presence in biotechnology research.
Collapse
Affiliation(s)
- Richard Hodge
- Public Library of Science, San Francisco, California, United States of America and Cambridge, United Kingdom
| |
Collapse
|