1
|
Pooja, Thapa N, Rani R, Shanmugasundaram K, Jhandai P, Rakshita, Bhattacharya TK, Singha H. Antibody isotyping and cytokine profiling in natural cases of Burkholderia mallei infection (glanders) in equines. Cytokine 2025; 185:156799. [PMID: 39549470 DOI: 10.1016/j.cyto.2024.156799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/18/2024]
Abstract
OBJECTIVES Immunological aspects of B. mallei infection were rarely studied in natural cases of equines. The present study was conducted to determine IgG, IgM, IgA and IgG (T) titre against recombinant Hcp1, TssA and TssB proteins and PilA-Hcp1-TssN-BipD and BpaB-BpaC- BMAA0553 chimeras and cytokine responses in glanders affected equine serum. METHODS The study was conducted on serum samples collected from 151 glanders positive equines which include horses (n = 134), mules (n = 16), and donkeys (n = 01). The IgM, IgG, IgA and IgG (T) titre were determined against recombinant antigens by indirect ELISA and interleukin(IL)-1β, IL-17, IL-6, tumor necrosis factor alpha(TNF-α), monocyte chemoattractant protein 1 (MCP-1) and interferon gamma (IFN-γ) responses were measured by commercial ELISA kits. RESULTS The study showed that glanders affected equines elicited strong antibody response against Hcp1, moderate responses against TssA and TssB, and weak responses against two chimeras. Among the cytokines, IL-1β, MCP-1, IL-17 and IL-6 concentration were significantly higher in glanders affected equine serum. CONCLUSION We found that IgG antibody titre was higher than IgM, IgG (T) and IgA isotypes and Hcp1 was most predominant antibody inducers in comparison to TssA, TssB, PilA-Hcp1-TssN-BipD and BpaB-BpaC-T2SS proteins. The elevated level of IL-1β, MCP-1, IL-17, IL-6, IFN-γ and TNF-α observed in this study support the important role of this cytokines for augmenting cellular defence by recruitment of macrophages, neutrophil and dendritic cells against B. mallei infection. Further studies should be conducted to determine memory cell responses in natural cases of equine glanders using recombinant B. mallei proteins for identifying well-characterized immuno-protective vaccine candidates.
Collapse
Affiliation(s)
- Pooja
- ICAR- National Research Centre in Equines, Sirsa Road, Hisar, 125001 Haryana, India
| | | | - Radha Rani
- ICAR- National Research Centre in Equines, Sirsa Road, Hisar, 125001 Haryana, India
| | - Karuppusamy Shanmugasundaram
- National Centre for Veterinary Type Cultures, ICAR- National Research Centre in Equines, Sirsa Road, Hisar, 125001 Haryana, India
| | - Punit Jhandai
- ICAR- National Research Centre in Equines, Sirsa Road, Hisar, 125001 Haryana, India
| | - Rakshita
- ICAR- National Research Centre in Equines, Sirsa Road, Hisar, 125001 Haryana, India
| | | | - Harisankar Singha
- ICAR- National Research Centre in Equines, Sirsa Road, Hisar, 125001 Haryana, India.
| |
Collapse
|
2
|
Le TD, Nguyen PD, Korkin D, Thieu T. PHILM2Web: A high-throughput database of macromolecular host–pathogen interactions on the Web. Database (Oxford) 2022; 2022:6625823. [PMID: 35776535 PMCID: PMC9248916 DOI: 10.1093/database/baac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022]
Abstract
During infection, the pathogen’s entry into the host organism, breaching the host immune defense, spread and multiplication are frequently mediated by multiple interactions between the host and pathogen proteins. Systematic studying of host–pathogen interactions (HPIs) is a challenging task for both experimental and computational approaches and is critically dependent on the previously obtained knowledge about these interactions found in the biomedical literature. While several HPI databases exist that manually filter HPI protein–protein interactions from the generic databases and curated experimental interactomic studies, no comprehensive database on HPIs obtained from the biomedical literature is currently available. Here, we introduce a high-throughput literature-mining platform for extracting HPI data that includes the most comprehensive to date collection of HPIs obtained from the PubMed abstracts. Our HPI data portal, PHILM2Web (Pathogen–Host Interactions by Literature Mining on the Web), integrates an automatically generated database of interactions extracted by PHILM, our high-precision HPI literature-mining algorithm. Currently, the database contains 23 581 generic HPIs between 157 host and 403 pathogen organisms from 11 609 abstracts. The interactions were obtained from processing 608 972 PubMed abstracts, each containing mentions of at least one host and one pathogen organisms. In response to the coronavirus disease 2019 (COVID-19) pandemic, we also utilized PHILM to process 25 796 PubMed abstracts obtained by the same query as the COVID-19 Open Research Dataset. This COVID-19 processing batch resulted in 257 HPIs between 19 host and 31 pathogen organisms from 167 abstracts. The access to the entire HPI dataset is available via a searchable PHILM2Web interface; scientists can also download the entire database in bulk for offline processing. Database URL: http://philm2web.live
Collapse
Affiliation(s)
- Tuan-Dung Le
- Department of Computer Science, Oklahoma State University , Stillwater, OK, USA
| | - Phuong D Nguyen
- Department of Biochemistry and Molecular Biology, Oklahoma State University , Stillwater, OK, USA
| | - Dmitry Korkin
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute , Worcester, MA, USA
| | - Thanh Thieu
- Machine Learning Department, Moffitt Cancer Center and Research Institute , Tampa, FL, USA
| |
Collapse
|
3
|
Saini S, Singha H, Shanmugasundaram K, Tripathi BN. Characterization of immunoglobulin and cytokine responses in Burkholderia mallei infected equids. Microb Pathog 2021; 162:105310. [PMID: 34838612 DOI: 10.1016/j.micpath.2021.105310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 01/30/2023]
Abstract
Burkholderia mallei causes a highly fatal infectious disease in equines known as glanders. It is one of the OIE listed notifiable diseases, which entails strict control policy measures once B. mallei infection is confirmed in the susceptible hosts. Humans, especially equine handlers, veterinary professionals and laboratory workers are at greater risk to acquire the B. mallei infection directly through prolonged contact with glanderous equines, and indirectly through unprotected handling of B. mallei contaminated materials. Further, natural resistance of B. mallei to multiple antibiotics, aerosol transmission, lack of effective vaccine and treatment make this organism a potential agent of biological warfare. Results of experimental B. mallei infection in mouse and non-human primates and immunization with live attenuated B. mallei strains demonstrated that activation of early innate and adaptive immune responses play a critical role in controlling B. mallei infection. However, the immune response elicited by the primary hosts (equids) B. mallei infection is poorly understood. Therefore, we aimed to investigate immune responses in glanders affected horses (n = 23) and mules (n = 1). In this study, chronically infected equids showed strong humoral responses (IgM, IgG and IgA) specific to B. mallei type 6 secretory proteins such as Hcp1, TssA and TssB. The infected equids also elicited robust cellular responses characterized by significantly elevated levels of IFN-γ, TNF-α, IL-12, IL-17 and IL-6 in PBMCs. In addition, stimulation of equine PBMCs by Hcp1 resulted in the further elevation of these cytokines. Thus, the present study indicated that antibody response and T helper cell (Th) type 1-associated cytokines were the salient features of chronic B. mallei infection in horses. The immune responses also suggest further evaluation of these proteins as potential vaccine candidates.
Collapse
Affiliation(s)
- Sheetal Saini
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar, 125001, Haryana, India
| | - Harisankar Singha
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar, 125001, Haryana, India.
| | - Karuppusamy Shanmugasundaram
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Sirsa Road, Hisar, 125001, Haryana, India
| | - Bhupendra Nath Tripathi
- Division of Animal Sciences, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110 001, India.
| |
Collapse
|
4
|
Das JK, Roy S, Guzzi PH. Analyzing host-viral interactome of SARS-CoV-2 for identifying vulnerable host proteins during COVID-19 pathogenesis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 93:104921. [PMID: 34004362 PMCID: PMC8123524 DOI: 10.1016/j.meegid.2021.104921] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
The development of therapeutic targets for COVID-19 relies on understanding the molecular mechanism of pathogenesis. Identifying genes or proteins involved in the infection mechanism is the key to shedding light on the complex molecular mechanisms. The combined effort of many laboratories distributed throughout the world has produced protein and genetic interactions. We integrated available results and obtained a host protein-protein interaction network composed of 1432 human proteins. Next, we performed network centrality analysis to identify critical proteins in the derived network. Finally, we performed a functional enrichment analysis of central proteins. We observed that the identified proteins are primarily associated with several crucial pathways, including cellular process, signaling transduction, neurodegenerative diseases. We focused on the proteins that are involved in human respiratory tract diseases. We highlighted many potential therapeutic targets, including RBX1, HSPA5, ITCH, RAB7A, RAB5A, RAB8A, PSMC5, CAPZB, CANX, IGF2R, and HSPA1A, which are central and also associated with multiple diseases.
Collapse
Affiliation(s)
- Jayanta Kumar Das
- Department of Pediatrics, School of Medicine, Johns Hopkins University, MD, USA
| | - Swarup Roy
- Network Reconstruction & Analysis (NetRA) Lab, Department of Computer Applications, Sikkim University, Gangtok, India,Corresponding authors
| | - Pietro Hiram Guzzi
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy,Corresponding authors
| |
Collapse
|
5
|
Das JK, Chakraborty S, Roy S. A scheme for inferring viral-host associations based on codon usage patterns identifies the most affected signaling pathways during COVID-19. J Biomed Inform 2021; 118:103801. [PMID: 33965637 PMCID: PMC8102073 DOI: 10.1016/j.jbi.2021.103801] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022]
Abstract
Understanding the molecular mechanism of COVID-19 pathogenesis helps in the rapid therapeutic target identification. Usually, viral protein targets host proteins in an organized fashion. The expression of any viral gene depends mostly on the host translational machinery. Recent studies report the great significance of codon usage biases in establishing host-viral protein–protein interactions (PPI). Exploring the codon usage patterns between a pair of co-evolved host and viral proteins may present novel insight into the host-viral protein interactomes during disease pathogenesis. Leveraging the similarity in codon usage patterns, we propose a computational scheme to recreate the host-viral protein–protein interaction network. We use host proteins from seventeen (17) essential signaling pathways for our current work towards understanding the possible targeting mechanism of SARS-CoV-2 proteins. We infer both negatively and positively interacting edges in the network. Further, extensive analysis is performed to understand the host PPI network topologically and the attacking behavior of the viral proteins. Our study reveals that viral proteins mostly utilize codons, rare in the targeted host proteins (negatively correlated interaction). Among them, non-structural proteins, NSP3 and structural protein, Spike (S), are the most influential proteins in interacting with multiple host proteins. While ranking the most affected pathways, MAPK pathways observe to be the worst affected during the SARS-CoV-2 infection. Several proteins participating in multiple pathways are highly central in host PPI and mostly targeted by multiple viral proteins. We observe many potential targets (host proteins) from the affected pathways associated with the various drug molecules, including Arsenic trioxide, Dexamethasone, Hydroxychloroquine, Ritonavir, and Interferon beta, which are either under clinical trial or in use during COVID-19.
Collapse
Affiliation(s)
- Jayanta Kumar Das
- Department of Pediatrics, Johns Hopkins University, School of Medicine, MD, USA
| | | | - Swarup Roy
- Network Reconstruction & Analysis (NetRA) Lab, Department of Computer Applications, Sikkim University, Gangtok, India.
| |
Collapse
|
6
|
Prasasty VD, Hutagalung RA, Gunadi R, Sofia DY, Rosmalena R, Yazid F, Sinaga E. Prediction of human-Streptococcus pneumoniae protein-protein interactions using logistic regression. Comput Biol Chem 2021; 92:107492. [PMID: 33964803 DOI: 10.1016/j.compbiolchem.2021.107492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023]
Abstract
Streptococcus pneumoniae is a major cause of mortality in children under five years old. In recent years, the emergence of antibiotic-resistant strains of S. pneumoniae increases the threat level of this pathogen. For that reason, the exploration of S. pneumoniae protein virulence factors should be considered in developing new drugs or vaccines, for instance by the analysis of host-pathogen protein-protein interactions (HP-PPIs). In this research, prediction of protein-protein interactions was performed with a logistic regression model with the number of protein domain occurrences as features. By utilizing HP-PPIs of three different pathogens as training data, the model achieved 57-77 % precision, 64-75 % recall, and 96-98 % specificity. Prediction of human-S. pneumoniae protein-protein interactions using the model yielded 5823 interactions involving thirty S. pneumoniae proteins and 324 human proteins. Pathway enrichment analysis showed that most of the pathways involved in the predicted interactions are immune system pathways. Network topology analysis revealed β-galactosidase (BgaA) as the most central among the S. pneumoniae proteins in the predicted HP-PPI networks, with a degree centrality of 1.0 and a betweenness centrality of 0.451853. Further experimental studies are required to validate the predicted interactions and examine their roles in S. pneumoniae infection.
Collapse
Affiliation(s)
- Vivitri Dewi Prasasty
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, 12930, Indonesia.
| | - Rory Anthony Hutagalung
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, 12930, Indonesia
| | - Reinhart Gunadi
- Department of Biology, Faculty of Life Sciences, Universitas Surya, Tangerang, Banten, 15143, Indonesia
| | - Dewi Yustika Sofia
- Department of Biology, Faculty of Life Sciences, Universitas Surya, Tangerang, Banten, 15143, Indonesia
| | - Rosmalena Rosmalena
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Fatmawaty Yazid
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Ernawati Sinaga
- Faculty of Biology, Universitas Nasional, Jakarta, 12520, Indonesia.
| |
Collapse
|
7
|
Shropshire H, Jones RA, Aguilo-Ferretjans MM, Scanlan DJ, Chen Y. Proteomics insights into the Burkholderia cenocepacia phosphorus stress response. Environ Microbiol 2021; 23:5069-5086. [PMID: 33684254 DOI: 10.1111/1462-2920.15451] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/02/2021] [Indexed: 11/26/2022]
Abstract
The Burkholderia cepacia complex is a group of Burkholderia species that are opportunistic pathogens causing high mortality rates in patients with cystic fibrosis. An environmental stress often encountered by these soil-dwelling and pathogenic bacteria is phosphorus limitation, an essential element for cellular processes. Here, we describe cellular and extracellular proteins differentially regulated between phosphate-deplete (0 mM, no added phosphate) and phosphate-replete (1 mM) growth conditions using a comparative proteomics (LC-MS/MS) approach. We observed a total of 128 and 65 unique proteins were downregulated and upregulated respectively, in the B. cenocepacia proteome. Of those downregulated proteins, many have functions in amino acid transport/metabolism. We have identified 24 upregulated proteins that are directly/indirectly involved in inorganic phosphate or organic phosphorus acquisition. Also, proteins involved in virulence and antimicrobial resistance were differentially regulated, suggesting B. cenocepacia experiences a dramatic shift in metabolism under these stress conditions. Overall, this study provides a baseline for further research into the biology of Burkholderia in response to phosphorus stress.
Collapse
Affiliation(s)
- Holly Shropshire
- BBSRC Midlands Integrative Biosciences Training Partnership, University of Warwick, Coventry, CV4 7AL, UK.,School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Rebekah A Jones
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
8
|
Saha D, Kundu S. A Molecular Interaction Map of Klebsiella pneumoniae and Its Human Host Reveals Potential Mechanisms of Host Cell Subversion. Front Microbiol 2021; 12:613067. [PMID: 33679637 PMCID: PMC7930833 DOI: 10.3389/fmicb.2021.613067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Klebsiella pneumoniae is a leading cause of pneumonia and septicemia across the world. The rapid emergence of multidrug-resistant K. pneumoniae strains necessitates the discovery of effective drugs against this notorious pathogen. However, there is a dearth of knowledge on the mechanisms by which this deadly pathogen subverts host cellular machinery. To fill this knowledge gap, our study attempts to identify the potential mechanisms of host cell subversion by building a K. pneumoniae-human interactome based on rigorous computational methodology. The putative host targets inferred from the predicted interactome were found to be functionally enriched in the host's immune surveillance system and allied functions like apoptosis, hypoxia, etc. A multifunctionality-based scoring system revealed P53 as the most multifunctional protein among host targets accompanied by HIF1A and STAT1. Moreover, mining of host protein-protein interaction (PPI) network revealed that host targets interact among themselves to form a network (TTPPI), where P53 and CDC5L occupy a central position. The TTPPI is composed of several inter complex interactions which indicate that K. pneumoniae might disrupt functional coordination between these protein complexes through targeting of P53 and CDC5L. Furthermore, we identified four pivotal K. pneumoniae-targeted transcription factors (TTFs) that are part of TTPPI and are involved in generating host's transcriptional response to K. pneumoniae-mediated sepsis. In a nutshell, our study identifies some of the pivotal molecular targets of K. pneumoniae which primarily correlate to the physiological response of host during K. pneumoniae-mediated sepsis.
Collapse
Affiliation(s)
- Deeya Saha
- Department of Biophysics, Molecular Biology and Bioinformatics, Faculty of Science, University of Calcutta, Kolkata, India
| | - Sudip Kundu
- Department of Biophysics, Molecular Biology and Bioinformatics, Faculty of Science, University of Calcutta, Kolkata, India
| |
Collapse
|
9
|
Pathogen and Host-Pathogen Protein Interactions Provide a Key to Identify Novel Drug Targets. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11607-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
10
|
González‐Fuente M, Carrère S, Monachello D, Marsella BG, Cazalé A, Zischek C, Mitra RM, Rezé N, Cottret L, Mukhtar MS, Lurin C, Noël LD, Peeters N. EffectorK, a comprehensive resource to mine for Ralstonia, Xanthomonas, and other published effector interactors in the Arabidopsis proteome. MOLECULAR PLANT PATHOLOGY 2020; 21:1257-1270. [PMID: 33245626 PMCID: PMC7488465 DOI: 10.1111/mpp.12965] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 05/16/2023]
Abstract
Pathogens deploy effector proteins that interact with host proteins to manipulate the host physiology to the pathogen's own benefit. However, effectors can also be recognized by host immune proteins, leading to the activation of defence responses. Effectors are thus essential components in determining the outcome of plant-pathogen interactions. Despite major efforts to decipher effector functions, our current knowledge on effector biology is scattered and often limited. In this study, we conducted two systematic large-scale yeast two-hybrid screenings to detect interactions between Arabidopsis thaliana proteins and effectors from two vascular bacterial pathogens: Ralstonia pseudosolanacearum and Xanthomonas campestris. We then constructed an interactomic network focused on Arabidopsis and effector proteins from a wide variety of bacterial, oomycete, fungal, and invertebrate pathogens. This network contains our experimental data and protein-protein interactions from 2,035 peer-reviewed publications (48,200 Arabidopsis-Arabidopsis and 1,300 Arabidopsis-effector protein interactions). Our results show that effectors from different species interact with both common and specific Arabidopsis interactors, suggesting dual roles as modulators of generic and adaptive host processes. Network analyses revealed that effector interactors, particularly "effector hubs" and bacterial core effector interactors, occupy important positions for network organization, as shown by their larger number of protein interactions and centrality. These interactomic data were incorporated in EffectorK, a new graph-oriented knowledge database that allows users to navigate the network, search for homology, or find possible paths between host and/or effector proteins. EffectorK is available at www.effectork.org and allows users to submit their own interactomic data.
Collapse
Affiliation(s)
- Manuel González‐Fuente
- Laboratoire des Interactions Plantes Micro‐organismes, INRAECNRSUniversité de ToulouseCastanet‐TolosanFrance
| | - Sébastien Carrère
- Laboratoire des Interactions Plantes Micro‐organismes, INRAECNRSUniversité de ToulouseCastanet‐TolosanFrance
| | - Dario Monachello
- Institut des Sciences des Plantes de Paris SaclayUEVEINRAECNRSUniversité Paris SudUniversité Paris‐SaclayGif‐sur‐YvetteFrance
- Université de ParisGif‐sur‐YvetteFrance
| | | | - Anne‐Claire Cazalé
- Laboratoire des Interactions Plantes Micro‐organismes, INRAECNRSUniversité de ToulouseCastanet‐TolosanFrance
| | - Claudine Zischek
- Laboratoire des Interactions Plantes Micro‐organismes, INRAECNRSUniversité de ToulouseCastanet‐TolosanFrance
| | - Raka M. Mitra
- Department of BiologyCarleton CollegeNorthfieldMNUSA
| | - Nathalie Rezé
- Institut des Sciences des Plantes de Paris SaclayUEVEINRAECNRSUniversité Paris SudUniversité Paris‐SaclayGif‐sur‐YvetteFrance
- Université de ParisGif‐sur‐YvetteFrance
| | - Ludovic Cottret
- Laboratoire des Interactions Plantes Micro‐organismes, INRAECNRSUniversité de ToulouseCastanet‐TolosanFrance
| | - M. Shahid Mukhtar
- Department of BiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Claire Lurin
- Institut des Sciences des Plantes de Paris SaclayUEVEINRAECNRSUniversité Paris SudUniversité Paris‐SaclayGif‐sur‐YvetteFrance
- Université de ParisGif‐sur‐YvetteFrance
| | - Laurent D. Noël
- Laboratoire des Interactions Plantes Micro‐organismes, INRAECNRSUniversité de ToulouseCastanet‐TolosanFrance
| | - Nemo Peeters
- Laboratoire des Interactions Plantes Micro‐organismes, INRAECNRSUniversité de ToulouseCastanet‐TolosanFrance
| |
Collapse
|
11
|
Loaiza CD, Duhan N, Lister M, Kaundal R. In silico prediction of host-pathogen protein interactions in melioidosis pathogen Burkholderia pseudomallei and human reveals novel virulence factors and their targets. Brief Bioinform 2020; 22:5842243. [PMID: 32444871 DOI: 10.1093/bib/bbz162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
The aerobic, Gram-negative motile bacillus, Burkholderia pseudomallei is a facultative intracellular bacterium causing melioidosis, a critical disease of public health importance, which is widely endemic in the tropics and subtropical regions of the world. Melioidosis is associated with high case fatality rates in animals and humans; even with treatment, its mortality is 20-50%. It also infects plants and is designated as a biothreat agent. B. pseudomallei is pathogenic due to its ability to invade, resist factors in serum and survive intracellularly. Despite its importance, to date only a few effector proteins have been functionally characterized, and there is not much information regarding the host-pathogen protein-protein interactions (PPI) of this system, which are important to studying infection mechanisms and thereby develop prevention measures. We explored two computational approaches, the homology-based interolog and the domain-based method, to predict genome-scale host-pathogen interactions (HPIs) between two different strains of B. pseudomallei (prototypical, and highly virulent) and human. In total, 76 335 common HPIs (between the two strains) were predicted involving 8264 human and 1753 B. pseudomallei proteins. Among the unique PPIs, 14 131 non-redundant HPIs were found to be unique between the prototypical strain and human, compared to 3043 non-redundant HPIs between the highly virulent strain and human. The protein hubs analysis showed that most B. pseudomallei proteins formed a hub with human dnaK complex proteins associated with tuberculosis, a disease similar in symptoms to melioidosis. In addition, drug-binding and carbohydrate-binding mechanisms were found overrepresented within the host-pathogen network, and metabolic pathways were frequently activated according to the pathway enrichment. Subcellular localization analysis showed that most of the pathogen proteins are targeting human proteins inside cytoplasm and nucleus. We also discovered the host targets of the drug-related pathogen proteins and proteins that form T3SS and T6SS in B. pseudomallei. Additionally, a comparison between the unique PPI patterns present in the prototypical and highly virulent strains was performed. The current study is the first report on developing a genome-scale host-pathogen protein interaction networks between the human and B. pseudomallei, a critical biothreat agent. We have identified novel virulence factors and their interacting partners in the human proteome. These PPIs can be further validated by high-throughput experiments and may give new insights on how B. pseudomallei interacts with its host, which will help medical researchers in developing better prevention measures.
Collapse
Affiliation(s)
- Cristian D Loaiza
- Center for Integrated BioSystems/Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, USA
| | - Naveen Duhan
- Center for Integrated BioSystems/Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, USA
| | - Matthew Lister
- Bioinformatics Facility, Center for Integrated BioSystems, Utah State University, USA
| | - Rakesh Kaundal
- Department of Plants, Soils, and Climate/Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322 USA
| |
Collapse
|
12
|
Bose T, Venkatesh KV, Mande SS. Investigating host-bacterial interactions among enteric pathogens. BMC Genomics 2019; 20:1022. [PMID: 31881845 PMCID: PMC6935094 DOI: 10.1186/s12864-019-6398-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/15/2019] [Indexed: 01/07/2023] Open
Abstract
Background In 2017, World Health Organization (WHO) published a catalogue of 12 families of antibiotic-resistant “priority pathogens” that are posing the greatest threats to human health. Six of these dreaded pathogens are known to infect the human gastrointestinal system. In addition to causing gastrointestinal and systemic infections, these pathogens can also affect the composition of other microbes constituting the healthy gut microbiome. Such aberrations in gut microbiome can significantly affect human physiology and immunity. Identifying the virulence mechanisms of these enteric pathogens are likely to help in developing newer therapeutic strategies to counter them. Results Using our previously published in silico approach, we have evaluated (and compared) Host-Pathogen Protein-Protein Interaction (HPI) profiles of four groups of enteric pathogens, namely, different species of Escherichia, Shigella, Salmonella and Vibrio. Results indicate that in spite of genus/ species specific variations, most enteric pathogens possess a common repertoire of HPIs. This core set of HPIs are probably responsible for the survival of these pathogen in the harsh nutrient-limiting environment within the gut. Certain genus/ species specific HPIs were also observed. Conslusions The identified bacterial proteins involved in the core set of HPIs are expected to be helpful in understanding the pathogenesis of these dreaded gut pathogens in greater detail. Possible role of genus/ species specific variations in the HPI profiles in the virulence of these pathogens are also discussed. The obtained results are likely to provide an opportunity for development of novel therapeutic strategies against the most dreaded gut pathogens.
Collapse
Affiliation(s)
- Tungadri Bose
- Bio-Sciences R&D Division, TCS Innovation Labs, Tata Consultancy Services Limited, Pune, India.,Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - K V Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sharmila S Mande
- Bio-Sciences R&D Division, TCS Innovation Labs, Tata Consultancy Services Limited, Pune, India.
| |
Collapse
|
13
|
Aschenbroich SA, Lafontaine ER, Lopez MC, Baker HV, Hogan RJ. Transcriptome analysis of human monocytic cells infected with Burkholderia species and exploration of pentraxin-3 as part of the innate immune response against the organisms. BMC Med Genomics 2019; 12:127. [PMID: 31492148 PMCID: PMC6729079 DOI: 10.1186/s12920-019-0575-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/29/2019] [Indexed: 01/13/2023] Open
Abstract
Background Burkholderia mallei (Bm) is a facultative intracellular bacterial pathogen causing highly-fatal glanders in solipeds and humans. The ability of Bm to thrive intracellularly is thought to be related to exploitation of host immune response-related genes and pathways. Relatively little is known of the molecular strategies employed by this pathogen to modulate these pathways and evade intracellular killing. This manuscript seeks to fill gaps in the understanding of the interface between Bm and innate immunity by examining gene expression changes during infection of host monocytes. Methods The transcriptome of Bm-infected human Mono Mac-6 (MM6) monocytes was profiled on Affymetrix Human Transcriptome GeneChips 2.0. Gene expression changes in Bm-infected monocytes were compared to those of Burkholderia thailandensis (Bt)-infected monocytes and to uninfected monocytes. The resulting dataset was normalized using Robust Multichip Average and subjected to statistical analyses employing a univariate F test with a random variance model. Differentially expressed genes significant at p < 0.001 were subjected to leave-one-out cross-validation studies and 1st and 3rd nearest neighbor prediction model. Significant probe sets were used to populate human pathways in Ingenuity Pathway Analysis, with statistical significance determined by Fisher’s exact test or z-score. Results The Pattern Recognition Receptor (PRR) pathway was represented among significantly enriched immune response-related human canonical pathways, with evidence of upregulation across both infections. Among members of this pathway, pentraxin-3 was significantly upregulated by Bm- or Bt-infected monocytes. Pentraxin-3 (PTX3) was demonstrated to bind to both Bt and Burkholderia pseudomallei (Bp), but not Bm. Subsequent assays did not identify a role for PTX3 in potentiating complement-mediated lysis of Bt or in enhancing phagocytosis or replication of Bt in human monocytes. Conclusion We report on the novel binding of PTX3 to Bt and Bp, with lack of interaction with Bm, suggesting that a possible evasive mechanism by Bm warrants further exploration. We determined that (1) PTX3 may not play a role in activating the lytic pathway of complement in different bacterial species and that (2) the opsonophagocytic properties of PTX3 should be investigated in different primary or immortalized cell lines representing host phagocytes, given lack of binding of PTX3 to MM6 monocytes.
Collapse
Affiliation(s)
- Sophie A Aschenbroich
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA
| | - Eric R Lafontaine
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Maria Cecilia Lopez
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL, 32608, USA
| | - Henry V Baker
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL, 32608, USA
| | - Robert J Hogan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA, 30602, USA. .,Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA, 30602, USA.
| |
Collapse
|
14
|
Chen J, Sun J, Liu X, Liu F, Liu R, Wang J. Structure-based prediction of West Nile virus-human protein-protein interactions. J Biomol Struct Dyn 2018; 37:2310-2321. [PMID: 30044201 DOI: 10.1080/07391102.2018.1479659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, West Nile virus (WNV) has posed a great threat to global human health due to its explosive spread. Studying the protein-protein interactions (PPIs) between WNV and human is beneficial for understanding the pathogenesis of WNV and the immune response mechanism of human against WNV infection at the molecular level. In this study, we identified the human target proteins which interact with WNV based on protein structure similarity, and then the interacting pairs were filtered by the subcellular co-localization information. As a result, a network of 3346 interactions was constructed, involving 6 WNV proteins and 1970 human target proteins. To our knowledge, this is the first predicted interactome for WNV-human. By analyzing the topological properties and evolutionary rates of the human target proteins, it was demonstrated that these proteins tend to be the hub and bottleneck proteins in the human PPI network and are more conserved than the non-target ones. Triplet analysis showed that the target proteins are adjacent to each other in the human PPI network, suggesting that these proteins may have similar biological functions. Further, the functional enrichment analysis indicated that the target proteins are mainly involved in virus process, transcription regulation, cell adhesion, and so on. In addition, the common and specific targets were identified and compared based on the networks between WNV-human and Dengue virus II (DENV2)-human. Finally, by combining topological features and existing drug target information, we identified 30 potential anti-WNV human targets, among which 11 ones were reported to be associated with WNV infection. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jing Chen
- a Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Jun Sun
- a Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Xiangming Liu
- b Gongqing Institute of Science and Technology , Gongqing , People's Republic of China
| | - Feng Liu
- a Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Rong Liu
- a Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Jia Wang
- a Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics , Huazhong Agricultural University , Wuhan , People's Republic of China
| |
Collapse
|
15
|
Abstract
Purpose of review Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this pathogen is considered a potential biological threat agent. This review focuses on the most recent literature highlighting host innate immune response to B. mallei. Recent findings Recent studies focused on elucidating host innate immune responses to the novel mechanisms and virulence factors employed by B. mallei for survival. Studies suggest that pathogen proteins manipulate various cellular processes, including host ubiquitination pathways, phagosomal escape, and actin–cytoskeleton rearrangement. Immune-signaling molecules such as Toll-like receptors, nucleotode-binding oligomerization domain, myeloid differentiation primary response protein 88, and proinflammatory cytokines such as interferon-gamma and tumor necrosis factor-α, play key roles in the induction of innate immune responses. Modifications in B. mallei lipopolysaccharide, in particular, the lipid A acyl groups, stimulate immune responses via Toll-like receptor4 activation that may contribute to persistent infection. Summary Mortality is high because of septicemia and immune pathogenesis with B. mallei exposure. An effective innate immune response is critical to controlling the acute phase of the infection. Both vaccination and therapeutic approaches are necessary for complete protection against B. mallei.
Collapse
|
16
|
Bournaud C, Gillet FX, Murad AM, Bresso E, Albuquerque EVS, Grossi-de-Sá MF. Meloidogyne incognita PASSE-MURAILLE (MiPM) Gene Encodes a Cell-Penetrating Protein That Interacts With the CSN5 Subunit of the COP9 Signalosome. FRONTIERS IN PLANT SCIENCE 2018; 9:904. [PMID: 29997646 PMCID: PMC6029430 DOI: 10.3389/fpls.2018.00904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/07/2018] [Indexed: 05/11/2023]
Abstract
The pathogenicity of phytonematodes relies on secreted virulence factors to rewire host cellular pathways for the benefits of the nematode. In the root-knot nematode (RKN) Meloidogyne incognita, thousands of predicted secreted proteins have been identified and are expected to interact with host proteins at different developmental stages of the parasite. Identifying the host targets will provide compelling evidence about the biological significance and molecular function of the predicted proteins. Here, we have focused on the hub protein CSN5, the fifth subunit of the pleiotropic and eukaryotic conserved COP9 signalosome (CSN), which is a regulatory component of the ubiquitin/proteasome system. We used affinity purification-mass spectrometry (AP-MS) to generate the interaction network of CSN5 in M. incognita-infected roots. We identified the complete CSN complex and other known CSN5 interaction partners in addition to unknown plant and M. incognita proteins. Among these, we described M. incognita PASSE-MURAILLE (MiPM), a small pioneer protein predicted to contain a secretory peptide that is up-regulated mostly in the J2 parasitic stage. We confirmed the CSN5-MiPM interaction, which occurs in the nucleus, by bimolecular fluorescence complementation (BiFC). Using MiPM as bait, a GST pull-down assay coupled with MS revealed some common protein partners between CSN5 and MiPM. We further showed by in silico and microscopic analyses that the recombinant purified MiPM protein enters the cells of Arabidopsis root tips in a non-infectious context. In further detail, the supercharged N-terminal tail of MiPM (NTT-MiPM) triggers an unknown host endocytosis pathway to penetrate the cell. The functional meaning of the CSN5-MiPM interaction in the M. incognita parasitism is discussed. Moreover, we propose that the cell-penetrating properties of some M. incognita secreted proteins might be a non-negligible mechanism for cell uptake, especially during the steps preceding the sedentary parasitic phase.
Collapse
Affiliation(s)
- Caroline Bournaud
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- *Correspondence: Caroline Bournaud
| | | | - André M. Murad
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Emmanuel Bresso
- Université de Lorraine, Centre National de la Recherche Scientifique, Inria, Laboratoire Lorrain de Recherche en Informatique et ses Applications, Nancy, France
| | | | - Maria F. Grossi-de-Sá
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Post-Graduation Program in Genomic Science and Biotechnology, Universidade Católica de Brasília, Brasília, Brazil
- Maria F. Grossi-de-Sá
| |
Collapse
|
17
|
Wallqvist A, Wang H, Zavaljevski N, Memišević V, Kwon K, Pieper R, Rajagopala SV, Reifman J. Mechanisms of action of Coxiella burnetii effectors inferred from host-pathogen protein interactions. PLoS One 2017; 12:e0188071. [PMID: 29176882 PMCID: PMC5703456 DOI: 10.1371/journal.pone.0188071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/31/2017] [Indexed: 02/06/2023] Open
Abstract
Coxiella burnetii is an obligate Gram-negative intracellular pathogen and the etiological agent of Q fever. Successful infection requires a functional Type IV secretion system, which translocates more than 100 effector proteins into the host cytosol to establish the infection, restructure the intracellular host environment, and create a parasitophorous vacuole where the replicating bacteria reside. We used yeast two-hybrid (Y2H) screening of 33 selected C. burnetii effectors against whole genome human and murine proteome libraries to generate a map of potential host-pathogen protein-protein interactions (PPIs). We detected 273 unique interactions between 20 pathogen and 247 human proteins, and 157 between 17 pathogen and 137 murine proteins. We used orthology to combine the data and create a single host-pathogen interaction network containing 415 unique interactions between 25 C. burnetii and 363 human proteins. We further performed complementary pairwise Y2H testing of 43 out of 91 C. burnetii-human interactions involving five pathogen proteins. We used the combined data to 1) perform enrichment analyses of target host cellular processes and pathways, 2) examine effectors with known infection phenotypes, and 3) infer potential mechanisms of action for four effectors with uncharacterized functions. The host-pathogen interaction profiles supported known Coxiella phenotypes, such as adapting cell morphology through cytoskeletal re-arrangements, protein processing and trafficking, organelle generation, cholesterol processing, innate immune modulation, and interactions with the ubiquitin and proteasome pathways. The generated dataset of PPIs-the largest collection of unbiased Coxiella host-pathogen interactions to date-represents a rich source of information with respect to secreted pathogen effector proteins and their interactions with human host proteins.
Collapse
Affiliation(s)
- Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Hao Wang
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Nela Zavaljevski
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Vesna Memišević
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Keehwan Kwon
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rembert Pieper
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
18
|
Mishra B, Sun Y, Ahmed H, Liu X, Mukhtar MS. Global temporal dynamic landscape of pathogen-mediated subversion of Arabidopsis innate immunity. Sci Rep 2017; 7:7849. [PMID: 28798368 PMCID: PMC5552879 DOI: 10.1038/s41598-017-08073-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/29/2017] [Indexed: 12/22/2022] Open
Abstract
The universal nature of networks’ structural and physical properties across diverse systems offers a better prospect to elucidate the interplay between a system and its environment. In the last decade, several large-scale transcriptome and interactome studies were conducted to understand the complex and dynamic nature of interactions between Arabidopsis and its bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. We took advantage of these publicly available datasets and performed “-omics”-based integrative, and network topology analyses to decipher the transcriptional and protein-protein interaction activities of effector targets. We demonstrated that effector targets exhibit shorter distance to differentially expressed genes (DEGs) and possess increased information centrality. Intriguingly, effector targets are differentially expressed in a sequential manner and make for 1% of the total DEGs at any time point of infection with virulent or defense-inducing DC3000 strains. We revealed that DC3000 significantly alters the expression levels of 71% effector targets and their downstream physical interacting proteins in Arabidopsis interactome. Our integrative “-omics”-–based analyses identified dynamic complexes associated with MTI and disease susceptibility. Finally, we discovered five novel plant defense players using a systems biology-fueled top-to-bottom approach and demonstrated immune-related functions for them, further validating the power and resolution of our network analyses.
Collapse
Affiliation(s)
- Bharat Mishra
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Yali Sun
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Hadia Ahmed
- Department of Computer & Information Sciences, University of Alabama at Birmingham, Birmingham, USA
| | - Xiaoyu Liu
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA. .,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA.
| |
Collapse
|
19
|
Horvatić A, Kuleš J, Guillemin N, Galan A, Mrljak V, Bhide M. High-throughput proteomics and the fight against pathogens. MOLECULAR BIOSYSTEMS 2017; 12:2373-84. [PMID: 27227577 DOI: 10.1039/c6mb00223d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathogens pose a major threat to human and animal welfare. Understanding the interspecies host-pathogen protein-protein interactions could lead to the development of novel strategies to combat infectious diseases through the rapid development of new therapeutics. The first step in understanding the host-pathogen crosstalk is to identify interacting proteins in order to define crucial hot-spots in the host-pathogen interactome, such as the proposed pharmaceutical targets by means of high-throughput proteomic methodologies. In order to obtain holistic insight into the inter- and intra-species bimolecular interactions, apart from the proteomic approach, sophisticated in silico modeling is used to correlate the obtained large data sets with other omics data and clinical outcomes. Since the main focus in this area has been directed towards human medicine, it is time to extrapolate the existing expertise to a new emerging field: the 'systems veterinary medicine'. Therefore, this review addresses high-throughput mass spectrometry-based technology for monitoring protein-protein interactions in vitro and in vivo and discusses pathogen cultivation, model host cells and available bioinformatic tools employed in vaccine development.
Collapse
Affiliation(s)
- Anita Horvatić
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Josipa Kuleš
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Nicolas Guillemin
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Asier Galan
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Vladimir Mrljak
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Mangesh Bhide
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia. and Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia and Institute of Neuroimmunology, Slovakia Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
20
|
Abstract
Purpose of review Burkholderia pseudomallei's and Burkholderia mallei's high rate of infectivity, limited treatment options, and potential use as biological warfare agents underscore the need for development of effective vaccines against these bacteria. Research efforts focused on vaccines against these bacteria are in pre-clinical stages, with no approved formulations currently on the market. Recent findings Several live attenuated and subunit vaccine formulations have been evaluated in animal studies, with no reports of significant long term survival after lethal challenge. Summary This review encompasses the most current vaccine strategies to prevent B. pseudomallei and B. mallei infections while providing insight for successful vaccines moving forward.
Collapse
|
21
|
Micheva-Viteva SN, Shou Y, Ganguly K, Wu TH, Hong-Geller E. PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized Burkholderia thailandensis. Front Cell Infect Microbiol 2017. [PMID: 28638804 PMCID: PMC5461351 DOI: 10.3389/fcimb.2017.00231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathogenic Burkholderia rely on host factors for efficient intracellular replication and are highly refractory to antibiotic treatment. To identify host genes that are required by Burkholderia spp. during infection, we performed a RNA interference (RNAi) screen of the human kinome and identified 35 host kinases that facilitated Burkholderia thailandensis intracellular survival in human monocytic THP-1 cells. We validated a selection of host kinases using imaging flow cytometry to assess efficiency of B. thailandensis survival in the host upon siRNA-mediated knockdown. We focused on the role of the novel protein kinase C isoform, PKC-η, in Burkholderia infection and characterized PKC-η/MARCKS signaling as a key event that promotes the survival of unopsonized B. thailandensis CDC2721121 within host cells. While infection of lung epithelial cells with unopsonized Gram-negative bacteria stimulated phosphorylation of Ser175/160 in the MARCKS effector domain, siRNA-mediated knockdown of PKC-η expression reduced the levels of phosphorylated MARCKS by >3-fold in response to infection with Bt CDC2721121. We compared the effect of the conventional PKC-α and novel PKC-η isoforms on the growth of B. thailandensis CDC2721121 within monocytic THP-1 cells and found that ≥75% knock-down of PRKCH transcript levels reduced intracellular bacterial load 100% more efficiently when compared to growth in cells siRNA-depleted of the classical PKC-α, suggesting that the PKC-η isoform can specifically mediate Burkholderia intracellular survival. Based on imaging studies of intracellular B. thailandensis, we found that PKC-η function stimulates phagocytic pathways that promote B. thailandensis escape into the cytoplasm leading to activation of autophagosome flux. Identification of host kinases that are targeted by Burkholderia during infection provides valuable molecular insights in understanding Burkholderia pathogenesis, and ultimately, in designing effective host-targeted therapies against infectious disease caused by intracellular pathogens.
Collapse
Affiliation(s)
| | - Yulin Shou
- Bioscience Division, Los Alamos National LaboratoryLos Alamos, NM, United States
| | - Kumkum Ganguly
- Bioscience Division, Los Alamos National LaboratoryLos Alamos, NM, United States
| | - Terry H Wu
- Center for Infectious Disease and Immunity and Department of Internal Medicine, University of New Mexico Health Sciences CenterAlbuquerque, NM, United States
| | | |
Collapse
|
22
|
Li H, Zhou Y, Zhang Z. Network Analysis Reveals a Common Host-Pathogen Interaction Pattern in Arabidopsis Immune Responses. FRONTIERS IN PLANT SCIENCE 2017; 8:893. [PMID: 28611808 PMCID: PMC5446985 DOI: 10.3389/fpls.2017.00893] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/12/2017] [Indexed: 05/28/2023]
Abstract
Many plant pathogens secrete virulence effectors into host cells to target important proteins in host cellular network. However, the dynamic interactions between effectors and host cellular network have not been fully understood. Here, an integrative network analysis was conducted by combining Arabidopsis thaliana protein-protein interaction network, known targets of Pseudomonas syringae and Hyaloperonospora arabidopsidis effectors, and gene expression profiles in the immune response. In particular, we focused on the characteristic network topology of the effector targets and differentially expressed genes (DEGs). We found that effectors tended to manipulate key network positions with higher betweenness centrality. The effector targets, especially those that are common targets of an individual effector, tended to be clustered together in the network. Moreover, the distances between the effector targets and DEGs increased over time during infection. In line with this observation, pathogen-susceptible mutants tended to have more DEGs surrounding the effector targets compared with resistant mutants. Our results suggest a common plant-pathogen interaction pattern at the cellular network level, where pathogens employ potent local impact mode to interfere with key positions in the host network, and plant organizes an in-depth defense by sequentially activating genes distal to the effector targets.
Collapse
Affiliation(s)
| | - Yuan Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| |
Collapse
|
23
|
Memišević V, Kumar K, Zavaljevski N, DeShazer D, Wallqvist A, Reifman J. DBSecSys 2.0: a database of Burkholderia mallei and Burkholderia pseudomallei secretion systems. BMC Bioinformatics 2016; 17:387. [PMID: 27650316 PMCID: PMC5029111 DOI: 10.1186/s12859-016-1242-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/08/2016] [Indexed: 01/08/2023] Open
Abstract
Background Burkholderia mallei and B. pseudomallei are the causative agents of glanders and melioidosis, respectively, diseases with high morbidity and mortality rates. B. mallei and B. pseudomallei are closely related genetically; B. mallei evolved from an ancestral strain of B. pseudomallei by genome reduction and adaptation to an obligate intracellular lifestyle. Although these two bacteria cause different diseases, they share multiple virulence factors, including bacterial secretion systems, which represent key components of bacterial pathogenicity. Despite recent progress, the secretion system proteins for B. mallei and B. pseudomallei, their pathogenic mechanisms of action, and host factors are not well characterized. Results We previously developed a manually curated database, DBSecSys, of bacterial secretion system proteins for B. mallei. Here, we report an expansion of the database with corresponding information about B. pseudomallei. DBSecSys 2.0 contains comprehensive literature-based and computationally derived information about B. mallei ATCC 23344 and literature-based and computationally derived information about B. pseudomallei K96243. The database contains updated information for 163 B. mallei proteins from the previous database and 61 additional B. mallei proteins, and new information for 281 B. pseudomallei proteins associated with 5 secretion systems, their 1,633 human- and murine-interacting targets, and 2,400 host-B. mallei interactions and 2,286 host-B. pseudomallei interactions. The database also includes information about 13 pathogenic mechanisms of action for B. mallei and B. pseudomallei secretion system proteins inferred from the available literature or computationally. Additionally, DBSecSys 2.0 provides details about 82 virulence attenuation experiments for 52 B. mallei secretion system proteins and 98 virulence attenuation experiments for 61 B. pseudomallei secretion system proteins. We updated the Web interface and data access layer to speed-up users’ search of detailed information for orthologous proteins related to secretion systems of the two pathogens. Conclusions The updates of DBSecSys 2.0 provide unique capabilities to access comprehensive information about secretion systems of B. mallei and B. pseudomallei. They enable studies and comparisons of corresponding proteins of these two closely related pathogens and their host-interacting partners. The database is available at http://dbsecsys.bhsai.org.
Collapse
Affiliation(s)
- Vesna Memišević
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Kamal Kumar
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Nela Zavaljevski
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - David DeShazer
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA.
| |
Collapse
|
24
|
Aschenbroich SA, Lafontaine ER, Hogan RJ. Melioidosis and glanders modulation of the innate immune system: barriers to current and future vaccine approaches. Expert Rev Vaccines 2016; 15:1163-81. [PMID: 27010618 DOI: 10.1586/14760584.2016.1170598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Burkholderia pseudomallei and Burkholderia mallei are pathogenic bacteria causing fatal infections in animals and humans. Both organisms are classified as Tier 1 Select Agents owing to their highly fatal nature, potential/prior use as bioweapons, severity of disease via respiratory exposure, intrinsic resistance to antibiotics, and lack of a current vaccine. Disease manifestations range from acute septicemia to chronic infection, wherein the facultative intracellular lifestyle of these organisms promotes persistence within a broad range of hosts. This ability to thrive intracellularly is thought to be related to exploitation of host immune response signaling pathways. There are currently considerable gaps in our understanding of the molecular strategies employed by these pathogens to modulate these pathways and evade intracellular killing. A better understanding of the specific molecular basis for dysregulation of host immune responses by these organisms will provide a stronger platform to identify novel vaccine targets and develop effective countermeasures.
Collapse
Affiliation(s)
- Sophie A Aschenbroich
- a Department of Pathology , College of Veterinary Medicine, University of Georgia , Athens , GA , USA
| | - Eric R Lafontaine
- b Department of Infectious Diseases , College of Veterinary Medicine, University of Georgia , Athens , GA , USA
| | - Robert J Hogan
- b Department of Infectious Diseases , College of Veterinary Medicine, University of Georgia , Athens , GA , USA.,c Department of Veterinary Biosciences and Diagnostic Imaging , College of Veterinary Medicine, University of Georgia , Athens , GA , USA
| |
Collapse
|
25
|
Bozue JA, Chaudhury S, Amemiya K, Chua J, Cote CK, Toothman RG, Dankmeyer JL, Klimko CP, Wilhelmsen CL, Raymond JW, Zavaljevski N, Reifman J, Wallqvist A. Phenotypic Characterization of a Novel Virulence-Factor Deletion Strain of Burkholderia mallei That Provides Partial Protection against Inhalational Glanders in Mice. Front Cell Infect Microbiol 2016; 6:21. [PMID: 26955620 PMCID: PMC4767903 DOI: 10.3389/fcimb.2016.00021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/01/2016] [Indexed: 01/29/2023] Open
Abstract
Burkholderia mallei (Bm) is a highly infectious intracellular pathogen classified as a category B biological agent by the Centers for Disease Control and Prevention. After respiratory exposure, Bm establishes itself within host macrophages before spreading into major organ systems, which can lead to chronic infection, sepsis, and death. Previously, we combined computational prediction of host-pathogen interactions with yeast two-hybrid experiments and identified novel virulence factor genes in Bm, including BMAA0553, BMAA0728 (tssN), and BMAA1865. In the present study, we used recombinant allelic exchange to construct deletion mutants of BMAA0553 and tssN (ΔBMAA0553 and ΔTssN, respectively) and showed that both deletions completely abrogated virulence at doses of >100 times the LD50 of the wild-type Bm strain. Analysis of ΔBMAA0553- and ΔTssN-infected mice showed starkly reduced bacterial dissemination relative to wild-type Bm, and subsequent in vitro experiments characterized pathogenic phenotypes with respect to intracellular growth, macrophage uptake and phagosomal escape, actin-based motility, and multinucleated giant cell formation. Based on observed in vitro and in vivo phenotypes, we explored the use of ΔTssN as a candidate live-attenuated vaccine. Mice immunized with aerosolized ΔTssN showed a 21-day survival rate of 67% after a high-dose aerosol challenge with the wild-type Bm ATCC 23344 strain, compared to a 0% survival rate for unvaccinated mice. However, analysis of histopathology and bacterial burden showed that while the surviving vaccinated mice were protected from acute infection, Bm was still able to establish a chronic infection. Vaccinated mice showed a modest IgG response, suggesting a limited potential of ΔTssN as a vaccine candidate, but also showed prolonged elevation of pro-inflammatory cytokines, underscoring the role of cellular and innate immunity in mitigating acute infection in inhalational glanders.
Collapse
Affiliation(s)
- Joel A Bozue
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Sidhartha Chaudhury
- Telemedicine and Advanced Technology Research Center, Biotechnology HPC Software Applications Institute, United States Army Medical Research and Materiel Command Fort Detrick, MD, USA
| | - Kei Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Jennifer Chua
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Christopher K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Ronald G Toothman
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Christopher P Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Catherine L Wilhelmsen
- Pathology Division, United States Army of Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Jolynn W Raymond
- Pathology Division, United States Army of Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Nela Zavaljevski
- Telemedicine and Advanced Technology Research Center, Biotechnology HPC Software Applications Institute, United States Army Medical Research and Materiel Command Fort Detrick, MD, USA
| | - Jaques Reifman
- Telemedicine and Advanced Technology Research Center, Biotechnology HPC Software Applications Institute, United States Army Medical Research and Materiel Command Fort Detrick, MD, USA
| | - Anders Wallqvist
- Telemedicine and Advanced Technology Research Center, Biotechnology HPC Software Applications Institute, United States Army Medical Research and Materiel Command Fort Detrick, MD, USA
| |
Collapse
|
26
|
Wallqvist A, Memišević V, Zavaljevski N, Pieper R, Rajagopala SV, Kwon K, Yu C, Hoover TA, Reifman J. Using host-pathogen protein interactions to identify and characterize Francisella tularensis virulence factors. BMC Genomics 2015; 16:1106. [PMID: 26714771 PMCID: PMC4696196 DOI: 10.1186/s12864-015-2351-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/21/2015] [Indexed: 11/10/2022] Open
Abstract
Background Francisella tularensis is a select bio-threat agent and one of the most virulent intracellular pathogens known, requiring just a few organisms to establish an infection. Although several virulence factors are known, we lack an understanding of virulence factors that act through host-pathogen protein interactions to promote infection. To address these issues in the highly infectious F. tularensis subsp. tularensis Schu S4 strain, we deployed a combined in silico, in vitro, and in vivo analysis to identify virulence factors and their interactions with host proteins to characterize bacterial infection mechanisms. Results We initially used comparative genomics and literature to identify and select a set of 49 putative and known virulence factors for analysis. Each protein was then subjected to proteome-scale yeast two-hybrid (Y2H) screens with human and murine cDNA libraries to identify potential host-pathogen protein-protein interactions. Based on the bacterial protein interaction profile with both hosts, we selected seven novel putative virulence factors for mutant construction and animal validation experiments. We were able to create five transposon insertion mutants and used them in an intranasal BALB/c mouse challenge model to establish 50 % lethal dose estimates. Three of these, ΔFTT0482c, ΔFTT1538c, and ΔFTT1597, showed attenuation in lethality and can thus be considered novel F. tularensis virulence factors. The analysis of the accompanying Y2H data identified intracellular protein trafficking between the early endosome to the late endosome as an important component in virulence attenuation for these virulence factors. Furthermore, we also used the Y2H data to investigate host protein binding of two known virulence factors, showing that direct protein binding was a component in the modulation of the inflammatory response via activation of mitogen-activated protein kinases and in the oxidative stress response. Conclusions Direct interactions with specific host proteins and the ability to influence interactions among host proteins are important components for F. tularensis to avoid host-cell defense mechanisms and successfully establish an infection. Although direct host-pathogen protein-protein binding is only one aspect of Francisella virulence, it is a critical component in directly manipulating and interfering with cellular processes in the host cell. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2351-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA.
| | - Vesna Memišević
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA.
| | - Nela Zavaljevski
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA.
| | | | | | - Keehwan Kwon
- J. Craig Venter Institute, Rockville, MD, 20850, USA.
| | - Chenggang Yu
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA.
| | - Timothy A Hoover
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA.
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA.
| |
Collapse
|