1
|
Medeiros R, Cantero J, Borthagaray G, Paulino M. Unveiling the Architecture of Human Fibrinogen: A Full-Length Structural Model. Chembiochem 2025; 26:e202400425. [PMID: 39985479 DOI: 10.1002/cbic.202400425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 01/30/2025] [Accepted: 02/20/2025] [Indexed: 02/24/2025]
Abstract
Fibrinogen is a protein involved in the haemostasis process playing a central role by forming the fibrin clot. An understanding of protein structure is vital to determining biological function. Despite many studies on the fibrin polymerization process, its molecular mechanism remains elusive mainly due to the absence of a full-length three-dimensional model of human fibrinogen. Amino- and carboxyl-terminal regions of the three pairs of chains that form this molecule are missing in the crystallographic structure, being the carboxyl-terminal of the Aα chain the most affected with a section of more than 400 amino acids missing. To have a full structure of the fibrinogen molecule would allow the creation of a model of protofibril, shedding light into the fibrin formation process through computational techniques such as molecular dynamics simulations. Absent regions were explored using homology modelling and coarse-grained molecular dynamics simulations. Later on, the model was refined and stabilized with atomistic molecular dynamic simulations. In the present study, we obtained the first realistic full-length structure of fibrinogen, with features in accordance with previous results obtained by experimental techniques.
Collapse
Affiliation(s)
- Romina Medeiros
- Bioinformatics Unit, Department of Experimentation and Theory of the Structure of Matter and its Applications, Faculty of Chemistry, University of the Republic, Av. General Flores 2124, Montevideo, Uruguay
- Clinical Biochemistry and Haematology Unit, Department of Clinical Biochemistry, Faculty of Chemistry, University of the Republic, Av. General Flores 2124, Montevideo, Uruguay
| | - Jorge Cantero
- Bioinformatics Unit, Department of Experimentation and Theory of the Structure of Matter and its Applications, Faculty of Chemistry, University of the Republic, Av. General Flores 2124, Montevideo, Uruguay
- Centro de Investigaciones Médicas, Facultad de Ciencias de la Salud, Universidad Nacional del Este, Mariscal Francisco Solano López, Minga Guazú, 7420, Paraguay
| | - Graciela Borthagaray
- Clinical Biochemistry and Haematology Unit, Department of Clinical Biochemistry, Faculty of Chemistry, University of the Republic, Av. General Flores 2124, Montevideo, Uruguay
| | - Margot Paulino
- Bioinformatics Unit, Department of Experimentation and Theory of the Structure of Matter and its Applications, Faculty of Chemistry, University of the Republic, Av. General Flores 2124, Montevideo, Uruguay
| |
Collapse
|
2
|
Rial R, González-Durruthy M, Ruso JM. Elucidating the physicochemical interactions between fibrinogen and surfactant mixtures: Implications for pharmaceutical sciences. Int J Biol Macromol 2025; 299:140265. [PMID: 39855519 DOI: 10.1016/j.ijbiomac.2025.140265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
This study investigates the physicochemical interactions between fibrinogen (Fib), a key glycoprotein in blood clotting, and a mixture of two biologically active compounds: dicloxacillin (Diclox), an antibiotic; and cetyltrimethylammonium bromide (CTAB), a cationic surfactant. Understanding these interactions is crucial for enhancing drug delivery systems and optimizing pharmaceutical formulations. Molecular docking simulations and various spectroscopic techniques, including UV-Vis, fluorescence, and circular dichroism, were employed to explore how this mixture affects the structural and functional properties of fibrinogen. The docking results revealed that the binding affinity of the dicloxacillin-CTAB mixture with fibrinogen was stronger than either compound individually, suggesting a synergistic interaction. Spectroscopic analysis confirmed structural modifications in the fibrinogen molecule, notably in α-helix content and aromatic residues, indicating loosening or unfolding in protein conformation upon ligand binding. Thermodynamic analyses further supported that the binding process was driven by hydrophobic interactions and electrostatic forces, contributing to stable complex formation. This study advances the current understanding of protein-ligand interactions by exploring the synergistic effects of a dual-ligand system, a novel approach that has not been comprehensively explored in previous literature. These findings provide new insights into the design of drug delivery systems, offering potential applications for improving the efficacy and safety of pharmaceutical formulations targeting fibrinogen-related conditions.
Collapse
Affiliation(s)
- Ramón Rial
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics and Institute of Materials (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Michael González-Durruthy
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics and Institute of Materials (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Juan M Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics and Institute of Materials (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Risman RA, Sen M, Tutwiler V, Hudson NE. Deconstructing fibrin(ogen) structure. J Thromb Haemost 2025; 23:368-380. [PMID: 39536819 PMCID: PMC11786978 DOI: 10.1016/j.jtha.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Fibrinogen and its insoluble degradation product fibrin are pivotal plasma proteins that play important roles in blood coagulation, wound healing, and immune responses. This review highlights research from the last 24 months connecting our progressing view of fibrin(ogen)'s structure, and in particular its conformational flexibility and posttranslational modifications, to its (patho)physiologic roles, molecular interactions, mechanical properties, use as a biomaterial, and potential as a therapeutic target. Recent work suggests that fibrinogen structure is highly dynamic, sampling multiple conformations, which may explain its myriad physiologic functions and the presence of cryptic binding sites. Investigations into fibrin clot structure elucidated the impact of posttranslational modifications, therapeutic interventions, and pathologic conditions on fibrin network morphology, offering insights into thrombus formation and embolization. Studies exploring the mechanical properties of fibrin reveal its response to blood flow and platelet-driven contraction, offering implications for clot stability and embolization risk. Moreover, advancements in tissue engineering leverage fibrin's biocompatibility and customizable properties for diverse applications, from wound healing to tissue regeneration and biomaterial interactions. These findings underscore the structural origins of fibrin(ogen)'s multifaceted roles and its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Rebecca A Risman
- Department of Biomedical Engineering, Rutgers University, New Brunswick, New Jersey, USA. https://twitter.com/rebecca_risman
| | - Mehmet Sen
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Valerie Tutwiler
- Department of Biomedical Engineering, Rutgers University, New Brunswick, New Jersey, USA. https://twitter.com/vatutwiler
| | - Nathan E Hudson
- Department of Physics, East Carolina University, Greenville, North Carolina, USA.
| |
Collapse
|
4
|
Li J, Li B. Purification, fibrinolytic activity and substrate binding of nattokinase from Bacillus subtilis: A rapid and sensitive detection for fibrinolytic activity of nattokinase. Int J Biol Macromol 2024; 283:137397. [PMID: 39521221 DOI: 10.1016/j.ijbiomac.2024.137397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/08/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Nattokinase (NK, EC 3.4.21.62) is an alkaline serine protease secreted by B. subtilis, which has a strong fibrinolytic activity in vitro and in vivo. Here, we fermented NK using a B. subtilis strain and purified the protein, designed a peptide segment derived from fibrin as a substrate of NK. Based on fluorescence resonance energy transfer (FRET), we found that NK exhibits a high hydrolytic activity towards the peptide, with Km of 9.33 ± 1.28 μM, kcat of 0.20 ± 0.01 s-1, and kcat/Km of 21,436.23 s-1 M-1, demonstrating that the peptide is a substrate for NK. Furthermore, we investigated the binding of the substrate with NK by tryptophan fluorescence quenching, molecular docking and dynamics simulation. Fluorescence quenching showed that the substrate binds to NK mainly through hydrogen bonding and van der Waals forces, with dissociation constants KD of 13.73 and 21.24 μM at 25 and 35 °C, respectively. Molecular docking and dynamics analysis revealed that the substrate recognizes the active site of NK, and provides new information on the characteristics of the binding of the substrate with NK. Our study demonstrated a rapid and sensitive method for the quantitative measurement of fibrinolytic activity of NK based on the substrate, which is very reproducible and rapid with virtually complete results in approximately 20 min.
Collapse
Affiliation(s)
- Jinwen Li
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin 300071, PR China
| | - Baohui Li
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
5
|
Demirtaş K, Erman B, Haliloğlu T. Dynamic correlations: exact and approximate methods for mutual information. Bioinformatics 2024; 40:btae076. [PMID: 38341647 PMCID: PMC10898342 DOI: 10.1093/bioinformatics/btae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/17/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024] Open
Abstract
MOTIVATION Proteins are dynamic entities that undergo conformational changes critical for their functions. Understanding the communication pathways and information transfer within proteins is crucial for elucidating allosteric interactions in their mechanisms. This study utilizes mutual information (MI) analysis to probe dynamic allostery. Using two cases, Ubiquitin and PLpro, we have evaluated the accuracy and limitations of different approximations including the exact anisotropic and isotropic models, multivariate Gaussian model, isotropic Gaussian model, and the Gaussian Network Model (GNM) in revealing allosteric interactions. RESULTS Our findings emphasize the required trajectory length for capturing accurate mutual information profiles. Long molecular dynamics trajectories, 1 ms for Ubiquitin and 100 µs for PLpro are used as benchmarks, assuming they represent the ground truth. Trajectory lengths of approximately 5 µs for Ubiquitin and 1 µs for PLpro marked the onset of convergence, while the multivariate Gaussian model accurately captured mutual information with trajectories of 5 ns for Ubiquitin and 350 ns for PLpro. However, the isotropic Gaussian model is less successful in representing the anisotropic nature of protein dynamics, particularly in the case of PLpro, highlighting its limitations. The GNM, however, provides reasonable approximations of long-range information exchange as a minimalist network model based on a single crystal structure. Overall, the optimum trajectory lengths for effective Gaussian approximations of long-time dynamic behavior depend on the inherent dynamics within the protein's topology. The GNM, by showcasing dynamics across relatively diverse time scales, can be used either as a standalone method or to gauge the adequacy of MD simulation lengths. AVAILABILITY AND IMPLEMENTATION Mutual information codes are available at https://github.com/kemaldemirtas/prc-MI.git.
Collapse
Affiliation(s)
- Kemal Demirtaş
- Department of Chemical Engineering, Bogazici University, 34342 Istanbul, Turkey
- Polymer Research Center, Bogazici University, 34342 Istanbul, Turkey
| | - Burak Erman
- Department of Chemical and Biological Engineering, Koc University, 34450 Istanbul, Turkey
| | - Türkan Haliloğlu
- Department of Chemical Engineering, Bogazici University, 34342 Istanbul, Turkey
- Polymer Research Center, Bogazici University, 34342 Istanbul, Turkey
| |
Collapse
|
6
|
Pinelo JEE, Manandhar P, Popovic G, Ray K, Tasdelen MF, Nguyen Q, Iavarone AT, Offenbacher AR, Hudson NE, Sen M. Systematic mapping of the conformational landscape and dynamism of soluble fibrinogen. J Thromb Haemost 2023; 21:1529-1543. [PMID: 36746319 PMCID: PMC10407912 DOI: 10.1016/j.jtha.2023.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Fibrinogen is a soluble, multisubunit, and multidomain dimeric protein, which, upon its proteolytic cleavage by thrombin, is converted to insoluble fibrin, initiating polymerization that substantially contributes to clot growth. Fibrinogen contains numerous, transiently accessible "cryptic" epitopes for hemostatic and immunologic proteins, suggesting that fibrinogen exhibits conformational flexibility, which may play functional roles in its temporal and spatial interactions. Hitherto, there have been limited integrative approaches characterizing the solution structure and internal flexibility of fibrinogen. METHODS Here, utilizing a multipronged, biophysical approach involving 2 solution-based techniques, temperature-dependent hydrogen-deuterium exchange mass spectrometry and small angle X-ray scattering, corroborated by negative stain electron microscopy, we present a holistic, conformationally dynamic model of human fibrinogen in solution. RESULTS Our data reveal 4 major and distinct conformations of fibrinogen accommodated by a high degree of internal protein flexibility along its central scaffold. We propose that the fibrinogen structure in the solution consists of a complex, conformational landscape with multiple local minima. This is further supported by the location of numerous point mutations that are linked to dysfibrinogenemia and posttranslational modifications, residing near the identified fibrinogen flexions. CONCLUSION This work provides a molecular basis for the structural "dynamism" of fibrinogen that is expected to influence the broad swath of its functionally diverse macromolecular interactions and fine-tune the structural and mechanical properties of blood clots.
Collapse
Affiliation(s)
- Jose E E Pinelo
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Pragya Manandhar
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Grega Popovic
- Department of Chemistry, East Carolina University, Greenville, North Carolina, USA
| | - Katherine Ray
- Department of Chemistry, East Carolina University, Greenville, North Carolina, USA
| | - Mehmet F Tasdelen
- Department of Computer Science, University of Houston, Houston, Texas, USA
| | - Quoc Nguyen
- Department of Mathematics, University of Houston, Houston, Texas, USA
| | - Anthony T Iavarone
- QB3/Chemistry/Mass Spectrometry Facility, University of California, Berkeley, California, USA
| | - Adam R Offenbacher
- Department of Chemistry, East Carolina University, Greenville, North Carolina, USA
| | - Nathan E Hudson
- Department of Physics, East Carolina University, Greenville, North Carolina, USA
| | - Mehmet Sen
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA.
| |
Collapse
|
7
|
Abdelrasoul A, Shoker A. Influence of Hydration Shell of Hemodialysis Clinical Membranes on Surrogate Biomarkers Activation in Uremic Serum of Dialysis Patients. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
8
|
Abstract
Thrombin is a multifunctional serine protease generated in injured cells. The generation of thrombin in coagulation plays a central role in the functioning of haemostasis. The last enzyme in the coagulation cascade is thrombin, with the function of cleaving fibrinogen to fibrin, which forms the fibrin clot of a haemostatic plug. Although thrombin primarily converts fibrinogen to fibrin, it also has many other positive regulatory effects on coagulation. Thrombin has procoagulant, inflammatory, cellular proliferation and anticoagulant effects. In coagulation system, thrombin has two very distinct roles. Firstly, it acts as a procoagulant when it converts fibrinogen into an insoluble fibrin clot, activates factor (F) XIII, activates thrombin activatable fibrinolysis inhibitor (TAFI) and activates FV, FVIII and FXI. Thrombin also enhances platelet adhesion by inactivating a disintegrin and metalloprotease with thrombospondin type1 motif (ADAMTS13). However, when thrombin activates protein C, it acts as an anticoagulant. A natural anticoagulant pathway that supplies regulation of the blood coagulation system contains protein C, which is the key component. This is accomplished by the specific proteolytic inactivation of FV and FVIII. In this review, the multiple roles of thrombin in the haemostatic response to injury are studied in addition to the cofactors that determine thrombin activity and how thrombin activity is thought to be coordinated.
Collapse
|
9
|
Abdelrasoul A, Westphalen H, Saadati S, Shoker A. Hemodialysis biocompatibility mathematical models to predict the inflammatory biomarkers released in dialysis patients based on hemodialysis membrane characteristics and clinical practices. Sci Rep 2021; 11:23080. [PMID: 34845257 PMCID: PMC8630185 DOI: 10.1038/s41598-021-01660-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease affects millions of people around the globe and many patients rely on hemodialysis (HD) to survive. HD is associated with undesired life-threatening side effects that are linked to membrane biocompatibility and clinical operating conditions. The present study develops a mathematical model to predict the inflammatory biomarkers released in HD patients based on membrane morphology, chemistry, and interaction affinity. Based on the morphological characteristics of two clinical-grade HD membrane modules (CTA and PAES-PVP) commonly used in Canadian hospitals, a molecular docking study, and the release of inflammatory cytokines during HD and in vitro incubation experiments, we develop five sets of equations that describe the concentration of eight biomarkers (serpin/antithrombin-III, properdin, C5a, 1L-1α, 1L-1β, C5b-9, IL6, vWF). The equations developed are functions of membrane properties (pore size, roughness, chemical composition, affinity to fibrinogen, and surface charge) and HD operating conditions (blood flow rate, Qb, and treatment time, t). We expand our model based on available clinical data and increase its range of applicability in terms of flow rate and treatment time. We also modify the original equations to expand their range of applicability in terms of membrane materials, allowing the prediction and validation of the inflammatory response of several clinical and synthesized membrane materials. Our affinity-based model solely relies on theoretical values of molecular docking, which can significantly reduce the experimental load related to the development of more biocompatible materials. Our model predictions agree with experimental clinical data and can guide the development of novel materials and support evidence-based membrane synthesis of HD membranes, reducing the need for trial-and-error approaches.
Collapse
Affiliation(s)
- Amira Abdelrasoul
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada.
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada.
| | - Heloisa Westphalen
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| | - Shaghayegh Saadati
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| | - Ahmed Shoker
- Nephrology Division, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
- Saskatchewan Transplant Program, St. Paul's Hospital, 1702 20th Street West, Saskatoon, SK, S7M 0Z9, Canada
| |
Collapse
|
10
|
Thomas S, Arora S, Liu W, Churion K, Wu Y, Höök M. vhp Is a Fibrinogen-Binding Protein Related to vWbp in Staphylococcus aureus. mBio 2021; 12:e0116721. [PMID: 34340548 PMCID: PMC8406236 DOI: 10.1128/mbio.01167-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus aureus can target a variety of tissues, causing life-threatening infections. The basis for this diversity stems from the microorganism's ability to spread in the vascular system throughout the body. To survive in blood, S. aureus coats itself with a fibrinogen (Fg)/fibrin shield. The protective shield is assembled by the coordinated actions of a number of Fg-binding bacterial proteins that manipulate the host's blood coagulation system. Several of the Fg binders appear redundant, sharing similar functional motifs. This observation led us to screen for the presence of novel proteins with significant amino acid identities to von Willebrand factor-binding protein (vWbp), a key component in the shield assembly machinery. One identified protein showed significant sequence identity with the C-terminal region of vWbp, and we consequently named it vWbp homologous protein (vhp). The vhp gene lies within a cluster of genes that encode other virulence factors in S. aureus. Although each isolate only contains one copy of the vhp gene, S. aureus has at least three distinct alleles, vhpA, B, and C, that are present in the core genome. All three vhp isoforms bind Fg with high affinity, targeting a site located in the D fragment of Fg. We further identified an ∼79 amino acid-long, conserved segment within the C-terminal region of vWbp that shares high sequence identities (54 to 67%) with the vhps and binds soluble Fg with high affinity. Further analysis of this conserved motif and the intact vhps revealed intriguing differences in the Fg binding behavior, perhaps suggesting that these proteins have similar but discrete functions in the shield assembly. IMPORTANCE The life-threatening diseases caused by multidrug-resistant Staphylococcus aureus strains are a worldwide medical problem due to treatment limitations and the lack of an effective vaccine. The ability of S. aureus to coat itself with a protective fibrinogen (Fg)/fibrin shield allows the organism to survive in blood and to disseminate and cause invasive diseases. This process represents a promising target for novel antistaphylococcal treatment strategies but is incompletely understood. S. aureus expresses a number of Fg-binding proteins. Some of these proteins have apparently redundant functions. Proteins with similar functions often share a structural or functional motif with each other. In this study, we identified a protein homologous to the C-terminal of von Willebrand factor-binding protein (vWbp), a key contributor in the Fg shield assembly that also binds Fg. Further analysis allowed us to identify a common Fg-binding motif.
Collapse
Affiliation(s)
- Sheila Thomas
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Wen Liu
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Kelly Churion
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - You Wu
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| |
Collapse
|
11
|
Kusova AM, Sitnitsky AE, Zuev YF. The Role of pH and Ionic Strength in the Attraction-Repulsion Balance of Fibrinogen Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10394-10401. [PMID: 34403253 DOI: 10.1021/acs.langmuir.1c01803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fibrinogen (Fg) self-assembly is sensitive to the physicochemical properties of an environment like pH and ionic strength. These parameters tune the direction and strength of noncovalent physical driving forces determining protein intermolecular interactions. The attraction-repulsion balance in intermolecular interactions of the multidomain protein Fg at pH values 3.5, 7.4, and 9.5 and varying ionic strengths of the water medium has been analyzed by the complex diffusive approach, proposed by us previously. The concentration dependence of protein collective diffusion was analyzed within the phenomenological approach, based on the frictional formalism of nonequilibrium thermodynamics proposed by H. Vink. The analysis of protein diffusion data has shown the fundamental difference in the physical nature and direction of interaction forces between protein molecules at different conditions. The paired interaction potential of protein molecules was characterized in terms of second virial coefficients and Hamaker constants within the Deryaguin-Landau-Verwey-Overbeek theory and the "porous" colloid particle model. Our results indicated the maximum Hamaker constant and dominance of the van der Waals attraction between Fg molecules at pH 7.4. The increase in pH up to 9.5 results in the zero values of the second virial coefficient and Hamaker constant, corresponding to the full reciprocal compensation for electrostatic repulsion and van der Waals attraction. In the acidic medium (pH 3.5), the strong electrostatic repulsion substantially exceeds the van der Waals attraction. A high ionic strength is characterized by a significant decrease of all intermolecular interactions, which is expressed in almost zero values of virial coefficients and the Hamaker constant. Thus, it is experimentally shown that the physiological conditions of the Fg environment (pH 7.4 and slight ionic strength) provide a high probability for peak physical attraction between fibrinogen molecules, which is used in nature to facilitate blood clotting.
Collapse
Affiliation(s)
- Aleksandra M Kusova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str., 2/31, Kazan 420111, Russian Federation
| | - Aleksandr E Sitnitsky
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str., 2/31, Kazan 420111, Russian Federation
| | - Yuriy F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str., 2/31, Kazan 420111, Russian Federation
| |
Collapse
|
12
|
Molecular Dynamic Simulations Suggest That Metabolite-Induced Post-Translational Modifications Alter the Behavior of the Fibrinogen Coiled-Coil Domain. Metabolites 2021; 11:metabo11050307. [PMID: 34065002 PMCID: PMC8150326 DOI: 10.3390/metabo11050307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/02/2022] Open
Abstract
Fibrinogen is an abundant blood plasma protein that, inter alia, participates in blood coagulation. It polymerizes to form a fibrin clot that is among the major components of the thrombus. Fibrinogen reactions with various reactive metabolites may induce post-translational modifications (PTMs) into the protein structure that affect the architecture and properties of fibrin clots. We reviewed the previous literature to find the positions of PTMs of fibrinogen. For 7 out of 307 reported PTMs, we used molecular dynamics simulations to characterize their effect on the behavior of the fibrinogen coiled-coil domain. Interactions of the γ-coil with adjacent chains give rise to π-helices in Aα and Bβ chains of even unmodified fibrinogen. The examined PTMs suppress fluctuations of the γ-coil, which may affect the fibrinolysis and stiffness of the fibrin fibers. Citrullination of AαR104 and oxidations of γP70 and γP76 to glutamic semialdehyde unfold the α-helical structure of Aα and Bβ chains. Oxidation of γM78 to methionine sulfoxide induces the formation of an α-helix in the γ-coil region. Our findings suggest that certain PTMs alter the protein secondary structure. Thus, the altered protein structure may indicate the presence of PTMs in the molecule and consequently of certain metabolites within the system.
Collapse
|
13
|
Buchanan CDC, Lust CAC, Burns JL, Hillyer LM, Martin SA, Wittert GA, Ma DWL. Analysis of major fatty acids from matched plasma and serum samples reveals highly comparable absolute and relative levels. Prostaglandins Leukot Essent Fatty Acids 2021; 168:102268. [PMID: 33831721 DOI: 10.1016/j.plefa.2021.102268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/19/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Measuring fatty acid (FA) levels in blood as a risk factor for chronic disease has been studied extensively. Previous research has used either plasma or serum samples to examine these associations. However, whether results from plasma and serum samples can be compared remains unclear, as differences in methodology related to the separation of plasma and serum from whole blood may impact FA levels. This study analyzed the individual FA content of matched plasma and serum samples in both absolute (μg/mL) and relative percent (%) composition. Analyses were performed using archived fasted morning samples from the Florey Adelaide Male Ageing Study (FAMAS). Matched plasma and serum samples were available from 98 male subjects aged 40-85. Total FA were analyzed by gas-liquid chromatography equipped with a flame ionization detector (GLC-FID). Analyses comprised of over 60 FA including major FA such as Palmitic Acid (PA), Palmitoleic acid (POA), Stearic Acid (SA), Oleic Acid (OA), Linoleic Acid (LNA), alpha-linolenic acid (ALA), Eicosapentaenoic acid (EPA), Arachidonic Acid (ARA), and Docosahexaenoic acid (DHA). Differences between groups was determined by t-test. Correlation and Bland-Altman analyses were also performed to examine the relationship between plasma and serum samples. There were no significant differences between major plasma and serum fatty acids expressed in μg/mL and relative % composition. Correlation analysis determined a strong and significantly positive association (r ≥ 0.65, p < 0.05) between major plasma and serum FA in absolute and relative terms. Bland-Altman analysis further supported the strong agreement between plasma and serum values in both absolute and relative terms. These findings demonstrate that studies reporting plasma or serum fatty acid analyzed by GLC-FID can be compared with one another.
Collapse
Affiliation(s)
- Connor D C Buchanan
- Department of Kinesiology, University of Guelph-Humber, Toronto, ON, M9W 5L7, Canada
| | - Cody A C Lust
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Jessie L Burns
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Lyn M Hillyer
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Sean A Martin
- Freemasons Centre for Male Health and Wellness, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Gary A Wittert
- Freemasons Centre for Male Health and Wellness, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - David W L Ma
- Department of Kinesiology, University of Guelph-Humber, Toronto, ON, M9W 5L7, Canada; Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G2W1, Canada.
| |
Collapse
|
14
|
Lotto NP, de Albuquerque Modesto JC, Sant’Anna SS, Grego KF, Guarnieri MC, Lira-da-Silva RM, Santoro ML, Oguiura N. The absence of thrombin-like activity in Bothrops erythromelas venom is due to the deletion of the snake venom thrombin-like enzyme gene. PLoS One 2021; 16:e0248901. [PMID: 33905416 PMCID: PMC8078745 DOI: 10.1371/journal.pone.0248901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/07/2021] [Indexed: 11/24/2022] Open
Abstract
Snake venom thrombin-like enzymes (SVTLEs) are serine proteinases that clot fibrinogen. SVTLEs are distributed mainly in venoms from snakes of the Viperidae family, comprising venomous pit viper snakes. Bothrops snakes are distributed throughout Central and South American and are responsible for most venomous snakebites. Most Bothrops snakes display thrombin-like activity in their venoms, but it has been shown that some species do not present it. In this work, to understand SVTLE polymorphism in Bothrops snake venoms, we studied individual samples from two species of medical importance in Brazil: Bothrops jararaca, distributed in Southeastern Brazil, which displays coagulant activity on plasma and fibrinogen, and Bothrops erythromelas, found in Northeastern Brazil, which lacks direct fibrinogen coagulant activity but shows plasma coagulant activity. We tested the coagulant activity of venoms and the presence of SVTLE genes by a PCR approach. The SVTLE gene structure in B. jararaca is similar to the Bothrops atrox snake, comprising five exons. We could not amplify SVTLE sequences from B. erythromelas DNA, except for a partial pseudogene. These genes underwent a positive selection in some sites, leading to an amino acid sequence diversification, mostly in exon 2. The phylogenetic tree constructed using SVTLE coding sequences confirms that they are related to the chymotrypsin/kallikrein family. Interestingly, we found a B. jararaca specimen whose venom lacked thrombin-like activity, and its gene sequence was a pseudogene with SVTLE structure, presenting nonsense and frameshift mutations. Our results indicate an association of the lack of thrombin-like activity in B. jararaca and B. erythromelas venoms with mutations and deletions of snake venom thrombin-like enzyme genes.
Collapse
Affiliation(s)
- Nicholas P. Lotto
- Laboratory of Ecology and Evolution, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | - Sávio S. Sant’Anna
- Laboratory of Herpetology, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Kathleen F. Grego
- Laboratory of Herpetology, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Miriam C. Guarnieri
- Zoology Department, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Marcelo L. Santoro
- Laboratory of Pathophysiology, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Nancy Oguiura
- Laboratory of Ecology and Evolution, Instituto Butantan, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
15
|
Stamboroski S, Joshi A, Noeske PLM, Köppen S, Brüggemann D. Principles of Fibrinogen Fiber Assembly In Vitro. Macromol Biosci 2021; 21:e2000412. [PMID: 33687802 DOI: 10.1002/mabi.202000412] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Indexed: 12/19/2022]
Abstract
Fibrinogen nanofibers hold great potential for applications in wound healing and personalized regenerative medicine due to their ability to mimic the native blood clot architecture. Although versatile strategies exist to induce fibrillogenesis of fibrinogen in vitro, little is known about the underlying mechanisms and the associated length scales. Therefore, in this manuscript the current state of research on fibrinogen fibrillogenesis in vitro is reviewed. For the first time, the manifold factors leading to the assembly of fibrinogen molecules into fibers are categorized considering three main groups: substrate interactions, denaturing and non-denaturing buffer conditions. Based on the meta-analysis in the review it is concluded that the assembly of fibrinogen is driven by several mechanisms across different length scales. In these processes, certain buffer conditions, in particular the presence of salts, play a predominant role during fibrinogen self-assembly compared to the surface chemistry of the substrate material. Yet, to tailor fibrous fibrinogen scaffolds with defined structure-function-relationships for future tissue engineering applications, it still needs to be understood which particular role each of these factors plays during fiber assembly. Therefore, the future combination of experimental and simulation studies is proposed to understand the intermolecular interactions of fibrinogen, which induce the assembly of soluble fibrinogen into solid fibers.
Collapse
Affiliation(s)
- Stephani Stamboroski
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Wiener Strasse 12, Bremen, 28359, Germany
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, Bremen, 28359, Germany
| | - Arundhati Joshi
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, Bremen, 28359, Germany
| | - Paul-Ludwig Michael Noeske
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Wiener Strasse 12, Bremen, 28359, Germany
- University of Applied Sciences Bremerhaven, An der Karlstadt 8, Bremerhaven, 27568, Germany
| | - Susan Köppen
- Hybrid Materials Interfaces Group, Faculty of Production Engineering and Bremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, Bremen, 28359, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bremen, 28359, Germany
| | - Dorothea Brüggemann
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, Bremen, 28359, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bremen, 28359, Germany
| |
Collapse
|
16
|
Abstract
Fibrinogen is a large glycoprotein, synthesized primarily in the liver. With a normal plasma concentration of 1.5-3.5 g/L, fibrinogen is the most abundant blood coagulation factor. The final stage of blood clot formation is the conversion of soluble fibrinogen to insoluble fibrin, the polymeric scaffold for blood clots that stop bleeding (a protective reaction called hemostasis) or obstruct blood vessels (pathological thrombosis). Fibrin is a viscoelastic polymer and the structural and mechanical properties of the fibrin scaffold determine its effectiveness in hemostasis and the development and outcome of thrombotic complications. Fibrin polymerization comprises a number of consecutive reactions, each affecting the ultimate 3D porous network structure. The physical properties of fibrin clots are determined by structural features at the individual fibrin molecule, fibrin fiber, network, and whole clot levels and are among the most important functional characteristics, enabling the blood clot to withstand arterial blood flow, platelet-driven clot contraction, and other dynamic forces. This chapter describes the molecular structure of fibrinogen, the conversion of fibrinogen to fibrin, the mechanical properties of fibrin as well as its structural origins and lastly provides evidence for the role of altered fibrin clot properties in both thrombosis and bleeding.
Collapse
|
17
|
Armstrong MJ, Rodriguez JB, Dahl P, Salamon P, Hess H, Katira P. Power Law Behavior in Protein Desorption Kinetics Originating from Sequential Binding and Unbinding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13527-13534. [PMID: 33152250 DOI: 10.1021/acs.langmuir.0c02260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The study of protein adsorption at the single molecule level has recently revealed that the adsorption is reversible, but with a long-tailed residence time distribution which can be approximated with a sum of exponential functions putatively related to distinct adsorption sites. Here it is proposed that the shape of the residence time distribution results from an adsorption process with sequential and reversible steps that contribute to overall binding strength resembling "zippering". In this model, the survival function of the residence time distribution of single proteins varies from an exponential distribution for a single adsorption step to a power law distribution with exponent -1/2 for a large number of adsorption steps. The adsorption of fluorescently labeled fibrinogen to glass surfaces is experimentally studied with single molecule imaging. The experimental residence time distribution can be readily fit by the proposed model. This demonstrates that the observed long residence times can arise from stepwise adsorption rather than rare but strong binding sites and provides guidance for the control of protein adsorption to biomaterials.
Collapse
Affiliation(s)
- Megan J Armstrong
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Juan B Rodriguez
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Peter Dahl
- Department of Mechanical Engineering, San Diego State University, San Diego, California 98182, United States
| | - Peter Salamon
- Department of Mathematics and Statistics and Viral Information Institute, San Diego State University, San Diego, California 98182, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, San Diego, California 98182, United States
| |
Collapse
|
18
|
Locke M, Longstaff C. Extracellular Histones Inhibit Fibrinolysis through Noncovalent and Covalent Interactions with Fibrin. Thromb Haemost 2020; 121:464-476. [PMID: 33131044 DOI: 10.1055/s-0040-1718760] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Histones released into circulation as neutrophil extracellular traps are causally implicated in the pathogenesis of arterial, venous, and microvascular thrombosis by promoting coagulation and enhancing clot stability. Histones induce structural changes in fibrin rendering it stronger and resistant to fibrinolysis. The current study extends these observations by defining the antifibrinolytic mechanisms of histones in purified, plasma, and whole blood systems. Although histones stimulated plasminogen activation in solution, they inhibited plasmin as competitive substrates. Protection of fibrin from plasmin digestion is enhanced by covalent incorporation of histones into fibrin, catalyzed by activated transglutaminase, coagulation factor FXIII (FXIIIa). All histone subtypes (H1, H2A, H2B, H3, and H4) were crosslinked to fibrin. A distinct, noncovalent mechanism explains histone-accelerated lateral aggregation of fibrin protofibrils, resulting in thicker fibers with higher mass-to-length ratios and in turn hampered fibrinolysis. However, histones were less effective at delaying fibrinolysis in the absence of FXIIIa activity. Therapeutic doses of low-molecular-weight heparin (LMWH) prevented covalent but not noncovalent histone-fibrin interactions and neutralized the effects of histones on fibrinolysis. This suggests an additional antithrombotic mechanism for LMWH beyond anticoagulation. In conclusion, for the first time we report that histones are crosslinked to fibrin by FXIIIa and promote fibrinolytic resistance which can be overcome by FXIIIa inhibitors and histone-binding heparinoids. These findings provide a rationale for targeting the FXIII-histone-fibrin axis to destabilize fibrin and prevent potentially thrombotic fibrin networks.
Collapse
Affiliation(s)
- Matthew Locke
- Biotherapeutics Division, National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom
| | - Colin Longstaff
- Biotherapeutics Division, National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom
| |
Collapse
|
19
|
Jansen KA, Zhmurov A, Vos BE, Portale G, Hermida-Merino D, Litvinov RI, Tutwiler V, Kurniawan NA, Bras W, Weisel JW, Barsegov V, Koenderink GH. Molecular packing structure of fibrin fibers resolved by X-ray scattering and molecular modeling. SOFT MATTER 2020; 16:8272-8283. [PMID: 32935715 DOI: 10.1039/d0sm00916d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fibrin is the major extracellular component of blood clots and a proteinaceous hydrogel used as a versatile biomaterial. Fibrin forms branched networks built of laterally associated double-stranded protofibrils. This multiscale hierarchical structure is crucial for the extraordinary mechanical resilience of blood clots, yet the structural basis of clot mechanical properties remains largely unclear due, in part, to the unresolved molecular packing of fibrin fibers. Here the packing structure of fibrin fibers is quantitatively assessed by combining Small Angle X-ray Scattering (SAXS) measurements of fibrin reconstituted under a wide range of conditions with computational molecular modeling of fibrin protofibrils. The number, positions, and intensities of the Bragg peaks observed in the SAXS experiments were reproduced computationally based on the all-atom molecular structure of reconstructed fibrin protofibrils. Specifically, the model correctly predicts the intensities of the reflections of the 22.5 nm axial repeat, corresponding to the half-staggered longitudinal arrangement of fibrin molecules. In addition, the SAXS measurements showed that protofibrils within fibrin fibers have a partially ordered lateral arrangement with a characteristic transverse repeat distance of 13 nm, irrespective of the fiber thickness. These findings provide fundamental insights into the molecular structure of fibrin clots that underlies their biological and physical properties.
Collapse
Affiliation(s)
- Karin A Jansen
- AMOLF, Biological Soft Matter Group, Amsterdam, The Netherlands and UMC Utrecht, Department of Pathology, 3508 GA Utrecht, The Netherlands
| | - Artem Zhmurov
- KTH Royal Institute of Technology, Stockholm, Sweden and Sechenov University, Moscow 119991, Russian Federation
| | - Bart E Vos
- AMOLF, Biological Soft Matter Group, Amsterdam, The Netherlands and Institute of Cell Biology, Center of Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Giuseppe Portale
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Daniel Hermida-Merino
- Netherlands Organization for Scientific Research (NWO), DUBBLE CRG at the ESRF, 71 Avenue des Martyrs, 38000 Grenoble Cedex, France
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA and Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., Kazan 420008, Russian Federation
| | - Valerie Tutwiler
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicholas A Kurniawan
- AMOLF, Biological Soft Matter Group, Amsterdam, The Netherlands and Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Wim Bras
- Netherlands Organization for Scientific Research (NWO), DUBBLE CRG at the ESRF, 71 Avenue des Martyrs, 38000 Grenoble Cedex, France and Chemical Sciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge Tennessee, 37831, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Valeri Barsegov
- Department of Chemistry, University of Massachusetts, 1 University Ave., Lowell, MA, 01854, USA.
| | - Gijsje H Koenderink
- AMOLF, Biological Soft Matter Group, Amsterdam, The Netherlands and Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands.
| |
Collapse
|
20
|
The fibrin B?125-135 site is involved in the lateral association of protofibrils. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.03.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
21
|
Gupta A, Johnston CM, Hinds MT, Anderson DEJ. Quantifying Physical Thrombus Characteristics on Cardiovascular Biomaterials Using MicroCT. Methods Protoc 2020; 3:E29. [PMID: 32295060 PMCID: PMC7359709 DOI: 10.3390/mps3020029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Hemocompatibility is a critical consideration when designing cardiovascular devices. Methods of assessing hemocompatibility range from in vitro protein adsorption and static platelet attachment to in vivo implantation. A standard preclinical assessment of biomaterial hemocompatibility is ex vivo quantification of thrombosis in a chronic arteriovenous shunt. This technique utilizes flowing blood and quantifies platelet accumulation and fibrin deposition. However, the physical parameters of the thrombus have remained unknown. This study presents the development of a novel method to quantify the 3D physical properties of the thrombus on different biomaterials: expanded polytetrafluoroethylene and a preclinical hydrogel, poly(vinyl alcohol). Tubes of 4-5 mm inner diameter were exposed to non-anticoagulated blood flow for 1 hour and fixed. Due to differences in biomaterial water absorption properties, unique methods, requiring either the thrombus or the lumen to be radiopaque, were developed to quantify average thrombus volume within a graft. The samples were imaged using X-ray microcomputed tomography (microCT). The methodologies were strongly and significantly correlated to caliper-measured graft dimensions (R2 = 0.994, p < 0.0001). The physical characteristics of the thrombi were well correlated to platelet and fibrin deposition. MicroCT scanning and advanced image analyses were successfully applied to quantitatively measure 3D physical parameters of thrombi on cardiovascular biomaterials under flow.
Collapse
Affiliation(s)
| | | | | | - Deirdre E. J. Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA (M.T.H.)
| |
Collapse
|
22
|
Hyltegren K, Hulander M, Andersson M, Skepö M. Adsorption of Fibrinogen on Silica Surfaces-The Effect of Attached Nanoparticles. Biomolecules 2020; 10:E413. [PMID: 32155964 PMCID: PMC7175343 DOI: 10.3390/biom10030413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/18/2022] Open
Abstract
When a biomaterial is inserted into the body, proteins rapidly adsorb onto its surface, creating a conditioning protein film that functions as a link between the implant and adhering cells. Depending on the nano-roughness of the surface, proteins will adsorb in different amounts, with different conformations and orientations, possibly affecting the subsequent attachment of cells to the surface. Thus, modifications of the surface nanotopography of an implant may prevent biomaterial-associated infections. Fibrinogen is of particular importance since it contains adhesion epitopes that are recognized by both eukaryotic and prokaryotic cells, and can therefore influence the adhesion of bacteria. The aim of this study was to model adsorption of fibrinogen to smooth or nanostructured silica surfaces in an attempt to further understand how surface nanotopography may affect the orientation of the adsorbed fibrinogen molecule. We used a coarse-grained model, where the main body of fibrinogen (visible in the crystal structure) was modeled as rigid and the flexible α C-chains (not visible in the crystal structure) were modeled as completely disordered. We found that the elongated fibrinogen molecule preferably adsorbs in such a way that it protrudes further into solution on a nanostructured surface compared to a flat one. This implicates that the orientation on the flat surface increases its bio-availability.
Collapse
Affiliation(s)
- Kristin Hyltegren
- Division of Theoretical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden 2 Applied Chemistry, Chemistry and Chemical Engineering, Chalmers University of Technology, Chalmersplatsen 4, SE-412 96 Göteborg, Sweden
| | - Mats Hulander
- Applied Chemistry, Chemistry and Chemical Engineering, Chalmers University of Technology,Chalmersplatsen 4, SE-412 96 Göteborg, Sweden
| | - Martin Andersson
- Applied Chemistry, Chemistry and Chemical Engineering, Chalmers University of Technology,Chalmersplatsen 4, SE-412 96 Göteborg, Sweden
| | - Marie Skepö
- Division of Theoretical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden 2 Applied Chemistry, Chemistry and Chemical Engineering, Chalmers University of Technology, Chalmersplatsen 4, SE-412 96 Göteborg, Sweden
- LINXS-Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, SE-223 70 Lund, Sweden
| |
Collapse
|
23
|
Sovová Ž, Štikarová J, Kaufmanová J, Májek P, Suttnar J, Šácha P, Malý M, Dyr JE. Impact of posttranslational modifications on atomistic structure of fibrinogen. PLoS One 2020; 15:e0227543. [PMID: 31995579 PMCID: PMC6988951 DOI: 10.1371/journal.pone.0227543] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/20/2019] [Indexed: 01/09/2023] Open
Abstract
Oxidative stress in humans is related to various pathophysiological processes, which can manifest in numerous diseases including cancer, cardiovascular diseases, and Alzheimer’s disease. On the atomistic level, oxidative stress causes posttranslational modifications, thus inducing structural and functional changes into the proteins structure. This study focuses on fibrinogen, a blood plasma protein that is frequently targeted by reagents causing posttranslational modifications in proteins. Fibrinogen was in vitro modified by three reagents, namely sodium hypochlorite, malondialdehyde, and 3-morpholinosydnonimine that mimic the oxidative stress in diseases. Newly induced posttranslational modifications were detected via mass spectrometry. Electron microscopy was used to visualize changes in the fibrin networks, which highlight the extent of disturbances in fibrinogen behavior after exposure to reagents. We used molecular dynamics simulations to observe the impact of selected posttranslational modifications on the fibrinogen structure at the atomistic level. In total, 154 posttranslational modifications were identified, 84 of them were in fibrinogen treated with hypochlorite, 51 resulted from a reaction of fibrinogen with malondialdehyde, and 19 were caused by 3-morpholinosydnonimine. Our data reveal that the stronger reagents induce more posttranslational modifications in the fibrinogen structure than the weaker ones, and they extensively alter the architecture of the fibrin network. Molecular dynamics simulations revealed that the effect of posttranslational modifications on fibrinogen secondary structure varies from negligible alternations to serious disruptions. Among the serious disruptions is the oxidation of γR375 resulting in the release of Ca2+ ion that is necessary for appropriate fibrin fiber formation. Folding of amino acids γE72–γN77 into a short α-helix is a result of oxidation of γP76 to glutamic acid. The study describes behaviour of fibrinogen coiled-coil connecter in the vicinity of plasmin and hementin cleavage sites.
Collapse
Affiliation(s)
- Žofie Sovová
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- * E-mail:
| | - Jana Štikarová
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jiřina Kaufmanová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Pavel Májek
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jiří Suttnar
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Pavel Šácha
- Proteases of Human Pathogens, Institute of Organic Chemistry and Biochemistry ASCR, v.v.i., Prague, Czech Republic
| | - Martin Malý
- Military University Hospital, Charles University in Prague, Prague, Czech Republic
| | - Jan E. Dyr
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
24
|
Missing regions within the molecular architecture of human fibrin clots structurally resolved by XL-MS and integrative structural modeling. Proc Natl Acad Sci U S A 2020; 117:1976-1987. [PMID: 31924745 PMCID: PMC6995014 DOI: 10.1073/pnas.1911785117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibrinogen hexamers are major components of blood clots. After release of fibrinopeptides resulting in fibrin monomers, clot formation occurs through fibrin oligomerization followed by lateral aggregation, packing into fibrin fibers, and consequent branching. Shedding light on fibrin clots by in situ cross-linking mass spectrometry and structural modeling extends our current knowledge of the structure of fibrin with regard to receptor-binding hotspots. Further restraint-driven molecular docking reveals how fibrin oligomers laterally aggregate into clots and uncovers the molecular architecture of the clot to albumin interaction. We hypothesize this interaction is involved in the prevention of clot degradation. Mapping known mutations validates the generated structural model and, for a subset, brings their molecular mechanisms into view. Upon activation, fibrinogen forms large fibrin biopolymers that coalesce into clots which assist in wound healing. Limited insights into their molecular architecture, due to the sheer size and the insoluble character of fibrin clots, have restricted our ability to develop novel treatments for clotting diseases. The, so far resolved, disparate structural details have provided insights into linear elongation; however, molecular details like the C-terminal domain of the α-chain, the heparin-binding domain on the β-chain, and other functional domains remain elusive. To illuminate these dark areas, we applied cross-linking mass spectrometry (XL-MS) to obtain biochemical evidence in the form of over 300 distance constraints and combined this with structural modeling. These restraints additionally define the interaction network of the clots and provide molecular details for the interaction with human serum albumin (HSA). We were able to construct the structural models of the fibrinogen α-chain (excluding two highly flexible regions) and the N termini of the β-chain, confirm these models with known structural arrangements, and map how the structure laterally aggregates to form intricate lattices together with the γ-chain. We validate the final model by mapping mutations leading to impaired clot formation. From a list of 22 mutations, we uncovered structural features for all, including a crucial role for βArg’169 (UniProt: 196) in lateral aggregation. The resulting model can potentially serve for research on dysfibrinogenemia and amyloidosis as it provides insights into the molecular mechanisms of thrombosis and bleeding disorders related to fibrinogen variants. The structure is provided in the PDB-DEV repository (PDBDEV_00000030).
Collapse
|
25
|
Pyrogova LV, Bereznitsky GK, Gogolinskaya GK. Comparative analysis of the influence of chlorine and fluorine anions on the fibrin polymerization. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
Bernhard C, Roeters SJ, Bauer KN, Weidner T, Bonn M, Wurm FR, Gonella G. Both Poly(ethylene glycol) and Poly(methyl ethylene phosphate) Guide Oriented Adsorption of Specific Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14092-14097. [PMID: 31568725 DOI: 10.1021/acs.langmuir.9b02275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Developing new functional biomaterials requires the ability to simultaneously repel unwanted and guide wanted protein adsorption. Here, we systematically interrogate the factors determining the protein adsorption by comparing the behaviors of different polymeric surfaces, poly(ethylene glycol) and a poly(phosphoester), and five different natural proteins. Interestingly we observe that, at densities comparable to those used in nanocarrier functionalization, the same proteins are either adsorbed (fibrinogen, human serum albumin, and transferrin) or repelled (immunoglobulin G and lysozyme) by both polymers. However, when adsorption takes place, the specific surface dictates the amount and orientation of each protein.
Collapse
Affiliation(s)
- Christoph Bernhard
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Steven J Roeters
- Department of Chemistry , Aarhus University , 8000 Aarhus C , Denmark
| | - Kristin N Bauer
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Tobias Weidner
- Department of Chemistry , Aarhus University , 8000 Aarhus C , Denmark
| | - Mischa Bonn
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Grazia Gonella
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| |
Collapse
|
27
|
Landers CT, Tung HY, Knight JM, Madison MC, Wu Y, Zeng Z, Porter PC, Rodriguez A, Flick MJ, Kheradmand F, Corry DB. Selective cleavage of fibrinogen by diverse proteinases initiates innate allergic and antifungal immunity through CD11b. J Biol Chem 2019; 294:8834-8847. [PMID: 30992366 PMCID: PMC6552423 DOI: 10.1074/jbc.ra118.006724] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/05/2019] [Indexed: 11/06/2022] Open
Abstract
Proteinases are essential drivers of allergic airway disease and innate antifungal immunity in part through their ability cleave the clotting factor fibrinogen (FBG) into fibrinogen cleavage products (FCPs) that signal through Toll-like receptor 4 (TLR4). However, the mechanism by which FCPs engage TLR4 remains unknown. Here, we show that the proteinases from Aspergillus melleus (PAM) and other allergenic organisms rapidly hydrolyze FBG to yield relatively few FCPs that drive distinct antifungal mechanisms through TLR4. Functional FCPs, termed cryptokines, were characterized by rapid loss of the FBG α chain with substantial preservation of the β and γ chains, including a γ chain sequence (Fibγ390-396) that binds the integrin Mac-1 (CD11b/CD18). PAM-derived cryptokines could be generated from multiple FBG domains, and the ability of cryptokines to induce fungistasis in vitro and innate allergic airway disease in vivo strongly depended on both Mac-1 and the Mac-1-binding domain of FBG (Fibγ390-396). Our findings illustrate the essential concept of proteinase-activated immune responses and for the first time link Mac-1, cryptokines, and TLR4 to innate antifungal immunity and allergic airway disease.
Collapse
Affiliation(s)
- Cameron T Landers
- From the Translational Biology and Molecular Medicine Program
- Medicine
- the Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030
| | - Hui-Ying Tung
- Medicine
- Departments of Pathology and Immunology and
- Biology of Inflammation Center, and
| | | | - Matthew C Madison
- From the Translational Biology and Molecular Medicine Program
- Medicine
| | - Yifan Wu
- Medicine
- Departments of Pathology and Immunology and
| | - Zhimin Zeng
- the Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China, and
| | | | | | - Matthew J Flick
- the Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio 45229
| | - Farrah Kheradmand
- From the Translational Biology and Molecular Medicine Program,
- Medicine
- Departments of Pathology and Immunology and
- Biology of Inflammation Center, and
- the Michael E. DeBakey Veterans Affairs Center for Translational Research on Inflammatory Diseases, Houston, Texas 77030
| | - David B Corry
- From the Translational Biology and Molecular Medicine Program,
- Medicine
- Departments of Pathology and Immunology and
- Biology of Inflammation Center, and
- the Michael E. DeBakey Veterans Affairs Center for Translational Research on Inflammatory Diseases, Houston, Texas 77030
| |
Collapse
|
28
|
Bordat A, Boissenot T, Nicolas J, Tsapis N. Thermoresponsive polymer nanocarriers for biomedical applications. Adv Drug Deliv Rev 2019; 138:167-192. [PMID: 30315832 DOI: 10.1016/j.addr.2018.10.005] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/12/2018] [Accepted: 10/08/2018] [Indexed: 12/21/2022]
Abstract
Polymer nanocarriers allow drug encapsulation leading to fragile molecule protection from early degradation/metabolization, increased solubility of poorly soluble drugs and improved plasmatic half-life. However, efficiently controlling the drug release from nanocarriers is still challenging. Thermoresponsive polymers exhibiting either a lower critical solution temperature (LCST) or an upper critical solution temperature (UCST) in aqueous medium may be the key to build spatially and temporally controlled drug delivery systems. In this review, we provide an overview of LCST and UCST polymers used as building blocks for thermoresponsive nanocarriers for biomedical applications. Recent nanocarriers based on thermoresponsive polymer exhibiting unprecedented features useful for biomedical applications are also discussed. While LCST nanocarriers have been studied for over two decades, UCST nanocarriers have recently emerged and already show great potential for effective thermoresponsive drug release.
Collapse
Affiliation(s)
- Alexandre Bordat
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Tanguy Boissenot
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Julien Nicolas
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Nicolas Tsapis
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France.
| |
Collapse
|
29
|
Zhang X, Firkowska-Boden I, Arras MML, Kastantin MJ, Helbing C, Özogul A, Gnecco E, Schwartz DK, Jandt KD. Nanoconfinement and Sansetsukon-like Nanocrawling Govern Fibrinogen Dynamics and Self-Assembly on Nanostructured Polymeric Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14309-14316. [PMID: 30354162 DOI: 10.1021/acs.langmuir.8b02917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface nanostructures are increasingly more employed for controlled protein assembly on functional nanodevices, in nanobiotechnology, and in nanobiomaterials. However, the mechanism and dynamics of how nanostructures induce order in the adsorbed protein assemblies are still enigmatic. Here, we use single-molecule mapping by accumulated probe trajectories and complementary atomic force microscopy to shed light on the dynamic of in situ assembly of human plasma fibrinogen (HPF) adsorbed on nanostructured polybutene-1 (PB-1) and nanostructured polyethylene (PE) surfaces. We found a distinct lateral heterogeneity of HPF-polymer nanostructure interface (surface occupancy, residence time, and diffusion coefficient) that allow identifying the interplay between protein topographical nanoconfinement, protein diffusion mechanism, and ordered protein self-assembly. The protein diffusion analysis revealed high-diffusion polarization without correlation to the anisotropic friction characteristic of the polymer surfaces. This suggests that HPF molecules confined on the nanosized PB-1 needle crystals and PE shish-kebab crystals, respectively, undergo partial detachment and diffuse via a Sansetsukon-like nanocrawling mechanism. This mechanism is based on the intrinsic flexibility of HPF in the coiled-coil regions. We conclude that nanostructured surfaces that encourage this characteristic surface mobility are more likely to lead to the formation of ordered protein assemblies and may be useful for advanced nanobiomaterials.
Collapse
Affiliation(s)
| | | | - Matthias M L Arras
- Large Scale Structures Group, Neutron Scattering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Mark J Kastantin
- Department of Chemical and Biological Engineering , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| | | | | | | | - Daniel K Schwartz
- Department of Chemical and Biological Engineering , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| | - Klaus D Jandt
- Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| |
Collapse
|
30
|
Zhmurov A, Protopopova AD, Litvinov RI, Zhukov P, Weisel JW, Barsegov V. Atomic Structural Models of Fibrin Oligomers. Structure 2018; 26:857-868.e4. [PMID: 29754827 PMCID: PMC6501597 DOI: 10.1016/j.str.2018.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/06/2018] [Accepted: 04/05/2018] [Indexed: 10/16/2022]
Abstract
The space-filling fibrin network is a major part of clots and thrombi formed in blood. Fibrin polymerization starts when fibrinogen, a plasma protein, is proteolytically converted to fibrin, which self-assembles to form double-stranded protofibrils. When reaching a critical length, these intermediate species aggregate laterally to transform into fibers arranged into branched fibrin network. We combined multiscale modeling in silico with atomic force microscopy (AFM) imaging to reconstruct complete atomic models of double-stranded fibrin protofibrils with γ-γ crosslinking, A:a and B:b knob-hole bonds, and αC regions-all important structural determinants not resolved crystallographically. Structures of fibrin oligomers and protofibrils containing up to 19 monomers were successfully validated by quantitative comparison with high-resolution AFM images. We characterized the protofibril twisting, bending, kinking, and reversibility of A:a knob-hole bonds, and calculated hydrodynamic parameters of fibrin oligomers. Atomic structures of protofibrils provide a basis to understand mechanisms of early stages of fibrin polymerization.
Collapse
Affiliation(s)
- Artem Zhmurov
- Moscow Institute of Physics & Technology, Dolgoprudny, Moscow Region 141700, Russian Federation; Sechenov University, Moscow 119991, Russian Federation
| | - Anna D Protopopova
- Department of Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rustem I Litvinov
- Department of Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russian Federation
| | - Pavel Zhukov
- Moscow Institute of Physics & Technology, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - John W Weisel
- Department of Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Valeri Barsegov
- Moscow Institute of Physics & Technology, Dolgoprudny, Moscow Region 141700, Russian Federation; Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA.
| |
Collapse
|
31
|
Bernhard C, Roeters SJ, Franz J, Weidner T, Bonn M, Gonella G. Repelling and ordering: the influence of poly(ethylene glycol) on protein adsorption. Phys Chem Chem Phys 2018; 19:28182-28188. [PMID: 29022982 DOI: 10.1039/c7cp05445a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of new materials for drug delivery and biosensing requires the fine-tuning of interfacial properties. We report here the influence of the poly(ethylene glycol) (PEG) grafting density in model phospholipid monolayers on the adsorption behavior of bovine serum albumin and human fibrinogen, not only with respect to the amount of adsorbed protein, but also its orientational ordering on the surface. As expected, with increasing interfacial PEG density, the amount of adsorbed protein decreases up to the point where complete protein repellency is reached. However, at intermediate concentrations, the net orientation of adsorbed fibrinogen is highest. The different proteins respond differently to PEG, not only in the amount of protein adsorbed, but also in the manner that proteins adsorb. The results show that for specific cases, tuning the interfacial PEG concentration allows to guide the protein adsorption configuration, a feature sought after in materials for both biosensing and biomedical applications.
Collapse
Affiliation(s)
- Christoph Bernhard
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Settanni G, Zhou J, Schmid F. Interactions between proteins and poly(ethylene-glycol) investigated using molecular dynamics simulations. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1742-6596/921/1/012002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Li W, Lucioni T, Li R, Bonin K, Cho SS, Guthold M. Stretching single fibrin fibers hampers their lysis. Acta Biomater 2017; 60:264-274. [PMID: 28754649 DOI: 10.1016/j.actbio.2017.07.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 07/23/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
Abstract
Blood clots, whose main structural component is a mesh of microscopic fibrin fibers, experience mechanical strain from blood flow, clot retraction and interactions with platelets and other cells. We developed a transparent, striated and highly stretchable substrate made from fugitive glue (a styrenic block copolymer) to investigate how mechanical strain affects lysis of single, suspended fibrin fibers. In this suspended fiber assay, lysis manifested itself by fiber elongation, thickening (disassembly), fraying and collapse. Stretching single fibrin fibers significantly hampered their lysis. This effect was seen in uncrosslinked and crosslinked fibers. Crosslinking (without stretching) also hampered single fiber lysis. Our data suggest that strain is a novel mechanosensitive factor that regulates blood clot dissolution (fibrinolysis) at the single fiber level. At the molecular level of single fibrin molecules, strain may distort, or hinder access to, plasmin cleavage sites and thereby hamper lysis. STATEMENT OF SIGNIFICANCE Fibrin fibers are the major structural component of a blood clot. We developed a highly stretchable substrate made from fugitive glue and a suspended fibrin fiber lysis assay to investigate the effect of stretching on single fibrin fibers lysis. The key findings from our experiments are: 1) Fibers thicken and elongate upon lysis; 2) stretching strongly reduces lysis; 3) this effect is more pronounced for uncrosslinked fibers; and 4) stretching fibers has a similar effect on reducing lysis as crosslinking fibers. At the molecular level, strain may distort plasmin cleavage sites, or restrict access to those sites. Our results suggest that strain may be a novel mechanobiological factor that regulates fibrinolysis.
Collapse
|
34
|
Zuev YF, Litvinov RI, Sitnitsky AE, Idiyatullin BZ, Bakirova DR, Galanakis DK, Zhmurov A, Barsegov V, Weisel JW. Conformational Flexibility and Self-Association of Fibrinogen in Concentrated Solutions. J Phys Chem B 2017; 121:7833-7843. [DOI: 10.1021/acs.jpcb.7b05654] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuriy F. Zuev
- Kazan Institute of Biochemistry and Biophysics, 420111 Kazan, Russian Federation
- Kazan Federal University, 420000 Kazan, Russian Federation
| | - Rustem I. Litvinov
- Kazan Federal University, 420000 Kazan, Russian Federation
- Perelman
School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Bulat Z. Idiyatullin
- Kazan Institute of Biochemistry and Biophysics, 420111 Kazan, Russian Federation
| | | | - Dennis K. Galanakis
- SUNY at Stony Brook School of Medicine, Stony Brook, New York 11794, United States
| | - Artem Zhmurov
- Moscow Institute of Physics & Technology, 141701 Moscow Region, Russian Federation
| | - Valeri Barsegov
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Moscow Institute of Physics & Technology, 141701 Moscow Region, Russian Federation
| | - John W. Weisel
- Perelman
School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
35
|
Kurniawan NA, Vos BE, Biebricher A, Wuite GJL, Peterman EJG, Koenderink GH. Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales. Biophys J 2017; 111:1026-34. [PMID: 27602730 DOI: 10.1016/j.bpj.2016.06.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/01/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
Tissues and cells sustain recurring mechanical loads that span a wide range of loading amplitudes and timescales as a consequence of exposure to blood flow, muscle activity, and external impact. Both tissues and cells derive their mechanical strength from fibrous protein scaffolds, which typically have a complex hierarchical structure. In this study, we focus on a prototypical hierarchical biomaterial, fibrin, which is one of the most resilient naturally occurring biopolymers and forms the structural scaffold of blood clots. We show how fibrous networks composed of fibrin utilize irreversible changes in their hierarchical structure at different scales to maintain reversible stress stiffening up to large strains. To trace the origin of this paradoxical resilience, we systematically tuned the microstructural parameters of fibrin and used a combination of optical tweezers and fluorescence microscopy to measure the interactions of single fibrin fibers for the first time, to our knowledge. We demonstrate that fibrin networks adapt to moderate strains by remodeling at the network scale through the spontaneous formation of new bonds between fibers, whereas they adapt to high strains by plastic remodeling of the fibers themselves. This multiscale adaptation mechanism endows fibrin gels with the remarkable ability to sustain recurring loads due to shear flows and wound stretching. Our findings therefore reveal a microscopic mechanism by which tissues and cells can balance elastic nonlinearity and plasticity, and thus can provide microstructural insights into cell-driven remodeling of tissues.
Collapse
Affiliation(s)
- Nicholas A Kurniawan
- Department of Systems Biophysics, FOM Institute AMOLF, Amsterdam, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bart E Vos
- Department of Systems Biophysics, FOM Institute AMOLF, Amsterdam, The Netherlands
| | - Andreas Biebricher
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gijsje H Koenderink
- Department of Systems Biophysics, FOM Institute AMOLF, Amsterdam, The Netherlands.
| |
Collapse
|
36
|
Piechocka IK, Kurniawan NA, Grimbergen J, Koopman J, Koenderink GH. Recombinant fibrinogen reveals the differential roles of α- and γ-chain cross-linking and molecular heterogeneity in fibrin clot strain-stiffening. J Thromb Haemost 2017; 15:938-949. [PMID: 28166607 DOI: 10.1111/jth.13650] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Indexed: 01/14/2023]
Abstract
Essentials Fibrinogen circulates in human plasma as a complex mixture of heterogeneous molecular variants. We measured strain-stiffening of recombinantly produced fibrinogen upon clotting. Factor XIII and molecular heterogeneity alter clot elasticity at the protofibril and fiber level. This highlights the hitherto unknown role of molecular composition in fibrin clot mechanics. SUMMARY Background Fibrin plays a crucial role in haemostasis and wound healing by forming strain-stiffening fibrous networks that reinforce blood clots. The molecular origin of fibrin's strain-stiffening behavior remains poorly understood, primarily because plasma fibrinogen is a complex mixture of heterogeneous molecular variants and is often contaminated by plasma factors that affect clot properties. Objectives and methods To facilitate mechanistic dissection of fibrin nonlinear elasticity, we produced a homogeneous recombinant fibrinogen corresponding to the main variant in human plasma, termed rFib610. We characterized the structure of rFib610 clots using turbidimetry, microscopy and X-ray scattering. We used rheology to measure the strain-stiffening behavior of the clots and determined the fiber properties by modeling the clots as semi-flexible polymer networks. Results We show that addition of FXIII to rFib610 clots causes a dose-dependent stiffness increase at small deformations and renders the strain-stiffening response reversible. We find that γ-chain cross-linking contributes to clot elasticity by changing the force-extension behavior of the protofibrils, whereas α-chain cross-linking stiffens the fibers, as a consequence of tighter coupling between the constituent protofibrils. Interestingly, rFib610 protofibrils have a 25% larger bending rigidity than plasma-purified fibrin protofibrils and a delayed strain-stiffening, indicating that molecular heterogeneity influences clot mechanics at the protofibril scale. Conclusions Fibrinogen molecular heterogeneity and FXIII affect the mechanical function of fibrin clots by altering the nonlinear viscoelastic properties at the protofibril and fiber scale. This work provides a starting point to investigate the role of molecular heterogeneity of plasma fibrinogen in fibrin clot mechanics and haemostasis.
Collapse
Affiliation(s)
- I K Piechocka
- Department of Systems Biophysics, AMOLF, Amsterdam, the Netherlands
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - N A Kurniawan
- Department of Systems Biophysics, AMOLF, Amsterdam, the Netherlands
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | | | - J Koopman
- ProFibrix BV, Leiden, the Netherlands
| | - G H Koenderink
- Department of Systems Biophysics, AMOLF, Amsterdam, the Netherlands
| |
Collapse
|
37
|
High Affinity vs. Native Fibronectin in the Modulation of αvβ3 Integrin Conformational Dynamics: Insights from Computational Analyses and Implications for Molecular Design. PLoS Comput Biol 2017; 13:e1005334. [PMID: 28114375 PMCID: PMC5293283 DOI: 10.1371/journal.pcbi.1005334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 02/06/2017] [Accepted: 12/23/2016] [Indexed: 11/19/2022] Open
Abstract
Understanding how binding events modulate functional motions of multidomain proteins is a major issue in chemical biology. We address several aspects of this problem by analyzing the differential dynamics of αvβ3 integrin bound to wild type (wtFN10, agonist) or high affinity (hFN10, antagonist) mutants of fibronectin. We compare the dynamics of complexes from large-scale domain motions to inter-residue coordinated fluctuations to characterize the distinctive traits of conformational evolution and shed light on the determinants of differential αvβ3 activation induced by different FN sequences. We propose an allosteric model for ligand-based integrin modulation: the conserved integrin binding pocket anchors the ligand, while different residues on the two FN10's act as the drivers that reorganize relevant interaction networks, guiding the shift towards inactive (hFN10-bound) or active states (wtFN10-bound). We discuss the implications of results for the design of integrin inhibitors.
Collapse
|
38
|
Abstract
Fibrinogen and fibrin are essential for hemostasis and are major factors in thrombosis, wound healing, and several other biological functions and pathological conditions. The X-ray crystallographic structure of major parts of fibrin(ogen), together with computational reconstructions of missing portions and numerous biochemical and biophysical studies, have provided a wealth of data to interpret molecular mechanisms of fibrin formation, its organization, and properties. On cleavage of fibrinopeptides by thrombin, fibrinogen is converted to fibrin monomers, which interact via knobs exposed by fibrinopeptide removal in the central region, with holes always exposed at the ends of the molecules. The resulting half-staggered, double-stranded oligomers lengthen into protofibrils, which aggregate laterally to make fibers, which then branch to yield a three-dimensional network. Much is now known about the structural origins of clot mechanical properties, including changes in fiber orientation, stretching and buckling, and forced unfolding of molecular domains. Studies of congenital fibrinogen variants and post-translational modifications have increased our understanding of the structure and functions of fibrin(ogen). The fibrinolytic system, with the zymogen plasminogen binding to fibrin together with tissue-type plasminogen activator to promote activation to the active proteolytic enzyme, plasmin, results in digestion of fibrin at specific lysine residues. In spite of a great increase in our knowledge of all these interconnected processes, much about the molecular mechanisms of the biological functions of fibrin(ogen) remains unknown, including some basic aspects of clotting, fibrinolysis, and molecular origins of fibrin mechanical properties. Even less is known concerning more complex (patho)physiological implications of fibrinogen and fibrin.
Collapse
Affiliation(s)
- John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
39
|
Molecular dynamics simulations reveal the allosteric effect of F1174C resistance mutation to ceritinib in ALK-associated lung cancer. Comput Biol Chem 2016; 65:54-60. [DOI: 10.1016/j.compbiolchem.2016.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/13/2016] [Accepted: 10/05/2016] [Indexed: 01/14/2023]
|
40
|
Zhmurov A, Protopopova AD, Litvinov RI, Zhukov P, Mukhitov AR, Weisel JW, Barsegov V. Structural Basis of Interfacial Flexibility in Fibrin Oligomers. Structure 2016; 24:1907-1917. [PMID: 27692965 DOI: 10.1016/j.str.2016.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/19/2016] [Accepted: 08/10/2016] [Indexed: 10/20/2022]
Abstract
Fibrin is a filamentous network made in blood to stem bleeding; it forms when fibrinogen is converted into fibrin monomers that self-associate into oligomers and then to polymers. To gather structural insights into fibrin formation and properties, we combined high-resolution atomic force microscopy of fibrin(ogen) oligomers and molecular modeling of crystal structures of fibrin(ogen) and its fragments. We provided a structural basis for the intermolecular flexibility of single-stranded fibrin(ogen) oligomers and identified a hinge region at the D:D inter-monomer junction. Following computational reconstruction of the missing portions, we recreated the full-atomic structure of double-stranded fibrin oligomers that was validated by quantitative comparison with the experimental images. We characterized previously unknown intermolecular binding contacts at the D:D and D:E:D interfaces, which drive oligomerization and reinforce the intra- and inter-strand connections in fibrin besides the known knob-hole bonds. The atomic models provide valuable insights into the submolecular mechanisms of fibrin polymerization.
Collapse
Affiliation(s)
- Artem Zhmurov
- Moscow Institute of Physics & Technology, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Anna D Protopopova
- Department of Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rustem I Litvinov
- Department of Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420012, Russian Federation
| | - Pavel Zhukov
- Moscow Institute of Physics & Technology, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Alexander R Mukhitov
- Department of Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John W Weisel
- Department of Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Valeri Barsegov
- Moscow Institute of Physics & Technology, Dolgoprudny, Moscow Region 141700, Russian Federation; Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA.
| |
Collapse
|
41
|
Lopez H, Lobaskin V. Coarse-grained model of adsorption of blood plasma proteins onto nanoparticles. J Chem Phys 2016; 143:243138. [PMID: 26723623 DOI: 10.1063/1.4936908] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We present a coarse-grained model for evaluation of interactions of globular proteins with nanoparticles (NPs). The protein molecules are represented by one bead per aminoacid and the nanoparticle by a homogeneous sphere that interacts with the aminoacids via a central force that depends on the nanoparticle size. The proposed methodology is used to predict the adsorption energies for six common human blood plasma proteins on hydrophobic charged or neutral nanoparticles of different sizes as well as the preferred orientation of the molecules upon adsorption. Our approach allows one to rank the proteins by their binding affinity to the nanoparticle, which can be used for predicting the composition of the NP-protein corona. The predicted ranking is in good agreement with known experimental data for protein adsorption on surfaces.
Collapse
Affiliation(s)
- Hender Lopez
- Complex and Adaptive Systems Laboratory, School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
| | - Vladimir Lobaskin
- Complex and Adaptive Systems Laboratory, School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
42
|
Piechocka IK, Jansen KA, Broedersz CP, Kurniawan NA, MacKintosh FC, Koenderink GH. Multi-scale strain-stiffening of semiflexible bundle networks. SOFT MATTER 2016; 12:2145-56. [PMID: 26761718 DOI: 10.1039/c5sm01992c] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Bundles of polymer filaments are responsible for the rich and unique mechanical behaviors of many biomaterials, including cells and extracellular matrices. In fibrin biopolymers, whose nonlinear elastic properties are crucial for normal blood clotting, protofibrils self-assemble and bundle to form networks of semiflexible fibers. Here we show that the extraordinary strain-stiffening response of fibrin networks is a direct reflection of the hierarchical architecture of the fibrin fibers. We measure the rheology of networks of unbundled protofibrils and find excellent agreement with an affine model of extensible wormlike polymers. By direct comparison with these data, we show that physiological fibrin networks composed of thick fibers can be modeled as networks of tight protofibril bundles. We demonstrate that the tightness of coupling between protofibrils in the fibers can be tuned by the degree of enzymatic intermolecular crosslinking by the coagulation factor XIII. Furthermore, at high stress, the protofibrils contribute independently to the network elasticity, which may reflect a decoupling of the tight bundle structure. The hierarchical architecture of fibrin fibers can thus account for the nonlinearity and enormous elastic resilience characteristic of blood clots.
Collapse
|