1
|
Khan S, Bano N, Uversky VN, Ahamad S, Bhat SA. The Huntington's disease drug pipeline: a review of small molecules and their therapeutic targets. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 211:169-207. [PMID: 39947748 DOI: 10.1016/bs.pmbts.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative condition resulting from a CAG repeat expansion in the huntingtin gene (HTT). Recent advancements in understanding HD's cellular and molecular pathways have paved the way for identifying various effective small-molecule candidates to treat the disorder. Two small molecules, Tetrabenazine and Deutetrabenazine, are approved for managing chorea associated with HD, and several others are under clinical trials. Notably, the field of small-molecule therapeutics targeting HD is rapidly progressing, and there is anticipation of their approval in the foreseeable future. This chapter provides a comprehensive overview of the emergence of small-molecule therapeutics in various stages of clinical development for HD therapy. The emphasis is placed on detailing their structural design, therapeutic effects, and specific mechanisms of action. Additionally, exploring key drivers implicated in HD pathogenesis offers valuable insights, as a foundational principle for designing prospective anti-HD therapeutic leads.
Collapse
Affiliation(s)
- Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, India.
| | | |
Collapse
|
2
|
Nanajkar N, Sahoo A, Matysiak S. Unraveling the Molecular Complexity of N-Terminus Huntingtin Oligomers: Insights into Polymorphic Structures. J Phys Chem B 2024; 128:7761-7769. [PMID: 39092631 DOI: 10.1021/acs.jpcb.4c03274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder resulting from an abnormal expansion of polyglutamine (polyQ) repeats in the N-terminus of the huntingtin protein. When the polyQ tract surpasses 35 repeats, the mutated protein undergoes misfolding, culminating in the formation of intracellular aggregates. Research in mouse models suggests that HD pathogenesis involves the aggregation of N-terminal fragments of the huntingtin protein (htt). These early oligomeric assemblies of htt, exhibiting diverse characteristics during aggregation, are implicated as potential toxic entities in HD. However, a consensus on their specific structures remains elusive. Understanding the heterogeneous nature of htt oligomers provides crucial insights into disease mechanisms, emphasizing the need to identify various oligomeric conformations as potential therapeutic targets. Employing coarse-grained molecular dynamics, our study aims to elucidate the mechanisms governing the aggregation process and resultant aggregate architectures of htt. The polyQ tract within htt is flanked by two regions: an N-terminal domain (N17) and a short C-terminal proline-rich segment. We conducted self-assembly simulations involving five distinct N17 + polyQ systems with polyQ lengths ranging from 7 to 45, utilizing the ProMPT force field. Prolongation of the polyQ domain correlates with an increase in β-sheet-rich structures. Longer polyQ lengths favor intramolecular β-sheets over intermolecular interactions due to the folding of the elongated polyQ domain into hairpin-rich conformations. Importantly, variations in polyQ length significantly influence resulting oligomeric structures. Shorter polyQ domains lead to N17 domain aggregation, forming a hydrophobic core, while longer polyQ lengths introduce a competition between N17 hydrophobic interactions and polyQ polar interactions, resulting in densely packed polyQ cores with outwardly distributed N17 domains. Additionally, at extended polyQ lengths, we observe distinct oligomeric conformations with varying degrees of N17 bundling. These findings can help explain the toxic gain-of-function that htt with expanded polyQ acquires.
Collapse
Affiliation(s)
- Neha Nanajkar
- Department of Biology, University of Maryland, College Park, Maryland 20740, United States
| | - Abhilash Sahoo
- Center for Computational Biology, Flatiron Institute, New York, New York 10010, United States
- Center for Computational Mathematics, Flatiron Institute, New York, New York 10010, United States
| | - Silvina Matysiak
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20740, United States
| |
Collapse
|
3
|
Bonavita R, Di Martino R, Cortone G, Prodomo A, Di Gennaro M, Scerra G, Panico V, Nuzzo S, Salvatore M, Williams SV, Vitale F, Caporaso MG, D’Agostino M, Pisani FM, Fleming A, Renna M. A method for the analysis of the oligomerization profile of the Huntington's disease-associated, aggregation-prone mutant huntingtin protein by isopycnic ultracentrifugation. Front Mol Biosci 2024; 11:1420691. [PMID: 38993838 PMCID: PMC11236693 DOI: 10.3389/fmolb.2024.1420691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
Conformational diseases, such as Alzheimer's, Parkinson's and Huntington's diseases as well as ataxias and fronto-temporal disorders, are part of common class of neurological disorders characterised by the aggregation and progressive accumulation of mutant proteins which display aberrant conformation. In particular, Huntington's disease (HD) is caused by mutations leading to an abnormal expansion in the polyglutamine (poly-Q) tract of the huntingtin protein (HTT), leading to the formation of inclusion bodies in neurons of affected patients. Furthermore, recent experimental evidence is challenging the conventional view of the disease by revealing the ability of mutant HTT to be transferred between cells by means of extracellular vesicles (EVs), allowing the mutant protein to seed oligomers involving both the mutant and wild type forms of the protein. There is still no successful strategy to treat HD. In addition, the current understanding of the biological processes leading to the oligomerization and aggregation of proteins bearing the poly-Q tract has been derived from studies conducted on isolated poly-Q monomers and oligomers, whose structural properties are still unclear and often inconsistent. Here we describe a standardised biochemical approach to analyse by isopycnic ultracentrifugation the oligomerization of the N-terminal fragment of mutant HTT. The dynamic range of our method allows one to detect large and heterogeneous HTT complexes. Hence, it could be harnessed for the identification of novel molecular determinants responsible for the aggregation and the prion-like spreading properties of HTT in the context of HD. Equally, it provides a tool to test novel small molecules or bioactive compounds designed to inhibit the aggregation of mutant HTT.
Collapse
Affiliation(s)
- Raffaella Bonavita
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Rosaria Di Martino
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
- Institute for Endocrinology and Experimental Oncology “G. Salvatore”, National Research Council, Naples, Italy
| | - Giuseppe Cortone
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Antonello Prodomo
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Mariagrazia Di Gennaro
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
- Institute for Endocrinology and Experimental Oncology “G. Salvatore”, National Research Council, Naples, Italy
| | - Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
| | - Valentino Panico
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
| | | | | | - Sarah V. Williams
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Fulvia Vitale
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
| | - Maria Gabriella Caporaso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
| | - Massimo D’Agostino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
| | - Francesca M. Pisani
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Angeleen Fleming
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Maurizio Renna
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Gamage YI, Pan J. Elucidating the Influence of Lipid Composition on Bilayer Perturbations Induced by the N-terminal Region of the Huntingtin Protein. BIOPHYSICA 2023; 3:582-597. [PMID: 38737720 PMCID: PMC11087071 DOI: 10.3390/biophysica3040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Understanding the membrane interactions of the N-terminal 17 residues of the huntingtin protein (HttN) is essential for unraveling its role in cellular processes and its impact on huntingtin misfolding. In this study, we used atomic force microscopy (AFM) to examine the effects of lipid specificity in mediating bilayer perturbations induced by HttN. Across various lipid environments, the peptide consistently induced bilayer disruptions in the form of holes. Notably, our results unveiled that cholesterol enhanced bilayer perturbation induced by HttN, while phosphatidylethanolamine (PE) lipids suppressed hole formation. Furthermore, anionic phosphatidylglycerol (PG) and cardiolipin lipids, along with cholesterol at high concentrations, promoted the formation of double-bilayer patches. This unique structure suggests that the synergy among HttN, anionic lipids, and cholesterol can enhance bilayer fusion, potentially by facilitating lipid intermixing between adjacent bilayers. Additionally, our AFM-based force spectroscopy revealed that HttN enhanced the mechanical stability of lipid bilayers, as evidenced by an elevated bilayer puncture force. These findings illuminate the complex interplay between HttN and lipid membranes and provide useful insights into the role of lipid composition in modulating membrane interactions with the huntingtin protein.
Collapse
Affiliation(s)
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL 33620
| |
Collapse
|
5
|
Hnath B, Chen J, Reynolds J, Choi E, Wang J, Zhang D, Sha CM, Dokholyan NV. Big versus small: The impact of aggregate size in disease. Protein Sci 2023; 32:e4686. [PMID: 37243896 PMCID: PMC10273386 DOI: 10.1002/pro.4686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Protein aggregation results in an array of different size soluble oligomers and larger insoluble fibrils. Insoluble fibrils were originally thought to cause neuronal cell deaths in neurodegenerative diseases due to their prevalence in tissue samples and disease models. Despite recent studies demonstrating the toxicity associated with soluble oligomers, many therapeutic strategies still focus on fibrils or consider all types of aggregates as one group. Oligomers and fibrils require different modeling and therapeutic strategies, targeting the toxic species is crucial for successful study and therapeutic development. Here, we review the role of different-size aggregates in disease, and how factors contributing to aggregation (mutations, metals, post-translational modifications, and lipid interactions) may promote oligomers opposed to fibrils. We review two different computational modeling strategies (molecular dynamics and kinetic modeling) and how they are used to model both oligomers and fibrils. Finally, we outline the current therapeutic strategies targeting aggregating proteins and their strengths and weaknesses for targeting oligomers versus fibrils. Altogether, we aim to highlight the importance of distinguishing the difference between oligomers and fibrils and determining which species is toxic when modeling and creating therapeutics for protein aggregation in disease.
Collapse
Affiliation(s)
- Brianna Hnath
- Department of Biomedical EngineeringPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Jiaxing Chen
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Joshua Reynolds
- Department of Biomedical EngineeringPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Esther Choi
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Medical Scientist Training ProgramPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Jian Wang
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Dongyan Zhang
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Congzhou M. Sha
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Medical Scientist Training ProgramPenn State College of MedicineHersheyPennsylvaniaUSA
- Department of Engineering Science and MechanicsPenn State UniversityUniversity ParkPennsylvaniaUSA
| | - Nikolay V. Dokholyan
- Department of Biomedical EngineeringPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Department of Engineering Science and MechanicsPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of Biochemistry & Molecular BiologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Department of ChemistryPenn State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
6
|
Khaled M, Strodel B, Sayyed-Ahmad A. Comparative molecular dynamics simulations of pathogenic and non-pathogenic huntingtin protein monomers and dimers. Front Mol Biosci 2023; 10:1143353. [PMID: 37101557 PMCID: PMC10123271 DOI: 10.3389/fmolb.2023.1143353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/29/2023] [Indexed: 04/28/2023] Open
Abstract
Polyglutamine expansion at the N-terminus of the huntingtin protein exon 1 (Htt-ex1) is closely associated with a number of neurodegenerative diseases, which result from the aggregation of the increased polyQ repeat. However, the underlying structures and aggregation mechanism are still poorly understood. We performed microsecond-long all-atom molecular dynamics simulations to study the folding and dimerization of Htt-ex1 (about 100 residues) with non-pathogenic and pathogenic polyQ lengths, and uncovered substantial differences. The non-pathogenic monomer adopts a long α-helix that includes most of the polyQ residues, which forms the interaction interface for dimerization, and a PPII-turn-PPII motif in the proline-rich region. In the pathogenic monomer, the polyQ region is disordered, leading to compact structures with many intra-protein interactions and the formation of short β-sheets. Dimerization can proceed via different modes, where those involving the N-terminal headpiece bury more hydrophobic residues and are thus more stable. Moreover, in the pathogenic Htt-ex1 dimers the proline-rich region interacts with the polyQ region, which slows the formation of β-sheets.
Collapse
Affiliation(s)
- Mohammed Khaled
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Birgit Strodel
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Birgit Strodel, ; Abdallah Sayyed-Ahmad,
| | - Abdallah Sayyed-Ahmad
- Department of Physics, Birzeit University, Birzeit, Palestine
- *Correspondence: Birgit Strodel, ; Abdallah Sayyed-Ahmad,
| |
Collapse
|
7
|
Donnelly KM, Coleman CM, Fuller ML, Reed VL, Smerina D, Tomlinson DS, Pearce MMP. Hunting for the cause: Evidence for prion-like mechanisms in Huntington’s disease. Front Neurosci 2022; 16:946822. [PMID: 36090278 PMCID: PMC9448931 DOI: 10.3389/fnins.2022.946822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
The hypothesis that pathogenic protein aggregates associated with neurodegenerative diseases spread from cell-to-cell in the brain in a manner akin to infectious prions has gained substantial momentum due to an explosion of research in the past 10–15 years. Here, we review current evidence supporting the existence of prion-like mechanisms in Huntington’s disease (HD), an autosomal dominant neurodegenerative disease caused by expansion of a CAG repeat tract in exon 1 of the huntingtin (HTT) gene. We summarize information gained from human studies and in vivo and in vitro models of HD that strongly support prion-like features of the mutant HTT (mHTT) protein, including potential involvement of molecular features of mHTT seeds, synaptic structures and connectivity, endocytic and exocytic mechanisms, tunneling nanotubes, and nonneuronal cells in mHTT propagation in the brain. We discuss mechanisms by which mHTT aggregate spreading and neurotoxicity could be causally linked and the potential benefits of targeting prion-like mechanisms in the search for new disease-modifying therapies for HD and other fatal neurodegenerative diseases.
Collapse
Affiliation(s)
- Kirby M. Donnelly
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Cevannah M. Coleman
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Madison L. Fuller
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Victoria L. Reed
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Dayna Smerina
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - David S. Tomlinson
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Margaret M. Panning Pearce
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
- Department of Biology, Saint Joseph’s University, Philadelphia, PA, United States
- *Correspondence: Margaret M. Panning Pearce,
| |
Collapse
|
8
|
Zhang L, Kang H, Perez-Aguilar JM, Zhou R. Possible Co-Evolution of Polyglutamine and Polyproline in Huntingtin Protein: Proline-Rich Domain as Transient Folding Chaperone. J Phys Chem Lett 2022; 13:6331-6341. [PMID: 35796410 DOI: 10.1021/acs.jpclett.2c01184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Huntington's disease is an inherited neurodegenerative disorder caused by the overduplication of CAG repeats in the Huntingtin gene. Recent findings revealed that among the orthologs, the expansion of CAG repeats (polyQ) in the Huntingtin gene occurs in tandem with the duplication of CCG repeats (polyP). However, the molecular mechanism of this possible co-evolution remains unknown. We examined the structures of Huntingtin exon 1 (HttEx1) from six species along with five designed mutants. We found that the polyP segments "chaperone" the rest of the HttEx1 by forming ad hoc polyP binding grooves. Such a process elongates the otherwise poorly solvated polyQ domain, while modulating its secondary structure propensity from β-strands to α-helices. This chaperoning effect is achieved mostly through transient hydrogen bond interactions between polyP and the rest of HttEx1, resulting in a striking golden ratio of ∼2:1 between the chain lengths of polyQ and polyP.
Collapse
Affiliation(s)
- Leili Zhang
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Hongsuk Kang
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Jose Manuel Perez-Aguilar
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - Ruhong Zhou
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
9
|
Srinivasan E, Ram V, Rajasekaran R. A review on Huntington protein Insight into protein aggregation and therapeutic interventions. Curr Drug Metab 2022; 23:260-282. [PMID: 35319359 DOI: 10.2174/1389200223666220321103942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 01/15/2022] [Indexed: 11/22/2022]
Abstract
Huntington disease (HD) is a distressing, innate neurodegenerative disease that descends from CAG repeat expansion in the huntingtin gene causing behavioral changes, motor dysfunction, and dementia in children and adults. Mutation in huntingtin (HTT) protein has been suggested to cause neuron loss in the cortex and striatum through various mechanisms including abnormal regulation of transcription, proteasomal dysfunction, post-translational modification, and other events, regulating toxicity. Pathogenesis of HD involves cleavage of the huntingtin protein followed by the neuronal accumulation of its aggregated form. Several research groups made possible efforts to reduce huntingtin gene expression, protein accumulation, and protein aggregation using inhibitors and molecular chaperones as developing drugs against HD. Herein, we review the mechanism proposed towards the formation of HTT protein aggregation and the impact of therapeutic strategies for the treatment of HD.
Collapse
Affiliation(s)
- E Srinivasan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore - 632014, Tamil Nadu, India
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai - 602105, Tamil Nadu, India
| | - Vavish Ram
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore - 632014, Tamil Nadu, India
| | - R Rajasekaran
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore - 632014, Tamil Nadu, India
| |
Collapse
|
10
|
Pigazzini ML, Lawrenz M, Margineanu A, Kaminski Schierle GS, Kirstein J. An Expanded Polyproline Domain Maintains Mutant Huntingtin Soluble in vivo and During Aging. Front Mol Neurosci 2021; 14:721749. [PMID: 34720872 PMCID: PMC8554126 DOI: 10.3389/fnmol.2021.721749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/30/2021] [Indexed: 02/02/2023] Open
Abstract
Huntington's disease is a dominantly inherited neurodegenerative disorder caused by the expansion of a CAG repeat, encoding for the amino acid glutamine (Q), present in the first exon of the protein huntingtin. Over the threshold of Q39 HTT exon 1 (HTTEx1) tends to misfold and aggregate into large intracellular structures, but whether these end-stage aggregates or their on-pathway intermediates are responsible for cytotoxicity is still debated. HTTEx1 can be separated into three domains: an N-terminal 17 amino acid region, the polyglutamine (polyQ) expansion and a C-terminal proline rich domain (PRD). Alongside the expanded polyQ, these flanking domains influence the aggregation propensity of HTTEx1: with the N17 initiating and promoting aggregation, and the PRD modulating it. In this study we focus on the first 11 amino acids of the PRD, a stretch of pure prolines, which are an evolutionary recent addition to the expanding polyQ region. We hypothesize that this proline region is expanding alongside the polyQ to counteract its ability to misfold and cause toxicity, and that expanding this proline region would be overall beneficial. We generated HTTEx1 mutants lacking both flanking domains singularly, missing the first 11 prolines of the PRD, or with this stretch of prolines expanded. We then followed their aggregation landscape in vitro with a battery of biochemical assays, and in vivo in novel models of C. elegans expressing the HTTEx1 mutants pan-neuronally. Employing fluorescence lifetime imaging we could observe the aggregation propensity of all HTTEx1 mutants during aging and correlate this with toxicity via various phenotypic assays. We found that the presence of an expanded proline stretch is beneficial in maintaining HTTEx1 soluble over time, regardless of polyQ length. However, the expanded prolines were only advantageous in promoting the survival and fitness of an organism carrying a pathogenic stretch of Q48 but were extremely deleterious to the nematode expressing a physiological stretch of Q23. Our results reveal the unique importance of the prolines which have and still are evolving alongside expanding glutamines to promote the function of HTTEx1 and avoid pathology.
Collapse
Affiliation(s)
- Maria Lucia Pigazzini
- Department of Molecular Physiology and Cell Biology, Leibniz Research Institute for Molecular Pharmacology in the Forschungsverbund Berlin e.V. (FMP), Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mandy Lawrenz
- Department of Molecular Physiology and Cell Biology, Leibniz Research Institute for Molecular Pharmacology in the Forschungsverbund Berlin e.V. (FMP), Berlin, Germany
| | - Anca Margineanu
- Advanced Light Microscopy, Max-Delbrück Centrum for Molecular Medicine (MDC), Berlin, Germany
| | - Gabriele S. Kaminski Schierle
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Janine Kirstein
- Department of Molecular Physiology and Cell Biology, Leibniz Research Institute for Molecular Pharmacology in the Forschungsverbund Berlin e.V. (FMP), Berlin, Germany
- Department of Cell Biology, University of Bremen, Bremen, Germany
| |
Collapse
|
11
|
Gomes GN, Levine ZA. Defining the Neuropathological Aggresome across in Silico, in Vitro, and ex Vivo Experiments. J Phys Chem B 2021; 125:1974-1996. [PMID: 33464098 PMCID: PMC8362740 DOI: 10.1021/acs.jpcb.0c09193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The loss of proteostasis over the life course is associated with a wide range of debilitating degenerative diseases and is a central hallmark of human aging. When left unchecked, proteins that are intrinsically disordered can pathologically aggregate into highly ordered fibrils, plaques, and tangles (termed amyloids), which are associated with countless disorders such as Alzheimer's disease, Parkinson's disease, type II diabetes, cancer, and even certain viral infections. However, despite significant advances in protein folding and solution biophysics techniques, determining the molecular cause of these conditions in humans has remained elusive. This has been due, in part, to recent discoveries showing that soluble protein oligomers, not insoluble fibrils or plaques, drive the majority of pathological processes. This has subsequently led researchers to focus instead on heterogeneous and often promiscuous protein oligomers. Unfortunately, significant gaps remain in how to prepare, model, experimentally corroborate, and extract amyloid oligomers relevant to human disease in a systematic manner. This Review will report on each of these techniques and their successes and shortcomings in an attempt to standardize comparisons between protein oligomers across disciplines, especially in the context of neurodegeneration. By standardizing multiple techniques and identifying their common overlap, a clearer picture of the soluble neuropathological aggresome can be constructed and used as a baseline for studying human disease and aging.
Collapse
Affiliation(s)
- Gregory-Neal Gomes
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Zachary A. Levine
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
12
|
Moldovean SN, Chiş V. Specific Key-Point Mutations along the Helical Conformation of Huntingtin-Exon 1 Protein Might Have an Antagonistic Effect on the Toxic Helical Content's Formation. ACS Chem Neurosci 2020; 11:2881-2889. [PMID: 32786304 DOI: 10.1021/acschemneuro.0c00493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The polyglutamine tract length represents a key regulator for the Huntington's disease toxicity level and its aggregation rates, often being related to helical structural conformations. In this study, we performed all-atom MD simulations on mutant Huntingtin-Exon1 protein with additional mutation spots, aiming to observe the corresponding structural and dynamical changes at the level of the helix. The simulated structures consist of three sets of Q residue mutations into P residues (4P, 7P, and 9P), with each set including different spots of mutations: random along the mutant sequence (R models), at the edges of the helix (E models), as well as at the edges and in the middle of the helix (EM models). At the helical level, our results predict less compactness profiles for a higher number of P mutations (7P and 9P models) with particular mutation spots at the edges and at the edges-middle of the helix. Moreover, the C-alpha atom distances decreased for 7P and 9P models in comparison to 4P models, and the RMSF values show the highest fluctuation rates for 9P models with point mutations at the edges and in the middle of the helix. The secondary structure analysis suggests greater structural transitions from α-helices to bends, turns, and random coils for 7P and 9P models, particularly for point mutations considered at the edges and in the middle of the helical content. The obtained results support our hypothesis that specific key-point mutations along the helical conformation might have an antagonistic effect on the toxic helical content's formation.
Collapse
Affiliation(s)
| | - Vasile Chiş
- Faculty of Physics, Babeş-Bolyai University, Kogălniceanu 1, RO-400084 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Moldovean SN, Chiş V. Molecular Dynamics Simulations Applied to Structural and Dynamical Transitions of the Huntingtin Protein: A Review. ACS Chem Neurosci 2020; 11:105-120. [PMID: 31841621 DOI: 10.1021/acschemneuro.9b00561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Over the recent years, Huntington's disease (HD) has become widely discussed in the scientific literature especially because at the mutant level there are several contradictions regarding the aggregation mechanism. The specific role of the physiological huntingtin protein remains unknown, due to the lack of characterization of its entire crystallographic structure, making the experimental and theoretical research even harder when taking into consideration its involvement in multiple biological functions and its high affinity for different interacting partners. Different types of models, containing fewer (not more than 35 Qs) polyglutamine residues for the WT structure and above 35 Qs for the mutants, were subjected to classical or advanced MD simulations to establish the proteins' structural stability by evaluating their conformational changes. Outside the polyQ tract, there are two other regions of interest (the N17 domain and the polyP rich domain) considered to be essential for the aggregation kinetics at the mutant level. The polymerization process is considered to be dependent on the polyQ length. As the polyQ tract's dimension increases, the structures present more β-sheet conformations. Contrarily, it is also considered that the aggregation stability is not necessarily dependent on the number of Qs, while the initial stage of the aggregation seed might play the decisive role. A general assumption regarding the polyP domain is that it might preserve the polyQ structures soluble by acting as an antagonist for β-sheet formation.
Collapse
Affiliation(s)
| | - Vasile Chiş
- Babeş-Bolyai University, Faculty of Physics, Kogălniceanu 1, RO-400084 Cluj-Napoca, Romania
| |
Collapse
|
14
|
He R, Lai X, Sun C, Kung T, Hong J, Jheng Y, Liao W, Chen J, Liao Y, Tu P, Huang JJ. Nanoscopic Insights of Amphiphilic Peptide against the Oligomer Assembly Process to Treat Huntington's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901165. [PMID: 31993280 PMCID: PMC6974936 DOI: 10.1002/advs.201901165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/07/2019] [Indexed: 05/12/2023]
Abstract
Finding an effective therapeutic regimen is an urgent demand for various neurodegenerative disorders including Huntington's disease (HD). For the difficulties in observing the dynamic aggregation and oligomerization process of mutant Huntingtin (mHtt) in vivo, the evaluation of potential drugs at the molecular protein level is usually restricted. By combing lifetime-based fluorescence microscopies and biophysical tools, it is showcased that a designed amphiphilic peptide, which targets the mHtt at an early stage, can perturb the oligomer assembly process nanoscopically, suppress the amyloid property of mHtt, conformationally transform the oligomers and/or aggregates of mHtt, and ameliorate mHtt-induced neurological damage and aggregation in cell and HD mouse models. It is also found that this amphiphilic peptide is able to transport to the brain and rescue the memory deficit through intranasal administration, indicating its targeting specificity in vivo. In summary, a biophotonic platform is provided to investigate the oligomerization/aggregation process in detail that offers insight into the design and effect of a targeted therapeutic agent for Huntington's disease.
Collapse
Affiliation(s)
- Ruei‐Yu He
- Institute of ChemistryAcademia SinicaTaipei11529Taiwan
| | - Xiang‐Me Lai
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
- Division of UrologyDepartment of SurgeryTri‐Service General HospitalNational Defense Medical CenterTaipei11490Taiwan
| | - Chia‐Sui Sun
- Institute of ChemistryAcademia SinicaTaipei11529Taiwan
| | - Te‐Shien Kung
- Institute of ChemistryAcademia SinicaTaipei11529Taiwan
- Department of Chemical EngineeringNational Taiwan University of Science and TechnologyTaipei10607Taiwan
| | - Jhu‐Ying Hong
- Institute of ChemistryAcademia SinicaTaipei11529Taiwan
| | - Yu‐Song Jheng
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
| | - Wei‐Neng Liao
- Institute of Biomedical Engineering and NanomedicineNational Health Research InstitutesMiaoli35053Taiwan
| | - Jen‐Kun Chen
- Division of UrologyDepartment of SurgeryTri‐Service General HospitalNational Defense Medical CenterTaipei11490Taiwan
- Institute of Biomedical Engineering and NanomedicineNational Health Research InstitutesMiaoli35053Taiwan
| | - Yung‐Feng Liao
- Institute of Cellular and Organismic BiologyAcademia SinicaTaipei11529Taiwan
| | - Pang‐Hsien Tu
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
- Division of UrologyDepartment of SurgeryTri‐Service General HospitalNational Defense Medical CenterTaipei11490Taiwan
| | | |
Collapse
|
15
|
Pérez-Tavarez R, Carrera M, Pedrosa M, Quirce S, Rodríguez-Pérez R, Gasset M. Reconstruction of fish allergenicity from the content and structural traits of the component β-parvalbumin isoforms. Sci Rep 2019; 9:16298. [PMID: 31704988 PMCID: PMC6841720 DOI: 10.1038/s41598-019-52801-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Most fish-allergic patients have anti-β-parvalbumin (β-PV) immunoglobulin E (IgE), which cross-reacts among fish species with variable clinical effects. Although the β-PV load is considered a determinant for allergenicity, fish species express distinct β-PV isoforms with unknown pathogenic contributions. To identify the role various parameters play in allergenicity, we have taken Gadus morhua and Scomber japonicus models, determined their β-PV isoform composition and analyzed the interaction of the IgE from fish-allergic patient sera with these different conformations. We found that each fish species contains a major and a minor isoform, with the total PV content four times higher in Gadus morhua than in Scomber japonicus. The isoforms showing the best IgE recognition displayed protease-sensitive globular folds, and if forming amyloids, they were not immunoreactive. Of the isoforms displaying stable globular folds, one was not recognized by IgE under any of the conditions, and the other formed highly immunoreactive amyloids. The results showed that Gadus morhua muscles are equipped with an isoform combination and content that ensures the IgE recognition of all PV folds, whereas the allergenic load of Scomber japonicus is under the control of proteolysis. We conclude that the consideration of isoform properties and content may improve the explanation of fish species allergenicity differences.
Collapse
Affiliation(s)
- Raquel Pérez-Tavarez
- Insto Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Mónica Carrera
- Insto Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, 36208, Vigo, Spain
| | - María Pedrosa
- Dpto de Alergología, Hospital Universitario La Paz, 28046, Madrid, Spain.,Insto de Investigación Hospital Universitario La Paz (IdiPaz), 28046, Madrid, Spain
| | - Santiago Quirce
- Dpto de Alergología, Hospital Universitario La Paz, 28046, Madrid, Spain.,Insto de Investigación Hospital Universitario La Paz (IdiPaz), 28046, Madrid, Spain
| | - Rosa Rodríguez-Pérez
- Insto de Investigación Hospital Universitario La Paz (IdiPaz), 28046, Madrid, Spain
| | - María Gasset
- Insto Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain.
| |
Collapse
|
16
|
Bonfanti S, Lionetti MC, Fumagalli MR, Chirasani VR, Tiana G, Dokholyan NV, Zapperi S, La Porta CAM. Molecular mechanisms of heterogeneous oligomerization of huntingtin proteins. Sci Rep 2019; 9:7615. [PMID: 31110208 PMCID: PMC6527588 DOI: 10.1038/s41598-019-44151-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/07/2019] [Indexed: 11/11/2022] Open
Abstract
There is still no successful strategy to treat Huntington's disease, an inherited autosomal disorder associated with the aggregation of mutated forms of the huntingtin protein containing polyglutamine tracts with more than 36 repeats. Recent experimental evidence is challenging the conventional view of the disease by revealing transcellular transfer of mutated huntingtin proteins which are able to seed oligomers involving wild type forms of the protein. Here we decipher the molecular mechanism of this unconventional heterogeneous oligomerization by performing discrete molecular dynamics simulations. We identify the most probable oligomer conformations and the molecular regions that can be targeted to destabilize them. Our computational findings are complemented experimentally by fluorescence-lifetime imaging microscopy/fluorescence resonance energy transfer (FLIM-FRET) of cells co-transfected with huntingtin proteins containing short and large polyglutamine tracts. Our work clarifies the structural features responsible for heterogeneous huntingtin aggregation with possible implications to contrast the prion-like spreading of Huntington's disease.
Collapse
Affiliation(s)
- Silvia Bonfanti
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria 16, 20133, Milano, Italy
| | - Maria Chiara Lionetti
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milano, via Celoria 26, 20133, Milano, Italy
| | - Maria Rita Fumagalli
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milano, via Celoria 26, 20133, Milano, Italy
| | - Venkat R Chirasani
- Departments of Pharmacology and Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Guido Tiana
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria 16, 20133, Milano, Italy
| | - Nikolay V Dokholyan
- Departments of Pharmacology and Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Stefano Zapperi
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria 16, 20133, Milano, Italy
- CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, Via R. Cozzi 53, 20125, Milano, Italy
| | - Caterina A M La Porta
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milano, via Celoria 26, 20133, Milano, Italy.
| |
Collapse
|
17
|
Priya SB, Gromiha MM. Structural insights into the aggregation mechanism of huntingtin exon 1 protein fragment with different polyQ-lengths. J Cell Biochem 2019; 120:10519-10529. [PMID: 30672003 DOI: 10.1002/jcb.28338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022]
Abstract
Huntington disease is a neurodegenerative disorder caused by the expansion of polyglutamine (polyQ) at the N-terminal of the huntingtin exon 1 protein. The detailed structure and the mechanism behind this aggregation remain unclear and it is assumed that the polyQ undergoes a conformational transition to the β-sheet structure when it aggregates. Investigating the misfolding of polyQ facilitates the determination of the molecular mechanism of aggregation and can potentially help in developing a novel approach to inhibit polyQ aggregation. Moreover, the flanking sequences of the polyQ region play a vital role in structural changes and the aggregation mechanism. We performed all-atom molecular dynamics simulations to gain structural insights into the aggregation mechanism using eight different models with glutamine repeat lengths Q27 , Q27 P11 , Q34 , Q35 , Q36 , Q40 , Q50 , and Q50 P11 . In the models without flanking polyPs, we noticed that the transformation of a random coil to β-sheet occurs when the number of Q increases. We also found that the flanking polyPs prevent aggregation by decreasing the probability of forming a β-sheet structure. When polyQ length increases, the 17 N-terminal flanking residues are more likely to adopt a β-sheet conformation from α-helix and coil. From our simulations, we suggest that at least 34 glutamines are required for initiating aggregation and 40 residues length is critical for the aggregation of huntingtin exon 1 protein for disease onset. This study provides structural insights into misfolding and the role of flanking sequences in huntingtin aggregation which will further help in developing therapeutic strategies for Huntington's disease.
Collapse
Affiliation(s)
- S Binny Priya
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.,Advanced Computational Drug Discovery Unit (ACDD), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
18
|
Osinalde N, Duarri A, Ramirez J, Barrio R, Perez de Nanclares G, Mayor U. Impaired proteostasis in rare neurological diseases. Semin Cell Dev Biol 2018; 93:164-177. [PMID: 30355526 DOI: 10.1016/j.semcdb.2018.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022]
Abstract
Rare diseases are classified as such when their prevalence is 1:2000 or lower, but even if each of them is so infrequent, altogether more than 300 million people in the world suffer one of the ∼7000 diseases considered as rare. Over 1200 of these disorders are known to affect the brain or other parts of our nervous system, and their symptoms can affect cognition, motor function and/or social interaction of the patients; we refer collectively to them as rare neurological disorders or RNDs. We have focused this review on RNDs known to have compromised protein homeostasis pathways. Proteostasis can be regulated and/or altered by a chain of cellular mechanisms, from protein synthesis and folding, to aggregation and degradation. Overall, we provide a list comprised of above 215 genes responsible for causing more than 170 distinct RNDs, deepening on some representative diseases, including as well a clinical view of how those diseases are diagnosed and dealt with. Additionally, we review existing methodologies for diagnosis and treatment, discussing the potential of specific deubiquitinating enzyme inhibition as a future therapeutic avenue for RNDs.
Collapse
Affiliation(s)
- Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Anna Duarri
- Barcelona Stem Cell Bank, Center of Regenerative Medicine in Barcelona, 08908 Hospitalet de Llobregat, Barcelona, Spain
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Rosa Barrio
- Functional Genomics Unit, CIC bioGUNE, 48160 Derio, Spain
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Alava, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
19
|
Hicks A, Zhou HX. Temperature-induced collapse of a disordered peptide observed by three sampling methods in molecular dynamics simulations. J Chem Phys 2018; 149:072313. [PMID: 30134733 DOI: 10.1063/1.5027409] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The conformational ensembles of a disordered peptide, polyglutamine Q15, over a wide temperature range were sampled using multiple replicates of conventional molecular dynamics (cMD) simulations as well as two enhanced sampling methods, temperature replica exchange (TREMD) and replica exchange with solute tempering (REST). The radius of gyration, asphericity, secondary structure, and hydrogen bonding patterns were used for the comparison of the sampling methods. Overall, the three sampling methods generated similar conformational ensembles, with progressive collapse at higher temperatures. Although accumulating the longest simulation time (90 μs), cMD at room temperature missed a small subspace that was sampled by both TREMD and REST. This subspace was high in α-helical content and separated from the main conformational space by an energy barrier. REST used less simulation time than TREMD (36 μs versus 42 μs), and this gap is expected to widen significantly for larger disordered proteins. We conclude that REST is the method of choice for conformational sampling of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Alan Hicks
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | - Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
20
|
DeGuire SM, Ruggeri FS, Fares MB, Chiki A, Cendrowska U, Dietler G, Lashuel HA. N-terminal Huntingtin (Htt) phosphorylation is a molecular switch regulating Htt aggregation, helical conformation, internalization, and nuclear targeting. J Biol Chem 2018; 293:18540-18558. [PMID: 30185623 PMCID: PMC6290154 DOI: 10.1074/jbc.ra118.004621] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/25/2018] [Indexed: 12/31/2022] Open
Abstract
Huntington's disease is a fatal neurodegenerative disorder resulting from a CAG repeat expansion in the first exon of the gene encoding the Huntingtin protein (Htt). Phosphorylation of this protein region (Httex1) has been shown to play important roles in regulating the structure, toxicity, and cellular properties of N-terminal fragments and full-length Htt. However, increasing evidence suggests that phosphomimetic substitutions in Htt result in inconsistent findings and do not reproduce all aspects of true phosphorylation. Here, we investigated the effects of bona fide phosphorylation at Ser-13 or Ser-16 on the structure, aggregation, membrane binding, and subcellular properties of the Httex1-Q18A variant and compared these effects with those of phosphomimetic substitutions. We show that phosphorylation at either Ser-13 and/or Ser-16 or phosphomimetic substitutions at both these residues inhibit the aggregation of mutant Httex1, but that only phosphorylation strongly disrupts the amphipathic α-helix of the N terminus and prompts the internalization and nuclear targeting of preformed Httex1 aggregates. In synthetic peptides, phosphorylation at Ser-13, Ser-16, or both residues strongly disrupted the amphipathic α-helix of the N-terminal 17 residues (Nt17) of Httex1 and Nt17 membrane binding. Experiments with peptides bearing different combinations of phosphorylation sites within Nt17 revealed a phosphorylation-dependent switch that regulates the Httex1 structure, involving cross-talk between phosphorylation at Thr-3 and Ser-13 or Ser-16. Our results provide crucial insights into the role of phosphorylation in regulating Httex1 structure and function, and underscore the critical importance of identifying the enzymes responsible for regulating Htt phosphorylation, and their potential as therapeutic targets for managing Huntington's disease.
Collapse
Affiliation(s)
- Sean M DeGuire
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland and
| | - Francesco S Ruggeri
- the Laboratory of the Physics of Living Matter, Institute of Physics of Biological Systems, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mohamed-Bilal Fares
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland and
| | - Anass Chiki
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland and
| | - Urszula Cendrowska
- the Laboratory of the Physics of Living Matter, Institute of Physics of Biological Systems, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Giovanni Dietler
- the Laboratory of the Physics of Living Matter, Institute of Physics of Biological Systems, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Hilal A Lashuel
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland and
| |
Collapse
|
21
|
Hofer S, Kainz K, Zimmermann A, Bauer MA, Pendl T, Poglitsch M, Madeo F, Carmona-Gutierrez D. Studying Huntington's Disease in Yeast: From Mechanisms to Pharmacological Approaches. Front Mol Neurosci 2018; 11:318. [PMID: 30233317 PMCID: PMC6131589 DOI: 10.3389/fnmol.2018.00318] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder that leads to progressive neuronal loss, provoking impaired motor control, cognitive decline, and dementia. So far, HD remains incurable, and available drugs are effective only for symptomatic management. HD is caused by a mutant form of the huntingtin protein, which harbors an elongated polyglutamine domain and is highly prone to aggregation. However, many aspects underlying the cytotoxicity of mutant huntingtin (mHTT) remain elusive, hindering the efficient development of applicable interventions to counteract HD. An important strategy to obtain molecular insights into human disorders in general is the use of eukaryotic model organisms, which are easy to genetically manipulate and display a high degree of conservation regarding disease-relevant cellular processes. The budding yeast Saccharomyces cerevisiae has a long-standing and successful history in modeling a plethora of human maladies and has recently emerged as an effective tool to study neurodegenerative disorders, including HD. Here, we summarize some of the most important contributions of yeast to HD research, specifically concerning the elucidation of mechanistic features of mHTT cytotoxicity and the potential of yeast as a platform to screen for pharmacological agents against HD.
Collapse
Affiliation(s)
- Sebastian Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Maria A. Bauer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Michael Poglitsch
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | | |
Collapse
|
22
|
Wagner AS, Politi AZ, Ast A, Bravo-Rodriguez K, Baum K, Buntru A, Strempel NU, Brusendorf L, Hänig C, Boeddrich A, Plassmann S, Klockmeier K, Ramirez-Anguita JM, Sanchez-Garcia E, Wolf J, Wanker EE. Self-assembly of Mutant Huntingtin Exon-1 Fragments into Large Complex Fibrillar Structures Involves Nucleated Branching. J Mol Biol 2018; 430:1725-1744. [PMID: 29601786 DOI: 10.1016/j.jmb.2018.03.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/14/2018] [Accepted: 03/19/2018] [Indexed: 11/18/2022]
Abstract
Huntingtin (HTT) fragments with extended polyglutamine tracts self-assemble into amyloid-like fibrillar aggregates. Elucidating the fibril formation mechanism is critical for understanding Huntington's disease pathology and for developing novel therapeutic strategies. Here, we performed systematic experimental and theoretical studies to examine the self-assembly of an aggregation-prone N-terminal HTT exon-1 fragment with 49 glutamines (Ex1Q49). Using high-resolution imaging techniques such as electron microscopy and atomic force microscopy, we show that Ex1Q49 fragments in cell-free assays spontaneously convert into large, highly complex bundles of amyloid fibrils with multiple ends and fibril branching points. Furthermore, we present experimental evidence that two nucleation mechanisms control spontaneous Ex1Q49 fibrillogenesis: (1) a relatively slow primary fibril-independent nucleation process, which involves the spontaneous formation of aggregation-competent fibrillary structures, and (2) a fast secondary fibril-dependent nucleation process, which involves nucleated branching and promotes the rapid assembly of highly complex fibril bundles with multiple ends. The proposed aggregation mechanism is supported by studies with the small molecule O4, which perturbs early events in the aggregation cascade and delays Ex1Q49 fibril assembly, comprehensive mathematical and computational modeling studies, and seeding experiments with small, preformed fibrillar Ex1Q49 aggregates that promote the assembly of amyloid fibrils. Together, our results suggest that nucleated branching in vitro plays a critical role in the formation of complex fibrillar HTT exon-1 aggregates with multiple ends.
Collapse
Affiliation(s)
- Anne S Wagner
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Antonio Z Politi
- Mathematical Modelling of Cellular Processes, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Anne Ast
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Kenny Bravo-Rodriguez
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 2, 45470 Mülheim an der Ruhr, Germany; Computational Biochemistry, University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Katharina Baum
- Mathematical Modelling of Cellular Processes, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Alexander Buntru
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Nadine U Strempel
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Lydia Brusendorf
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Christian Hänig
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Annett Boeddrich
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Stephanie Plassmann
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Konrad Klockmeier
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Juan M Ramirez-Anguita
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 2, 45470 Mülheim an der Ruhr, Germany
| | - Elsa Sanchez-Garcia
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 2, 45470 Mülheim an der Ruhr, Germany; Computational Biochemistry, University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Jana Wolf
- Mathematical Modelling of Cellular Processes, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany.
| | - Erich E Wanker
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany.
| |
Collapse
|
23
|
Abstract
Huntington's disease is caused by the expansion of a polyglutamine (polyQ) tract in the N-terminal exon of huntingtin (HttEx1), but the cellular mechanisms leading to neurodegeneration remain poorly understood. Here we present in situ structural studies by cryo-electron tomography of an established yeast model system of polyQ toxicity. We find that expression of polyQ-expanded HttEx1 results in the formation of unstructured inclusion bodies and in some cases fibrillar aggregates. This contrasts with recent findings in mammalian cells, where polyQ inclusions were exclusively fibrillar. In yeast, polyQ toxicity correlates with alterations in mitochondrial and lipid droplet morphology, which do not arise from physical interactions with inclusions or fibrils. Quantitative proteomic analysis shows that polyQ aggregates sequester numerous cellular proteins and cause a major change in proteome composition, most significantly in proteins related to energy metabolism. Thus, our data point to a multifaceted toxic gain-of-function of polyQ aggregates, driven by sequestration of endogenous proteins and mitochondrial and lipid droplet dysfunction.
Collapse
|
24
|
A theoretical study of monomeric polyglutamine chains from molecular dynamics simulations with explicit water. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2172-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
André EA, Braatz EM, Liu JP, Zeitlin SO. Generation and Characterization of Knock-in Mouse Models Expressing Versions of Huntingtin with Either an N17 or a Combined PolyQ and Proline-Rich Region Deletion. J Huntingtons Dis 2017; 6:47-62. [PMID: 28211815 PMCID: PMC5389044 DOI: 10.3233/jhd-160231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background: The polyglutamine (polyQ) stretch of the Huntingtin protein (HTT) in mammals is flanked by a highly conserved 17 amino acid N-terminal domain (N17), and a proline-rich region (PRR). The PRR is a binding site for many HTT-interacting proteins, and the N17 domain regulates several normal HTT functions, including HTT’s ability to associate with membranes and organelles. Objective: This study investigates the consequence of deleting mouse Huntingtin’s (Htt’s) N17 domain or a combination of its polyQ stretch and PRR (QP) on normal Htt function in mice. Methods: Knock-in mice expressing versions of Htt lacking either the N17 domain (HttΔN17) or both the polyQ and PRR domains (HttΔQP) were generated, and their behavior, autophagy function, and neuropathology were evaluated. Results: Homozygous and hemizygous HttΔQP/ΔQP, HttΔN17/ΔN17, HttΔQP/–, and HttΔN17/– mice were generated at the expected Mendelian frequency. HttΔQP/ΔQP mutants exhibit improvements in motor coordination compared to controls (Htt+/+). In contrast, HttΔN17/ΔN17 mutants do not exhibit any changes in motor coordination, but they do display variable changes in spatial learning that are dependent on their age at testing. Neither mutant exhibited any changes in basal autophagy in comparison to controls, but thalamostriatal synapses in the dorsal striatum of 24-month-old HttΔN17/ΔN17 mice were decreased compared to controls. Conclusions: These findings support the hypothesis that Htt’s N17 and QP domains are dispensable for its critical functions during early embryonic development, but are likely more important for Htt functions in CNS development or maintenance.
Collapse
Affiliation(s)
| | | | | | - Scott O. Zeitlin
- Correspondence to: Scott O. Zeitlin, Ph.D., Department of Neuroscience, University of Virginia School of Medicine, 409 Lane Rd., Box 801392, MR4-5022, Charlottesville, VA 22908 USA. Tel.: +1 434 924 5011; Fax: +1 434 982 4380; E-mail:
| |
Collapse
|
26
|
Warner JB, Ruff KM, Tan PS, Lemke EA, Pappu RV, Lashuel HA. Monomeric Huntingtin Exon 1 Has Similar Overall Structural Features for Wild-Type and Pathological Polyglutamine Lengths. J Am Chem Soc 2017; 139:14456-14469. [PMID: 28937758 PMCID: PMC5677759 DOI: 10.1021/jacs.7b06659] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Indexed: 12/22/2022]
Abstract
Huntington's disease is caused by expansion of a polyglutamine (polyQ) domain within exon 1 of the huntingtin gene (Httex1). The prevailing hypothesis is that the monomeric Httex1 protein undergoes sharp conformational changes as the polyQ length exceeds a threshold of 36-37 residues. Here, we test this hypothesis by combining novel semi-synthesis strategies with state-of-the-art single-molecule Förster resonance energy transfer measurements on biologically relevant, monomeric Httex1 proteins of five different polyQ lengths. Our results, integrated with atomistic simulations, negate the hypothesis of a sharp, polyQ length-dependent change in the structure of monomeric Httex1. Instead, they support a continuous global compaction with increasing polyQ length that derives from increased prominence of the globular polyQ domain. Importantly, we show that monomeric Httex1 adopts tadpole-like architectures for polyQ lengths below and above the pathological threshold. Our results suggest that higher order homotypic and/or heterotypic interactions within distinct sub-populations of neurons, which are inevitable at finite cellular concentrations, are likely to be the main source of sharp polyQ length dependencies of HD.
Collapse
Affiliation(s)
- John B. Warner
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Brain Mind
Institute, Station 19, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kiersten M. Ruff
- Department
of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Piau Siong Tan
- Structural
and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Edward A. Lemke
- Structural
and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Rohit V. Pappu
- Department
of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Hilal A. Lashuel
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Brain Mind
Institute, Station 19, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Kang H, Vázquez FX, Zhang L, Das P, Toledo-Sherman L, Luan B, Levitt M, Zhou R. Emerging β-Sheet Rich Conformations in Supercompact Huntingtin Exon-1 Mutant Structures. J Am Chem Soc 2017; 139:8820-8827. [PMID: 28609090 PMCID: PMC5835228 DOI: 10.1021/jacs.7b00838] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
There exists strong correlation between the extended polyglutamines (polyQ) within exon-1 of Huntingtin protein (Htt) and age onset of Huntington's disease (HD); however, the underlying molecular mechanism is still poorly understood. Here we apply extensive molecular dynamics simulations to study the folding of Htt-exon-1 across five different polyQ-lengths. We find an increase in secondary structure motifs at longer Q-lengths, including β-sheet content that seems to contribute to the formation of increasingly compact structures. More strikingly, these longer Q-lengths adopt supercompact structures as evidenced by a surprisingly small power-law scaling exponent (0.22) between the radius-of-gyration and Q-length that is substantially below expected values for compact globule structures (∼0.33) and unstructured proteins (∼0.50). Hydrogen bond analyses further revealed that the supercompact behavior of polyQ is mainly due to the "glue-like" behavior of glutamine's side chains with significantly more side chain-side chain H-bonds than regular proteins in the Protein Data Bank (PDB). The orientation of the glutamine side chains also tend to be "buried" inside, explaining why polyQ domains are insoluble on their own.
Collapse
Affiliation(s)
- Hongsuk Kang
- Computational Biology Center, IBM Thomas J. Watson Research Center , Yorktown Heights, New York 10598, United States
| | - Francisco X Vázquez
- Computational Biology Center, IBM Thomas J. Watson Research Center , Yorktown Heights, New York 10598, United States
| | - Leili Zhang
- Computational Biology Center, IBM Thomas J. Watson Research Center , Yorktown Heights, New York 10598, United States
| | - Payel Das
- Computational Biology Center, IBM Thomas J. Watson Research Center , Yorktown Heights, New York 10598, United States
| | | | - Binquan Luan
- Computational Biology Center, IBM Thomas J. Watson Research Center , Yorktown Heights, New York 10598, United States
| | - Michael Levitt
- Department of Structural Biology, Stanford University School of Medicine , Stanford, California 94305, United States
| | - Ruhong Zhou
- Computational Biology Center, IBM Thomas J. Watson Research Center , Yorktown Heights, New York 10598, United States
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| |
Collapse
|
28
|
Chaibva M, Jawahery S, Pilkington AW, Arndt JR, Sarver O, Valentine S, Matysiak S, Legleiter J. Acetylation within the First 17 Residues of Huntingtin Exon 1 Alters Aggregation and Lipid Binding. Biophys J 2017; 111:349-362. [PMID: 27463137 DOI: 10.1016/j.bpj.2016.06.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 06/06/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder caused by an expanded polyglutamine (polyQ) domain near the N-terminus of the huntingtin (htt) protein. Expanded polyQ leads to htt aggregation. The first 17 amino acids (Nt(17)) in htt comprise a lipid-binding domain that undergoes a number of posttranslational modifications that can modulate htt toxicity and subcellular localization. As there are three lysines within Nt(17), we evaluated the impact of lysine acetylation on htt aggregation in solution and on model lipid bilayers. Acetylation of htt-exon1(51Q) and synthetic truncated htt-exon 1 mimicking peptides (Nt(17)-Q35-P10-KK) was achieved using a selective covalent label, sulfo-N-hydroxysuccinimide (NHSA). With this treatment, all three lysine residues (K6, K9, and K15) in Nt(17) were significantly acetylated. N-terminal htt acetylation retarded fibril formation in solution and promoted the formation of larger globular aggregates. Acetylated htt also bound lipid membranes and disrupted the lipid bilayer morphology less aggressively compared with the wild-type. Computational studies provided mechanistic insights into how acetylation alters the interaction of Nt(17) with lipid membranes. Our results highlight that N-terminal acetylation influences the aggregation of htt and its interaction with lipid bilayers.
Collapse
Affiliation(s)
- Maxmore Chaibva
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Sudi Jawahery
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Albert W Pilkington
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - James R Arndt
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Olivia Sarver
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Stephen Valentine
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Silvina Matysiak
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland; Biophysics Program, Institute for Physical Chemistry and Technology, University of Maryland, College Park, Maryland.
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia; NanoSAFE, West Virginia University, Morgantown, West Virginia; Center for Neurosciences, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
29
|
Wen J, Scoles DR, Facelli JC. Molecular dynamics analysis of the aggregation propensity of polyglutamine segments. PLoS One 2017; 12:e0178333. [PMID: 28542401 PMCID: PMC5444867 DOI: 10.1371/journal.pone.0178333] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 05/11/2017] [Indexed: 01/09/2023] Open
Abstract
Protein misfolding and aggregation is a pathogenic feature shared among at least ten polyglutamine (polyQ) neurodegenerative diseases. While solvent-solution interaction is a key factor driving protein folding and aggregation, the solvation properties of expanded polyQ tracts are not well understood. By using GPU-enabled all-atom molecular dynamics simulations of polyQ monomers in an explicit solvent environment, this study shows that solvent-polyQ interaction propensity decreases as the lengths of polyQ tract increases. This study finds a predominance in long-distance interactions between residues far apart in polyQ sequences with longer polyQ segments, that leads to significant conformational differences. This study also indicates that large loops, comprised of parallel β-structures, appear in long polyQ tracts and present new aggregation building blocks with aggregation driven by long-distance intra-polyQ interactions. Finally, consistent with previous observations using coarse-grain simulations, this study demonstrates that there is a gain in the aggregation propensity with increased polyQ length, and that this gain is correlated with decreasing ability of solvent-polyQ interaction. These results suggest the modulation of solvent-polyQ interactions as a possible therapeutic strategy for treating polyQ diseases.
Collapse
Affiliation(s)
- Jingran Wen
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States of America
| | - Daniel R. Scoles
- Department of Neurology, University of Utah, Salt Lake City, Utah, United States of America
| | - Julio C. Facelli
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
30
|
Abstract
Protein aggregation is a hallmark of neurodegenerative disorders. In this group of brain-related disorders, a disease-specific "host" protein or fragment misfolds and adopts a metastatic, aggregate-prone conformation. Often, this misfolded conformation is structurally and thermodynamically different from its native state. Intermolecular contacts, which arise in this non-native state, promote aggregation. In this regard, understanding the molecular principles and mechanisms that lead to the formation of such a non-native state and further promote the formation of the critical nucleus for fiber growth is essential. In this study, the authors analyze the aggregation propensity of Huntingtin headpiece (httNT), which is known to facilitate the polyQ aggregation, in relation to the helix mediated aggregation mechanism proposed by the Wetzel group. The authors demonstrate that even though httNT displays a degenerate conformational spectrum on its own, interfaces of macroscopic or molecular origin can promote the α-helix conformation, eliminating all other alternatives in the conformational phase space. Our findings indicate that httNT molecules do not have a strong orientational preference for parallel or antiparallel orientation of the helices within the aggregate. However, a parallel packed bundle of helices would support the idea of increased polyglutamine concentration, to pave the way for cross-β structures.
Collapse
|
31
|
Aggregation landscapes of Huntingtin exon 1 protein fragments and the critical repeat length for the onset of Huntington's disease. Proc Natl Acad Sci U S A 2017; 114:4406-4411. [PMID: 28400517 DOI: 10.1073/pnas.1702237114] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by an abnormal expansion in the polyglutamine (polyQ) track of the Huntingtin (HTT) protein. The severity of the disease depends on the polyQ repeat length, arising only in patients with proteins having 36 repeats or more. Previous studies have shown that the aggregation of N-terminal fragments (encoded by HTT exon 1) underlies the disease pathology in mouse models and that the HTT exon 1 gene product can self-assemble into amyloid structures. Here, we provide detailed structural mechanisms for aggregation of several protein fragments encoded by HTT exon 1 by using the associative memory, water-mediated, structure and energy model (AWSEM) to construct their free energy landscapes. We find that the addition of the N-terminal 17-residue sequence ([Formula: see text]) facilitates polyQ aggregation by encouraging the formation of prefibrillar oligomers, whereas adding the C-terminal polyproline sequence ([Formula: see text]) inhibits aggregation. The combination of both terminal additions in HTT exon 1 fragment leads to a complex aggregation mechanism with a basic core that resembles that found for the aggregation of pure polyQ repeats using AWSEM. At the extrapolated physiological concentration, although the grand canonical free energy profiles are uphill for HTT exon 1 fragments having 20 or 30 glutamines, the aggregation landscape for fragments with 40 repeats has become downhill. This computational prediction agrees with the critical length found for the onset of HD and suggests potential therapies based on blocking early binding events involving the terminal additions to the polyQ repeats.
Collapse
|
32
|
Adegbuyiro A, Sedighi F, Pilkington AW, Groover S, Legleiter J. Proteins Containing Expanded Polyglutamine Tracts and Neurodegenerative Disease. Biochemistry 2017; 56:1199-1217. [PMID: 28170216 DOI: 10.1021/acs.biochem.6b00936] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several hereditary neurological and neuromuscular diseases are caused by an abnormal expansion of trinucleotide repeats. To date, there have been 10 of these trinucleotide repeat disorders associated with an expansion of the codon CAG encoding glutamine (Q). For these polyglutamine (polyQ) diseases, there is a critical threshold length of the CAG repeat required for disease, and further expansion beyond this threshold is correlated with age of onset and symptom severity. PolyQ expansion in the translated proteins promotes their self-assembly into a variety of oligomeric and fibrillar aggregate species that accumulate into the hallmark proteinaceous inclusion bodies associated with each disease. Here, we review aggregation mechanisms of proteins with expanded polyQ-tracts, structural consequences of expanded polyQ ranging from monomers to fibrillar aggregates, the impact of protein context and post-translational modifications on aggregation, and a potential role for lipid membranes in aggregation. As the pathogenic mechanisms that underlie these disorders are often classified as either a gain of toxic function or loss of normal protein function, some toxic mechanisms associated with mutant polyQ tracts will also be discussed.
Collapse
Affiliation(s)
- Adewale Adegbuyiro
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Faezeh Sedighi
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Albert W Pilkington
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Sharon Groover
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States.,Blanchette Rockefeller Neurosciences Institute, Robert C. Byrd Health Sciences Center, P.O. Box 9304, West Virginia University , Morgantown, West Virginia 26506, United States.,NanoSAFE, P.O. Box 6223, West Virginia University , Morgantown, West Virginia 26506, United States
| |
Collapse
|
33
|
Baias M, Smith PES, Shen K, Joachimiak LA, Żerko S, Koźmiński W, Frydman J, Frydman L. Structure and Dynamics of the Huntingtin Exon-1 N-Terminus: A Solution NMR Perspective. J Am Chem Soc 2017; 139:1168-1176. [DOI: 10.1021/jacs.6b10893] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Baias
- Department
of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Pieter E. S. Smith
- Department
of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Koning Shen
- Stanford University, Stanford, California 94305, United States
| | | | - Szymon Żerko
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Wiktor Koźmiński
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Judith Frydman
- Stanford University, Stanford, California 94305, United States
| | - Lucio Frydman
- Department
of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
34
|
Fruhmann G, Seynnaeve D, Zheng J, Ven K, Molenberghs S, Wilms T, Liu B, Winderickx J, Franssens V. Yeast buddies helping to unravel the complexity of neurodegenerative disorders. Mech Ageing Dev 2017; 161:288-305. [DOI: 10.1016/j.mad.2016.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/22/2016] [Accepted: 05/02/2016] [Indexed: 12/31/2022]
|
35
|
Binette V, Côté S, Mousseau N. Free-Energy Landscape of the Amino-Terminal Fragment of Huntingtin in Aqueous Solution. Biophys J 2016; 110:1075-88. [PMID: 26958885 DOI: 10.1016/j.bpj.2016.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 01/17/2023] Open
Abstract
The first exon of Huntingtin-a protein with multiple biological functions whose misfolding is related to Huntington's disease-modulates its localization, aggregation, and function within the cell. It is composed of a 17-amino-acid amphipathic segment (Htt17), an amyloidogenic segment of consecutive glutamines (QN), and a proline-rich segment. Htt17 is of fundamental importance: it serves as a membrane anchor to control the localization of huntingtin, it modulates huntingtin's function through posttranslational modifications, and it controls the self-assembly of the amyloidogenic QN segment into oligomers and fibrils. Experimentally, the conformational ensemble of the Htt17 monomer, as well as the impact of the polyglutamine and proline-rich segments, remains, however, mostly uncharacterized at the atomic level due to its intrinsic flexibility. Here, we unveil the free-energy landscape of Htt17, Htt17Q17, and Htt17Q17P11 using Hamiltonian replica exchange combined with well-tempered metadynamics. We characterize the free-energy landscape of these three fragments in terms of a few selected collective variables. Extensive simulations reveal that the free energy of Htt17 is dominated by a broad ensemble of configurations that agree with solution NMR chemical shifts. Addition of Q17 at its carboxy-terminus reduces the extent of the main basin to more extended configurations of Htt17 with lower helix propensity. Also, the aliphatic carbons of Q17 partially sequester the nonpolar amino acids of Htt17. For its part, addition of Q17P11 shifts the overall landscape to a more extended and helical Htt17 stabilized by interactions with Q17 and P11, which almost exclusively form a PPII-helix, as well as by intramolecular H-bonds and salt bridges. Our characterization of Huntingtin's amino-terminus provides insights into the structural origin of its ability to oligomerize and interact with phospholipid bilayers, processes closely linked to the biological functions of this protein.
Collapse
Affiliation(s)
- Vincent Binette
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires (GEPROM), Université de Montréal, succursale Centre-ville, Montréal, Québec, Canada
| | - Sébastien Côté
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires (GEPROM), Université de Montréal, succursale Centre-ville, Montréal, Québec, Canada
| | - Normand Mousseau
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires (GEPROM), Université de Montréal, succursale Centre-ville, Montréal, Québec, Canada.
| |
Collapse
|
36
|
Awad L, Jejelava N, Burai R, Lashuel HA. A New Caged-Glutamine Derivative as a Tool To Control the Assembly of Glutamine-Containing Amyloidogenic Peptides. Chembiochem 2016; 17:2353-2360. [DOI: 10.1002/cbic.201600474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Loay Awad
- College of Engineering; University of Dammam; P. O. Box 1982 Dammam 31451 Saudi Arabia
| | - Nino Jejelava
- Laboratory of Molecular and Chemical Biology of Neurodegeneration; Ecole Polytechnique Fédérale de Lausanne; EPFL); 1015 Lausanne Switzerland
| | - Ritwik Burai
- Laboratory of Molecular and Chemical Biology of Neurodegeneration; Ecole Polytechnique Fédérale de Lausanne; EPFL); 1015 Lausanne Switzerland
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration; Ecole Polytechnique Fédérale de Lausanne; EPFL); 1015 Lausanne Switzerland
| |
Collapse
|
37
|
Ozgur B, Sayar M. Assembly of Triblock Amphiphilic Peptides into One-Dimensional Aggregates and Network Formation. J Phys Chem B 2016; 120:10243-10257. [PMID: 27635660 DOI: 10.1021/acs.jpcb.6b07545] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Peptide assembly plays a key role in both neurological diseases and development of novel biomaterials with well-defined nanostructures. Synthetic model peptides provide a unique platform to explore the role of intermolecular interactions in the assembly process. A triblock peptide architecture designed by the Hartgerink group is a versatile system which relies on Coulomb interactions, hydrogen bonding, and hydrophobicity to guide these peptides' assembly at three different length scales: β-sheets, double-wall ribbon-like aggregates, and finally a highly porous network structure which can support gels with ≤1% by weight peptide concentration. In this study, by using molecular dynamics simulations of a structure based implicit solvent coarse grained model, we analyzed this hierarchical assembly process. Parametrization of our CG model is based on multiple-state points from atomistic simulations, which enables this model to represent the conformational adaptability of the triblock peptide molecule based on the surrounding medium. Our results indicate that emergence of the double-wall β-sheet packing mechanism, proposed in light of the experimental evidence, strongly depends on the subtle balance of the intermolecular forces. We demonstrate that, even though backbone hydrogen bonding dominates the early nucleation stages, depending on the strength of the hydrophobic and Coulomb forces, alternative structures such as zero-dimensional aggregates with two β-sheets oriented orthogonally (which we refer to as a cross-packed structure) and β-sheets with misoriented hydrophobic side chains are also feasible. We discuss the implications of these competing structures for the three different length scales of assembly by systematically investigating the influence of density, counterion valency, and hydrophobicity.
Collapse
Affiliation(s)
| | - Mehmet Sayar
- College of Engineering, Koc University , Istanbul, Turkey.,Chemical & Biological Engineering and Mechanical Engineering Departments, Koc University , Istanbul, Turkey
| |
Collapse
|
38
|
Wen J, Scoles DR, Facelli JC. Effects of the enlargement of polyglutamine segments on the structure and folding of ataxin-2 and ataxin-3 proteins. J Biomol Struct Dyn 2016; 35:504-519. [PMID: 26861241 DOI: 10.1080/07391102.2016.1152199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3) are two common autosomal-dominant inherited ataxia syndromes, both of which are related to the unstable expansion of trinucleotide CAG repeats in the coding region of the related ATXN2 and ATXN3 genes, respectively. The poly-glutamine (poly-Q) tract encoded by the CAG repeats has long been recognized as an important factor in disease pathogenesis and progress. In this study, using the I-TASSER method for 3D structure prediction, we investigated the effect of poly-Q tract enlargement on the structure and folding of ataxin-2 and ataxin-3 proteins. Our results show good agreement with the known experimental structures of the Josephin and UIM domains providing credence to the simulation results presented here, which show that the enlargement of the poly-Q region not only affects the local structure of these regions but also affects the structures of functional domains as well as the whole protein. The changes observed in the predicted models of the UIM domains in ataxin-3 when the poly-Q track is enlarged provide new insights on possible pathogenic mechanisms.
Collapse
Affiliation(s)
- Jingran Wen
- a Department of Biomedical Informatics , University of Utah , Salt Lake City , UT , USA
| | - Daniel R Scoles
- b Department of Neurology , University of Utah , Salt Lake City , UT , USA
| | - Julio C Facelli
- a Department of Biomedical Informatics , University of Utah , Salt Lake City , UT , USA
| |
Collapse
|
39
|
Neveklovska M, Clabough EBD, Steffan JS, Zeitlin SO. Deletion of the huntingtin proline-rich region does not significantly affect normal huntingtin function in mice. J Huntingtons Dis 2016; 1:71-87. [PMID: 22956985 DOI: 10.3233/jhd-2012-120016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The N-terminus of Huntingtin, the protein encoded by the Huntington's disease gene, contains a stretch of polyglutamine residues that is expanded in Huntington's disease. The polyglutamine stretch is flanked by two conserved protein domains in vertebrates: an N1-17 domain, and a proline-rich region (PRR). The PRR can modulate the structure of the adjacent polyglutamine stretch, and is a binding site for several interacting proteins. To determine the role of the PRR in Huntingtin function, we have generated a knock-in allele of the mouse Huntington's disease gene homolog that expresses full-length normal huntingtin lacking the PRR. Mice that are homozygous for the huntingtin PRR deletion are born at the normal Mendelian frequency, suggesting that the PRR is not required for essential huntingtin functions during embryonic development. Moreover, adult homozygous mutants did not exhibit any significant differences from wild-type controls in general motor function and motor learning. However, 18 month-old male, but not female, homozygous PRR deletion mutants exhibited deficits in the Morris water task, suggesting that age-dependent spatial learning and memory may be affected in a sex-specific fashion by the huntingtin PRR deletion.
Collapse
Affiliation(s)
- Michelle Neveklovska
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|
40
|
Zhemkov VA, Kulminskaya AA, Bezprozvanny IB, Kim M. The 2.2-Angstrom resolution crystal structure of the carboxy-terminal region of ataxin-3. FEBS Open Bio 2016; 6:168-78. [PMID: 27047745 PMCID: PMC4794786 DOI: 10.1002/2211-5463.12029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 01/15/2023] Open
Abstract
An expansion of polyglutamine (polyQ) sequence in ataxin‐3 protein causes spinocerebellar ataxia type 3, an inherited neurodegenerative disorder. The crystal structure of the polyQ‐containing carboxy‐terminal fragment of human ataxin‐3 was solved at 2.2‐Å resolution. The Atxn3 carboxy‐terminal fragment including 14 glutamine residues adopts both random coil and α‐helical conformations in the crystal structure. The polyQ sequence in α‐helical structure is stabilized by intrahelical hydrogen bonds mediated by glutamine side chains. The intrahelical hydrogen‐bond interactions between glutamine side chains along the axis of the polyQ α‐helix stabilize the secondary structure. Analysis of this structure furthers our understanding of the polyQ‐structural characteristics that likely underlie the pathogenesis of polyQ‐expansion disorders.
Collapse
Affiliation(s)
- Vladimir A Zhemkov
- Laboratory of Molecular Neurodegeneration St Petersburg State Polytechnical University Russia; Laboratory of Enzymology National Research Center «Kurchatov Institute»B.P. Konstantinov Petersburg Nuclear Physics Institute Gatchina Russia
| | - Anna A Kulminskaya
- Laboratory of Molecular Neurodegeneration St Petersburg State Polytechnical University Russia; Laboratory of Enzymology National Research Center «Kurchatov Institute»B.P. Konstantinov Petersburg Nuclear Physics Institute Gatchina Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration St Petersburg State Polytechnical University Russia; Department of Physiology University of Texas Southwestern Medical Center Dallas TX USA
| | - Meewhi Kim
- Laboratory of Molecular Neurodegeneration St Petersburg State Polytechnical University Russia; Department of Physiology University of Texas Southwestern Medical Center Dallas TX USA
| |
Collapse
|
41
|
Côté S, Binette V, Salnikov ES, Bechinger B, Mousseau N. Probing the Huntingtin 1-17 membrane anchor on a phospholipid bilayer by using all-atom simulations. Biophys J 2016; 108:1187-98. [PMID: 25762330 DOI: 10.1016/j.bpj.2015.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/18/2015] [Accepted: 02/02/2015] [Indexed: 12/12/2022] Open
Abstract
Mislocalization and aggregation of the huntingtin protein are related to Huntington's disease. Its first exon-more specifically the first 17 amino acids (Htt17)-is crucial for the physiological and pathological functions of huntingtin. It regulates huntingtin's activity through posttranslational modifications and serves as an anchor to membrane-containing organelles of the cell. Recently, structure and orientation of the Htt17 membrane anchor were determined using a combined solution and solid-state NMR approach. This prompted us to refine this model by investigating the dynamics and thermodynamics of this membrane anchor on a POPC bilayer using all-atom, explicit solvent molecular dynamics and Hamiltonian replica exchange. Our simulations are combined with various experimental measurements to generate a high-resolution atomistic model for the huntingtin Htt17 membrane anchor on a POPC bilayer. More precisely, we observe that the single α-helix structure is more stable in the phospholipid membrane than the NMR model obtained in the presence of dodecylphosphocholine detergent micelles. The resulting Htt17 monomer has its hydrophobic plane oriented parallel to the bilayer surface. Our results further unveil the key residues interacting with the membrane in terms of hydrogen bonds, salt-bridges, and nonpolar contributions. We also observe that Htt17 equilibrates at a well-defined insertion depth and that it perturbs the physical properties-order parameter, thickness, and area per lipid-of the bilayer in a manner that could favor its dimerization. Overall, our observations reinforce and refine the NMR measurements on the Htt17 membrane anchor segment of huntingtin that is of fundamental importance to its biological functions.
Collapse
Affiliation(s)
- Sébastien Côté
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires, Université de Montréal, Montréal, Québec, Canada.
| | - Vincent Binette
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires, Université de Montréal, Montréal, Québec, Canada
| | - Evgeniy S Salnikov
- Université de Strasbourg/Centre National de la Recherche Scientifique, UMR7177, Institut de Chimie, Strasbourg, France
| | - Burkhard Bechinger
- Université de Strasbourg/Centre National de la Recherche Scientifique, UMR7177, Institut de Chimie, Strasbourg, France
| | - Normand Mousseau
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
42
|
Trinucleotide repeats and protein folding and disease: the perspective from studies with the androgen receptor. Future Sci OA 2015; 1:FSO47. [PMID: 28031874 PMCID: PMC5137883 DOI: 10.4155/fso.15.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The androgen receptor (AR), a ligand activated transcription factor plays a number of roles in reproduction, homeostasis and pathogenesis of disease. It has two major polymorphic sequences; a polyglutamine and a polyglycine repeat that determine the length of the protein and influence receptor folding, structure and function. Here, we review the role the folding of the AR plays in the pathogenesis of spinal-bulbar muscular atrophy (SBMA), a neuromuscular degenerative disease arising from expansion of the polyglutamine repeat. We discuss current management for SBMA patients and how research on AR structure function may lead to future drug treatments.
Collapse
|
43
|
Bustamante MB, Ansaloni A, Pedersen JF, Azzollini L, Cariulo C, Wang ZM, Petricca L, Verani M, Puglisi F, Park H, Lashuel H, Caricasole A. Detection of huntingtin exon 1 phosphorylation by Phos-Tag SDS-PAGE: Predominant phosphorylation on threonine 3 and regulation by IKKβ. Biochem Biophys Res Commun 2015; 463:1317-22. [DOI: 10.1016/j.bbrc.2015.06.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
|
44
|
De Genst E, Chirgadze DY, Klein FAC, Butler DC, Matak-Vinković D, Trottier Y, Huston JS, Messer A, Dobson CM. Structure of a single-chain Fv bound to the 17 N-terminal residues of huntingtin provides insights into pathogenic amyloid formation and suppression. J Mol Biol 2015; 427:2166-78. [PMID: 25861763 PMCID: PMC4451460 DOI: 10.1016/j.jmb.2015.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/17/2015] [Accepted: 03/30/2015] [Indexed: 10/25/2022]
Abstract
Huntington's disease is triggered by misfolding of fragments of mutant forms of the huntingtin protein (mHTT) with aberrant polyglutamine expansions. The C4 single-chain Fv antibody (scFv) binds to the first 17 residues of huntingtin [HTT(1-17)] and generates substantial protection against multiple phenotypic pathologies in situ and in vivo. We show in this paper that C4 scFv inhibits amyloid formation by exon1 fragments of huntingtin in vitro and elucidate the structural basis for this inhibition and protection by determining the crystal structure of the complex of C4 scFv and HTT(1-17). The peptide binds with residues 3-11 forming an amphipathic helix that makes contact with the antibody fragment in such a way that the hydrophobic face of this helix is shielded from the solvent. Residues 12-17 of the peptide are in an extended conformation and interact with the same region of another C4 scFv:HTT(1-17) complex in the asymmetric unit, resulting in a β-sheet interface within a dimeric C4 scFv:HTT(1-17) complex. The nature of this scFv-peptide complex was further explored in solution by high-resolution NMR and physicochemical analysis of species in solution. The results provide insights into the manner in which C4 scFv inhibits the aggregation of HTT, and hence into its therapeutic potential, and suggests a structural basis for the initial interactions that underlie the formation of disease-associated amyloid fibrils by HTT.
Collapse
Affiliation(s)
- Erwin De Genst
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Dimitri Y Chirgadze
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Fabrice A C Klein
- Translational Medicine and Neurogenetics Programme, Institute of Genetics and Molecular and Cellular Biology, 67404 Illkirch Cédex, France
| | - David C Butler
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA; Department of Biomedical Sciences, University at Albany, Albany, NY 12208, USA
| | - Dijana Matak-Vinković
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Yvon Trottier
- Translational Medicine and Neurogenetics Programme, Institute of Genetics and Molecular and Cellular Biology, 67404 Illkirch Cédex, France
| | - James S Huston
- James S. Huston, The Antibody Society, Newton, MA 02462, USA
| | - Anne Messer
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA; Department of Biomedical Sciences, University at Albany, Albany, NY 12208, USA
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
45
|
Involvement of non-polyalanine (polyA) residues in aggregation of polyA proteins: Clue for inhibition of aggregation. Comput Biol Chem 2014; 53PB:318-323. [PMID: 25462338 DOI: 10.1016/j.compbiolchem.2014.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/11/2014] [Accepted: 11/11/2014] [Indexed: 11/21/2022]
Abstract
Presence of polyalanine (polyA) stretches in some proteins is found to be associated with their aggregation, which causes disorders in various developmental processes. In this work, inherent propensities towards aggregation of some residues, which are not part of the polyA stretches, have been identified by using the primary sequences of seven polyA proteins with the help of Betascan, PASTA and Tango programs and explored unambiguously. This provides a basis for proposing molecular mechanism of this type of aggregation. Reported suppression of aggregation of polyA proteins by chaperones like HSP40 and HSP70 is substantiated through molecular docking. The hydrophobic residues of identified aggregating region are found to be interacting with hydrophobic surface of chaperones. This suggests a crucial clue for possible way to inhibit the aggregation of such proteins.
Collapse
|
46
|
Fodale V, Kegulian NC, Verani M, Cariulo C, Azzollini L, Petricca L, Daldin M, Boggio R, Padova A, Kuhn R, Pacifici R, Macdonald D, Schoenfeld RC, Park H, Isas JM, Langen R, Weiss A, Caricasole A. Polyglutamine- and temperature-dependent conformational rigidity in mutant huntingtin revealed by immunoassays and circular dichroism spectroscopy. PLoS One 2014; 9:e112262. [PMID: 25464275 PMCID: PMC4251833 DOI: 10.1371/journal.pone.0112262] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/06/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In Huntington's disease, expansion of a CAG triplet repeat occurs in exon 1 of the huntingtin gene (HTT), resulting in a protein bearing>35 polyglutamine residues whose N-terminal fragments display a high propensity to misfold and aggregate. Recent data demonstrate that polyglutamine expansion results in conformational changes in the huntingtin protein (HTT), which likely influence its biological and biophysical properties. Developing assays to characterize and measure these conformational changes in isolated proteins and biological samples would advance the testing of novel therapeutic approaches aimed at correcting mutant HTT misfolding. Time-resolved Förster energy transfer (TR-FRET)-based assays represent high-throughput, homogeneous, sensitive immunoassays widely employed for the quantification of proteins of interest. TR-FRET is extremely sensitive to small distances and can therefore provide conformational information based on detection of exposure and relative position of epitopes present on the target protein as recognized by selective antibodies. We have previously reported TR-FRET assays to quantify HTT proteins based on the use of antibodies specific for different amino-terminal HTT epitopes. Here, we investigate the possibility of interrogating HTT protein conformation using these assays. METHODOLOGY/PRINCIPAL FINDINGS By performing TR-FRET measurements on the same samples (purified recombinant proteins or lysates from cells expressing HTT fragments or full length protein) at different temperatures, we have discovered a temperature-dependent, reversible, polyglutamine-dependent conformational change of wild type and expanded mutant HTT proteins. Circular dichroism spectroscopy confirms the temperature and polyglutamine-dependent change in HTT structure, revealing an effect of polyglutamine length and of temperature on the alpha-helical content of the protein. CONCLUSIONS/SIGNIFICANCE The temperature- and polyglutamine-dependent effects observed with TR-FRET on HTT proteins represent a simple, scalable, quantitative and sensitive assay to identify genetic and pharmacological modulators of mutant HTT conformation, and potentially to assess the relevance of conformational changes during onset and progression of Huntington's disease.
Collapse
Affiliation(s)
| | - Natalie C. Kegulian
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | | | | | | | | | | | | | | | | | - Robert Pacifici
- CHDI Management/CHDI Foundation, Los Angeles, California, United States of America
| | - Douglas Macdonald
- CHDI Management/CHDI Foundation, Los Angeles, California, United States of America
| | - Ryan C. Schoenfeld
- CHDI Management/CHDI Foundation, Los Angeles, California, United States of America
| | - Hyunsun Park
- CHDI Management/CHDI Foundation, Los Angeles, California, United States of America
| | - J. Mario Isas
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ralf Langen
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (RL); (AW); (AC)
| | - Andreas Weiss
- IRBM Promidis, Pomezia, Rome, Italy
- * E-mail: (RL); (AW); (AC)
| | | |
Collapse
|
47
|
Hoffner G, Djian P. Polyglutamine Aggregation in Huntington Disease: Does Structure Determine Toxicity? Mol Neurobiol 2014; 52:1297-1314. [PMID: 25336039 DOI: 10.1007/s12035-014-8932-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/09/2014] [Indexed: 01/14/2023]
Abstract
Huntington disease is a dominantly inherited disease of the central nervous system. The mutational expansion of polyglutamine beyond a critical length produces a toxic gain of function in huntingtin and results in neuronal death. In the course of the disease, expanded huntingtin is proteolyzed, becomes abnormally folded, and accumulates in oligomers, fibrils, and microscopic inclusions. The aggregated forms of the expanded protein are structurally diverse. Structural heterogeneity may explain why polyglutamine-containing aggregates could paradoxically be either toxic or neuroprotective. When defined, the toxic structures could then specifically be targeted by prophylactic or therapeutic drugs aimed at inhibiting polyglutamine aggregation.
Collapse
Affiliation(s)
- Guylaine Hoffner
- Laboratoire de Physiologie Cérébrale, Centre National de la Recherche Scientifique, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France
| | - Philippe Djian
- Laboratoire de Physiologie Cérébrale, Centre National de la Recherche Scientifique, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| |
Collapse
|
48
|
Baksi S, Basu S, Mukhopadhyay D. Mutant huntingtin replaces Gab1 and interacts with C-terminal SH3 domain of growth factor receptor binding protein 2 (Grb2). Neurosci Res 2014; 87:77-83. [DOI: 10.1016/j.neures.2014.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/18/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
|
49
|
De Genst E, Messer A, Dobson CM. Antibodies and protein misfolding: From structural research tools to therapeutic strategies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1907-1919. [PMID: 25194824 DOI: 10.1016/j.bbapap.2014.08.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/21/2014] [Accepted: 08/27/2014] [Indexed: 01/24/2023]
Abstract
Protein misfolding disorders, including the neurodegenerative conditions Alzheimer's disease (AD) and Parkinson's disease (PD) represent one of the major medical challenges or our time. The underlying molecular mechanisms that govern protein misfolding and its links with disease are very complex processes, involving the formation of transiently populated but highly toxic molecular species within the crowded environment of the cell and tissue. Nevertheless, much progress has been made in understanding these events in recent years through innovative experiments and therapeutic strategies, and in this review we present an overview of the key roles of antibodies and antibody fragments in these endeavors. We discuss in particular how these species are being used in combination with a variety of powerful biochemical and biophysical methodologies, including a range of spectroscopic and microscopic techniques applied not just in vitro but also in situ and in vivo, both to gain a better understanding of the mechanistic nature of protein misfolding and aggregation and also to design novel therapeutic strategies to combat the family of diseases with which they are associated. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Erwin De Genst
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Anne Messer
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA; Department of Biomedical Sciences, University at Albany, Albany, NY 12208, USA
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
50
|
Wen J, Scoles DR, Facelli JC. Structure prediction of polyglutamine disease proteins: comparison of methods. BMC Bioinformatics 2014; 15 Suppl 7:S11. [PMID: 25080018 PMCID: PMC4110737 DOI: 10.1186/1471-2105-15-s7-s11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
Background The expansion of polyglutamine (poly-Q) repeats in several unrelated proteins is associated with at least ten neurodegenerative diseases. The length of the poly-Q regions plays an important role in the progression of the diseases. The number of glutamines (Q) is inversely related to the onset age of these polyglutamine diseases, and the expansion of poly-Q repeats has been associated with protein misfolding. However, very little is known about the structural changes induced by the expansion of the repeats. Computational methods can provide an alternative to determine the structure of these poly-Q proteins, but it is important to evaluate their performance before large scale prediction work is done. Results In this paper, two popular protein structure prediction programs, I-TASSER and Rosetta, have been used to predict the structure of the N-terminal fragment of a protein associated with Huntington's disease with 17 glutamines. Results show that both programs have the ability to find the native structures, but I-TASSER performs better for the overall task. Conclusions Both I-TASSER and Rosetta can be used for structure prediction of proteins with poly-Q repeats. Knowledge of poly-Q structure may significantly contribute to development of therapeutic strategies for poly-Q diseases.
Collapse
|