1
|
Martin‐Ramirez S, Stouthamer J, Smakowska‐Luzan E. More questions than answers: insights into potential cysteine-rich receptor-like kinases redox signalling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70176. [PMID: 40300149 PMCID: PMC12040379 DOI: 10.1111/tpj.70176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 05/01/2025]
Abstract
Over the past few decades, significant advancements have been made in understanding how plasma-membrane localised receptor kinases (RKs) detect signals and activate responses to various stimuli. Numerous examples of ligand-induced receptor activation mechanisms and their downstream consequences have been characterised in detail. The crucial role of post-translational modifications (PTMs), such as the phosphorylation of receptor kinases, has been demonstrated concerning different cellular responses. Given the diverse structures and architectures of the extracellular domains (ECDs) of RKs, it is probable that various forms of PTMs also play an essential role in receptor activation, including cysteine oxidative modifications triggered by reactive oxygen species (ROS). The function of cysteine oxidative modifications as functional redox switches that modulate protein structure and function has been extensively studied across various multicellular organisms. Based on biochemical and structural characteristics, the family of cysteine-rich receptor-like kinases (CRK) emerges as excellent candidates for proteins regulated in a redox-dependent manner. This review provides a concise overview of cysteine's biochemical and structural properties in its role as a molecular redox switch. Drawing on the currently available literature, we describe how cysteine-redox signalling is maintained, particularly in plant cells. We further focus on extracellular ROS perception and the role of CRKs as promising candidates for ROS sensors in Arabidopsis thaliana. We discuss the structural and biochemical properties of CRKs, their involvement in plant growth and defence processes, and our perspective on why CRKs could be key components of the ROS sensing machinery or ROS sensors, especially regarding the dimerization abilities of CRKs. Finally, we highlight the current challenges in identifying and quantifying cysteine oxidative modifications and propose methods for detecting ROS-modified cysteines that may be promising for investigating the role of CRKs in extracellular ROS perception and signalling.
Collapse
Affiliation(s)
- Sergio Martin‐Ramirez
- Laboratory of BiochemistryWageningen University and ResearchWageningenThe Netherlands
| | - Jente Stouthamer
- Laboratory of BiochemistryWageningen University and ResearchWageningenThe Netherlands
| | | |
Collapse
|
2
|
Glitz C, Dyekjær JD, Vaitkus D, Babaei M, Welner DH, Borodina I. Screening of Plant UDP-Glycosyltransferases for Betanin Production in Yeast. Appl Biochem Biotechnol 2025; 197:2356-2382. [PMID: 39747739 PMCID: PMC11985647 DOI: 10.1007/s12010-024-05100-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 01/04/2025]
Abstract
To cover the rising demand for natural food dyes, new sources and production methods are needed. Microbial fermentation of nature-identical colours, such as the red pigment betanin, has the potential to be a cost-efficient alternative to plant extraction. The last step of betanin production is catalysed by a UDP-glycosyltransferase (UGT). To find a high-performing UGT, we screened 27 UGTs from different plant species and tested their ability to produce betanin in vivo in Saccharomyces cerevisiae. We identified two new UGTs likely involved in the betanin synthesis in the plant they derive from: CqGT2 (UGT73A37) from Chenopodium quinoa and BgGT2 (UGT92X1) from Bougainvillea glabra. The betanin-producing UGTs were also tested in Yarrowia lipolytica, where CqGT2 was the best-performing glycosyltransferase for betanin production. While it has previously been shown that the UGTs can glycosylate either betanidin or cyclo-DOPA to ultimately form betanin, the molecular mechanism behind the preference for the acceptor molecule has not been elucidated. Therefore, we performed in silico structural analysis to characterise the betanin-producing UGTs further, particularly by looking into their binding mechanism. The docking model suggested that a smaller binding site found in some UGTs only allows glycosylation of cDOPA, while a wider binding site allows glycosylation of both cyclo-DOPA and betanidin.
Collapse
Affiliation(s)
- Christiane Glitz
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark
| | - Jane Dannow Dyekjær
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark
| | - Dovydas Vaitkus
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark
| | - Mahsa Babaei
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark
| | - Ditte Hededam Welner
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
3
|
Spindler J, Giakissiklis C, Stierle C, Buschlüter M, Liebeton K, Siemann-Herzberg M, Takors R. Mechanistic Modeling of In Vivo Translation in Escherichia coli Reliably Identifies Well-Adapted and Optimized RNA Sequences. ACS Synth Biol 2025; 14:699-710. [PMID: 40014843 DOI: 10.1021/acssynbio.4c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Translation elongation is a multifaceted process that intricately links translational resource availability to the biophysical effects arising from the interaction of mRNA sequences, ribosomes, and nascent polypeptide chains. Optimizing (heterologous) gene expression via codon usage or tRNA preference alone may yield suboptimal outcomes. In this study, we present a comprehensive mechanistic model that accounts for the competition of tRNAs at the ribosomal A-site, internal Shine-Dalgarno sequence interactions, and the decelerating effects of positively charged peptide patches. Our model offers a holistic perspective on the effects of translational elongation, including growth rate-dependent variation in translational rates by 22 to 25% between slow- and fast-growing Escherichia coli cells. We emphasize that endogenous E. coli sequences typically adapt to these effects, particularly in highly expressed genes, where adaptation ensures efficient translation. Conversely, heterologous gene sequences from Saccharomyces cerevisiae are predicted to exhibit lower translational elongation rates by 14 to 70% compared to the homologous isoform. Simulated elongation profiles not only underscore potential sites for translation engineering but also suggest feasible synonymous codon exchanges. The implications of our model extend beyond mere codon usage adaptation and shed light on the key factors influencing translation efficiency (e.g., codons for positively charged amino acids reduced elongation rates by ∼6%). This study provides a nuanced understanding of the intricate dynamics governing translation in E. coli.
Collapse
Affiliation(s)
- Jan Spindler
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart 70569, Germany
| | | | - Catharina Stierle
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart 70569, Germany
| | - Marc Buschlüter
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart 70569, Germany
| | | | | | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart 70569, Germany
| |
Collapse
|
4
|
Shen Y, Zhang L, Yang T, Li X, Liu C, Li H, Hu Y, Shen H, Li H, Orlov YL, Zhou S, Shen Y. Monosome Stalls the Translation Process Mediated by IGF2BP in Arcuate Nucleus for Puberty Onset Delay. Mol Neurobiol 2025; 62:3167-3181. [PMID: 39235646 DOI: 10.1007/s12035-024-04450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Puberty onset through hypothalamic-pituitary-gonad (HPG) axis as an important reproductive event in postnatal development is initiated from hypothalamic arcuate nucleus (ARC). The growing evidence indicates that translational control also plays an essential role in the final expression of gonadotropin genes. To investigate the role of protein translation and behavior of ribosomes in pubertal onset, the global profiles of transcriptome, single ribosome (monosome), polysome, and tandem mass tag proteome were comprehensively investigated in rat hypothalamic ARCs of different pubertal stages using RNA sequencing, polyribo sequencing, and mass spectrum. Transcriptome-wide enrichments of N6-methyladenosine and IGF2BP2 were investigated using meRIP and RIP sequencing. Monosome was robustly enriched on a large proportion of mRNA in early puberty rats (postnatal day (PND)-25) compared to late puberty (PND-35 and PND-45). Monosome-enriched mRNAs, including HPG axis-related genes, had a large number of upstream ORFs (uORF, < 100 nt) and displayed translational repression in early puberty. Furthermore, insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) could particularly interact with and facilitate monosome to bind with mRNA in early puberty. Finally, ectopic over-expression of IGF2BP2 in hypothalamic ARC via lateral ventricle injection in vivo could recruit monosome to aggregate on mRNA and delay puberty onset. We uncovered a novel regulatory mechanism of IGF2BP2 and monosome for translational control in puberty onset, which shed light on the neuroendocrine regulatory network involved in HPG axis activation.
Collapse
Affiliation(s)
- Yifen Shen
- Central Laboratory, Suzhou Bay Clinical College, Xuzhou Medical University, Suzhou Ninth People's Hospital, Soochow University, Suzhou, 215200, Jiangsu, China
| | - Le Zhang
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, 215009, Jiangsu, China
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Yang
- Department of Medical Cosmetology, Suzhou Ninth People's Hospital, Soochow University, Suzhou, 215200, Jiangsu, China
| | - Xiaosong Li
- Department of Anorectal Surgery, Suzhou Ninth People's Hospital, Suzhou, 215200, Jiangsu, China
| | - Chao Liu
- Central Laboratory, Suzhou Bay Clinical College, Xuzhou Medical University, Suzhou Ninth People's Hospital, Soochow University, Suzhou, 215200, Jiangsu, China
| | - Hongmei Li
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
| | - Yanping Hu
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Hao Shen
- Clinical Laboratory, Suzhou Ninth People's Hospital, Suzhou, 215200, Jiangsu, China
| | - Hua Li
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, 215009, Jiangsu, China.
| | - Yuriy L Orlov
- The Digital Health Center, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia.
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Shasha Zhou
- Department of Endocrinology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200040, China.
| | - Yihang Shen
- Central Laboratory, Suzhou Bay Clinical College, Xuzhou Medical University, Suzhou Ninth People's Hospital, Soochow University, Suzhou, 215200, Jiangsu, China.
| |
Collapse
|
5
|
Fung TS, Ryu KW, Thompson CB. Arginine: at the crossroads of nitrogen metabolism. EMBO J 2025; 44:1275-1293. [PMID: 39920310 PMCID: PMC11876448 DOI: 10.1038/s44318-025-00379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 02/09/2025] Open
Abstract
L-arginine is the most nitrogen-rich amino acid, acting as a key precursor for the synthesis of nitrogen-containing metabolites and an essential intermediate in the clearance of excess nitrogen. Arginine's side chain possesses a guanidino group which has unique biochemical properties, and plays a primary role in nitrogen excretion (urea), cellular signaling (nitric oxide) and energy buffering (phosphocreatine). The post-translational modification of protein-incorporated arginine by guanidino-group methylation also contributes to epigenetic gene control. Most human cells do not synthesize sufficient arginine to meet demand and are dependent on exogenous arginine. Thus, dietary arginine plays an important role in maintaining health, particularly upon physiologic stress. How cells adapt to changes in extracellular arginine availability is unclear, mostly because nearly all tissue culture media are supplemented with supraphysiologic levels of arginine. Evidence is emerging that arginine-deficiency can influence disease progression. Here, we review new insights into the importance of arginine as a metabolite, emphasizing the central role of mitochondria in arginine synthesis/catabolism and the recent discovery that arginine can act as a signaling molecule regulating gene expression and organelle dynamics.
Collapse
Affiliation(s)
- Tak Shun Fung
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Keun Woo Ryu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
6
|
Zhu T, Hussain M, Ning J, Chen X, Shi C, Yang D, Gao X, Wu G. Genome Sequence, Comparative Genome Analysis, and Expression Profiling of the Chitinase GH18 Gene Family in Cordyceps javanica Bd01. Int J Mol Sci 2025; 26:2031. [PMID: 40076665 PMCID: PMC11900538 DOI: 10.3390/ijms26052031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The fungus Cordyceps javanica is known for entomopathogenicity and effective in the control of various arthropods. Here, we aimed to reveal the chitinase GH18 gene family expansion through the high throughput sequencing of the genome of C. javanica strain Bd01 isolated from Xylotrechus quadripes larvae. The genome was 34 Mb in size with 9590 protein-coding genes. By comparative genome analysis, it was found that the family GH18 of chitinase genes was expanded in C. javanica Bd01. The phylogenetic analysis of 27 GH18 genes, compared with those from four other species, revealed that the genes could be categorized into three distinct groups based on their conserved domains. Genes within the same cluster exhibited shared protein motifs and orthologous relationships. The molecular mass of these GH18 genes ranged from 14.03 kDa to 81.41 kDa, while their theoretical isoelectric point (pI) values spanned from 4.40 to 7.92. Most chitinases were characterized as extracellular, hydrophilic, and thermostable proteins with a negative charge. Additionally, they demonstrated favorable in vivo half-life stability. A three-dimensional structural model of the GH18 protein was further generated using the SWISS-MODEL server. These findings establish a robust genomic framework elucidating the functional diversity, evolutionary conservation patterns, and mechanistic contributions of virulence-associated genetic determinants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guoxing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (T.Z.); (M.H.); (J.N.); (X.C.); (C.S.); (D.Y.); (X.G.)
| |
Collapse
|
7
|
Wilson K, Arunachalam S. Cross-Species Insights into PR Proteins: A Comprehensive Study of Arabidopsis thaliana, Solanum lycopersicum, and Solanum tuberosum. Indian J Microbiol 2024; 64:1326-1338. [PMID: 39282158 PMCID: PMC11399520 DOI: 10.1007/s12088-024-01343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/18/2024] [Indexed: 09/18/2024] Open
Abstract
This study provides a comprehensive analysis of pathogenesis-related (PR) proteins, focusing on PR1, PR5, and PR10, in three plant species: Arabidopsis thaliana (At), Solanum lycopersicum (Sl), and Solanum tuberosum (St). We investigated various physico-chemical properties, including protein length, molecular weight, isoelectric point (pI), hydrophobicity, and structural characteristics, such as RMSD, using state-of-the-art tools like AlphaFold and PyMOL. Our analysis found that the SlPR10-StPR10 protein pair had the highest sequence identity (80.00%), lowest RMSD value (0.307 Å), and a high number of overlapping residues (160) among all other protein pairs, indicating their remarkable similarity. Additionally, we used bioinformatics tools such as Cello, Euk-mPLoc 2.0, and Wolfpsort to predict subcellular localization, with AtPR1, AtPR5, and SlPR5 proteins predicted to be located in the extracellular space in both Arabidopsis and S. lycopersicum, while AtPR10 was predicted to be located in the cytoplasm. This comprehensive analysis, including the use of cutting-edge structural prediction and subcellular localization tools, enhances our understanding of the structural, functional, and localization aspects of PR proteins, shedding light on their roles in plant defense mechanisms across different plant species. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01343-1.
Collapse
Affiliation(s)
- Karun Wilson
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Sathiavelu Arunachalam
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
8
|
Komar AA, Samatova E, Rodnina MV. Translation Rates and Protein Folding. J Mol Biol 2024; 436:168384. [PMID: 38065274 DOI: 10.1016/j.jmb.2023.168384] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
The mRNA coding sequence defines not only the amino acid sequence of the protein, but also the speed at which the ribosomes move along the mRNA while making the protein. The non-uniform local kinetics - denoted as translational rhythm - is similar among mRNAs coding for related protein folds. Deviations from this conserved rhythm can result in protein misfolding. In this review we summarize the experimental evidence demonstrating how local translation rates affect cotranslational protein folding, with the focus on the synonymous codons and patches of charged residues in the nascent peptide as best-studied examples. Alterations in nascent protein conformations due to disturbed translational rhythm can persist off the ribosome, as demonstrated by the effects of synonymous codon variants of several disease-related proteins. Charged amino acid patches in nascent chains also modulate translation and cotranslational protein folding, and can abrogate translation when placed at the N-terminus of the nascent peptide. During cotranslational folding, incomplete nascent chains navigate through a unique conformational landscape in which earlier intermediate states become inaccessible as the nascent peptide grows. Precisely tuned local translation rates, as well as interactions with the ribosome, guide the folding pathway towards the native structure, whereas deviations from the natural translation rhythm may favor pathways leading to trapped misfolded states. Deciphering the 'folding code' of the mRNA will contribute to understanding the diseases caused by protein misfolding and to rational protein design.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA; Department of Biochemistry and Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Ekaterina Samatova
- Max Planck Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Marina V Rodnina
- Max Planck Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany.
| |
Collapse
|
9
|
Nova IC, Ritmejeris J, Brinkerhoff H, Koenig TJR, Gundlach JH, Dekker C. Detection of phosphorylation post-translational modifications along single peptides with nanopores. Nat Biotechnol 2024; 42:710-714. [PMID: 37386295 PMCID: PMC11189593 DOI: 10.1038/s41587-023-01839-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/23/2023] [Indexed: 07/01/2023]
Abstract
Current methods to detect post-translational modifications of proteins, such as phosphate groups, cannot measure single molecules or differentiate between closely spaced phosphorylation sites. We detect post-translational modifications at the single-molecule level on immunopeptide sequences with cancer-associated phosphate variants by controllably drawing the peptide through the sensing region of a nanopore. We discriminate peptide sequences with one or two closely spaced phosphates with 95% accuracy for individual reads of single molecules.
Collapse
Affiliation(s)
- Ian C Nova
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Justas Ritmejeris
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Henry Brinkerhoff
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Theo J R Koenig
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Jens H Gundlach
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
10
|
Ayadi I, Nebli S, Ben Marzoug R, Rebai A. Charge cluster occurrence in land plants' mitochondrial proteomes with functional and structural insights. J Biomol Struct Dyn 2024:1-11. [PMID: 38345014 DOI: 10.1080/07391102.2024.2313154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/25/2024] [Indexed: 03/22/2024]
Abstract
The Charge Clusters (CCs) are involved in key functions and are distributed according to the organism, the protein's type, and the charge of amino acids. In the present study, we have explored the occurrence, position, and annotation as a first large-scale study of the CCs in land plants mitochondrial proteomes. A new python script was used for data curation. The Finding Clusters Charge in Protein Sequences Program was performed after adjusting the reading window size. A 44316 protein sequences belonging to 52 species of land plants were analysed. The occurrence of Negative Charge Clusters (NCCs) (1.2%) is two times more frequent than the Positive Charge Clusters (PCCs) (0.64%). Moreover, 39 and 30 NCCs were conserved in 88 and 41 proteins in intra and in inter proteomes respectively, while 14 and 21 PCCs were conserved in 53 and 85 protein sequences in intra and inter proteomes consecutively. Sequences carrying mixed CCs are rare (0.12%). Despite this low abundance, CCs play a crucial role in protein function. The CCs tend to be located mainly in the terminal regions of proteins which guarantees specific protein targeting and import into the mitochondria. In addition, the functional annotation of CCs according to Gene Ontology shows that CCs are involved in binding functions of either proteins or macromolecules which are deployed in different metabolic and cellular processes such as RNA editing and transcription. This study may provide valuable information while considering the CCs in understanding the environmental adaptation of plants.
Collapse
Affiliation(s)
- Imen Ayadi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Syrine Nebli
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Riadh Ben Marzoug
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Ahmed Rebai
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
11
|
Terzo E, Apte SA, Padhye S, Rashed S, Austin W, Caponegro M, Reddy A, Shi S, Wang C, Clark RB, Sidransky D, Modur V, Badarinarayana V. A Novel Class of Ribosome Modulating Agents Exploits Cancer Ribosome Heterogeneity to Selectively Target the CMS2 Subtype of Colorectal Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:969-979. [PMID: 37377612 PMCID: PMC10241187 DOI: 10.1158/2767-9764.crc-22-0469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/01/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2023]
Abstract
Ribosomes in cancer cells accumulate numerous patient-specific structural and functional modifications that facilitate tumor progression by modifying protein translation. We have taken a unique synthetic chemistry approach to generate novel macrolides, Ribosome modulating agents (RMA), that are proposed to act distal to catalytic sites and exploit cancer ribosome heterogeneity. The RMA ZKN-157 shows two levels of selectivity: (i) selective translation inhibition of a subset of proteins enriched for components of the ribosome and protein translation machinery that are upregulated by MYC; and (ii) selective inhibition of proliferation of a subset of colorectal cancer cell lines. Mechanistically, the selective ribosome targeting in sensitive cells triggered cell-cycle arrest and apoptosis. Consequently, in colorectal cancer, sensitivity to ZKN-157 in cell lines and patient-derived organoids was restricted to the consensus molecular subtype 2 (CMS2) subtype that is distinguished by high MYC and WNT pathway activity. ZKN-157 showed efficacy as single agent and, the potency and efficacy of ZKN-157 synergized with clinically approved DNA-intercalating agents which have previously been shown to inhibit ribogenesis as well. ZKN-157 thus represents a new class of ribosome modulators that display cancer selectivity through specific ribosome inhibition in the CMS2 subtype of colorectal cancer potentially targeting MYC-driven addiction to high protein translation. Significance This study demonstrates that ribosome heterogeneity in cancer can be exploited to develop selective ribogenesis inhibitors. The colorectal cancer CMS2 subtype, with a high unmet need for therapeutics, shows vulnerability to our novel selective ribosome modulator. The mechanism suggests that other cancer subtypes with high MYC activation could also be targeted.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anupama Reddy
- Vindhya Data Science, Data Science, Morrisville, North Carolina
| | - Shuhao Shi
- Eloxx Pharmaceuticals, Watertown, New York
| | | | | | - David Sidransky
- Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | | | | |
Collapse
|
12
|
Rashid M, Omar M, Mohanta TK. FungiProteomeDB: a database for the molecular weight and isoelectric points of the fungal proteomes. Database (Oxford) 2023; 2023:7078806. [PMID: 36929177 PMCID: PMC10019025 DOI: 10.1093/database/baad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/01/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Proteins' molecular weight (MW) and isoelectric point (pI) are crucial for their subcellular localization and subsequent function. These are also useful in 2D gel electrophoresis, liquid chromatography-mass spectrometry and X-ray protein crystallography. Moreover, visualizations like a virtual 2D proteome map of pI vs. MW are worthwhile to discuss the proteome diversity among different species. Although the genome sequence data of the fungi kingdom improved enormously, the proteomic details have been poorly elaborated. Therefore, we have calculated the MW and pI of the fungi proteins and reported them in, FungiProteomeDB, an online database (DB) https://vision4research.com/fungidb/. We analyzed the proteome of 685 fungal species that contain 7 127 141 protein sequences. The DB provides an easy-to-use and efficient interface for various search options, summary statistics and virtual 2D proteome map visualizations. The MW and pI of a protein can be obtained by searching the name of a protein, a keyword or a list of accession numbers. It also allows querying protein sequences. The DB will be helpful in hypothesis formulation and in various biotechnological applications. Database URL https://vision4research.com/fungidb/.
Collapse
|
13
|
Boeynaems S, Ma XR, Yeong V, Ginell GM, Chen JH, Blum JA, Nakayama L, Sanyal A, Briner A, Haver DV, Pauwels J, Ekman A, Schmidt HB, Sundararajan K, Porta L, Lasker K, Larabell C, Hayashi MAF, Kundaje A, Impens F, Obermeyer A, Holehouse AS, Gitler AD. Aberrant phase separation is a common killing strategy of positively charged peptides in biology and human disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531820. [PMID: 36945394 PMCID: PMC10028949 DOI: 10.1101/2023.03.09.531820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Positively charged repeat peptides are emerging as key players in neurodegenerative diseases. These peptides can perturb diverse cellular pathways but a unifying framework for how such promiscuous toxicity arises has remained elusive. We used mass-spectrometry-based proteomics to define the protein targets of these neurotoxic peptides and found that they all share similar sequence features that drive their aberrant condensation with these positively charged peptides. We trained a machine learning algorithm to detect such sequence features and unexpectedly discovered that this mode of toxicity is not limited to human repeat expansion disorders but has evolved countless times across the tree of life in the form of cationic antimicrobial and venom peptides. We demonstrate that an excess in positive charge is necessary and sufficient for this killer activity, which we name 'polycation poisoning'. These findings reveal an ancient and conserved mechanism and inform ways to leverage its design rules for new generations of bioactive peptides.
Collapse
Affiliation(s)
- Steven Boeynaems
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA
- Center for Alzheimer’s and Neurodegenerative Diseases (CAND), Texas Children’s Hospital, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center (DLDCCC), Baylor College of Medicine, Houston, TX 77030, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - X. Rosa Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vivian Yeong
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Garrett M. Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Biomolecular Condensates, Washington University in St Louis, St. Louis, MO 63130, USA
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Jacob A. Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lisa Nakayama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anushka Sanyal
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adam Briner
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Delphi Van Haver
- VIB-UGent Center for Medical Biotechnology, 9000 Gent, Belgium
- VIB Proteomics Core, 9000 Gent, Belgium
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, 9000 Gent, Belgium
- VIB Proteomics Core, 9000 Gent, Belgium
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Axel Ekman
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - H. Broder Schmidt
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kousik Sundararajan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lucas Porta
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Keren Lasker
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Carolyn Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Mirian A. F. Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, 9000 Gent, Belgium
- VIB Proteomics Core, 9000 Gent, Belgium
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Allie Obermeyer
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Biomolecular Condensates, Washington University in St Louis, St. Louis, MO 63130, USA
| | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
14
|
Garner RM, Molines AT, Theriot JA, Chang F. Vast heterogeneity in cytoplasmic diffusion rates revealed by nanorheology and Doppelgänger simulations. Biophys J 2023; 122:767-783. [PMID: 36739478 PMCID: PMC10027447 DOI: 10.1016/j.bpj.2023.01.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The cytoplasm is a complex, crowded, actively driven environment whose biophysical characteristics modulate critical cellular processes such as cytoskeletal dynamics, phase separation, and stem cell fate. Little is known about the variance in these cytoplasmic properties. Here, we employed particle-tracking nanorheology on genetically encoded multimeric 40 nm nanoparticles (GEMs) to measure diffusion within the cytoplasm of individual fission yeast (Schizosaccharomyces pombe) cellscells. We found that the apparent diffusion coefficients of individual GEM particles varied over a 400-fold range, while the differences in average particle diffusivity among individual cells spanned a 10-fold range. To determine the origin of this heterogeneity, we developed a Doppelgänger simulation approach that uses stochastic simulations of GEM diffusion that replicate the experimental statistics on a particle-by-particle basis, such that each experimental track and cell had a one-to-one correspondence with their simulated counterpart. These simulations showed that the large intra- and inter-cellular variations in diffusivity could not be explained by experimental variability but could only be reproduced with stochastic models that assume a wide intra- and inter-cellular variation in cytoplasmic viscosity. The simulation combining intra- and inter-cellular variation in viscosity also predicted weak nonergodicity in GEM diffusion, consistent with the experimental data. To probe the origin of this variation, we found that the variance in GEM diffusivity was largely independent of factors such as temperature, the actin and microtubule cytoskeletons, cell-cyle stage, and spatial locations, but was magnified by hyperosmotic shocks. Taken together, our results provide a striking demonstration that the cytoplasm is not "well-mixed" but represents a highly heterogeneous environment in which subcellular components at the 40 nm size scale experience dramatically different effective viscosities within an individual cell, as well as in different cells in a genetically identical population. These findings carry significant implications for the origins and regulation of biological noise at cellular and subcellular levels.
Collapse
Affiliation(s)
- Rikki M Garner
- Biophysics Program, Stanford University School of Medicine, Stanford, California; Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, Washington; Marine Biological Laboratory, Woods Hole, Massachusetts.
| | - Arthur T Molines
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California; Marine Biological Laboratory, Woods Hole, Massachusetts.
| | - Julie A Theriot
- Biophysics Program, Stanford University School of Medicine, Stanford, California; Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, Washington; Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California; Marine Biological Laboratory, Woods Hole, Massachusetts
| |
Collapse
|
15
|
Lu MJ, Li CJ, Ban R, Chen FZ, Hu J, Gao G, Zhou H, Lin P, Zhao WW. Tuning the Surface Molecular Charge of Organic Photoelectrochemical Transistors with Significantly Improved Signal Resolution: A General Strategy toward Sensitive Bioanalysis. ACS Sens 2022; 7:2788-2794. [PMID: 36069701 DOI: 10.1021/acssensors.2c01493] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nature makes use of molecular charges to operate specific biological synthesis and reactions. Targeting advanced opto-bioelectronic sensors, organic photoelectrochemical transistors (OPECTs), taking advantage of the light fuel substituting an external gate potential, is now debuting and expected to serve as a universal platform for studying the rich light-biomatter interplay for new bioanalytics. Given the ubiquity of charged biomolecules in nature, molecular charge manipulation should underpin a generic route for innovative OPECT regulation and operation, which nevertheless has remained unachieved. Herein, this work manifests the biological tuning of surface charge toward the OPECT biosensor, which was exemplified by a light-sensitive CdS quantum dot (QD) gate electrode interfaced by a smart DNA superstructure with adenosine triphosphate (ATP) responsiveness. Highly negative-charged supramolecular DNA concatemers were self-assembled via sequential hybridization, and the ATP-triggered disassembly of the DNA concatemers would cause a tandem change of the effective gate voltage and transfer characteristics with significantly improved resolution. The present opto-bioelectronic device translates the events of charged molecules into amplified electrical signals and outlines a generic format for the future exploitation of rich biological tunability and light-biomatter interplay for innovative bioanalytics and beyond.
Collapse
Affiliation(s)
- Meng-Jiao Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China.,School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
| | - Cheng-Jun Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Rui Ban
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China.,School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
| | - Feng-Zao Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ge Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Zhou
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Isogai Y, Imamura H, Sumi T, Shirai T. Improvement of Protein Solubility in Macromolecular Crowding during Myoglobin Evolution. Biochemistry 2022; 61:1543-1547. [PMID: 35674519 DOI: 10.1021/acs.biochem.2c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inside of living cells is crowded by extremely high concentrations of biomolecules, and thus globular proteins should have been developed to increase their solubility under such crowding conditions during organic evolution. The O2-storage protein myoglobin (Mb) is known to be expressed in myocytes of diving mammals in much larger quantities than those of land mammals. We have previously resurrected ancient whale and pinniped Mbs and experimentally demonstrated that the diving animal Mbs have evolved to maintain high solubility under the crowding conditions or to increase their tolerance against macromolecular precipitants, rather than solubility in a dilute buffer solution. However, the detail of chemical mechanisms of the precipitant tolerance remains unclear. Here, we investigated pH dependence of the precipitant tolerance (β, slope of the solubility against precipitant concentration) of extant Mbs and plotted the β values, as well as those of ancestral Mbs, against their surface net charges (ZMb). The results demonstrated that the precipitant tolerance was approximated by the square of ZMb, that is, β = aZMb2 + b, in which a and b are constants. This effect of ZMb against the precipitation is not predicted by a classical excluded volume theory that gives constant β for Mbs but can be explained by electrostatic repulsion between Mb molecules. The present study elucidates how Mb molecules have evolved to increase their in vivo solubility and shows the physiological significance of either neutral or basic isoelectric points (pI) of the natural Mbs, rather than acidic pI.
Collapse
Affiliation(s)
- Yasuhiro Isogai
- Department of Pharmaceutical Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Hiroshi Imamura
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Tomonari Sumi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Tsuyoshi Shirai
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama, Shiga 526-0829, Japan
| |
Collapse
|
17
|
Mohanta TK, Kamran MS, Omar M, Anwar W, Choi GS. PlantMWpIDB: a database for the molecular weight and isoelectric points of the plant proteomes. Sci Rep 2022; 12:7421. [PMID: 35523906 PMCID: PMC9076895 DOI: 10.1038/s41598-022-11077-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 04/11/2022] [Indexed: 01/14/2023] Open
Abstract
The molecular weight and isoelectric point of the proteins are very important parameters that control their subcellular localization and subsequent function. Although the genome sequence data of the plant kingdom improved enormously, the proteomic details have been poorly elaborated. Therefore, we have calculated the molecular weight and isoelectric point of the plant proteins and reported them in this database. A database, PlantMWpIDB, containing protein data from 342 plant proteomes was created to provide information on plant proteomes for hypothesis formulation in basic research and for biotechnological applications. The Molecular weight and isoelectric point (pI) are important molecular parameters of proteins that are useful when conducting protein studies involving 2D gel electrophoresis, liquid chromatography-mass spectrometry, and X-ray protein crystallography. PlantMWpIDB provides an easy-to-use and efficient interface for search options and generates a summary of basic protein parameters. The database represents a virtual 2D proteome map of plants, and the molecular weight and pI of a protein can be obtained by searching on the name of a protein, a keyword, or by a list of accession numbers. The PlantMWpIDB database also allows one to query protein sequences. The database can be found in the following link https://plantmwpidb.com/ . The individual 2D virtual proteome map of the plant kingdom will enable us to understand the proteome diversity between different species. Further, the molecular weight and isoelectric point of individual proteins can enable us to understand their functional significance in different species.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| | - Muhammad Shahzad Kamran
- Department of Computer Science and IT, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Omar
- Department of Data Science, Faculty of Computing, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.,Department of Information and Communication Engineering, Yeungnam University, 214-1, Gyeongsan-si, 712-749, South Korea
| | - Waheed Anwar
- Department of Computer Science and IT, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Gyu Sang Choi
- Department of Information and Communication Engineering, Yeungnam University, 214-1, Gyeongsan-si, 712-749, South Korea.
| |
Collapse
|
18
|
Ding Z, Guan F, Xu G, Wang Y, Yan Y, Zhang W, Wu N, Yao B, Huang H, Tuller T, Tian J. MPEPE, a predictive approach to improve protein expression in E. coli based on deep learning. Comput Struct Biotechnol J 2022; 20:1142-1153. [PMID: 35317239 PMCID: PMC8913310 DOI: 10.1016/j.csbj.2022.02.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
The expression of proteins in Escherichia coli is often essential for their characterization, modification, and subsequent application. Gene sequence is the major factor contributing expression. In this study, we used the expression data from 6438 heterologous proteins under the same expression condition in E. coli to construct a deep learning classifier for screening high- and low-expression proteins. In conjunction with conserved residue analysis to minimize functional disruption, a mutation predictor for enhanced protein expression (MPEPE) was proposed to identify mutations conducive to protein expression. MPEPE identified mutation sites in laccase 13B22 and the glucose dehydrogenase FAD-AtGDH, that significantly increased both expression levels and activity of these proteins. Additionally, a significant correlation of 0.46 between the predicted high level expression propensity with the constructed models and the protein abundance of endogenous genes in E. coli was also been detected. Therefore, the study provides foundational insights into the relationship between specific amino acid usage, codon usage, and protein expression, and is essential for research and industrial applications.
Collapse
Affiliation(s)
- Zundan Ding
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Feifei Guan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoshun Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchen Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yaru Yan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Yao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huoqing Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tamir Tuller
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, Israel
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
19
|
Joiret M, Kerff F, Rapino F, Close P, Geris L. Ribosome exit tunnel electrostatics. Phys Rev E 2022; 105:014409. [PMID: 35193250 DOI: 10.1103/physreve.105.014409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The impact of ribosome exit tunnel electrostatics on the protein elongation rate or on forces acting upon the nascent polypeptide chain are currently not fully elucidated. In the past, researchers have measured the electrostatic potential inside the ribosome polypeptide exit tunnel at a limited number of spatial points, at least in rabbit reticulocytes. Here we present a basic electrostatic model of the exit tunnel of the ribosome, providing a quantitative physical description of the tunnel interaction with the nascent proteins at all centro-axial points inside the tunnel. We show that a strong electrostatic screening is due to water molecules (not mobile ions) attracted to the ribosomal nucleic acid phosphate moieties buried in the immediate vicinity of the tunnel wall. We also show how the tunnel wall components and local ribosomal protein protrusions impact on the electrostatic potential profile and impede charged amino acid residues from progressing through the tunnel, affecting the elongation rate in a range of -40% to +85% when compared to the average elongation rate. The time spent by the ribosome to decode the genetic encrypted message is constrained accordingly. We quantitatively derive, at single-residue resolution, the axial forces acting on the nascent peptide from its particular sequence embedded in the tunnel. The model sheds light on how the experimental data point measurements of the potential are linked to the local structural chemistry of the inner wall, shape, and size of the tunnel. The model consistently connects experimental observations coming from different fields in molecular biology, x-ray crystallography, physical chemistry, biomechanics, and synthetic and multiomics biology. Our model should be a valuable tool to gain insight into protein synthesis dynamics, translational control, and the role of the ribosome's mechanochemistry in the cotranslational protein folding.
Collapse
Affiliation(s)
- Marc Joiret
- Biomechanics Research Unit, GIGA In Silico Medicine, Liège University, CHU-B34(+5) 1 Avenue de l'Hôpital, 4000 Liège, Belgium
| | - Frederic Kerff
- UR InBios, Centre d'Ingénierie des Protéines, Bât B6a, Allée du 6 Août, 19, B-4000 Liège, Belgium
| | - Francesca Rapino
- Cancer Signaling, GIGA Stem Cells, CHU-B34(+2) 1 Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Pierre Close
- Cancer Signaling, GIGA Stem Cells, CHU-B34(+2) 1 Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, Liège University, CHU-B34(+5) 1 Avenue de l'Hôpital, 4000 Liège, Belgium
- Skeletal Biology & Engineering Research Center, KU Leuven, ON I Herestraat 49 - box 813, 3000 Leuven, Belgium
- Biomechanics Section, KU Leuven, Celestijnenlaan 300C box 2419, B-3001 Heverlee, Belgium
| |
Collapse
|
20
|
Tirumalai MR, Anane-Bediakoh D, Rajesh S, Fox GE. Net Charges of the Ribosomal Proteins of the S10 and spc Clusters of Halophiles Are Inversely Related to the Degree of Halotolerance. Microbiol Spectr 2021; 9:e0178221. [PMID: 34908470 PMCID: PMC8672879 DOI: 10.1128/spectrum.01782-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022] Open
Abstract
Net positive charge(s) on ribosomal proteins (r-proteins) have been reported to influence the assembly and folding of ribosomes. A high percentage of r-proteins from extremely halophilic archaea are known to be acidic or even negatively charged. Those proteins that remain positively charged are typically far less positively charged. Here, the analysis is extended to non-archaeal halophilic bacteria, eukaryotes, and halotolerant archaea. The net charges (pH 7.4) of the r-proteins that comprise the S10-spc operon/cluster from individual microbial and eukaryotic genomes were estimated and intercompared. It was observed that, as a general rule, the net charges of individual proteins remained mostly basic as the salt tolerance of the bacterial strains increased from 5 to 15%. The most striking exceptions were the extremely halophilic bacterial strains, Salinibacter ruber SD01, Acetohalobium arabaticum DSM 5501 and Selenihalanaerobacter shriftii ATCC BAA-73, which are reported to require a minimum of 18% to 21% salt for their growth. All three strains have higher numbers of acidic S10-spc cluster r-proteins than what is seen in the moderate halophiles or the halotolerant strains. Of the individual proteins, only uL2 never became acidic. uS14 and uL16 also seldom became acidic. The net negative charges on several of the S10-spc cluster r-proteins are a feature generally shared by all extremely halophilic archaea and bacteria. The S10-spc cluster r-proteins of halophilic fungi and algae (eukaryotes) were exceptions: these were positively charged despite the halophilicity of the organisms. IMPORTANCE The net charges (at pH 7.4) of the ribosomal proteins (r-proteins) that comprise the S10-spc cluster show an inverse relationship with the halophilicity/halotolerance levels in both bacteria and archaea. In non-halophilic bacteria, the S10-spc cluster r-proteins are generally basic (positively charged), while the rest of the proteomes in these strains are generally acidic. On the other hand, the whole proteomes of the extremely halophilic strains are overall negatively charged, including the S10-spc cluster r-proteins. Given that the distribution of charged residues in the ribosome exit tunnel influences cotranslational folding, the contrasting charges observed in the S10-spc cluster r-proteins have potential implications for the rate of passage of these proteins through the ribosomal exit tunnel. Furthermore, the universal protein uL2, which lies in the oldest part of the ribosome, is always positively charged irrespective of the strain/organism it belongs to. This has implications for its role in the prebiotic context.
Collapse
Affiliation(s)
- Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | | - Sidharth Rajesh
- Clements High School (Class of 2023), Fort Bend Independent School District, Sugar Land, Texas, USA
| | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
21
|
Brinkerhoff H, Kang ASW, Liu J, Aksimentiev A, Dekker C. Multiple rereads of single proteins at single-amino acid resolution using nanopores. Science 2021; 374:1509-1513. [PMID: 34735217 DOI: 10.1126/science.abl4381] [Citation(s) in RCA: 254] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Henry Brinkerhoff
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Albert S W Kang
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Jingqian Liu
- Center for Biophysics and Quantitative Biology and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| |
Collapse
|
22
|
Leininger SE, Rodriguez J, Vu QV, Jiang Y, Li MS, Deutsch C, O'Brien EP. Ribosome Elongation Kinetics of Consecutively Charged Residues Are Coupled to Electrostatic Force. Biochemistry 2021; 60:3223-3235. [PMID: 34652913 PMCID: PMC8916236 DOI: 10.1021/acs.biochem.1c00507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The speed of protein synthesis can dramatically change when consecutively charged residues are incorporated into an elongating nascent protein by the ribosome. The molecular origins of this class of allosteric coupling remain unknown. We demonstrate, using multiscale simulations, that positively charged residues generate large forces that move the P-site amino acid away from the A-site amino acid. Negatively charged residues generate forces of similar magnitude but move the A- and P-sites closer together. These conformational changes, respectively, increase and decrease the transition state barrier height to peptide bond formation, explaining how charged residues mechanochemically alter translation speed. This mechanochemical mechanism is consistent with in vivo ribosome profiling data exhibiting proportionality between translation speed and the number of charged residues, experimental data characterizing nascent chain conformations, and a previously published cryo-EM structure of a ribosome-nascent chain complex containing consecutive lysines. These results expand the role of mechanochemistry in translation and provide a framework for interpreting experimental results on translation speed.
Collapse
Affiliation(s)
- Sarah E Leininger
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - Judith Rodriguez
- Bioinformatics and Genomics Graduate Program, Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
| | - Quyen V Vu
- Institute of Physics, Polish Academy of Sciences, Warsaw 02-668, Poland
| | - Yang Jiang
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Warsaw 02-668, Poland
- Institute for Computational Sciences and Technology, Ho Chi Minh City 700000, Vietnam
| | - Carol Deutsch
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Edward P O'Brien
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
- Bioinformatics and Genomics Graduate Program, Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
- Institute for Computational and Data Sciences, Penn State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
23
|
Sivasubramanian R, Chen GH, Mackey HR. The effectiveness of divalent cation addition for highly saline activated sludge cultures: Influence of monovalent/divalent ratio and specific cations. CHEMOSPHERE 2021; 274:129864. [PMID: 33979942 DOI: 10.1016/j.chemosphere.2021.129864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Saline wastewaters are prevalent in various industries and pose challenges to stable biological treatment. Increasing monovalent cation concentrations are commonly reported to deteriorate treatment and settling performance, while divalent cations can enhance flocculation and settling. However, many previous studies were performed at relatively low salinities and reports conflict on whether concentrations of monovalent cations, divalent cations, or their ratio (M/D) are most critical. This study investigates whether addition of divalent cations shows the same benefits at high salinity (∼40 g NaCl.L-1) and whether divalent ion concentration or M/D is a better predictor of enhancement. Nine sequencing batch reactors were operated at 0.8 M NaCl or KCl monovalent salt concentration, and the concentration of divalent cations (Ca2+ and Mg2+) was varied. M/D was found to be the critical factor that consistently influenced sludge characteristics. It was particularly important in describing hydrophobicity, sludge volume index (SVI) and specific oxygen uptake rate (SOUR), with rpartial of -0.879, 0.971 and 0.966 respectively in models that had an r2adj greater than 0.93. Lower M/D also increased biomass concentrations and reduced extracellular polysaccharides, the latter which in turn correlated strongly with many shape and surface charge measures. The specific monovalent salt (Na+ or K+) influenced treatment performance, biomass concentrations, hydrophobicity, SOUR, extracellular protein and SVI. The specific divalent cation was only important in describing SVI, where Mg2+ was beneficial. Overall, this study shows that addition of divalent cations can greatly benefit high salinity activated sludge systems by improving the sludge structure, settling and organic removal.
Collapse
Affiliation(s)
- Raghavendran Sivasubramanian
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Hamish Robert Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
24
|
Haldavnekar R, Venkatakrishnan K, Tan DB. Boosting the sub-cellular biomolecular cancer signals by self-functionalized tag-free nano sensor. Biosens Bioelectron 2021; 190:113407. [PMID: 34134072 DOI: 10.1016/j.bios.2021.113407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/19/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023]
Abstract
Surface Enhanced Raman Scattering (SERS)-based sub-cellular cancer diagnosis can simultaneously obtain multiple biomolecular signals crucial in diagnostic platform for a heterogeneous disease like cancer. But, SERS-probes being typically tagged with chemical functionalization demonstrate limitations due to adverse biocompatibility, ineffective cellular internalization, SERS-signal quenching and spectral contamination. Although, tag-free SERS-probes overcome these limitations; complexity in spectral interpretation and detection insensitivity make it disadvantageous. In this study, we have exploited the inherent charges of cellular biomolecules and introduced self-functionalized complementary charged, tag-free SERS nano probes for biomolecule-specific investigation. Extremely small nano probes (sub 10 nm), synthesized with multiphoton ionization were functionalized with charge by physical synthesis without any ligands or chemical processes. The probes demonstrated significant SERS (EF~106) with analyte molecules (4ATP & 4MBA). Multifold signal boost was achieved for the signals of cellular components - amplification of ~7 fold for DNA, ~16 fold for proteins and ~24 fold for lipids with the commentary charged nano probes as compared to the neutral nano probes. The signal boost was attributed to the efficient delivery of extremely small, complementary charged probes to the cellular biomolecules of interest enabling simultaneous detection of sub-cellular biomolecules such as DNA, proteins and lipids and with high reproducibility. Cancer classification and investigation of drug resistance in cancer with single cell sensitivity was demonstrated. Such biomolecule-specific investigation of cancer from intact cells will open pathways for comprehensive cancer diagnosis.
Collapse
Affiliation(s)
- Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Canada; Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Department of Biomedical Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada; Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Department of Biomedical Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.
| | - Dr Bo Tan
- Keenan Research Center for Biomedical Science, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada; Department of Biomedical Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| |
Collapse
|
25
|
Abstract
The thermal motion of charged proteins causes randomly fluctuating electric fields inside cells. According to the fluctuation-dissipation theorem, there is an additional friction force associated with such fluctuations. However, the impact of these fluctuations on the diffusion and dynamics of proteins in the cytoplasm is unclear. Here, we provide an order-of-magnitude estimate of this effect by treating electric field fluctuations within a generalized Langevin equation model with a time-dependent friction memory kernel. We find that electric friction is generally negligible compared to solvent friction. However, a significant slowdown of protein diffusion and dynamics is expected for biomolecules with high net charges such as intrinsically disordered proteins and RNA. The results show that direct contacts between biomolecules in a cell are not necessarily required to alter their dynamics.
Collapse
Affiliation(s)
- Dmitrii E Makarov
- Department of Chemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hagen Hofmann
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
26
|
Ahmed implant coated with poly(2-methacryloyloxyethyl phosphorylcholine) inhibits foreign body reactions in rabbit eyes. PLoS One 2021; 16:e0252467. [PMID: 34048489 PMCID: PMC8162657 DOI: 10.1371/journal.pone.0252467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/16/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose Wound healing after Ahmed glaucoma valve (AGV) implantation often entails fibrosis as a foreign body reaction to the silicone plate. Poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) forms an antifouling surface that inhibits fibrosis during wound healing. In this study, we aimed to compare the effects of the implantation of AGV coated with PMPC (wPMPC) versus AGV without PMPC (woPMPC) in rabbits. Methods Six New Zealand White rabbit does underwent AGV implantation in both eyes. For each rabbit, one eye was randomly selected for implantation of AGV wPMPC and a conventional AGV (woPMPC) was implanted in the contralateral eye. Gross conjunctival vascularity was compared between the two groups at the first, second, and fourth weeks after surgery. The eyes were enucleated in four weeks and subjected to staining with hematoxylin and eosin and Masson’s trichrome stain. The fibrosis and inflammation status among the eye samples were compared by measuring the thickness of the fibrotic walls and counting the number of chronic inflammatory cells around the AGV. Counting of inflammatory cells and measuring fibrotic wall thickness were done in a blinded method to eliminate observer bias. Statistical analysis was performed using the Mann-Whitney U test. Results Gross and histological examinations revealed no toxic effects of PMPC. There were no apparent differences in overall conjunctival vascularity between the two groups at weeks 1, 2, and 4 after surgery. The average inflammatory cell counts were 14.3 ± 5.8 per slide and 27.3 ± 8.6 per slide in the wPMPC and woPMPC groups, respectively (p = 0.037). The average thicknesses of the fibrotic wall were 57.9 ± 11.3 μm and 81.5 ± 21.3 μm in the wPMPC and woPMPC groups, respectively (p = 0.025). Conclusion Compared to the woPMPC group, the number of inflammatory cells and fibrosis were significantly decreased in the wPMPC group.
Collapse
|
27
|
Wätzig H, Hoffstedt M, Krebs F, Minkner R, Scheller C, Zagst H. Protein analysis and stability: Overcoming trial-and-error by grouping according to physicochemical properties. J Chromatogr A 2021; 1649:462234. [PMID: 34038775 DOI: 10.1016/j.chroma.2021.462234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022]
Abstract
Today proteins are possibly the most important class of substances. Yet new tasks for proteins are still often solved by trial-and-error approaches. However, in some areas these euphemistically called "screening approaches" are not suitable. E.g. stability tests just take too long and therefore require a more strategic, target-orientated concept. This concept is available by grouping proteins according to their physicochemical properties and then pulling out the right drawer for new tasks. These properties include size, then charge and hydrophobicity as well as their patchinesses, and the degree of order. In addition, solubility, the content of (free) enthalpy, aromatic-amino-acid- and α/β-frequency as well as helix capping, and corresponding patchiness, the number of specific motifs and domains as well as the typical concentration range can be helpful to discriminate between different groups of proteins. Analyzing correlations will reduce the necessary amount of parameters and additional ones, which may be still undiscovered at the present time, can be identified looking at protein subgroups with similar physicochemical properties which still behave heterogeneously. Step-by-step the methodology will be improved. Possibly protein stability will be the driver of this process, but all other areas such as production, purification and analytics including sample pre-treatment and the choice of appropriate separation conditions for e.g. chromatography and electrophoresis will profit from a rational strategy.
Collapse
Affiliation(s)
- Hermann Wätzig
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany.
| | - Marc Hoffstedt
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Finja Krebs
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Robert Minkner
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Christin Scheller
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Holger Zagst
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| |
Collapse
|
28
|
Tian T, Li S, Lang P, Zhao D, Zeng J. Full-length ribosome density prediction by a multi-input and multi-output model. PLoS Comput Biol 2021; 17:e1008842. [PMID: 33770074 PMCID: PMC8026034 DOI: 10.1371/journal.pcbi.1008842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 04/07/2021] [Accepted: 03/01/2021] [Indexed: 11/29/2022] Open
Abstract
Translation elongation is regulated by a series of complicated mechanisms in both prokaryotes and eukaryotes. Although recent advance in ribosome profiling techniques has enabled one to capture the genome-wide ribosome footprints along transcripts at codon resolution, the regulatory codes of elongation dynamics are still not fully understood. Most of the existing computational approaches for modeling translation elongation from ribosome profiling data mainly focus on local contextual patterns, while ignoring the continuity of the elongation process and relations between ribosome densities of remote codons. Modeling the translation elongation process in full-length coding sequence (CDS) level has not been studied to the best of our knowledge. In this paper, we developed a deep learning based approach with a multi-input and multi-output framework, named RiboMIMO, for modeling the ribosome density distributions of full-length mRNA CDS regions. Through considering the underlying correlations in translation efficiency among neighboring and remote codons and extracting hidden features from the input full-length coding sequence, RiboMIMO can greatly outperform the state-of-the-art baseline approaches and accurately predict the ribosome density distributions along the whole mRNA CDS regions. In addition, RiboMIMO explores the contributions of individual input codons to the predictions of output ribosome densities, which thus can help reveal important biological factors influencing the translation elongation process. The analyses, based on our interpretable metric named codon impact score, not only identified several patterns consistent with the previously-published literatures, but also for the first time (to the best of our knowledge) revealed that the codons located at a long distance from the ribosomal A site may also have an association on the translation elongation rate. This finding of long-range impact on translation elongation velocity may shed new light on the regulatory mechanisms of protein synthesis. Overall, these results indicated that RiboMIMO can provide a useful tool for studying the regulation of translation elongation in the range of full-length CDS. Translation elongation is a process in which amino acids are linked into proteins by ribosomes in cells. Translation elongation rates along the mRNAs are not constant, and are regulated by a series of mechanisms, such as codon rarity and mRNA stability. In this study, we modeled the translation elongation process at a full-length coding sequence level and developed a deep learning based approach to predict the translation elongation rates from mRNA sequences, through extracting the regulatory codes of elongation rates from the contextual sequences. The analyses, based on our interpretable metric named codon impact score, for the first time (to the best of our knowledge), revealed that in addition to the neighboring codons of the ribosomal A sites, the remote codons may also have an important impact on the translation elongation rates. This new finding may stimulate additional experiments and shed light on the regulatory mechanisms of protein synthesis.
Collapse
Affiliation(s)
- Tingzhong Tian
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Shuya Li
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Peng Lang
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Dan Zhao
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
- * E-mail: (DZ); (JZ)
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
- * E-mail: (DZ); (JZ)
| |
Collapse
|
29
|
Vorobieva AA, White P, Liang B, Horne JE, Bera AK, Chow CM, Gerben S, Marx S, Kang A, Stiving AQ, Harvey SR, Marx DC, Khan GN, Fleming KG, Wysocki VH, Brockwell DJ, Tamm LK, Radford SE, Baker D. De novo design of transmembrane β barrels. Science 2021; 371:eabc8182. [PMID: 33602829 PMCID: PMC8064278 DOI: 10.1126/science.abc8182] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
Transmembrane β-barrel proteins (TMBs) are of great interest for single-molecule analytical technologies because they can spontaneously fold and insert into membranes and form stable pores, but the range of pore properties that can be achieved by repurposing natural TMBs is limited. We leverage the power of de novo computational design coupled with a "hypothesis, design, and test" approach to determine TMB design principles, notably, the importance of negative design to slow β-sheet assembly. We design new eight-stranded TMBs, with no homology to known TMBs, that insert and fold reversibly into synthetic lipid membranes and have nuclear magnetic resonance and x-ray crystal structures very similar to the computational models. These advances should enable the custom design of pores for a wide range of applications.
Collapse
Affiliation(s)
- Anastassia A Vorobieva
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Paul White
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, USA
| | - Binyong Liang
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903, USA
| | - Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cameron M Chow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Stacey Gerben
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Sinduja Marx
- Department of Molecular Engineering and Sciences, University of Washington, Seattle, WA 98195, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alyssa Q Stiving
- Department of Chemistry and Biochemistry, Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Sophie R Harvey
- Department of Chemistry and Biochemistry, Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Dagan C Marx
- TC Jenkins Department of Biophysics Johns Hopkins University, Baltimore, MD 21218, USA
| | - G Nasir Khan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, USA
| | - Karen G Fleming
- TC Jenkins Department of Biophysics Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903, USA
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
30
|
Influence of nascent polypeptide positive charges on translation dynamics. Biochem J 2021; 477:2921-2934. [PMID: 32797214 DOI: 10.1042/bcj20200303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 01/05/2023]
Abstract
Protein segments with a high concentration of positively charged amino acid residues are often used in reporter constructs designed to activate ribosomal mRNA/protein decay pathways, such as those involving nonstop mRNA decay (NSD), no-go mRNA decay (NGD) and the ribosome quality control (RQC) complex. It has been proposed that the electrostatic interaction of the positively charged nascent peptide with the negatively charged ribosomal exit tunnel leads to translation arrest. When stalled long enough, the translation process is terminated with the degradation of the transcript and an incomplete protein. Although early experiments made a strong argument for this mechanism, other features associated with positively charged reporters, such as codon bias and mRNA and protein structure, have emerged as potent inducers of ribosome stalling. We carefully reviewed the published data on the protein and mRNA expression of artificial constructs with diverse compositions as assessed in different organisms. We concluded that, although polybasic sequences generally lead to lower translation efficiency, it appears that an aggravating factor, such as a nonoptimal codon composition, is necessary to cause translation termination events.
Collapse
|
31
|
Zhang S, Chen Y, Wang Y, Zhang P, Chen G, Zhou Y. Insights Into Translatomics in the Nervous System. Front Genet 2021; 11:599548. [PMID: 33408739 PMCID: PMC7779767 DOI: 10.3389/fgene.2020.599548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Most neurological disorders are caused by abnormal gene translation. Generally, dysregulation of elements involved in the translational process disrupts homeostasis in neurons and neuroglia. Better understanding of how the gene translation process occurs requires detailed analysis of transcriptomic and proteomic profile data. However, a lack of strictly direct correlations between mRNA and protein levels limits translational investigation by combining transcriptomic and proteomic profiling. The much better correlation between proteins and translated mRNAs than total mRNAs in abundance and insufficiently sensitive proteomics approach promote the requirement of advances in translatomics technology. Translatomics which capture and sequence the mRNAs associated with ribosomes has been effective in identifying translational changes by genetics or projections, ribosome stalling, local translation, and transcript isoforms in the nervous system. Here, we place emphasis on the main three translatomics methods currently used to profile mRNAs attached to ribosome-nascent chain complex (RNC-mRNA). Their prominent applications in neurological diseases including glioma, neuropathic pain, depression, fragile X syndrome (FXS), neurodegenerative disorders are outlined. The content reviewed here expands our understanding on the contributions of aberrant translation to neurological disease development.
Collapse
Affiliation(s)
- Shuxia Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjie Wang
- Key Laboratory of Elemene Anti-Cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Youfa Zhou
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Barros GC, Requião RD, Carneiro RL, Masuda CA, Moreira MH, Rossetto S, Domitrovic T, Palhano FL. Rqc1 and other yeast proteins containing highly positively charged sequences are not targets of the RQC complex. J Biol Chem 2021; 296:100586. [PMID: 33774050 PMCID: PMC8102910 DOI: 10.1016/j.jbc.2021.100586] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Previous work has suggested that highly positively charged protein segments coded by rare codons or poly (A) stretches induce ribosome stalling and translational arrest through electrostatic interactions with the negatively charged ribosome exit tunnel, leading to inefficient elongation. This arrest leads to the activation of the Ribosome Quality Control (RQC) pathway and results in low expression of these reporter proteins. However, the only endogenous yeast proteins known to activate the RQC are Rqc1, a protein essential for RQC function, and Sdd1, a protein with unknown function, both of which contain polybasic sequences. To explore the generality of this phenomenon, we investigated whether the RQC complex controls the expression of other proteins with polybasic sequences. We showed by ribosome profiling data analysis and western blot that proteins containing polybasic sequences similar to, or even more positively charged than those of Rqc1 and Sdd1, were not targeted by the RQC complex. We also observed that the previously reported Ltn1-dependent regulation of Rqc1 is posttranslational, independent of the RQC activity. Taken together, our results suggest that RQC should not be regarded as a general regulatory pathway for the expression of highly positively charged proteins in yeast.
Collapse
Affiliation(s)
- Géssica C Barros
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rodrigo D Requião
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rodolfo L Carneiro
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Claudio A Masuda
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana H Moreira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Silvana Rossetto
- Departamento de Ciência da Computação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tatiana Domitrovic
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Fernando L Palhano
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
33
|
Bhagwat P, Amobonye A, Singh S, Pillai S. A comparative analysis of GH18 chitinases and their isoforms from Beauveria bassiana: An in-silico approach. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Dautel DR, Champion JA. Protein Vesicles Self-Assembled from Functional Globular Proteins with Different Charge and Size. Biomacromolecules 2020; 22:116-125. [PMID: 32886493 DOI: 10.1021/acs.biomac.0c00671] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein vesicles can be synthesized by mixing two fusion proteins: an elastin-like polypeptide (ELP) fused to an arginine-rich leucine zipper (ZR) with a globular, soluble protein fused to a glutamate-rich leucine zipper (ZE). Currently, only fluorescent proteins have been incorporated into vesicles; however, for protein vesicles to be useful for biocatalysis, drug delivery, or biosensing, vesicles must assemble from functional proteins that span an array of properties and functionalities. In this work, the globular protein was systematically changed to determine the effects of the surface charge and size on the self-assembly of protein vesicles. The formation of microphases, which included vesicles, coacervates, and hybrid structures, was monitored at different assembly conditions to determine the phase space for each globular protein. The results show that the protein surface charge has a small effect on vesicle self-assembly. However, increasing the size of the globular protein decreases the vesicle size and increases the stability at lower ZE/ZR molar ratios. The phase diagrams created can be used as guidelines to incorporate new functional proteins into vesicles. Furthermore, this work reports catalytically active enzyme vesicles, demonstrating the potential for the application of vesicles as biocatalysts or biosensors.
Collapse
Affiliation(s)
- Dylan R Dautel
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
35
|
Weber M, Burgos R, Yus E, Yang J, Lluch‐Senar M, Serrano L. Impact of C-terminal amino acid composition on protein expression in bacteria. Mol Syst Biol 2020; 16:e9208. [PMID: 32449593 PMCID: PMC7246954 DOI: 10.15252/msb.20199208] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 11/30/2022] Open
Abstract
The C-terminal sequence of a protein is involved in processes such as efficiency of translation termination and protein degradation. However, the general relationship between features of this C-terminal sequence and levels of protein expression remains unknown. Here, we identified C-terminal amino acid biases that are ubiquitous across the bacterial taxonomy (1,582 genomes). We showed that the frequency is higher for positively charged amino acids (lysine, arginine), while hydrophobic amino acids and threonine are lower. We then studied the impact of C-terminal composition on protein levels in a library of Mycoplasma pneumoniae mutants, covering all possible combinations of the two last codons. We found that charged and polar residues, in particular lysine, led to higher expression, while hydrophobic and aromatic residues led to lower expression, with a difference in protein levels up to fourfold. We further showed that modulation of protein degradation rate could be one of the main mechanisms driving these differences. Our results demonstrate that the identity of the last amino acids has a strong influence on protein expression levels.
Collapse
Affiliation(s)
- Marc Weber
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Raul Burgos
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Eva Yus
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Jae‐Seong Yang
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Maria Lluch‐Senar
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ICREABarcelonaSpain
| |
Collapse
|
36
|
Viruses with different genome types adopt a similar strategy to pack nucleic acids based on positively charged protein domains. Sci Rep 2020; 10:5470. [PMID: 32214181 PMCID: PMC7096446 DOI: 10.1038/s41598-020-62328-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 03/02/2020] [Indexed: 11/17/2022] Open
Abstract
Capsid proteins often present a positively charged arginine-rich sequence at their terminal regions, which has a fundamental role in genome packaging and particle stability for some icosahedral viruses. These sequences show little to no conservation and are structurally dynamic such that they cannot be easily detected by common sequence or structure comparisons. As a result, the occurrence and distribution of positively charged domains across the viral universe are unknown. Based on the net charge calculation of discrete protein segments, we identified proteins containing amino acid stretches with a notably high net charge (Q > + 17), which are enriched in icosahedral viruses with a distinctive bias towards arginine over lysine. We used viral particle structural data to calculate the total electrostatic charge derived from the most positively charged protein segment of capsid proteins and correlated these values with genome charges arising from the phosphates of each nucleotide. We obtained a positive correlation (r = 0.91, p-value <0001) for a group of 17 viral families, corresponding to 40% of all families with icosahedral structures described to date. These data indicated that unrelated viruses with diverse genome types adopt a common underlying mechanism for capsid assembly based on R-arms.
Collapse
|
37
|
Wen B, Zhao L, Wang Y, Qiu C, Xu Z, Huang K, Zhu H, Li Z, Li H. Nanobodies targeting the interaction interface of programmed death receptor 1 (PD-1)/PD-1 ligand 1 (PD-1/PD-L1). Prep Biochem Biotechnol 2019; 50:252-259. [PMID: 31799894 DOI: 10.1080/10826068.2019.1692217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Targeting the interaction interface is an effective strategy to obtain programmed death receptor 1 (PD-1)/PD-1 ligand 1 (PD-L1) nanobody blockers. To validate this strategy, the interaction interface between PD-1 and the PD-L1 extracellular domain were analyzed using Cn3D 4.1. The peptide PD-1125-136 located at the interface of PD-1 was selected as the antigen to screen nanobodies from a humanized nanobody phage display library. Six different nanobodies were screened, with molecular weights of 12 ∼ 13 kDa, excluding a single basic protein. The nanobody with the longest CDR3 region, termed PD-1-Nb-B20, was selected for further analysis. For mass production, the C-terminal His6-tagged nanobody coding sequence was optimized and cloned into pET-21b for over-expression under the T7 promoter in Escherichia coli BL21 (DE3). PD-1-Nb-B20 was expressed and pancreatic adenocarcinoma cells BxPC-3 over-expressing PD-L1 were selected for nanobody competitive inhibition assays. The purified nanobodies significantly inhibited PD-1 binding to the surface of target cells, indicating their ability to block the PD-1/PD-L1 interaction.
Collapse
Affiliation(s)
- Biyan Wen
- Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
| | - Lin Zhao
- Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
| | - Yuchu Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, P. R. China
| | - Chuangnan Qiu
- Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
| | - Zhimin Xu
- Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
| | - Kunling Huang
- Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
| | - He Zhu
- Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
| | - Zemin Li
- Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
| | - Huangjin Li
- Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
38
|
Moreira MH, Barros GC, Requião RD, Rossetto S, Domitrovic T, Palhano FL. From reporters to endogenous genes: the impact of the first five codons on translation efficiency in Escherichia coli. RNA Biol 2019; 16:1806-1816. [PMID: 31470761 PMCID: PMC6844562 DOI: 10.1080/15476286.2019.1661213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/23/2019] [Indexed: 12/29/2022] Open
Abstract
Translation initiation is a critical step in the regulation of protein synthesis, and it is subjected to different control mechanisms, such as 5' UTR secondary structure and initiation codon context, that can influence the rates at which initiation and consequentially translation occur. For some genes, translation elongation also affects the rate of protein synthesis. With a GFP library containing nearly all possible combinations of nucleotides from the 3rd to the 5th codon positions in the protein coding region of the mRNA, it was previously demonstrated that some nucleotide combinations increased GFP expression up to four orders of magnitude. While it is clear that the codon region from positions 3 to 5 can influence protein expression levels of artificial constructs, its impact on endogenous proteins is still unknown. Through bioinformatics analysis, we identified the nucleotide combinations of the GFP library in Escherichia coli genes and examined the correlation between the expected levels of translation according to the GFP data with the experimental measures of protein expression. We observed that E. coli genes were enriched with the nucleotide compositions that enhanced protein expression in the GFP library, but surprisingly, it seemed to affect the translation efficiency only marginally. Nevertheless, our data indicate that different enterobacteria present similar nucleotide composition enrichment as E. coli, suggesting an evolutionary pressure towards the conservation of short translational enhancer sequences.
Collapse
Affiliation(s)
- Mariana H. Moreira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Géssica C. Barros
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo D. Requião
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvana Rossetto
- Departamento de Ciência da Computação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana Domitrovic
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando L. Palhano
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Carneiro RL, Requião RD, Rossetto S, Domitrovic T, Palhano FL. Codon stabilization coefficient as a metric to gain insights into mRNA stability and codon bias and their relationships with translation. Nucleic Acids Res 2019; 47:2216-2228. [PMID: 30698781 PMCID: PMC6412131 DOI: 10.1093/nar/gkz033] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/05/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
The codon stabilization coefficient (CSC) is derived from the correlation between each codon frequency in transcripts and mRNA half-life experimental data. In this work, we used this metric as a reference to compare previously published Saccharomyces cerevisiae mRNA half-life datasets and investigate how codon composition related to protein levels. We generated CSCs derived from nine studies. Four datasets produced similar CSCs, which also correlated with other independent parameters that reflected codon optimality, such as the tRNA abundance and ribosome residence time. By calculating the average CSC for each gene, we found that most mRNAs tended to have more non-optimal codons. Conversely, a high proportion of optimal codons was found for genes coding highly abundant proteins, including proteins that were only transiently overexpressed in response to stress conditions. We also used CSCs to identify and locate mRNA regions enriched in non-optimal codons. We found that these stretches were usually located close to the initiation codon and were sufficient to slow ribosome movement. However, in contrast to observations from reporter systems, we found no position-dependent effect on the mRNA half-life. These analyses underscore the value of CSCs in studies of mRNA stability and codon bias and their relationships with protein expression.
Collapse
Affiliation(s)
- Rodolfo L Carneiro
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Rodrigo D Requião
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Silvana Rossetto
- Departamento de Ciência da Computação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Tatiana Domitrovic
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Fernando L Palhano
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
40
|
Chowdhury SR, Lu HP. Spontaneous Rupture and Entanglement of Human Neuronal Tau Protein Induced by Piconewton Compressive Force. ACS Chem Neurosci 2019; 10:4061-4067. [PMID: 31423763 DOI: 10.1021/acschemneuro.9b00295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mechanical force vector fluctuations in living cells can have a significant impact on protein behavior and functions. Here we report that a human tau protein tertiary structure can abruptly and spontaneously rupture, like a balloon, under biologically available piconewton compressive force, using a home-modified atomic force microscopy single-molecule manipulation. The rupture behavior is dependent on the physiological level of presence of ions, such as K+ and Mg2+. We observed rupture events in the presence of K+ but not in the presence of Mg2+ ions. We have also explored the entangled protein state formed following the events of the multiple and simultaneous protein ruptures under crowding. Crowded proteins simultaneously rupture and then spontaneously refold to an entangled folding state, different from either folded and unfolded states of the tau protein, which can be a plausible pathway for the tau protein aggregation that is related to a number of neurodegenerative diseases.
Collapse
Affiliation(s)
- S. Roy Chowdhury
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - H. Peter Lu
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
41
|
Protein synthesis rates and ribosome occupancies reveal determinants of translation elongation rates. Proc Natl Acad Sci U S A 2019; 116:15023-15032. [PMID: 31292258 PMCID: PMC6660795 DOI: 10.1073/pnas.1817299116] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although protein synthesis dynamics has been studied both with theoretical models and by profiling ribosome footprints, the determinants of ribosome flux along open reading frames (ORFs) are not fully understood. Combining measurements of protein synthesis rate with ribosome footprinting data, we here inferred translation initiation and elongation rates for over a 1,000 ORFs in exponentially growing wild-type yeast cells. We found that the amino acid composition of synthesized proteins is as important a determinant of translation elongation rate as parameters related to codon and transfer RNA (tRNA) adaptation. We did not find evidence of ribosome collisions curbing the protein output of yeast transcripts, either in high translation conditions associated with exponential growth, or in strains in which deletion of individual ribosomal protein (RP) genes leads to globally increased or decreased translation. Slow translation elongation is characteristic of RP-encoding transcripts, which have markedly lower protein output compared with other transcripts with equally high ribosome densities.
Collapse
|
42
|
Schaffer LV, Millikin RJ, Miller RM, Anderson LC, Fellers RT, Ge Y, Kelleher NL, LeDuc RD, Liu X, Payne SH, Sun L, Thomas PM, Tucholski T, Wang Z, Wu S, Wu Z, Yu D, Shortreed MR, Smith LM. Identification and Quantification of Proteoforms by Mass Spectrometry. Proteomics 2019; 19:e1800361. [PMID: 31050378 PMCID: PMC6602557 DOI: 10.1002/pmic.201800361] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/07/2019] [Indexed: 12/29/2022]
Abstract
A proteoform is a defined form of a protein derived from a given gene with a specific amino acid sequence and localized post-translational modifications. In top-down proteomic analyses, proteoforms are identified and quantified through mass spectrometric analysis of intact proteins. Recent technological developments have enabled comprehensive proteoform analyses in complex samples, and an increasing number of laboratories are adopting top-down proteomic workflows. In this review, some recent advances are outlined and current challenges and future directions for the field are discussed.
Collapse
Affiliation(s)
- Leah V Schaffer
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Robert J Millikin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Rachel M Miller
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lissa C Anderson
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Ryan T Fellers
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Cell and Regenerative Biology and Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Neil L Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry and Molecular Biosciences and the Division of Hematology and Oncology, Northwestern University, Evanston, IL, 60208, USA
| | - Richard D LeDuc
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Xiaowen Liu
- Department of BioHealth Informatics, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, UT, 84602
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Paul M Thomas
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dahang Yu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
43
|
Eraslan B, Wang D, Gusic M, Prokisch H, Hallström BM, Uhlén M, Asplund A, Pontén F, Wieland T, Hopf T, Hahne H, Kuster B, Gagneur J. Quantification and discovery of sequence determinants of protein-per-mRNA amount in 29 human tissues. Mol Syst Biol 2019; 15:e8513. [PMID: 30777893 PMCID: PMC6379048 DOI: 10.15252/msb.20188513] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Despite their importance in determining protein abundance, a comprehensive catalogue of sequence features controlling protein-to-mRNA (PTR) ratios and a quantification of their effects are still lacking. Here, we quantified PTR ratios for 11,575 proteins across 29 human tissues using matched transcriptomes and proteomes. We estimated by regression the contribution of known sequence determinants of protein synthesis and degradation in addition to 45 mRNA and 3 protein sequence motifs that we found by association testing. While PTR ratios span more than 2 orders of magnitude, our integrative model predicts PTR ratios at a median precision of 3.2-fold. A reporter assay provided functional support for two novel UTR motifs, and an immobilized mRNA affinity competition-binding assay identified motif-specific bound proteins for one motif. Moreover, our integrative model led to a new metric of codon optimality that captures the effects of codon frequency on protein synthesis and degradation. Altogether, this study shows that a large fraction of PTR ratio variation in human tissues can be predicted from sequence, and it identifies many new candidate post-transcriptional regulatory elements.
Collapse
Affiliation(s)
- Basak Eraslan
- Computational Biology, Department of Informatics, Technical University of Munich, Garching Munich, Germany
- Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dongxue Wang
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Mirjana Gusic
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Björn M Hallström
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Anna Asplund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Frederik Pontén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Thomas Wieland
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Thomas Hopf
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | | | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
- Center For Integrated Protein Science Munich (CIPSM), Munich, Germany
| | - Julien Gagneur
- Computational Biology, Department of Informatics, Technical University of Munich, Garching Munich, Germany
| |
Collapse
|
44
|
Farías-Rico JA, Ruud Selin F, Myronidi I, Frühauf M, von Heijne G. Effects of protein size, thermodynamic stability, and net charge on cotranslational folding on the ribosome. Proc Natl Acad Sci U S A 2018; 115:E9280-E9287. [PMID: 30224455 PMCID: PMC6176590 DOI: 10.1073/pnas.1812756115] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
During the last five decades, studies of protein folding in dilute buffer solutions have produced a rich picture of this complex process. In the cell, however, proteins can start to fold while still attached to the ribosome (cotranslational folding) and it is not yet clear how the ribosome affects the folding of protein domains of different sizes, thermodynamic stabilities, and net charges. Here, by using arrest peptides as force sensors and on-ribosome pulse proteolysis, we provide a comprehensive picture of how the distance from the peptidyl transferase center in the ribosome at which proteins fold correlates with protein size. Moreover, an analysis of a large collection of mutants of the Escherichia coli ribosomal protein S6 shows that the force exerted on the nascent chain by protein folding varies linearly with the thermodynamic stability of the folded state, and that the ribosome environment disfavors folding of domains of high net-negative charge.
Collapse
Affiliation(s)
| | - Frida Ruud Selin
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ioanna Myronidi
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Marie Frühauf
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
- Science for Life Laboratory, Stockholm University, SE-171 21 Solna, Sweden
| |
Collapse
|
45
|
Fukunaga A, Maeta S, Reema B, Nakakido M, Tsumoto K. Improvement of antibody affinity by introduction of basic amino acid residues into the framework region. Biochem Biophys Rep 2018; 15:81-85. [PMID: 30073208 PMCID: PMC6068084 DOI: 10.1016/j.bbrep.2018.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 06/01/2018] [Accepted: 07/03/2018] [Indexed: 11/25/2022] Open
Abstract
Antibodies are widely used not only as therapeutic agents but also as research tools and diagnostic agents, and extensive efforts have been made to generate antibodies that have higher affinity. It was recently reported that introduction of charged residues into the framework region of an antibody improved its affinity; however, the underlying molecular mechanism has not been elucidated. In this study, we used kinetic and thermodynamic analyses of the antibody-antigen interaction to investigate the molecular mechanism by which an antibody with introduced charged residues recognizes its antigen with higher affinity. The introduction of basic amino acid residues resulted in improvement of the affinity whereas the introduction of acidic residues weakened the interaction. For two mutant antigen-binding fragments (Fabs) with improved affinity (named K5- and R5-mutants), the balance between the association rate constant kon and the dissociation rate constant koff was distinct despite each mutant having the same number of charged residues. Moreover, thermodynamic analysis of the interactions in the transition state revealed a difference between the K5- and R5-mutants in terms of enthalpic energy change following formation of the encounter complex with the antigen. These results suggest that the affinity of the K5- and R5-mutants is improved by distinct mechanisms. Although the mutations destabilize the Fab and necessitate further studies, our strategy is expected to become a versatile and simple means to improve the affinity of antibodies to their antigens.
Collapse
Affiliation(s)
- Atsushi Fukunaga
- Technology Development, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe, Japan
| | - Shingo Maeta
- Technology Development, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe, Japan
| | - Bajaj Reema
- Technology Development, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe, Japan
| | - Makoto Nakakido
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, 108-8639 Tokyo, Japan.,Department of Chemistry and Biotechnology and University of Tokyo, Bunkyo-ku, Tokyo 103-0081, Japan.,Department of Bioengineering, School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 103-0081, Japan
| | - Kouhei Tsumoto
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, 108-8639 Tokyo, Japan.,Department of Chemistry and Biotechnology and University of Tokyo, Bunkyo-ku, Tokyo 103-0081, Japan.,Department of Bioengineering, School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 103-0081, Japan
| |
Collapse
|
46
|
Wang Z, Ma H, Smith K, Wu S. Two-Dimensional Separation Using High-pH and Low-pH Reversed Phase Liquid Chromatography for Top-down Proteomics. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 427:43-51. [PMID: 31097918 PMCID: PMC6516780 DOI: 10.1016/j.ijms.2017.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Advancements in chromatographic separation are critical to in-depth top-down proteomics of complex intact protein samples. Reversed-phase liquid chromatography is the most prevalent technique for top-down proteomics. However, in cases of high complexities and large dynamic ranges, 1D-RPLC may not provide sufficient coverage of the proteome. To address these challenges, orthogonal separation techniques are often combined to improve the coverage and the dynamic range of detection. In this study, a "salt-free" high-pH RPLC was evaluated as an orthogonal dimension of separation to conventional low-pH RPLC with top-down MS. The RPLC separations with low-pH conditions (pH=2) and high-pH conditions (pH=10) were compared to confirm the good orthogonality between high-pH and low-pH RPLC's. The offline 2D RPLC-RPLC-MS/MS analyses of intact E. coli samples were evaluated for the improvement of intact protein identifications as well as intact proteoform characterizations. Compared to the 163 proteins and 328 proteoforms identified using a 1D RPLC-MS approach, 365 proteins and 886 proteoforms were identified using the 2D RPLC-RPLC top-down MS approach. Our results demonstrate that the 2D RPLC-RPLC top-down approach holds great potential for in-depth top-down proteomics studies by utilizing the high resolving power of RPLC separations and by using mass spectrometry compatible buffers for easy sample handling for online MS analysis.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma,
101 Stephenson Parkway, Norman, OK 73019
| | - Hongyan Ma
- Department of Chemistry and Biochemistry, University of Oklahoma,
101 Stephenson Parkway, Norman, OK 73019
| | - Kenneth Smith
- Arthritis & Clinical Immunology Research Program, Oklahoma
Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma,
101 Stephenson Parkway, Norman, OK 73019
- To whom correspondence should be addressed: Si
Wu, Ph.D., Department of Chemistry and Biochemistry, 101 Stephenson
Parkway, Room 2210, Norman, Oklahoma 73019-5251, United States, Phone: (405)
325-6931, , Fax: (405) 325-6111
| |
Collapse
|
47
|
Govrin R, Schlesinger I, Tcherner S, Sivan U. Regulation of Surface Charge by Biological Osmolytes. J Am Chem Soc 2017; 139:15013-15021. [DOI: 10.1021/jacs.7b07036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Roy Govrin
- Department of Physics and
the Russell Berrie Nanotechnology Institute, Technion−Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Itai Schlesinger
- Department of Physics and
the Russell Berrie Nanotechnology Institute, Technion−Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Shani Tcherner
- Department of Physics and
the Russell Berrie Nanotechnology Institute, Technion−Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Uri Sivan
- Department of Physics and
the Russell Berrie Nanotechnology Institute, Technion−Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| |
Collapse
|