1
|
Hueso M, Mallén A, Navarro E. Generation of Transcript Length Variants and Reprogramming of mRNA Splicing During Atherosclerosis Progression in ApoE-Deficient Mice. Biomedicines 2024; 12:2703. [PMID: 39767610 PMCID: PMC11672872 DOI: 10.3390/biomedicines12122703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background. Variant 3'UTRs provide mRNAs with different binding sites for miRNAs or RNA-binding proteins (RBPs) allowing the establishment of new regulatory environments. Regulation of 3'UTR length impacts on the control of gene expression by regulating accessibility of miRNAs or RBPs to homologous sequences in mRNAs. Objective. Studying the dynamics of mRNA length variations in atherosclerosis (ATS) progression and reversion in ApoE-deficient mice exposed to a high-fat diet and treated with an αCD40-specific siRNA or with a sequence-scrambled siRNA as control. Methods. We gathered microarray mRNA expression data from the aortas of mice after 2 or 16 weeks of treatments, and used these data in a Bioinformatics analysis. Results. Here, we report the lengthening of the 5'UTR/3'UTRs and the shortening of the CDS in downregulated mRNAs during ATS progression. Furthermore, treatment with the αCD40-specific siRNA resulted in the partial reversion of the 3'UTR lengthening. Exon analysis showed that these length variations were actually due to changes in the number of exons embedded in mRNAs, and the further examination of transcripts co-expressed at weeks 2 and 16 in mice treated with the control siRNA revealed a process of mRNA isoform switching in which transcript variants differed in the patterns of alternative splicing or activated latent/cryptic splice sites. Conclusion. We document length variations in the 5'UTR/3'UTR and CDS of mRNAs downregulated during atherosclerosis progression and suggest a role for mRNA splicing reprogramming and transcript isoform switching in the generation of disease-related mRNA sequence diversity and variability.
Collapse
Affiliation(s)
- Miguel Hueso
- Experimental Nephrology Lab, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, C/Feixa Llarga s/n, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
- Department of Nephrology, Hospital Universitari and Bellvitge, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, C/Feixa Llarga s/n, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Adrián Mallén
- Experimental Nephrology Lab, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, C/Feixa Llarga s/n, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
| | - Estanis Navarro
- REMAR Group, Germans Trias i Pujol Research Institute (IGTP), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Spain
| |
Collapse
|
2
|
Lee DH, Park EG, Kim JM, Shin HJ, Lee YJ, Jeong HS, Roh HY, Kim WR, Ha H, Kim SW, Choi YH, Kim HS. Genomic analyses of intricate interaction of TE-lncRNA overlapping genes with miRNAs in human diseases. Genes Genomics 2024; 46:1313-1325. [PMID: 39215947 DOI: 10.1007/s13258-024-01547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Transposable elements (TEs) are known to be inserted into genome to create transcript isoforms or to generate long non-coding RNA (lncRNA) sequences. The insertion of TEs generates a gene protein sequence within the genome, but also provides a microRNA (miRNA) regulatory region. OBJECTIVE To determine the effect of gene sequence changes caused by TE insertion on miRNA binding and to investigate the formation of an overlapping lncRNA that represses it. METHODS The distribution of overlapping regions between exons and TE regions with lncRNA was examined using the Bedtools. miRNAs that can bind to those overlapping regions were identified through the miRDB web program. For TE-lncRNA overlapping genes, bioinformatic analysis was conducted using DAVID web database. Differential expression analysis was conducted using data from the GEO dataset and TCGA. RESULTS Most TEs were distributed more frequently in untranslated regions than open reading frames. There were 30 annotated TE-lncRNA overlapping genes with same strand that could bind to the same miRNA. As a result of identifying the association between these 30 genes and diseases, TGFB2, FCGR2A, DCTN5, and IFI6 were associated with breast cancer, and HMGCS1, FRMD4A, EDNRB, and SNCA were associated with Alzheimer's disease. Analysis of the GEO and TCGA data showed that the relevant expression of miR-891a and miR-28, which bind to the TE overlapping region of DCTN5 and HMGCS1, decreased. CONCLUSION This study indicates that the interaction between TE-lncRNA overlapping genes and miRNAs can affect disease progression.
Collapse
Affiliation(s)
- Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jung-Min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyeon-Su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hongseok Ha
- Institute of Endemic Disease, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
| | - Sang-Woo Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, 47227, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea.
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
3
|
Hwang H, Chang HR, Baek D. Determinants of Functional MicroRNA Targeting. Mol Cells 2023; 46:21-32. [PMID: 36697234 PMCID: PMC9880601 DOI: 10.14348/molcells.2023.2157] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) play cardinal roles in regulating biological pathways and processes, resulting in significant physiological effects. To understand the complex regulatory network of miRNAs, previous studies have utilized massivescale datasets of miRNA targeting and attempted to computationally predict the functional targets of miRNAs. Many miRNA target prediction tools have been developed and are widely used by scientists from various fields of biology and medicine. Most of these tools consider seed pairing between miRNAs and their mRNA targets and additionally consider other determinants to improve prediction accuracy. However, these tools exhibit limited prediction accuracy and high false positive rates. The utilization of additional determinants, such as RNA modifications and RNA-binding protein binding sites, may further improve miRNA target prediction. In this review, we discuss the determinants of functional miRNA targeting that are currently used in miRNA target prediction and the potentially predictive but unappreciated determinants that may improve prediction accuracy.
Collapse
Affiliation(s)
- Hyeonseo Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hee Ryung Chang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Daehyun Baek
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
4
|
Hasi G, Sodnompil T, Na H, Liu H, Ji M, Xie W, Nasenochir N. Whole transcriptome sequencing reveals core genes related to spermatogenesis in Bactrian camels. J Anim Sci 2023; 101:skad115. [PMID: 37083698 PMCID: PMC10718809 DOI: 10.1093/jas/skad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/19/2023] [Indexed: 04/22/2023] Open
Abstract
Bactrian camels survive and reproduce better in extreme climatic conditions than other domestic animals can. However, the reproductive efficiency of camels under their natural pastoral conditions is low. Several factors affect mammalian reproductive performance, including testicular development, semen quality, libido, and mating ability. Testis is a main reproductive organ of the male and is responsible for producing spermatozoa and hormones. However, our understanding of the expression patterns of the genes in camel testis is minimal. Thus, we performed total RNA-sequencing to investigate the gene expression pattern. As a result, 1,538 differential expressed mRNAs (DEmRNAs), 702 differential expressed long non-coding RNAs (DElncRNAs), and 61 differential expressed microRNAs (DEmiRNAs) were identified between pubertal and adult Bactrian camel testes. Then the genomic features, length distribution, and other characteristics of the lncRNAs and mRNAs in the Bactrian camel testis were investigated. Target genes of the DEmiRNAs and DEmRNAs were further subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Genes, such as AMHR2, FGF1, ACTL7A, GATA4, WNT4, ID2, LAMA1, IGF1, INHBB, and TLR2, were mainly involved in the TGF-β, PI3K-AKT, Wnt, GnRH, and Hippo signaling pathways which relate to spermatogenesis. Some of the DEmiRNAs were predicted to be associated with numerous DElncRNAs and DEmRNAs through competing endogenous RNA (ceRNA) regulatory network. At last, the candidate genes were validated by RT-qPCR, dual fluorescent reporter gene, and a fluorescence in situ hybridization (FISH) assay. This research provides high-throughput RNA sequencing data of the testes of Bactrian camels across different developmental stages. It lays the foundation for further investigations on lncRNAs, miRNAs, and mRNAs that involved in Bactrian camel spermatogenesis.
Collapse
Affiliation(s)
- Gaowa Hasi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Tserennadmid Sodnompil
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Haya Na
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Hejie Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Musi Ji
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Wangwei Xie
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Narenhua Nasenochir
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| |
Collapse
|
5
|
Dynamic Variations of 3'UTR Length Reprogram the mRNA Regulatory Landscape. Biomedicines 2021; 9:biomedicines9111560. [PMID: 34829789 PMCID: PMC8615635 DOI: 10.3390/biomedicines9111560] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
This paper concerns 3′-untranslated regions (3′UTRs) of mRNAs, which are non-coding regulatory platforms that control stability, fate and the correct spatiotemporal translation of mRNAs. Many mRNAs have polymorphic 3′UTR regions. Controlling 3′UTR length and sequence facilitates the regulation of the accessibility of functional effectors (RNA binding proteins, miRNAs or other ncRNAs) to 3′UTR functional boxes and motifs and the establishment of different regulatory landscapes for mRNA function. In this context, shortening of 3′UTRs would loosen miRNA or protein-based mechanisms of mRNA degradation, while 3′UTR lengthening would strengthen accessibility to these effectors. Alterations in the mechanisms regulating 3′UTR length would result in widespread deregulation of gene expression that could eventually lead to diseases likely linked to the loss (or acquisition) of specific miRNA binding sites. Here, we will review the mechanisms that control 3′UTR length dynamics and their alterations in human disorders. We will discuss, from a mechanistic point of view centered on the molecular machineries involved, the generation of 3′UTR variability by the use of alternative polyadenylation and cleavage sites, of mutually exclusive terminal alternative exons (exon skipping) as well as by the process of exonization of Alu cassettes to generate new 3′UTRs with differential functional features.
Collapse
|
6
|
Park J, Farris S. Spatiotemporal Regulation of Transcript Isoform Expression in the Hippocampus. Front Mol Neurosci 2021; 14:694234. [PMID: 34305526 PMCID: PMC8295539 DOI: 10.3389/fnmol.2021.694234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Proper development and plasticity of hippocampal neurons require specific RNA isoforms to be expressed in the right place at the right time. Precise spatiotemporal transcript regulation requires the incorporation of essential regulatory RNA sequences into expressed isoforms. In this review, we describe several RNA processing strategies utilized by hippocampal neurons to regulate the spatiotemporal expression of genes critical to development and plasticity. The works described here demonstrate how the hippocampus is an ideal investigative model for uncovering alternate isoform-specific mechanisms that restrict the expression of transcripts in space and time.
Collapse
Affiliation(s)
- Joun Park
- Fralin Biomedical Research Institute, Center for Neurobiology Research, Virginia Tech Carilion, Roanoke, VA, United States
| | - Shannon Farris
- Fralin Biomedical Research Institute, Center for Neurobiology Research, Virginia Tech Carilion, Roanoke, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
7
|
MicroRNAs are indispensable for the proliferation and differentiation of adult neural progenitor cells in mice. Biochem Biophys Res Commun 2020; 530:209-214. [PMID: 32828287 DOI: 10.1016/j.bbrc.2020.06.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 01/18/2023]
Abstract
More than two decades after the discovery of adult neurogenesis in humans, researchers still struggle to elucidate the underlying transcriptional and post-transcriptional mechanisms. RNA interference is a crucially important process in the central nervous system, and its role in adult neurogenesis is poorly understood. In this work, we address the role of Dicer-dependent microRNA biogenesis in neuronal differentiation of adult neural stem cells within the subventricular zone of the mouse brain. Loss of the Dicer1 gene in the tailless (Tlx)-positive cells did not cause the decline in their numbers, but severely affected differentiation. Thus, our findings identify yet another phenomenon associated with microRNA pathway deregulation in adult neural stem cells which might be of relevance both for neuroscience and clinical practice.
Collapse
|
8
|
Wang PF, Wang X, Liu M, Zeng Z, Lin C, Xu W, Ma W, Wang J, Xiang Q, Johnston RN, Liu H, Liu SL. The Oncogenic Functions of Insulin-like Growth Factor 2 mRNA-Binding Protein 3 in Human Carcinomas. Curr Pharm Des 2020; 26:3939-3954. [PMID: 32282295 DOI: 10.2174/1381612826666200413080936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
IGF2BP3 (also known as IMP3, KOC), a member of the insulin-like growth factor mRNA-binding protein family (IMPs), has been a research target in recent studies of promoting embryo development and exacerbating cancer. IGF2BP3 is ubiquitously expressed in early embryogenesis stages but limited in postembryonic stages, which is important in many physiological aspects such as stem cell renewal, morphological development and metabolism. A large number of studies show that IGF2BP3 interacts with many kinds of non-coding RNAs and proteins to promote cancer cell proliferation and metastasis and inhibit cancer cell apoptosis. As IGF2BP3 is highly expressed in advanced cancers and associated with poor overall survival rates of patients, it may be a potential molecular marker in cancer diagnosis for the detection of cancerous tissues and an indicator of cancer stages. Therefore, anti-IGF2BP3 drugs or monoclonal antibodies are expected as new therapeutic methods in cancer treatment. This review summarizes recent findings among IGF2BP3, RNA and proteins in cancer processes, with a focus on its cancer-promoting mechanisms and potential application as a new biomarker for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaoyu Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Min Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zheng Zeng
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Caiji Lin
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wenwen Xu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wenqing Ma
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jiali Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Qian Xiang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Randal N Johnston
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N1N4, Canada
| | - Huidi Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shu-Lin Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
9
|
Han S, Kim D, Shivakumar M, Lee YJ, Garg T, Miller JE, Kim JH, Kim D, Lee Y. The effects of alternative splicing on miRNA binding sites in bladder cancer. PLoS One 2018; 13:e0190708. [PMID: 29300757 PMCID: PMC5754136 DOI: 10.1371/journal.pone.0190708] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023] Open
Abstract
Eukaryotic organisms have developed a variety of mechanisms to regulate translation post-transcriptionally, including but not limited to the use of miRNA silencing in many species. One method of post-transcriptional regulation is through miRNAs that bind to the 3′ UTRs to regulate mRNA abundance and influence protein expression. Therefore, the diversity of mRNA 3′ UTRs mediating miRNA binding sites influence miRNA-mediated regulation. Alternative polyadenylation, by shortening mRNA isoforms, increases the diversity of 3′ UTRs; moreover, short mRNA isoforms elude miRNA-medicated repression. Because no current prediction methods for putative miRNA target sites consider whether or not 1) splicing-informed miRNA binding sites and/or 2) the use of 3′ UTRs provide higher resolution or functionality, we sought to identify not only the genome-wide impact of using exons in mRNA 3′ UTRs but also their functional connection to miRNA regulation and clinical outcomes in cancer. With a genome-wide expression of mRNA and miRNA quantified by 395 bladder cancer cases from The Cancer Genome Atlas (TCGA), we 1) demonstrate the diversity of 3′ UTRs affecting miRNA efficiency and 2) identify a set of genes clinically associated with mRNA expression in bladder cancer. Knowledge of 3′ UTR diversity will not only be a useful addition to current miRNA target prediction algorithms but also enhance the clinical utility of mRNA isoforms in the expression of mRNA in cancer. Thus, variability among cancer patient’s variability in molecular signatures based on these exon usage events in 3′ UTR along with miRNAs in bladder cancer may lead to better prognostic/treatment strategies for improved precision medicine.
Collapse
Affiliation(s)
- Seonggyun Han
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Dongwook Kim
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Manu Shivakumar
- Department of Biomedical & Translational Informatics, Geisinger Health System, Danville, Pennsylvania, United States of America
| | - Young-Ji Lee
- Department of Biomedical Informatics, School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Tullika Garg
- Mowad Urology Department, Geisinger Health System, Danville, Pennsylvania, United States of America
| | - Jason E. Miller
- Department of Biomedical & Translational Informatics, Geisinger Health System, Danville, Pennsylvania, United States of America
| | - Ju Han Kim
- Seoul National University Biomedical Informatics, Seoul, South Korea
- * E-mail: (YL); (DK); (JHK)
| | - Dokyoon Kim
- Department of Biomedical & Translational Informatics, Geisinger Health System, Danville, Pennsylvania, United States of America
- * E-mail: (YL); (DK); (JHK)
| | - Younghee Lee
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail: (YL); (DK); (JHK)
| |
Collapse
|
10
|
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by a mutation that expands the polyglutamine (CAG) repeat in exon 1 of the huntingtin (HTT) gene. Wild-type HTT protein interacts with other proteins to protect cells against toxic stimuli, mediate vesicle transport and endocytosis, and modulate synaptic activity. Mutant HTT protein disrupts autophagy, vesicle transport, neurotransmitter signaling, and mitochondrial function. Although many of the activities of wild-type HTT protein and the toxicities of mutant HTT protein are characterized, less is known about the activities of HTT mRNA. Most putative HD therapies aim to target mutant HTT mRNA before it is translated into the protein. Therefore, it is imperative to learn as much as we can about how cells handle both wild-type and mutant HTT mRNA so that effective therapies can be designed. Here, we review the structure of wild-type and mutant HTT mRNA, with emphasis on their alternatively polyadenylated or spliced isoforms. We then consider the abundance of HTT mRNA isoforms in HD and discuss the potential implications of these findings. Evidence in the review should be used to guide future research aimed at developing mRNA-lowering therapies for HD.
Collapse
Affiliation(s)
- Lindsay Romo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Emily S. Mohn
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Neil Aronin
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
11
|
Neve J, Patel R, Wang Z, Louey A, Furger AM. Cleavage and polyadenylation: Ending the message expands gene regulation. RNA Biol 2017; 14:865-890. [PMID: 28453393 PMCID: PMC5546720 DOI: 10.1080/15476286.2017.1306171] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Cleavage and polyadenylation (pA) is a fundamental step that is required for the maturation of primary protein encoding transcripts into functional mRNAs that can be exported from the nucleus and translated in the cytoplasm. 3'end processing is dependent on the assembly of a multiprotein processing complex on the pA signals that reside in the pre-mRNAs. Most eukaryotic genes have multiple pA signals, resulting in alternative cleavage and polyadenylation (APA), a widespread phenomenon that is important to establish cell state and cell type specific transcriptomes. Here, we review how pA sites are recognized and comprehensively summarize how APA is regulated and creates mRNA isoform profiles that are characteristic for cell types, tissues, cellular states and disease.
Collapse
Affiliation(s)
- Jonathan Neve
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Radhika Patel
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Zhiqiao Wang
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Alastair Louey
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
12
|
Xu H, An JJ, Xu B. Distinct cellular toxicity of two mutant huntingtin mRNA variants due to translation regulation. PLoS One 2017; 12:e0177610. [PMID: 28494017 PMCID: PMC5426682 DOI: 10.1371/journal.pone.0177610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/28/2017] [Indexed: 11/23/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by CAG repeat expansion within exon1 of the HTT gene. The gene generates two mRNA variants that carry either a short or long 3' untranslated region (3'UTR) while encoding the same protein. It remains unknown whether the two mRNA variants play distinct roles in HD pathogenesis. We found that the long HTT 3'UTR was capable of guiding mRNA to neuronal dendrites, suggesting that some long-form HTT mRNA is transported to dendrites for local protein synthesis. To assay roles of two HTT mRNA variants in cell bodies, we expressed mRNA harboring HTT exon1 containing 23x or 145x CAGs with the short or long 3'UTR. We found that mutant mRNA containing the short 3'UTR produced more protein aggregates and caused more apoptosis in both cultured neurons and HEK293 cells, compared with mutant mRNA containing the long 3'UTR. Although the two 3'UTRs did not affect mRNA stability, we detected higher levels of protein synthesis from mRNA containing the short 3'UTR than from mRNA containing the long 3'UTR. These results indicate that the long HTT 3'UTR suppresses translation. Thus, short-form mutant HTT mRNA will be more efficient in producing toxic protein than its long-form counterpart.
Collapse
Affiliation(s)
- Haifei Xu
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida, United States of America
| | - Juan Ji An
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida, United States of America
| | - Baoji Xu
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida, United States of America
| |
Collapse
|
13
|
Amirkhah R, Meshkin HN, Farazmand A, Rasko JEJ, Schmitz U. Computational and Experimental Identification of Tissue-Specific MicroRNA Targets. Methods Mol Biol 2017; 1580:127-147. [PMID: 28439832 DOI: 10.1007/978-1-4939-6866-4_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this chapter we discuss computational methods for the prediction of microRNA (miRNA) targets. More specifically, we consider machine learning-based approaches and explain why these methods have been relatively unsuccessful in reducing the number of false positive predictions. Further we suggest approaches designed to improve their performance by considering tissue-specific target regulation. We argue that the miRNA targetome differs depending on the tissue type and introduce a novel algorithm that predicts miRNA targets specifically for colorectal cancer. We discuss features of miRNAs and target sites that affect target recognition, and how next-generation sequencing data can support the identification of novel miRNAs, differentially expressed miRNAs and their tissue-specific mRNA targets. In addition, we introduce some experimental approaches for the validation of miRNA targets as well as web-based resources sharing predicted and validated miRNA target interactions.
Collapse
Affiliation(s)
- Raheleh Amirkhah
- Reza Institute of Cancer Bioinformatics and Personalized Medicine, Mashhad, Iran
| | - Hojjat Naderi Meshkin
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Ali Farazmand
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - John E J Rasko
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown; Sydney Medical School, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown; Sydney Medical School, University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
14
|
Doxakis E. RNA binding proteins: a common denominator of neuronal function and dysfunction. Neurosci Bull 2014; 30:610-26. [PMID: 24962082 DOI: 10.1007/s12264-014-1443-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/28/2014] [Indexed: 12/13/2022] Open
Abstract
In eukaryotic cells, gene activity is not directly reflected by protein levels because mRNA processing, transport, stability, and translation are co- and post-transcriptionally regulated. These processes, collectively known as the ribonome, are tightly controlled and carried out by a plethora of trans-acting RNA-binding proteins (RBPs) that bind to specific cis elements throughout the RNA sequence. Within the nervous system, the role of RBPs in brain function turns out to be essential due to the architectural complexity of neurons exemplified by a relatively small somal size and an extensive network of projections and connections. Thus far, RBPs have been shown to be indispensable for several aspects of neurogenesis, neurite outgrowth, synapse formation, and plasticity. Consequently, perturbation of their function is central in the etiology of an ever-growing spectrum of neurological diseases, including fragile X syndrome and the neurodegenerative disorders frontotemporal lobar degeneration and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Epaminondas Doxakis
- Laboratory of Molecular and Cellular Neuroscience, Center of Basic Neuroscience, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, Athens, 11527, Greece,
| |
Collapse
|
15
|
Lutz CS, Cornett AL. Regulation of genes in the arachidonic acid metabolic pathway by RNA processing and RNA-mediated mechanisms. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 4:593-605. [PMID: 23956046 DOI: 10.1002/wrna.1183] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 01/22/2023]
Abstract
Arachidonic acid (AA) is converted by enzymes in an important metabolic pathway to produce molecules known collectively as eicosanoids, 20 carbon molecules with significant physiological and pathological functions in the human body. Cyclooxygenase (COX) enzymes work in one arm of the pathway to produce prostaglandins (PGs) and thromboxanes (TXs), while the actions of 5-lipoxygenase (ALOX5 or 5LO) and its associated protein (ALOX5AP or FLAP) work in the other arm of the metabolic pathway to produce leukotrienes (LTs). The expression of the COX and ALOX5 enzymes that convert AA to eicosanoids is highly regulated at the post- or co-transcriptional level by alternative mRNA splicing, alternative mRNA polyadenylation, mRNA stability, and microRNA (miRNA) regulation. This review article will highlight these mechanisms of mRNA modulation.
Collapse
Affiliation(s)
- Carol S Lutz
- Department of Biochemistry and Molecular Biology, New Jersey Medical School and the Graduate School of Biomedical Sciences, Rutgers, NJ, USA.
| | | |
Collapse
|
16
|
Tiago DM, Marques CL, Roberto VP, Cancela ML, Laizé V. Mir-20a regulates in vitro mineralization and BMP signaling pathway by targeting BMP-2 transcript in fish. Arch Biochem Biophys 2013; 543:23-30. [PMID: 24361749 DOI: 10.1016/j.abb.2013.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/02/2013] [Accepted: 12/12/2013] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are important regulators of vertebrate development but their role during skeletogenesis remains unknown. In this regard, we investigated the mineralogenic activity of miR-20a, a miRNA associated with osteogenesis, in fish bone-derived cells. Expression of miR-20a was up-regulated during differentiation and its overexpression inhibited mineralization, suggesting a role in fish tissue calcification. In this regard, a conserved miR-20a binding site was identified in bone morphogenetic protein 2 (BMP-2) 3'UTR and its functionality was evidenced through luciferase assays, and further confirmed by western-blot and qPCR. Type II BMP receptor (BMPR2) is also targeted by miR-20a in mammalian systems and evidence was collected for the presence of a binding site in fish sequences. We propose that miR-20a is a regulator of BMP pathway through specific action on BMP-2 and possibly BMPR2. Overexpression of miR-20a was also shown to up-regulate matrix Gla protein (MGP) transcript, a physiological inhibitor of calcification previously found to form a complex with BMP-2. We propose that MGP may play a role in the anti-mineralogenic effect promoted by miR-20a by decreasing availability of BMP-2. This study gives new insights into miRNA-mediated regulation of BMP-2, and sheds light into the potential role of miR-20a as a regulator of skeletogenesis.
Collapse
Affiliation(s)
- Daniel M Tiago
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Faro, Portugal.
| | - Cátia L Marques
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Faro, Portugal; PhD Program in Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Vânia P Roberto
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Faro, Portugal; PhD Program in Biomedical Sciences, University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Faro, Portugal
| |
Collapse
|
17
|
To KKW. MicroRNA: a prognostic biomarker and a possible druggable target for circumventing multidrug resistance in cancer chemotherapy. J Biomed Sci 2013; 20:99. [PMID: 24358977 PMCID: PMC3878201 DOI: 10.1186/1423-0127-20-99] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 12/16/2013] [Indexed: 12/27/2022] Open
Abstract
Multidrug resistance (MDR) is a major obstacle to successful cancer treatment. It is often associated with an increased efflux of a variety of structurally unrelated anticancer drugs by ATP-binding cassette (ABC) transporters including P-gp, ABCG2 and MRP1. MicroRNAs (miRNAs) are small non-coding RNAs that govern posttranscriptional regulation of target genes by interacting with specific sequences in their 3′ untranslated region (3′UTR), thereby promoting mRNA degradation or suppressing translation. Accumulating evidence suggests that alterations in miRNAs contribute to resistance to anticancer drugs. While miRNAs are well-known to be dysregulated in cancer, recent literature revealed that miRNA levels in biological samples may be correlated with chemotherapy response. This review summarized the coordinated network by which miRNA regulated MDR transporters. The usefulness of miRNAs as prognostic biomarkers for predicting chemotherapeutic outcome is discussed. MiRNAs may also represent druggable targets for circumvention of MDR.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Room 801 N, Lo Kwee-Seong Integrated Biomedical Sciences Building, Faculty of Medicine, The Chinese University of Hong Kong, Area 39, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
18
|
An J, Zhu X, Wang H, Jin X. A dynamic interplay between alternative polyadenylation and microRNA regulation: implications for cancer (Review). Int J Oncol 2013; 43:995-1001. [PMID: 23913120 DOI: 10.3892/ijo.2013.2047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/18/2013] [Indexed: 12/15/2022] Open
Abstract
Alternative polyadenylation and microRNA regulation are both mechanisms of post-transcriptional regulation of gene expression. Alternative polyadenylation often results in mRNA isoforms with the same coding sequence but different lengths of 3' UTRs, while microRNAs regulate gene expression by binding to specific mRNA 3' UTRs. In this sense, different isoforms of an mRNA may be differentially regulated by microRNAs, sometimes resulting in cellular proliferation and this mechanism is being speculated on as a potential cause for cancer development.
Collapse
Affiliation(s)
- Jindan An
- Key Laboratory of Cancer Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical University, Mudanjiang, P.R. China
| | | | | | | |
Collapse
|
19
|
Wu CT, Chiou CY, Chiu HC, Yang UC. Fine-tuning of microRNA-mediated repression of mRNA by splicing-regulated and highly repressive microRNA recognition element. BMC Genomics 2013; 14:438. [PMID: 23819653 PMCID: PMC3708814 DOI: 10.1186/1471-2164-14-438] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 06/11/2013] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND MicroRNAs are very small non-coding RNAs that interact with microRNA recognition elements (MREs) on their target messenger RNAs. Varying the concentration of a given microRNA may influence the expression of many target proteins. Yet, the expression of a specific target protein can be fine-tuned by alternative cleavage and polyadenylation to the corresponding mRNA. RESULTS This study showed that alternative splicing of mRNA is a fine-tuning mechanism in the cellular regulatory network. The splicing-regulated MREs are often highly repressive MREs. This phenomenon was observed not only in the hsa-miR-148a-regulated DNMT3B gene, but also in many target genes regulated by hsa-miR-124, hsa-miR-1, and hsa-miR-181a. When a gene contains multiple MREs in transcripts, such as the VEGF gene, the splicing-regulated MREs are again the highly repressive MREs. Approximately one-third of the analysable human MREs in MiRTarBase and TarBase can potentially perform the splicing-regulated fine-tuning. Interestingly, the high (+30%) repression ratios observed in most of these splicing-regulated MREs indicate associations with functions. For example, the MRE-free transcripts of many oncogenes, such as N-RAS and others may escape microRNA-mediated suppression in cancer tissues. CONCLUSIONS This fine-tuning mechanism revealed associations with highly repressive MRE. Since high-repression MREs are involved in many important biological phenomena, the described association implies that splicing-regulated MREs are functional. A possible application of this observed association is in distinguishing functionally relevant MREs from predicted MREs.
Collapse
Affiliation(s)
- Cheng-Tao Wu
- Institute of Biomedical Informatics, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan, ROC
- Biomedical Technology and Device Research Labs (BDL), Industrial Technology Research Institute (ITRI), No.195, Sec. 4, Chung Hsing Rd., Chutung, Hsinchu 31040, Taiwan, ROC
| | - Chien-Ying Chiou
- Center for Systems and Synthetic Biology, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan, ROC
| | - Ho-Chen Chiu
- Institute of Biomedical Informatics, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan, ROC
| | - Ueng-Cheng Yang
- Institute of Biomedical Informatics, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan, ROC
- Center for Systems and Synthetic Biology, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan, ROC
- Bioinformatics Consortium of Taiwan core facility, Taipei, Taiwan, ROC
| |
Collapse
|
20
|
Abstract
Systemic response to DNA damage and other stresses is a complex process that includes changes in the regulation and activity of nearly all stages of gene expression. One gene regulatory mechanism used by eukaryotes is selection among alternative transcript isoforms that differ in polyadenylation [poly(A)] sites, resulting in changes either to the coding sequence or to portions of the 3' UTR that govern translation, stability, and localization. To determine the extent to which this means of regulation is used in response to DNA damage, we conducted a global analysis of poly(A) site usage in Saccharomyces cerevisiae after exposure to the UV mimetic, 4-nitroquinoline 1-oxide (4NQO). Two thousand thirty-one genes were found to have significant variation in poly(A) site distributions following 4NQO treatment, with a strong bias toward loss of short transcripts, including many with poly(A) sites located within the protein coding sequence (CDS). We further explored one possible mechanism that could contribute to the widespread differences in mRNA isoforms. The change in poly(A) site profile was associated with an inhibition of cleavage and polyadenylation in cell extract and a decrease in the levels of several key subunits in the mRNA 3'-end processing complex. Sequence analysis identified differences in the cis-acting elements that flank putatively suppressed and enhanced poly(A) sites, suggesting a mechanism that could discriminate between variable and constitutive poly(A) sites. Our analysis indicates that variation in mRNA length is an important part of the regulatory response to DNA damage.
Collapse
|
21
|
Sendler E, Johnson GD, Mao S, Goodrich RJ, Diamond MP, Hauser R, Krawetz SA. Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res 2013; 41:4104-17. [PMID: 23471003 PMCID: PMC3627604 DOI: 10.1093/nar/gkt132] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Increasing attention has focused on the significance of RNA in sperm, in light of its contribution to the birth and long-term health of a child, role in sperm function and diagnostic potential. As the composition of sperm RNA is in flux, assigning specific roles to individual RNAs presents a significant challenge. For the first time RNA-seq was used to characterize the population of coding and non-coding transcripts in human sperm. Examining RNA representation as a function of multiple methods of library preparation revealed unique features indicative of very specific and stage-dependent maturation and regulation of sperm RNA, illuminating their various transitional roles. Correlation of sperm transcript abundance with epigenetic marks suggested roles for these elements in the pre- and post-fertilization genome. Several classes of non-coding RNAs including lncRNAs, CARs, pri-miRNAs, novel elements and mRNAs have been identified which, based on factors including relative abundance, integrity in sperm, available knockout data of embryonic effect and presence or absence in the unfertilized human oocyte, are likely to be essential male factors critical to early post-fertilization development. The diverse and unique attributes of sperm transcripts that were revealed provides the first detailed analysis of the biology and anticipated clinical significance of spermatozoal RNAs.
Collapse
Affiliation(s)
- Edward Sendler
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Liaw HH, Lin CC, Juan HF, Huang HC. Differential microRNA regulation correlates with alternative polyadenylation pattern between breast cancer and normal cells. PLoS One 2013; 8:e56958. [PMID: 23437281 PMCID: PMC3578872 DOI: 10.1371/journal.pone.0056958] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/16/2013] [Indexed: 12/01/2022] Open
Abstract
Alternative polyadenylation (APA) could result in mRNA isoforms with variable lengths of 3′ UTRs. Gain of microRNA target sites in the 3′ UTR of a long mRNA isoform may cause different regulation from the corresponding short isoform. It has been known that cancer cells globally exhibit a lower ratio of long and short isoforms (LSR); that is, they tend to express larger amounts of short isoforms. The objective of this study is to illustrate the relationship between microRNA differential regulation and LSR. We retrieved public APA annotations and isoform expression profiles of breast cancer and normal cells from a high-throughput sequencing method study specific for the mRNA 3′ end. Combining microRNA expression profiles, we performed statistical analysis to reveal and estimate microRNA regulation on APA patterns in a global scale. First, we found that the amount of microRNA target sites in the alternative UTR (aUTR), the region only present in long isoforms, could affect the LSR of the target genes. Second, we observed that the genes whose aUTRs were targeted by up-regulated microRNAs in cancer cells had an overall lower LSR. Furthermore, the target sites of up-regulated microRNAs tended to appear in aUTRs. Finally, we demonstrated that the amount of target sites for up-regulated microRNAs in aUTRs correlated with the LSR change between cancer and normal cells. The results indicate that up-regulation of microRNAs might cause lower LSRs of target genes in cancer cells through degradation of their long isoforms. Our findings provide evidence of how microRNAs might play a crucial role in APA pattern shifts from normal to cancerous or proliferative states.
Collapse
Affiliation(s)
- Hao-Han Liaw
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chen-Ching Lin
- Department of Life Science, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Fen Juan
- Department of Life Science, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- * E-mail: (HFJ); (HCH)
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (HFJ); (HCH)
| |
Collapse
|
23
|
Rehfeld A, Plass M, Krogh A, Friis-Hansen L. Alterations in polyadenylation and its implications for endocrine disease. Front Endocrinol (Lausanne) 2013; 4:53. [PMID: 23658553 PMCID: PMC3647115 DOI: 10.3389/fendo.2013.00053] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/22/2013] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Polyadenylation is the process in which the pre-mRNA is cleaved at the poly(A) site and a poly(A) tail is added - a process necessary for normal mRNA formation. Genes with multiple poly(A) sites can undergo alternative polyadenylation (APA), producing distinct mRNA isoforms with different 3' untranslated regions (3' UTRs) and in some cases different coding regions. Two thirds of all human genes undergo APA. The efficiency of the polyadenylation process regulates gene expression and APA plays an important part in post-transcriptional regulation, as the 3' UTR contains various cis-elements associated with post-transcriptional regulation, such as target sites for micro-RNAs and RNA-binding proteins. Implications of alterations in polyadenylation for endocrine disease: Alterations in polyadenylation have been found to be causative of neonatal diabetes and IPEX (immune dysfunction, polyendocrinopathy, enteropathy, X-linked) and to be associated with type I and II diabetes, pre-eclampsia, fragile X-associated premature ovarian insufficiency, ectopic Cushing syndrome, and many cancer diseases, including several types of endocrine tumor diseases. PERSPECTIVES Recent developments in high-throughput sequencing have made it possible to characterize polyadenylation genome-wide. Antisense elements inhibiting or enhancing specific poly(A) site usage can induce desired alterations in polyadenylation, and thus hold the promise of new therapeutic approaches. SUMMARY This review gives a detailed description of alterations in polyadenylation in endocrine disease, an overview of the current literature on polyadenylation and summarizes the clinical implications of the current state of research in this field.
Collapse
Affiliation(s)
- Anders Rehfeld
- Genomic Medicine, Rigshospitalet, Copenhagen University HospitalCopenhagen, Denmark
| | - Mireya Plass
- Department of Biology, The Bioinformatics Centre, University of CopenhagenCopenhagen, Denmark
| | - Anders Krogh
- Department of Biology, The Bioinformatics Centre, University of CopenhagenCopenhagen, Denmark
| | - Lennart Friis-Hansen
- Genomic Medicine, Rigshospitalet, Copenhagen University HospitalCopenhagen, Denmark
- *Correspondence: Lennart Friis-Hansen, Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, 4113, Blegdamsvej 9, DK2100 Copenhagen, Denmark. e-mail:
| |
Collapse
|
24
|
Abstract
Recent studies have revealed widespread mRNA alternative polyadenylation (APA) in eukaryotes and its dynamic spatial and temporal regulation. APA not only generates proteomic and functional diversity, but also plays important roles in regulating gene expression. Global deregulation of APA has been demonstrated in a variety of human diseases. Recent exciting advances in the field have been made possible in a large part by high throughput analyses using newly developed experimental tools. Here I review the recent progress in global studies of APA and the insights that have emerged from these and other studies that use more conventional methods.
Collapse
Affiliation(s)
- Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, California 92697, USA.
| |
Collapse
|
25
|
Hynes CJ, Clancy JL, Preiss T. miRNAs in cardiac disease: Sitting duck or moving target? IUBMB Life 2012; 64:872-8. [DOI: 10.1002/iub.1082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/04/2012] [Indexed: 12/31/2022]
|
26
|
Yoon OK, Hsu TY, Im JH, Brem RB. Genetics and regulatory impact of alternative polyadenylation in human B-lymphoblastoid cells. PLoS Genet 2012; 8:e1002882. [PMID: 22916029 PMCID: PMC3420953 DOI: 10.1371/journal.pgen.1002882] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 06/20/2012] [Indexed: 11/18/2022] Open
Abstract
Gene expression varies widely between individuals of a population, and regulatory change can underlie phenotypes of evolutionary and biomedical relevance. A key question in the field is how DNA sequence variants impact gene expression, with most mechanistic studies to date focused on the effects of genetic change on regulatory regions upstream of protein-coding sequence. By contrast, the role of RNA 3'-end processing in regulatory variation remains largely unknown, owing in part to the challenge of identifying functional elements in 3' untranslated regions. In this work, we conducted a genomic survey of transcript ends in lymphoblastoid cells from genetically distinct human individuals. Our analysis mapped the cis-regulatory architecture of 3' gene ends, finding that transcript end positions did not fall randomly in untranslated regions, but rather preferentially flanked the locations of 3' regulatory elements, including miRNA sites. The usage of these transcript length forms and motifs varied across human individuals, and polymorphisms in polyadenylation signals and other 3' motifs were significant predictors of expression levels of the genes in which they lay. Independent single-gene experiments confirmed the effects of polyadenylation variants on steady-state expression of their respective genes, and validated the regulatory function of 3' cis-regulatory sequence elements that mediated expression of these distinct RNA length forms. Focusing on the immune regulator IRF5, we established the effect of natural variation in RNA 3'-end processing on regulatory response to antigen stimulation. Our results underscore the importance of two mechanisms at play in the genetics of 3'-end variation: the usage of distinct 3'-end processing signals and the effects of 3' sequence elements that determine transcript fate. Our findings suggest that the strategy of integrating observed 3'-end positions with inferred 3' regulatory motifs will prove to be a critical tool in continued efforts to interpret human genome variation.
Collapse
Affiliation(s)
- Oh Kyu Yoon
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Tiffany Y. Hsu
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Joo Hyun Im
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Rachel B. Brem
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Thomas LF, Sætrom P. Single nucleotide polymorphisms can create alternative polyadenylation signals and affect gene expression through loss of microRNA-regulation. PLoS Comput Biol 2012; 8:e1002621. [PMID: 22915998 PMCID: PMC3420919 DOI: 10.1371/journal.pcbi.1002621] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 06/09/2012] [Indexed: 11/18/2022] Open
Abstract
Alternative polyadenylation (APA) can for example occur when a protein-coding gene has several polyadenylation (polyA) signals in its last exon, resulting in messenger RNAs (mRNAs) with different 3′ untranslated region (UTR) lengths. Different 3′UTR lengths can give different microRNA (miRNA) regulation such that shortened transcripts have increased expression. The APA process is part of human cells' natural regulatory processes, but APA also seems to play an important role in many human diseases. Although altered APA in disease can have many causes, we reasoned that mutations in DNA elements that are important for the polyA process, such as the polyA signal and the downstream GU-rich region, can be one important mechanism. To test this hypothesis, we identified single nucleotide polymorphisms (SNPs) that can create or disrupt APA signals (APA-SNPs). By using a data-integrative approach, we show that APA-SNPs can affect 3′UTR length, miRNA regulation, and mRNA expression—both between homozygote individuals and within heterozygote individuals. Furthermore, we show that a significant fraction of the alleles that cause APA are strongly and positively linked with alleles found by genome-wide studies to be associated with disease. Our results confirm that APA-SNPs can give altered gene regulation and that APA alleles that give shortened transcripts and increased gene expression can be important hereditary causes for disease. Variants in DNA that affect gene expression—so-called regulatory variants—are thought to play important roles in common complex diseases, such as cancer. In contrast to variants in protein-coding regions, regulatory variants do not affect protein sequence and function. Instead, regulatory variants affect the amount of protein produced. The 3′ untranslated region (UTR) is one gene region that is critically important for gene regulation; cancers for example, often express genes with shortened 3′UTRs that, compared with full-length 3′UTRs, have higher and more stable expression levels. We have investigated one kind of regulatory variant that can affect the 3′UTR length and thereby cause disease. We identified several such variants in different genes and found that these variants affected the genes' expression. Some of these variants were also strongly linked with known markers for disease, suggesting that these regulatory variants are important hereditary causes for disease.
Collapse
Affiliation(s)
- Laurent F. Thomas
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Interagon AS, Laboratoriesenteret, Trondheim, Norway
| | - Pål Sætrom
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Interagon AS, Laboratoriesenteret, Trondheim, Norway
- Department of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| |
Collapse
|
28
|
The miR-124 regulates the expression of BACE1/β-secretase correlated with cell death in Alzheimer's disease. Toxicol Lett 2012; 209:94-105. [DOI: 10.1016/j.toxlet.2011.11.032] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 12/25/2022]
|
29
|
Di Giammartino DC, Nishida K, Manley JL. Mechanisms and consequences of alternative polyadenylation. Mol Cell 2011; 43:853-66. [PMID: 21925375 DOI: 10.1016/j.molcel.2011.08.017] [Citation(s) in RCA: 567] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/02/2011] [Accepted: 08/09/2011] [Indexed: 12/11/2022]
Abstract
Alternative polyadenylation (APA) is emerging as a widespread mechanism used to control gene expression. Like alternative splicing, usage of alternative poly(A) sites allows a single gene to encode multiple mRNA transcripts. In some cases, this changes the mRNA coding potential; in other cases, the code remains unchanged but the 3' UTR length is altered, influencing the fate of mRNAs in several ways, for example, by altering the availability of RNA binding protein sites and microRNA binding sites. The mechanisms governing both global and gene-specific APA are only starting to be deciphered. Here we review what is known about these mechanisms and the functional consequences of alternative polyadenylation.
Collapse
|
30
|
Voltage-dependant anion channels: novel insights into isoform function through genetic models. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1477-85. [PMID: 22051019 DOI: 10.1016/j.bbamem.2011.10.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/12/2011] [Accepted: 10/18/2011] [Indexed: 11/24/2022]
Abstract
Voltage-dependant Anion Channels, also known as mitochondrial porins, are pore-forming proteins located in the mitochondrial outer membrane (MOM) that, in addition to forming complexes with other proteins that localize to the MOM, also function as the main conduit for transporting metabolites between the cytoplasm and mitochondria. VDACs are encoded by a multi-member gene family, and the number of isoforms and specific functions of VDACs varies between species. Translating the well-described in vitro characteristics of the VDAC isoforms into in vivo functions has been a challenge, with the generation of animal models of VDAC deficiency providing much of the available information about isoform-specific roles in biology. Here, we review the approaches used to create these insect and mammalian animal models, and the conclusions reached by studying the consequences of loss of function mutations on the genetic, physiologic, and biochemical properties of the resulting models. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.
Collapse
|
31
|
Lassalle S, Hofman V, Ilie M, Bonnetaud C, Puisségur MP, Brest P, Loubatier C, Guevara N, Bordone O, Cardinaud B, Lebrigand K, Rios G, Santini J, Franc B, Mari B, Al Ghuzlan A, Vielh P, Barbry P, Hofman P. Can the microRNA signature distinguish between thyroid tumors of uncertain malignant potential and other well-differentiated tumors of the thyroid gland? Endocr Relat Cancer 2011; 18:579-94. [PMID: 21778212 DOI: 10.1530/erc-10-0283] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The term 'thyroid tumors of uncertain malignant potential' (TT-UMP) was coined by surgical pathologists to define well-differentiated tumors (WDT) showing inconclusive morphological evidence of malignancy or benignity. We have analyzed the expression of microRNA (miRNA) in a training set of 42 WDT of different histological subtypes: seven follicular tumors of UMP (FT-UMP), six WDT-UMP, seven follicular thyroid adenomas (FTA), 11 conventional papillary thyroid carcinomas (C-PTC), five follicular variants of PTC (FV-PTC), and six follicular thyroid carcinomas (FTC), which led to the identification of about 40 deregulated miRNAs. A subset of these altered miRNAs was independently validated by qRT-PCR, which included 18 supplementary TT-UMP (eight WDT-UMP and ten FT-UMP). Supervised clustering techniques were used to predict the first 42 samples. Based on the four possible outcomes (FTA, C-PTC, FV-PTC, and FTC), about 80% of FTA and C-PTC and 50% of FV-PTC and FTC samples were correctly assigned. Analysis of the independent set of 18 WDT-UMP by quantitative RT-PCR for the selection of the six most discriminating miRNAs was unable to separate FT-UMP from WDT-UMP, suggesting that the miRNA signature is insufficient in characterizing these two clinical entities. We conclude that considering FT-UMP and WDT-UMP as distinct and specific clinical entities may improve the diagnosis of WDT of the thyroid gland. In this context, a small set of miRNAs (i.e. miR-7, miR-146a, miR-146b, miR-200b, miR-221, and miR-222) appears to be useful, though not sufficient per se, in distinguishing TT-UMP from other WDT of the thyroid gland.
Collapse
Affiliation(s)
- Sandra Lassalle
- INSERM ERI-21/EA4319, University of Nice Sophia Antipolis, 06107 Nice, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
van Kouwenhove M, Kedde M, Agami R. MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer 2011; 11:644-56. [PMID: 21822212 DOI: 10.1038/nrc3107] [Citation(s) in RCA: 484] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-protein-coding transcripts have been conserved throughout evolution, indicating that crucial functions exist for these RNAs. For example, microRNAs (miRNAs) have been found to modulate most cellular processes. The protein classes of RNA-binding proteins include essential regulators of miRNA biogenesis, turnover and activity. RNA-RNA and protein-RNA interactions are essential for post-transcriptional regulation in normal development and may be deregulated in disease. In reviewing emerging concepts of the interplay between miRNAs and RNA-binding proteins, we highlight the implications of these complex layers of regulation in cancer initiation and progression.
Collapse
Affiliation(s)
- Marieke van Kouwenhove
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | | |
Collapse
|
33
|
Krzyzanowski PM, Price FD, Muro EM, Rudnicki MA, Andrade-Navarro MA. Integration of expressed sequence tag data flanking predicted RNA secondary structures facilitates novel non-coding RNA discovery. PLoS One 2011; 6:e20561. [PMID: 21698286 PMCID: PMC3115948 DOI: 10.1371/journal.pone.0020561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/04/2011] [Indexed: 01/05/2023] Open
Abstract
Many computational methods have been used to predict novel non-coding RNAs (ncRNAs), but none, to our knowledge, have explicitly investigated the impact of integrating existing cDNA-based Expressed Sequence Tag (EST) data that flank structural RNA predictions. To determine whether flanking EST data can assist in microRNA (miRNA) prediction, we identified genomic sites encoding putative miRNAs by combining functional RNA predictions with flanking ESTs data in a model consistent with miRNAs undergoing cleavage during maturation. In both human and mouse genomes, we observed that the inclusion of flanking ESTs adjacent to and not overlapping predicted miRNAs significantly improved the performance of various methods of miRNA prediction, including direct high-throughput sequencing of small RNA libraries. We analyzed the expression of hundreds of miRNAs predicted to be expressed during myogenic differentiation using a customized microarray and identified several known and predicted myogenic miRNA hairpins. Our results indicate that integrating ESTs flanking structural RNA predictions improves the quality of cleaved miRNA predictions and suggest that this strategy can be used to predict other non-coding RNAs undergoing cleavage during maturation.
Collapse
Affiliation(s)
- Paul M Krzyzanowski
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Canada.
| | | | | | | | | |
Collapse
|
34
|
Abstract
Micro-ribonucleic acids (miRNAs) are small (21-24 nucleotide), endogenously expressed, noncoding RNAs that have emerged as important posttranscriptional regulators of gene expression. MiRNAs have been identified and cloned from diverse eukaryotic organisms where they have been shown to control important physiological and developmental processes such as apoptosis, cell division, and differentiation. A high level of conservation of some miRNAs across phyla further emphasizes their importance as posttranscriptional regulators. Research in a variety of model systems has been instrumental in dissecting the biological functions of miRNAs. In this chapter, we discuss the current literature on the role of miRNAs as developmental regulators in Drosophila.
Collapse
|
35
|
Lutz CS, Moreira A. Alternative mRNA polyadenylation in eukaryotes: an effective regulator of gene expression. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:23-31. [PMID: 21278855 PMCID: PMC3029013 DOI: 10.1002/wrna.47] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Alternative RNA processing mechanisms, including alternative splicing and alternative polyadenylation, are increasingly recognized as important regulators of gene expression. This article will focus on what has recently been described about alternative polyadenylation in development, differentiation, and disease in higher eukaryotes. We will also describe how the evolving global methodologies for examining the cellular transcriptome, both experimental and bioinformatic, are revealing new details about the complex nature of alternative 3' end formation, as well as interactions with other RNA-mediated and RNA processing mechanisms.
Collapse
Affiliation(s)
- Carol S. Lutz
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, MSB E671, 185 South Orange Ave., Newark, NJ 07103, Phone: 001 973 972 0899, Fax: 001 973 972 5594,
| | - Alexandra Moreira
- Cell Activation and Gene Expression, Instituto de Biologia Molecular e Celular -IBMC, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal, Phone: +351 226074951, Fax: +351 226099157,
| |
Collapse
|
36
|
Sales G, Coppe A, Bicciato S, Bortoluzzi S, Romualdi C. Impact of probe annotation on the integration of miRNA-mRNA expression profiles for miRNA target detection. Nucleic Acids Res 2010; 38:e97. [PMID: 20071740 PMCID: PMC2853140 DOI: 10.1093/nar/gkp1239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that mediate gene expression at the post-transcriptional and translational levels by an imperfect binding to target mRNA 3′UTR regions. While the ab-initio computational prediction of miRNA–mRNA interactions still poses significant challenges, it is possible to overcome some of its limitations by carefully integrating into the analysis the paired expression profiles of miRNAs and mRNAs. In this work, we show how the choice of a proper probe annotation for microarray platforms is an essential requirement to achieve good sensitivity in the identification of miRNA–mRNA interactions. We compare the results obtained from the analysis of the same expression profiles using both gene and transcript based custom CDFs that we have developed for a number of different annotations (ENSEMBL, RefSeq, AceView). In all cases, transcript-based annotations clearly improve the effectiveness of data integration and thus provide a more reliable confirmation of computationally predicted miRNA–mRNA interactions.
Collapse
Affiliation(s)
- Gabriele Sales
- Department of Biology, University of Padova, 35121 Padova, Italy
| | | | | | | | | |
Collapse
|
37
|
Ji Z, Tian B. Reprogramming of 3' untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS One 2009; 4:e8419. [PMID: 20037631 PMCID: PMC2791866 DOI: 10.1371/journal.pone.0008419] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/30/2009] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The 3' untranslated regions (3'UTRs) of mRNAs contain cis elements involved in post-transcriptional regulation of gene expression. Over half of all mammalian genes contain multiple polyadenylation sites that lead to different 3'UTRs for a gene. Studies have shown that the alternative polyadenylation (APA) pattern varies across tissues, and is dynamically regulated in proliferating or differentiating cells. Generation of induced pluripotent stem (iPS) cells, in which differentiated cells are reprogrammed to an embryonic stem (ES) cell-like state, has been intensively studied in recent years. However, it is not known how 3'UTRs are regulated during cell reprogramming. METHODS/MAIN FINDINGS Using a computational method that robustly examines APA across DNA microarray data sets, we analyzed 3'UTR dynamics in generation of iPS cells from different cell types. We found that 3'UTRs shorten during reprogramming of somatic cells, the extent of which depends on the type of source cell. By contrast, reprogramming of spermatogonial cells involves 3'UTR lengthening. The alternative polyadenylation sites that are highly responsive to change of cell state in generation of iPS cells are also highly regulated during embryonic development in opposite directions. Compared with other sites, they are more conserved, can lead to longer alternative 3'UTRs, and are associated with more cis elements for polyadenylation. Consistently, reprogramming of somatic cells and germ cells involves significant upregulation and downregulation, respectively, of mRNAs encoding polyadenylation factors, and RNA processing is one of the most significantly regulated biological processes during cell reprogramming. Furthermore, genes containing target sites of ES cell-specific microRNAs (miRNAs) in different portions of 3'UTR are distinctively regulated during cell reprogramming, suggesting impact of APA on miRNA targeting. CONCLUSIONS/SIGNIFICANCE Taken together, these findings indicate that reprogramming of 3'UTRs by APA, which result from regulation of both general polyadenylation activity and cell type-specific factors and can reset post-transcriptional gene regulatory programs in the cell, is an integral part of iPS cell generation, and the APA pattern can be a good biomarker for cell type and state, useful for sample classification. The results also suggest that perturbation of the mRNA polyadenylation machinery or RNA processing activity may facilitate generation of iPS cells.
Collapse
Affiliation(s)
- Zhe Ji
- Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences and New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | | |
Collapse
|
38
|
Andreassen R, Lunner S, Høyheim B. Characterization of full-length sequenced cDNA inserts (FLIcs) from Atlantic salmon (Salmo salar). BMC Genomics 2009; 10:502. [PMID: 19878547 PMCID: PMC2774873 DOI: 10.1186/1471-2164-10-502] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 10/30/2009] [Indexed: 01/08/2023] Open
Abstract
Background Sequencing of the Atlantic salmon genome is now being planned by an international research consortium. Full-length sequenced inserts from cDNAs (FLIcs) are an important tool for correct annotation and clustering of the genomic sequence in any species. The large amount of highly similar duplicate sequences caused by the relatively recent genome duplication in the salmonid ancestor represents a particular challenge for the genome project. FLIcs will therefore be an extremely useful resource for the Atlantic salmon sequencing project. In addition to be helpful in order to distinguish between duplicate genome regions and in determining correct gene structures, FLIcs are an important resource for functional genomic studies and for investigation of regulatory elements controlling gene expression. In contrast to the large number of ESTs available, including the ESTs from 23 developmental and tissue specific cDNA libraries contributed by the Salmon Genome Project (SGP), the number of sequences where the full-length of the cDNA insert has been determined has been small. Results High quality full-length insert sequences from 560 pre-smolt white muscle tissue specific cDNAs were generated, accession numbers [GenBank: BT043497 - BT044056]. Five hundred and ten (91%) of the transcripts were annotated using Gene Ontology (GO) terms and 440 of the FLIcs are likely to contain a complete coding sequence (cCDS). The sequence information was used to identify putative paralogs, characterize salmon Kozak motifs, polyadenylation signal variation and to identify motifs likely to be involved in the regulation of particular genes. Finally, conserved 7-mers in the 3'UTRs were identified, of which some were identical to miRNA target sequences. Conclusion This paper describes the first Atlantic salmon FLIcs from a tissue and developmental stage specific cDNA library. We have demonstrated that many FLIcs contained a complete coding sequence (cCDS). This suggests that the remaining cDNA libraries generated by SGP represent a valuable cCDS FLIc source. The conservation of 7-mers in 3'UTRs indicates that these motifs are functionally important. Identity between some of these 7-mers and miRNA target sequences suggests that they are miRNA targets in Salmo salar transcripts as well.
Collapse
Affiliation(s)
- Rune Andreassen
- BasAM-Genetics, Norwegian School of Veterinary Science, PO Box 8146 DEP, NO-0033 Oslo, Norway.
| | | | | |
Collapse
|
39
|
Prediction of non-canonical polyadenylation signals in human genomic sequences based on a novel algorithm using a fuzzy membership function. J Biosci Bioeng 2009; 107:569-78. [DOI: 10.1016/j.jbiosc.2009.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 01/05/2009] [Accepted: 01/05/2009] [Indexed: 11/23/2022]
|
40
|
Progressive lengthening of 3' untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci U S A 2009; 106:7028-33. [PMID: 19372383 DOI: 10.1073/pnas.0900028106] [Citation(s) in RCA: 473] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The 3' untranslated regions (3' UTRs) of mRNAs contain cis-acting elements for posttranscriptional regulation of gene expression. Here, we report that mouse genes tend to express mRNAs with longer 3' UTRs as embryonic development progresses. This global regulation is controlled by alternative polyadenylation and coordinates with initiation of organogenesis and aspects of embryonic development, including morphogenesis, differentiation, and proliferation. Using myogenesis of C2C12 myoblast cells as a model, we recapitulated this process in vitro and found that 3' UTR lengthening is likely caused by weakening of mRNA polyadenylation activity. Because alternative 3' UTR sequences are typically longer and have higher AU content than constitutive ones, our results suggest that lengthening of 3' UTR can significantly augment posttranscriptional control of gene expression during embryonic development, such as microRNA-mediated regulation.
Collapse
|
41
|
Rampias TN, Fragoulis EG, Sideris DC. Genomic structure and expression analysis of the RNase kappa family ortholog gene in the insect Ceratitis capitata. FEBS J 2008; 275:6217-27. [PMID: 19016845 DOI: 10.1111/j.1742-4658.2008.06746.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cc RNase is the founding member of the recently identified RNase kappa family, which is represented by a single ortholog in a wide range of animal taxonomic groups. Although the precise biological role of this protein is still unknown, it has been shown that the recombinant proteins isolated so far from the insect Ceratitis capitata and from human exhibit ribonucleolytic activity. In this work, we report the genomic organization and molecular evolution of the RNase kappa gene from various animal species, as well as expression analysis of the ortholog gene in C. capitata. The high degree of amino acid sequence similarity, in combination with the fact that exon sizes and intronic positions are extremely conserved among RNase kappa orthologs in 15 diverse genomes from sea anemone to human, imply a very significant biological function for this enzyme. In C. capitata, two forms of RNase kappa mRNA (0.9 and 1.5 kb) with various lengths of 3' UTR were identified as alternative products of a single gene, resulting from the use of different polyadenylation signals. Both transcripts are expressed in all insect tissues and developmental stages. Sequence analysis of the extended region of the longer transcript revealed the existence of three mRNA instability motifs (AUUUA) and five poly(U) tracts, whose functional importance in RNase kappa mRNA decay remains to be explored.
Collapse
Affiliation(s)
- Theodoros N Rampias
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Greece
| | | | | |
Collapse
|
42
|
Abstract
The use of alternative polyadenylation sites produces mRNA isoforms with different 3' untranslated regions. A recent report in Science (Sandberg et al., 2008) suggests that alternative polyadenylation is connected to microRNA-mediated regulation of gene expression as part of a global program for cellular proliferation.
Collapse
Affiliation(s)
- Eitan Zlotorynski
- The Netherlands Cancer Institute, Division of Gene Regulation, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | | |
Collapse
|
43
|
Pietrzykowski AZ, Friesen RM, Martin GE, Puig SI, Nowak CL, Wynne PM, Siegelmann HT, Treistman SN. Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron 2008; 59:274-87. [PMID: 18667155 PMCID: PMC2714263 DOI: 10.1016/j.neuron.2008.05.032] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 03/12/2008] [Accepted: 05/29/2008] [Indexed: 01/13/2023]
Abstract
Tolerance represents a critical component of addiction. The large-conductance calcium- and voltage-activated potassium channel (BK) is a well-established alcohol target, and an important element in behavioral and molecular alcohol tolerance. We tested whether microRNA, a newly discovered class of gene expression regulators, plays a role in the development of tolerance. We show that in adult mammalian brain, alcohol upregulates microRNA miR-9 and mediates posttranscriptional reorganization in BK mRNA splice variants by miR-9-dependent destabilization of BK mRNAs containing 3'UTRs with a miR-9 Recognition Element (MRE). Different splice variants encode BK isoforms with different alcohol sensitivities. Computational modeling indicates that this miR-9-dependent mechanism contributes to alcohol tolerance. Moreover, this mechanism can be extended to include regulation of additional miR-9 targets relevant to alcohol abuse. Our results describe a mechanism of multiplex regulation of stability of alternatively spliced mRNA by microRNA in drug adaptation and neuronal plasticity.
Collapse
Affiliation(s)
- Andrzej Z. Pietrzykowski
- University of Massachusetts Medical School, Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, 303 Belmont Street, Worcester, MA 01604
| | - Ryan M. Friesen
- University of Massachusetts Medical School, Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, 303 Belmont Street, Worcester, MA 01604
| | - Gilles E. Martin
- University of Massachusetts Medical School, Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, 303 Belmont Street, Worcester, MA 01604
| | - Sylvie I. Puig
- University of Massachusetts Medical School, Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, 303 Belmont Street, Worcester, MA 01604
| | - Cheryl L. Nowak
- University of Massachusetts Medical School, Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, 303 Belmont Street, Worcester, MA 01604
| | - Patricia M. Wynne
- University of Massachusetts Medical School, Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, 303 Belmont Street, Worcester, MA 01604
| | - Hava T. Siegelmann
- University of Massachusetts, Computer Science Department, The Biologically Inspired Neural & Dynamical Systems Laboratory, 140 Governors Drive, Amherst, MA 01003
| | - Steven N. Treistman
- University of Massachusetts Medical School, Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, 303 Belmont Street, Worcester, MA 01604
| |
Collapse
|
44
|
Regulation of ABCG2 expression at the 3' untranslated region of its mRNA through modulation of transcript stability and protein translation by a putative microRNA in the S1 colon cancer cell line. Mol Cell Biol 2008; 28:5147-61. [PMID: 18573883 DOI: 10.1128/mcb.00331-08] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
ABCG2 is recognized as an important efflux transporter in clinical pharmacology and is potentially important in resistance to chemotherapeutic drugs. To identify epigenetic mechanisms regulating ABCG2 mRNA expression at its 3' untranslated region (3'UTR), we performed 3' rapid amplification of cDNA ends with the S1 parental colon cancer cell line and its drug-resistant ABCG2-overexpressing counterpart. We found that the 3'UTR is >1,500 bp longer in parental cells and, using the miRBase TARGETs database, identified a putative microRNA (miRNA) binding site, distinct from the recently reported hsa-miR520h site, in the portion of the 3'UTR missing from ABCG2 mRNA in the resistant cells. We hypothesized that the binding of a putative miRNA at the 3'UTR of ABCG2 suppresses the expression of ABCG2. In resistant S1MI80 cells, the miRNA cannot bind to ABCG2 mRNA because of the shorter 3'UTR, and thus, mRNA degradation and/or repression on protein translation is relieved, contributing to overexpression of ABCG2. This hypothesis was rigorously tested by reporter gene assays, mutational analysis at the miRNA binding sites, and forced expression of miRNA inhibitors or mimics. The removal of this epigenetic regulation by miRNA could be involved in the overexpression of ABCG2 in drug-resistant cancer cells.
Collapse
|
45
|
Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. Proliferating cells express mRNAs with shortened 3' untranslated regions and fewer microRNA target sites. Science 2008. [PMID: 18566288 DOI: 10.1126/science.1155390.proliferating] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
Messenger RNA (mRNA) stability, localization, and translation are largely determined by sequences in the 3' untranslated region (3'UTR). We found a conserved increase in expression of mRNAs terminating at upstream polyadenylation sites after activation of primary murine CD4+ T lymphocytes. This program, resulting in shorter 3'UTRs, is a characteristic of gene expression during immune cell activation and correlates with proliferation across diverse cell types and tissues. Forced expression of full-length 3'UTRs conferred reduced protein expression. In some cases the reduction in protein expression could be reversed by deletion of predicted microRNA target sites in the variably included region. Our data indicate that gene expression is coordinately regulated, such that states of increased proliferation are associated with widespread reductions in the 3'UTR-based regulatory capacity of mRNAs.
Collapse
Affiliation(s)
- Rickard Sandberg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
46
|
Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. Proliferating cells express mRNAs with shortened 3' untranslated regions and fewer microRNA target sites. Science 2008; 320:1643-7. [PMID: 18566288 PMCID: PMC2587246 DOI: 10.1126/science.1155390] [Citation(s) in RCA: 1057] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Messenger RNA (mRNA) stability, localization, and translation are largely determined by sequences in the 3' untranslated region (3'UTR). We found a conserved increase in expression of mRNAs terminating at upstream polyadenylation sites after activation of primary murine CD4+ T lymphocytes. This program, resulting in shorter 3'UTRs, is a characteristic of gene expression during immune cell activation and correlates with proliferation across diverse cell types and tissues. Forced expression of full-length 3'UTRs conferred reduced protein expression. In some cases the reduction in protein expression could be reversed by deletion of predicted microRNA target sites in the variably included region. Our data indicate that gene expression is coordinately regulated, such that states of increased proliferation are associated with widespread reductions in the 3'UTR-based regulatory capacity of mRNAs.
Collapse
Affiliation(s)
- Rickard Sandberg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
47
|
3' end mRNA processing: molecular mechanisms and implications for health and disease. EMBO J 2008; 27:482-98. [PMID: 18256699 DOI: 10.1038/sj.emboj.7601932] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 10/24/2007] [Indexed: 12/27/2022] Open
Abstract
Recent advances in the understanding of the molecular mechanism of mRNA 3' end processing have uncovered a previously unanticipated integrated network of transcriptional and RNA-processing mechanisms. A variety of human diseases impressively reflect the importance of the precision of the complex 3' end-processing machinery and gene specific deregulation of 3' end processing can result from mutations of RNA sequence elements that bind key specific processing factors. Interestingly, more general deregulation of 3' end processing can be caused either by mutations of these processing factors or by the disturbance of the well-coordinated equilibrium between these factors. From a medical perspective, both loss of function and gain of function can be functionally relevant, and an increasing number of different disease entities exemplifies that inappropriate 3' end formation of human mRNAs can have a tremendous impact on health and disease. Here, we review the mechanistic hallmarks of mRNA 3' end processing, highlight the medical relevance of deregulation of this important step of mRNA maturation and illustrate the implications for diagnostic and therapeutic strategies.
Collapse
|
48
|
Hagan JP, Croce CM. MicroRNAs in carcinogenesis. Cytogenet Genome Res 2007; 118:252-9. [PMID: 18000378 DOI: 10.1159/000108308] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 09/06/2006] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are an abundant class of noncoding RNAs, typically 20-23 nucleotides in length that are often evolutionarily conserved in metazoans and expressed in a cell and tissue specific manner. MicroRNAs exert their gene regulatory activity primarily by imperfectly base pairing to the 3' UTR of their target mRNAs, leading to mRNA degradation or translational inhibition. In cancer, microRNAs are often dysregulated with their expression patterns being correlated with clinically relevant tumor characteristics. Recently, microRNAs were shown to be directly involved in cancer initiation and progression. This review focuses primarily on emerging developments in the microRNA field that impact our understanding of how these molecules contribute to carcinogenesis.
Collapse
Affiliation(s)
- J P Hagan
- Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, OH, USA.
| | | |
Collapse
|
49
|
Costa IG, Roepcke S, Schliep A. Gene expression trees in lymphoid development. BMC Immunol 2007; 8:25. [PMID: 17925013 PMCID: PMC2244641 DOI: 10.1186/1471-2172-8-25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 10/09/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The regulatory processes that govern cell proliferation and differentiation are central to developmental biology. Particularly well studied in this respect is the lymphoid system due to its importance for basic biology and for clinical applications. Gene expression measured in lymphoid cells in several distinguishable developmental stages helps in the elucidation of underlying molecular processes, which change gradually over time and lock cells in either the B cell, T cell or Natural Killer cell lineages. Large-scale analysis of these gene expression trees requires computational support for tasks ranging from visualization, querying, and finding clusters of similar genes, to answering detailed questions about the functional roles of individual genes. RESULTS We present the first statistical framework designed to analyze gene expression data as it is collected in the course of lymphoid development through clusters of co-expressed genes and additional heterogeneous data. We introduce dependence trees for continuous variates, which model the inherent dependencies during the differentiation process naturally as gene expression trees. Several trees are combined in a mixture model to allow inference of potentially overlapping clusters of co-expressed genes. Additionally, we predict microRNA targets. CONCLUSION Computational results for several data sets from the lymphoid system demonstrate the relevance of our framework. We recover well-known biological facts and identify promising novel regulatory elements of genes and their functional assignments. The implementation of our method (licensed under the GPL) is available at http://algorithmics.molgen.mpg.de/Supplements/ExpLym/.
Collapse
Affiliation(s)
- Ivan G Costa
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stefan Roepcke
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Schliep
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
50
|
Spatial preferences of microRNA targets in 3' untranslated regions. BMC Genomics 2007; 8:152. [PMID: 17555584 PMCID: PMC1904200 DOI: 10.1186/1471-2164-8-152] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 06/07/2007] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MicroRNAs are an important class of regulatory RNAs which repress animal genes by preferentially interacting with complementary sequence motifs in the 3' untranslated region (UTR) of target mRNAs. Computational methods have been developed which can successfully predict which microRNA may target which mRNA on a genome-wide scale. RESULTS We address how predicted target sites may be affected by alternative polyadenylation events changing the 3'UTR sequence. We find that two thirds of targeted genes have alternative 3'UTRs, with 40% of predicted target sites located in alternative UTR segments. We propose three classes based on whether the target sites fall within constitutive and/or alternative UTR segments, and examine the spatial distribution of predicted targets in alternative UTRs. In particular, there is a strong preference for targets to be located in close vicinity of the stop codon and the polyadenylation sites. CONCLUSION The transcript diversity seen in non-coding regions, as well as the relative location of miRNA target sites defined by it, has a potentially large impact on gene regulation by miRNAs and should be taken into account when defining, predicting or validating miRNA targets.
Collapse
|