1
|
Duffy PE, Gorres JP, Healy SA, Fried M. Malaria vaccines: a new era of prevention and control. Nat Rev Microbiol 2024; 22:756-772. [PMID: 39025972 DOI: 10.1038/s41579-024-01065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
Malaria killed over 600,000 people in 2022, a death toll that has not improved since 2015. Additionally, parasites and mosquitoes resistant to existing interventions are spreading across Africa and other regions. Vaccines offer hope to reduce the mortality burden: the first licensed malaria vaccines, RTS,S and R21, will be widely deployed in 2024 and should substantially reduce childhood deaths. In this Review, we provide an overview of the malaria problem and the Plasmodium parasite, then describe the RTS,S and R21 vaccines (the first vaccines for any human parasitic disease), summarizing their benefits and limitations. We explore next-generation vaccines designed using new knowledge of malaria pathogenesis and protective immunity, which incorporate antigens and platforms to elicit effective immune responses against different parasite stages in human or mosquito hosts. We describe a decision-making process that prioritizes malaria vaccine candidates for development in a resource-constrained environment. Future vaccines might improve upon the protective efficacy of RTS,S or R21 for children, or address the wider malaria scourge by preventing pregnancy malaria, reducing the burden of Plasmodium vivax or accelerating malaria elimination.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - J Patrick Gorres
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Rosenkranz M, Nkumama IN, Ogwang R, Kraker S, Blickling M, Mwai K, Odera D, Tuju J, Fürle K, Frank R, Chepsat E, Kapulu MC, Study Team CS, Osier FH. Full-length MSP1 is a major target of protective immunity after controlled human malaria infection. Life Sci Alliance 2024; 7:e202301910. [PMID: 38803222 PMCID: PMC11106525 DOI: 10.26508/lsa.202301910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
The merozoite surface protein 1 (MSP1) is the most abundant protein on the surface of the invasive merozoite stages of Plasmodium falciparum and has long been considered a key target of protective immunity. We used samples from a single controlled human malaria challenge study to test whether the full-length version of MSP1 (MSP1FL) induced antibodies that mediated Fc-IgG functional activity in five independent assays. We found that anti-MSP1FL antibodies induced complement fixation via C1q, monocyte-mediated phagocytosis, neutrophil respiratory burst, and natural killer cell degranulation as well as IFNγ production. Activity in each of these assays was strongly associated with protection. The breadth of MSP1-specific Fc-mediated effector functions was more strongly associated with protection than the individual measures and closely mirrored what we have previously reported using the same assays against merozoites. Our findings suggest that MSP1FL is an important target of functional antibodies that contribute to a protective immune response against malaria.
Collapse
Affiliation(s)
- Micha Rosenkranz
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Irene N Nkumama
- B Cell Immunology, German Cancer Research Centre, Heidelberg, Germany
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Rodney Ogwang
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Sara Kraker
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Marie Blickling
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Kennedy Mwai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Dennis Odera
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - James Tuju
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biotechnology and Biochemistry, Pwani University, Kilifi, Kenya
| | - Kristin Fürle
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Roland Frank
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Emily Chepsat
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Melissa C Kapulu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Chmi-Sika Study Team
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Faith Ha Osier
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
3
|
Thomson-Luque R, Stabler TC, Fürle K, Silva JC, Daubenberger C. Plasmodium falciparum merozoite surface protein 1 as asexual blood stage malaria vaccine candidate. Expert Rev Vaccines 2024; 23:160-173. [PMID: 38100310 DOI: 10.1080/14760584.2023.2295430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Malaria represents a public health challenge in tropical and subtropical regions, and currently deployed control strategies are likely insufficient to drive elimination of malaria. Development and improvement of malaria vaccines might be key to reduce disease burden. Vaccines targeting asexual blood stages of the parasite have shown limited efficacy when studied in human trials conducted over the past decades. AREAS COVERED Vaccine candidates based on the merozoite surface protein 1 (MSP1) were initially envisioned as one of the most promising approaches to provide immune protection against asexual blood-stage malaria. Successful immunization studies in monkey involved the use of the full-length MSP1 (MSP1FL) as vaccine construct. Vaccines using MSP1FL for immunization have the potential benefit of including numerous conserved B-cell and T-cell epitopes. This could result in improved parasite strain-transcending, protective immunity in the field. We review outcomes of clinical trials that utilized a variety of MSP1 constructs and formulations, including MSP1FL, either alone or in combination with other antigens, in both animal models and humans. EXPERT OPINION Novel approaches to analyze breadth and magnitude of effector functions of MSP1-targeting antibodies in volunteers undergoing experimental vaccination and controlled human malaria infection will help to define correlates of protective immunity.
Collapse
Affiliation(s)
- Richard Thomson-Luque
- Centre for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
- Sumaya-Biotech GmbH & Co. KG Heidelberg, Germany
| | - Thomas C Stabler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Basel Basel, Switzerland
- Swiss Tropical and Public Health Institute Allschwil, Switzerland
| | - Kristin Fürle
- Centre for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (GHTM IHMT, UNL), Lisbon, Portugal
| | - Claudia Daubenberger
- University of Basel Basel, Switzerland
- Swiss Tropical and Public Health Institute Allschwil, Switzerland
| |
Collapse
|
4
|
Weiss GE, Ragotte RJ, Quinkert D, Lias AM, Dans MG, Boulet C, Looker O, Ventura OD, Williams BG, Crabb BS, Draper SJ, Gilson PR. The dual action of human antibodies specific to Plasmodium falciparum PfRH5 and PfCyRPA: Blocking invasion and inactivating extracellular merozoites. PLoS Pathog 2023; 19:e1011182. [PMID: 37713419 PMCID: PMC10529537 DOI: 10.1371/journal.ppat.1011182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/27/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023] Open
Abstract
The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the current leading blood-stage malaria vaccine candidate. PfRH5 functions as part of the pentameric PCRCR complex containing PTRAMP, CSS, PfCyRPA and PfRIPR, all of which are essential for infection of human red blood cells (RBCs). To trigger RBC invasion, PfRH5 engages with RBC protein basigin in a step termed the RH5-basigin binding stage. Although we know increasingly more about how antibodies specific for PfRH5 can block invasion, much less is known about how antibodies recognizing other members of the PCRCR complex can inhibit invasion. To address this, we performed live cell imaging using monoclonal antibodies (mAbs) which bind PfRH5 and PfCyRPA. We measured the degree and timing of the invasion inhibition, the stage at which it occurred, as well as subsequent events. We show that parasite invasion is blocked by individual mAbs, and the degree of inhibition is enhanced when combining a mAb specific for PfRH5 with one binding PfCyRPA. In addition to directly establishing the invasion-blocking capacity of the mAbs, we identified a secondary action of certain mAbs on extracellular parasites that had not yet invaded where the mAbs appeared to inactivate the parasites by triggering a developmental pathway normally only seen after successful invasion. These findings suggest that epitopes within the PfCyRPA-PfRH5 sub-complex that elicit these dual responses may be more effective immunogens than neighboring epitopes by both blocking parasites from invading and rapidly inactivating extracellular parasites. These two protective mechanisms, prevention of invasion and inactivation of uninvaded parasites, resulting from antibody to a single epitope indicate a possible route to the development of more effective vaccines.
Collapse
Affiliation(s)
- Greta E. Weiss
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Robert J. Ragotte
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Doris Quinkert
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Amelia M. Lias
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Madeline G. Dans
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Coralie Boulet
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Oliver Looker
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Olivia D. Ventura
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Barnabas G. Williams
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Brendan S. Crabb
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
- The University of Melbourne, Grattan Street, Parkville, Victoria, Australia
| | - Simon J. Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Paul R. Gilson
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
- The University of Melbourne, Grattan Street, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Schneider CG, Taylor JA, Sibilo MQ, Miura K, Mallory KL, Mann C, Karch C, Beck Z, Matyas GR, Long CA, Bergmann-Leitner E, Burkhard P, Angov E. Orientation of Antigen Display on Self-Assembling Protein Nanoparticles Influences Immunogenicity. Vaccines (Basel) 2021; 9:vaccines9020103. [PMID: 33572803 PMCID: PMC7911071 DOI: 10.3390/vaccines9020103] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Self-assembling protein nanoparticles (SAPN) serve as a repetitive antigen delivery platform with high-density epitope display; however, antigen characteristics such as size and epitope presentation can influence the immunogenicity of the assembled particle and are aspects to consider for a rationally designed effective vaccine. Here, we characterize the folding and immunogenicity of heterogeneous antigen display by integrating (a) dual-stage antigen SAPN presenting the P. falciparum (Pf) merozoite surface protein 1 subunit, PfMSP119, and Pf cell-traversal protein for ookinetes and sporozoites, PfCelTOS, in addition to (b) a homogenous antigen SAPN displaying two copies of PfCelTOS. Mice and rabbits were utilized to evaluate antigen-specific humoral and cellular induction as well as functional antibodies via growth inhibition of the blood-stage parasite. We demonstrate that antigen orientation and folding influence the elicited immune response, and when appropriately designed, SAPN can serve as an adaptable platform for an effective multi-antigen display.
Collapse
Affiliation(s)
- Cosette G. Schneider
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA
| | - Justin A. Taylor
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA
| | - Michael Q. Sibilo
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Parsons Corporation, Centreville, VA 20120, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20892, USA; (K.M.); (C.A.L.)
| | - Katherine L. Mallory
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Parsons Corporation, Centreville, VA 20120, USA
| | - Christopher Mann
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Parsons Corporation, Centreville, VA 20120, USA
| | - Christopher Karch
- Laboratory of Antigen and Adjuvants, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.K.); (Z.B.); (G.R.M.)
- Henry Jackson Foundation, Bethesda, MD 20817, USA
| | - Zoltan Beck
- Laboratory of Antigen and Adjuvants, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.K.); (Z.B.); (G.R.M.)
- Henry Jackson Foundation, Bethesda, MD 20817, USA
| | - Gary R. Matyas
- Laboratory of Antigen and Adjuvants, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.K.); (Z.B.); (G.R.M.)
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20892, USA; (K.M.); (C.A.L.)
| | - Elke Bergmann-Leitner
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
| | | | - Evelina Angov
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Correspondence: ; Tel.: +1-301-319-9614
| |
Collapse
|
6
|
Mahamar A, Issiaka D, Youssouf A, Niambele SM, Soumare HM, Attaher O, Barry A, Narum DL, Duffy PE, Greenwood B, Fried M, Dicko A. Effect of 4 years of seasonal malaria chemoprevention on the acquisition of antibodies to Plasmodium falciparum antigens in Ouelessebougou, Mali. Malar J 2021; 20:23. [PMID: 33413417 PMCID: PMC7788529 DOI: 10.1186/s12936-020-03542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/10/2020] [Indexed: 12/01/2022] Open
Abstract
Background More than 200 million people live in areas of highly seasonal malaria transmission where Seasonal Malaria Chemoprevention (SMC) with sulfadoxine-pyrimethamine (SP) and amodiaquine (AQ) was recommended in 2012 by WHO. This strategy is now implemented widely and protected more than 19 million children in 2018. It was previously reported that exposure to SMC reduced antibody levels to AMA1, MSP-142 and CSP, but the duration of exposure to SMC up to three 3 years, had no effect on antibody levels to MSP-142 and CSP. Methods In 2017, a cross-sectional survey was carried out 1 month after the last dose of SMC had been given to children aged 4–5 years randomly selected from areas where SMC had been given for 2 or 4 years during the malaria transmission season. A total of 461 children were enrolled, 242 children in areas where SMC had been implemented for 4 years and 219 children in areas where SMC had been implemented for 2 years. Antibody extracted from dry blood spots was used to measure IgG levels to the malaria antigens CSP, MSP-142 and AMA1 by ELISA. Results The prevalence of antibodies to MSP-142 was similar in children who had received SMC for 4 years compared to those who had received SMC for only 2 years (85.1 vs 86.0%, ajusted odd ratio (aOR) = 1.06, 95% confidence intervals (CI 0.62–1.80), p = 0.80). The prevalence of antibodies to AMA-1 and to CSP was not lower in children who received SMC for 4 years compared to those who had received SMC for only 2 years (95.3 vs 88.8%, aOR = 3.16, 95% CI 1.44–6.95, p = 0.004 for AMA-1; and 91.2 vs 81.9%, aOR = 3.14, 95% CI 1.70–5.76, p < 0.001 for CSP). Median antibody levels for anti-MSP-142 IgG were not significatively inferior in children who had received SMC for four rather than 2 years (0.88 (IQR: 0.64–1.15) and 0.95 ((0.68–1.15), respectively), anti-CSP (1.30 (1.00–1.56) and 1.17 (0.87–1.47)), and anti-AMA-1 (1.45 (1.24–1.68) and 1.41 (1.17–1.64)). Conclusion In an area of high seasonal malaria transmission, children who had received SMC for 4 years did not had lower seropositivity or antibody levels to AMA1, MSP-142 and CSP compared to children who had received SMC for only 2 years suggesting that children who have received SMC for 4 years may not be more at risk of malaria after the cessation of SMC than children who have received SMC for a shorter period.
Collapse
Affiliation(s)
- Almahamoudou Mahamar
- Mali Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Science, Techniques and Technologies (USTT), Bamako, Mali
| | - Djibrilla Issiaka
- Mali Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Science, Techniques and Technologies (USTT), Bamako, Mali
| | - Ahamadou Youssouf
- Mali Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Science, Techniques and Technologies (USTT), Bamako, Mali
| | - Sidi M Niambele
- Mali Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Science, Techniques and Technologies (USTT), Bamako, Mali
| | - Harouna M Soumare
- Mali Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Science, Techniques and Technologies (USTT), Bamako, Mali
| | - Oumar Attaher
- Mali Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Science, Techniques and Technologies (USTT), Bamako, Mali
| | - Amadou Barry
- Mali Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Science, Techniques and Technologies (USTT), Bamako, Mali
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology (LMIV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology (LMIV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Brian Greenwood
- London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology (LMIV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Alassane Dicko
- Mali Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Science, Techniques and Technologies (USTT), Bamako, Mali.
| |
Collapse
|
7
|
Pritam M, Singh G, Swaroop S, Singh AK, Pandey B, Singh SP. A cutting-edge immunoinformatics approach for design of multi-epitope oral vaccine against dreadful human malaria. Int J Biol Macromol 2020; 158:159-179. [PMID: 32360460 PMCID: PMC7189201 DOI: 10.1016/j.ijbiomac.2020.04.191] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/28/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
Human malaria is a pathogenic disease mainly caused by Plasmodium falciparum, which was responsible for about 405,000 deaths globally in the year 2018. To date, several vaccine candidates have been evaluated for prevention, which failed to produce optimal output at various preclinical/clinical stages. This study is based on designing of polypeptide vaccines (PVs) against human malaria that cover almost all stages of life-cycle of Plasmodium and for the same 5 genome derived predicted antigenic proteins (GDPAP) have been used. For the development of a multi-immune inducer, 15 PVs were initially designed using T-cell epitope ensemble, which covered >99% human population as well as linear B-cell epitopes with or without adjuvants. The immune simulation of PVs showed higher levels of T-cell and B-cell activities compared to positive and negative vaccine controls. Furthermore, in silico cloning of PVs and codon optimization followed by enhanced expression within Lactococcus lactis host system was also explored. Although, the study has sound theoretical and in silico findings, the in vitro/in vivo evaluation seems imperative to warrant the immunogenicity and safety of PVs towards management of P. falciparum infection in the future.
Collapse
Affiliation(s)
- Manisha Pritam
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226028, India
| | - Garima Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226028, India
| | - Suchit Swaroop
- Experimental & Public Health Lab, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Akhilesh Kumar Singh
- Department of Biotechnology, Mahatma Gandhi Central University, Bihar 845401, India
| | - Brijesh Pandey
- Department of Biotechnology, Mahatma Gandhi Central University, Bihar 845401, India
| | | |
Collapse
|
8
|
Parzych EM, Miura K, Long CA, Burns JM. Maintaining immunogenicity of blood stage and sexual stage subunit malaria vaccines when formulated in combination. PLoS One 2020; 15:e0232355. [PMID: 32348377 PMCID: PMC7190115 DOI: 10.1371/journal.pone.0232355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/13/2020] [Indexed: 11/18/2022] Open
Abstract
Background Eradication of Plasmodium falciparum malaria will likely require a multivalent vaccine, but the development of a highly efficacious subunit-based formulation has been challenging. We previously showed that production and immunogenicity of two leading vaccine targets, PfMSP119 (blood-stage) and Pfs25 (sexual stage), could be enhanced upon genetic fusion to merozoite surface protein 8 (PfMSP8). Here, we sought to optimize a Pfs25-based formulation for use in combination with rPfMSP1/8 with the goal of maintaining the immunogenicity of each subunit. Methods Comparative mouse studies were conducted to assess the effects of adjuvant selection (Alhydrogel vs. glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE)) and antigen dose (2.5 vs. 0.5 μg) on the induction of anti-Pfs25 immune responses. The antibody response (magnitude, IgG subclass profile, and transmission-reducing activity (TRA)) and cellular responses (proliferation, cytokine production) generated in response to each formulation were assessed. Similarly, immunogenicity of a bivalent vaccine containing rPfMSP1/8 and rPfs25/8 was evaluated. Results Alum-based formulations elicited strong and comparable humoral and cellular responses regardless of antigen form (unfused rPfs25 or chimeric rPfs25/8) or dose. In contrast, GLA-SE based formulations elicited differential responses as a function of both parameters, with 2.5 μg of rPfs25/8 inducing the highest titers of functional anti-Pfs25 antibodies. Based on these data, chimeric rPfs25/8 was selected and tested in a bivalent formulation with rPfMSP1/8. Strong antibody titers against Pfs25 and PfMSP119 domains were induced with GLA-SE based formulations, with no indication of antigenic competition. Conclusions We were able to generate an immunogenic bivalent vaccine designed to target multiple parasite stages that could reduce both clinical disease and parasite transmission. The use of the same PfMSP8 carrier for two different vaccine components was effective in this bivalent formulation. As such, the incorporation of additional protective targets fused to the PfMSP8 carrier into the formulation should be feasible, further broadening the protective response.
Collapse
Affiliation(s)
- Elizabeth M. Parzych
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Kazutoyo Miura
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Carole A. Long
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - James M. Burns
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
9
|
Abstract
The blood stage of the malaria parasite life cycle is responsible for all the clinical symptoms of malaria. During the blood stage, Plasmodium merozoites invade and multiply within host red blood cells (RBCs). Here, we review the progress made, challenges faced, and new strategies available for the development of blood stage malaria vaccines. We discuss our current understanding of immune responses against blood stages and the status of clinical development of various blood stage malaria vaccine candidates. We then discuss possible paths forward to develop effective blood stage malaria vaccines. This includes a discussion of protective immune mechanisms that can be elicited to target blood stage parasites, novel delivery systems, immunoassays and animal models to optimize vaccine candidates in preclinical studies, and use of challenge models to get an early readout of vaccine efficacy.
Collapse
|
10
|
Yap NJ, Vythilingam I, Hoh BP, Goh XT, Muslim A, Ngui R, Rajoo Y, Choy SH, William T, Yeo TW, Lim YAL. Genetic polymorphism and natural selection in the C-terminal 42 kDa region of merozoite surface protein-1 (MSP-1) among Plasmodium knowlesi samples from Malaysia. Parasit Vectors 2018; 11:626. [PMID: 30518419 PMCID: PMC6282282 DOI: 10.1186/s13071-018-3234-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022] Open
Abstract
Background The merozoite surface protein-1 (MSP-1) gene encodes for a leading malaria vaccine candidate antigen. However, its extensive polymorphic nature represents a major obstacle to the development of a protective vaccine. Previously, a pilot study was carried out to explore the sequence variation of the C-terminal 42 kDa fragment within P. knowlesi MSP-1 gene (PkMSP-142) based on 12 clinical samples; however, further study on an adequate sample size is vital in estimating the genetic diversity of the parasite population. Methods In the present study, we included a larger sample size of P. knowlesi (83 samples) covering eight states of Malaysia to determine the genetic polymorphism, natural selection and haplotype groups of the gene fragment coding PkMSP-142. The region flanking PkMSP-142 was amplified by PCR and directly sequenced. Genetic diversity, haplotype diversity, population genetic differentiation and natural selection were determined in order to study the polymorphic characteristic of PkMSP-142. Results A high level of genetic diversity (Hd = 0.970 ± 0.007; л = 0.01079 ± 0.00033) was observed among the 83 P. knowlesi samples, confirming the extensive genetic polymorphism exhibited among the P. knowlesi population found in Malaysia. A total of 18 distinct haplotypes with 17 amino acid changes were identified, whereby 15 were new haplotypes. High population differentiation values were observed within samples from Peninsular Malaysia and Malaysian Borneo. The 42 kDa fragments of P. knowlesi from Malaysian Borneo were found to be acting on balancing selection whilst purifying selection was suggested to act on isolates from Peninsular Malaysia. The separation of PkMSP-142 haplotypes into two main groups based on geographical separation has further supported the existence of two distinct P. knowlesi lineages. Conclusions A high level of genetic diversity was observed among PkMSP-142 in Malaysia, whereby most of the polymorphisms were found within the 33 kDa region. Taken together, these data will be useful in order to understand the nature of P. knowlesi population in Malaysia as well as the design and development of a MSP-142 based knowlesi malaria vaccine. Electronic supplementary material The online version of this article (10.1186/s13071-018-3234-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nan Jiun Yap
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Boon Peng Hoh
- Faculty of Medicine & Health Sciences, UCSI University Kuala Lumpur Campus, Cheras, Kuala Lumpur, Malaysia
| | - Xiang Ting Goh
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Azdayanti Muslim
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA (Sungai Buloh Campus), Sungai Buloh, Selangor, Malaysia
| | - Romano Ngui
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yamuna Rajoo
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Seow Huey Choy
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Timothy William
- Jesselton Medical Centre, 88300, Kota Kinabalu, Sabah, Malaysia
| | - Tsin Wen Yeo
- Communicable Diseases Centre, Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital, Moulmein Road, Singapore, 308433, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Yvonne Ai-Lian Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Centre of Excellence for Research in AIDS (CERiA), University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Production, quality control, stability, and potency of cGMP-produced Plasmodium falciparum RH5.1 protein vaccine expressed in Drosophila S2 cells. NPJ Vaccines 2018; 3:32. [PMID: 30131879 PMCID: PMC6098134 DOI: 10.1038/s41541-018-0071-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 11/08/2022] Open
Abstract
Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is a leading asexual blood-stage vaccine candidate for malaria. In preparation for clinical trials, a full-length PfRH5 protein vaccine called “RH5.1” was produced as a soluble product under cGMP using the ExpreS2 platform (based on a Drosophila melanogaster S2 stable cell line system). Following development of a high-producing monoclonal S2 cell line, a master cell bank was produced prior to the cGMP campaign. Culture supernatants were processed using C-tag affinity chromatography followed by size exclusion chromatography and virus-reduction filtration. The overall process yielded >400 mg highly pure RH5.1 protein. QC testing showed the MCB and the RH5.1 product met all specified acceptance criteria including those for sterility, purity, and identity. The RH5.1 vaccine product was stored at −80 °C and is stable for over 18 months. Characterization of the protein following formulation in the adjuvant system AS01B showed that RH5.1 is stable in the timeframe needed for clinical vaccine administration, and that there was no discernible impact on the liposomal formulation of AS01B following addition of RH5.1. Subsequent immunization of mice confirmed the RH5.1/AS01B vaccine was immunogenic and could induce functional growth inhibitory antibodies against blood-stage P. falciparum in vitro. The RH5.1/AS01B was judged suitable for use in humans and has since progressed to phase I/IIa clinical trial. Our data support the future use of the Drosophila S2 cell and C-tag platform technologies to enable cGMP-compliant biomanufacture of other novel and “difficult-to-express” recombinant protein-based vaccines. A vaccine candidate for blood-stage malaria has overcome previous hurdles to enter clinical trials. The protein PfRH5 is an essential blood-stage infection facilitator of malarial parasite Plasmodium falciparum, and a promising target for vaccine strategies. Unfortunately, efforts to produce the protein in an immunogenic, clinically-viable way have been met with difficulty. Here, researchers led by Simon Draper, from the UK’s Jenner Institute, used a fruit fly expression system to produce over 400 mg of high-purity protein. Formulated with an immunity-boosting adjuvant, the vaccine elicited antibodies in mice that proved inhibitory to blood-stage P. falciparum during in vitro assays. The PfRH5 vaccine candidate and its adjuvant have been approved for a clinical trial in the UK, and the authors hope that the expression system used may be beneficial in the expression of other ‘difficult’ proteins.
Collapse
|
12
|
Merozoite Surface Protein 1 from Plasmodium falciparum Is a Major Target of Opsonizing Antibodies in Individuals with Acquired Immunity against Malaria. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00155-17. [PMID: 28877929 DOI: 10.1128/cvi.00155-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/31/2017] [Indexed: 11/20/2022]
Abstract
Naturally acquired immunity against malaria is largely mediated by serum antibodies controlling levels of blood-stage parasites. A limited understanding of the antigenic targets and functional mechanisms of protective antibodies has hampered the development of efficient malaria vaccines. Besides directly inhibiting the growth of Plasmodium parasites, antibodies can opsonize merozoites and recruit immune effector cells such as monocytes and neutrophils. Antibodies against the vaccine candidate merozoite surface protein 1 (MSP-1) are acquired during natural infections and have been associated with protection against malaria in several epidemiological studies. Here we analyzed serum antibodies from semi-immune individuals from Burkina Faso for their potential (i) to directly inhibit the growth of P. falciparum blood stages in vitro and (ii) to opsonize merozoites and to induce the antibody-dependent respiratory burst (ADRB) activity of neutrophils. While a few sera that directly inhibited the growth of P. falciparum blood stages were identified, immunoglobulin G (IgG) from all individuals clearly mediated the activation of neutrophils. The level of neutrophil activation correlated with levels of antibodies to MSP-1, and affinity-purified MSP-1-specific antibodies elicited ADRB activity. Furthermore, immunization of nonhuman primates with recombinant full-size MSP-1 induced antibodies that efficiently opsonized P. falciparum merozoites. Reversing the function by preincubation with recombinant antigens allowed us to quantify the contribution of MSP-1 to the antiparasitic effect of serum antibodies. Our data suggest that MSP-1, especially the partially conserved subunit MSP-183, is a major target of opsonizing antibodies acquired during natural exposure to malaria. Induction of opsonizing antibodies might be a crucial effector mechanism for MSP-1-based malaria vaccines.
Collapse
|
13
|
Mahamar A, Issiaka D, Barry A, Attaher O, Dembele AB, Traore T, Sissoko A, Keita S, Diarra BS, Narum DL, Duffy PE, Dicko A, Fried M. Effect of seasonal malaria chemoprevention on the acquisition of antibodies to Plasmodium falciparum antigens in Ouelessebougou, Mali. Malar J 2017; 16:289. [PMID: 28720100 PMCID: PMC5516340 DOI: 10.1186/s12936-017-1935-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/13/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Seasonal malaria chemoprevention (SMC) is a new strategy to reduce malaria burden in young children in Sahelian countries. It consists of the administration of full treatment courses of sulfadoxine-pyrimethamine plus amodiaquine to children at monthly intervals during the malaria season. However, it is not clear if there is a cumulative effect of SMC over time on acquisition of antibodies to malaria antigens. METHODS A cross-sectional serosurvey was carried out 1 month after the last dose of SMC in 2016. Children aged 3-4 years were randomly selected from areas where SMC was given for 1, 2 or 3 years during the malaria season. Children in the areas where SMC had been implemented for 1 year but who failed to receive SMC were used as comparison group. Antibody extracted from dry blood spots was used to measure IgG levels to CSP, MSP-142 and AMA1. RESULTS The prevalence of antibodies to AMA-1 were high and similar in children who received SMC for 1, 2 or 3 years and also when compared to those who never received SMC (96.3 vs 97.5%, adjusted OR = 0.99, 95% CI 0.33-2.97, p = 0.99). The prevalence of antibodies to MSP-142 and to CSP were similar in children that received SMC for 1, 2 or 3 years, but were lower in these children compared to those who did not receive SMC (87.1 vs 91.2%, adjusted OR = 0.55, 95% CI 0.29-1.01, p = 0.05 for MSP-142; 79.8 vs 89.2%, adjusted OR = 0.52, 95% CI 0.30-0.90, p = 0.019 for CSP). CONCLUSIONS SMC reduced seropositivity to MSP-142 and CSP, but the duration of SMC did not further reduce seropositivity. Exposure to SMC did not reduce the seropositivity to AMA1.
Collapse
Affiliation(s)
- Almahamoudou Mahamar
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Djibrilla Issiaka
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Amadou Barry
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Oumar Attaher
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Adama B Dembele
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Tiangoua Traore
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Adama Sissoko
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sekouba Keita
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Bacary Soumana Diarra
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, 12735 Twinbrook Pkway Building TW3 Room 3W15, Rockville, MD, 20852, USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, 12735 Twinbrook Pkway Building TW3 Room 3W15, Rockville, MD, 20852, USA
| | - Alassane Dicko
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, 12735 Twinbrook Pkway Building TW3 Room 3W15, Rockville, MD, 20852, USA.
| |
Collapse
|
14
|
Hart GT, Akkaya M, Chida AS, Wei C, Jenks SA, Tipton C, He C, Wendel BS, Skinner J, Arora G, Kayentao K, Ongoiba A, Doumbo O, Traore B, Narum DL, Jiang N, Crompton PD, Sanz I, Pierce SK. The Regulation of Inherently Autoreactive VH4-34-Expressing B Cells in Individuals Living in a Malaria-Endemic Area of West Africa. THE JOURNAL OF IMMUNOLOGY 2016; 197:3841-3849. [PMID: 27798155 DOI: 10.4049/jimmunol.1600491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 09/21/2016] [Indexed: 11/19/2022]
Abstract
Plasmodium falciparum malaria is a deadly infectious disease in which Abs play a critical role in naturally acquired immunity. However, the specificity and nature of Abs elicited in response to malaria are only partially understood. Autoreactivity and polyreactivity are common features of Ab responses in several infections and were suggested to contribute to effective pathogen-specific Ab responses. In this article, we report on the regulation of B cells expressing the inherently autoreactive VH4-34 H chain (identified by the 9G4 mAb) and 9G4+ plasma IgG in adults and children living in a P. falciparum malaria-endemic area in West Africa. The frequency of 9G4+ peripheral blood CD19+ B cells was similar in United States adults and African adults and children; however, more 9G4+ B cells appeared in classical and atypical memory B cell compartments in African children and adults compared with United States adults. The levels of 9G4+ IgG increased following acute febrile malaria but did not increase with age as humoral immunity is acquired or correlate with protection from acute disease. This was the case, even though a portion of 9G4+ B cells acquired phenotypes of atypical and classical memory B cells and 9G4+ IgG contained equivalent numbers of somatic hypermutations compared with all other VHs, a characteristic of secondary Ab repertoire diversification in response to Ag stimulation. Determining the origin and function of 9G4+ B cells and 9G4+ IgG in malaria may contribute to a better understanding of the varied roles of autoreactivity in infectious diseases.
Collapse
Affiliation(s)
- Geoffrey T Hart
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Munir Akkaya
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Asiya S Chida
- Division of Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322
| | - Chungwen Wei
- Division of Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322
| | - Scott A Jenks
- Division of Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322
| | | | - Chenfeng He
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712
| | - Ben S Wendel
- McKetta Department of Chemical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712
| | - Jeff Skinner
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Gunjan Arora
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Kassoum Kayentao
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako, Bamako, Mali; and
| | - Aissata Ongoiba
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako, Bamako, Mali; and
| | - Ogobara Doumbo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako, Bamako, Mali; and
| | - Boubacar Traore
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako, Bamako, Mali; and
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Ning Jiang
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712
| | - Peter D Crompton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Ignacio Sanz
- Division of Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852;
| |
Collapse
|
15
|
Chen Q, Liang W, Qian F, Qian B, Cao J, Zhang D, Xu Y, Tang L. Rice-produced MSP142ofPlasmodium falciparumelicits antibodies that inhibit parasite growth in vitro. Parasite Immunol 2016; 38:635-41. [DOI: 10.1111/pim.12352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/01/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Q. Chen
- National Institute of Parasitic Diseases; Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; Key Laboratory of Parasite and Vector Biology; Ministry of Health; Shanghai China
| | - W. Liang
- State Key Laboratory of Hybrid Rice; School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - F. Qian
- Department of Rheumatology and Immunology; Changzheng Hospital; Second Military Medical University; Shanghai China
| | - B. Qian
- State Key Laboratory of Hybrid Rice; School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - J. Cao
- National Institute of Parasitic Diseases; Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; Key Laboratory of Parasite and Vector Biology; Ministry of Health; Shanghai China
| | - D. Zhang
- State Key Laboratory of Hybrid Rice; School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Y. Xu
- National Institute of Parasitic Diseases; Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; Key Laboratory of Parasite and Vector Biology; Ministry of Health; Shanghai China
| | - L. Tang
- National Institute of Parasitic Diseases; Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; Key Laboratory of Parasite and Vector Biology; Ministry of Health; Shanghai China
| |
Collapse
|
16
|
Gutiérrez S, González-Cerón L, Montoya A, Sandoval MA, Tórres ME, Cerritos R. Genetic structure of Plasmodium vivax in Nicaragua, a country in the control phase, based on the carboxyl terminal region of the merozoite surface protein-1. INFECTION GENETICS AND EVOLUTION 2016; 40:324-330. [DOI: 10.1016/j.meegid.2015.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
|
17
|
Singh SP, Verma V, Mishra BN. Characterization of Plasmodium falciparum Proteome at Asexual Blood Stages for Screening of Effective Vaccine Candidates: An Immunoinformatics Approach. ACTA ACUST UNITED AC 2015. [DOI: 10.4137/iii.s24755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Malaria is a complex parasitic disease that is currently causing great concerns globally owing to the resistance to antimalarial drugs and lack of an effective vaccine. The present study involves the characterization of extracellular secretory proteins as vaccine candidates derived from proteome analysis of Plasmodium falciparum at asexual blood stages of malaria. Among the screened 32 proteins, 31 were predicted as antigens by the VaxiJen program, and 26 proteins had less than two transmembrane spanning regions predicted using the THMMM program. Moreover, 10 and 5 proteins were predicted to contain secretory signals by SignalP and TargetP, respectively. T-cell epitope prediction using MULTIPRED2 and NetCTL programs revealed that most of the predicted antigens are immunogenic and contain more than 10% supertype and 5% promiscuous epitopes of HLA-A, -B, or -DR. We anticipate that T-cell immune responses against asexual blood stages of Plasmodium are dispersed on a relatively large number of parasite antigens. This is the first report, to the best of our knowledge, offering new insights, at the proteome level, for the putative screening of effective vaccine candidates against the malaria pathogen. The findings also suggest new ways forward for the modern omics-guided vaccine target discovery using reverse vaccinology.
Collapse
Affiliation(s)
- Satarudra Prakash Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Vishal Verma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | | |
Collapse
|
18
|
Assessment of humoral immune responses to blood-stage malaria antigens following ChAd63-MVA immunization, controlled human malaria infection and natural exposure. PLoS One 2014; 9:e107903. [PMID: 25254500 PMCID: PMC4177865 DOI: 10.1371/journal.pone.0107903] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 08/17/2014] [Indexed: 11/19/2022] Open
Abstract
The development of protective vaccines against many difficult infectious pathogens will necessitate the induction of effective antibody responses. Here we assess humoral immune responses against two antigens from the blood-stage merozoite of the Plasmodium falciparum human malaria parasite--MSP1 and AMA1. These antigens were delivered to healthy malaria-naïve adult volunteers in Phase Ia clinical trials using recombinant replication-deficient viral vectors--ChAd63 to prime the immune response and MVA to boost. In subsequent Phase IIa clinical trials, immunized volunteers underwent controlled human malaria infection (CHMI) with P. falciparum to assess vaccine efficacy, whereby all but one volunteer developed low-density blood-stage parasitemia. Here we assess serum antibody responses against both the MSP1 and AMA1 antigens following i) ChAd63-MVA immunization, ii) immunization and CHMI, and iii) primary malaria exposure in the context of CHMI in unimmunized control volunteers. Responses were also assessed in a cohort of naturally-immune Kenyan adults to provide comparison with those induced by a lifetime of natural malaria exposure. Serum antibody responses against MSP1 and AMA1 were characterized in terms of i) total IgG responses before and after CHMI, ii) responses to allelic variants of MSP1 and AMA1, iii) functional growth inhibitory activity (GIA), iv) IgG avidity, and v) isotype responses (IgG1-4, IgA and IgM). These data provide the first in-depth assessment of the quality of adenovirus-MVA vaccine-induced antibody responses in humans, along with assessment of how these responses are modulated by subsequent low-density parasite exposure. Notable differences were observed in qualitative aspects of the human antibody responses against these malaria antigens depending on the means of their induction and/or exposure of the host to the malaria parasite. Given the continued clinical development of viral vectored vaccines for malaria and a range of other diseases targets, these data should help to guide further immuno-monitoring studies of vaccine-induced human antibody responses.
Collapse
|
19
|
Gonçalves BP, Huang CY, Morrison R, Holte S, Kabyemela E, Prevots DR, Fried M, Duffy PE. Parasite burden and severity of malaria in Tanzanian children. N Engl J Med 2014; 370:1799-808. [PMID: 24806160 PMCID: PMC4091983 DOI: 10.1056/nejmoa1303944] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Severe Plasmodium falciparum malaria is a major cause of death in children. The contribution of the parasite burden to the pathogenesis of severe malaria has been controversial. METHODS We documented P. falciparum infection and disease in Tanzanian children followed from birth for an average of 2 years and for as long as 4 years. RESULTS Of the 882 children in our study, 102 had severe malaria, but only 3 had more than two episodes. More than half of first episodes of severe malaria occurred after a second infection. Although parasite levels were higher on average when children had severe rather than mild disease, most children (67 of 102) had high-density infection (>2500 parasites per 200 white cells) with only mild symptoms before severe malaria, after severe malaria, or both. The incidence of severe malaria decreased considerably after infancy, whereas the incidence of high-density infection was similar among all age groups. Infections before and after episodes of severe malaria were associated with similar parasite densities. Nonuse of bed nets, placental malaria at the time of a woman's second or subsequent delivery, high-transmission season, and absence of the sickle cell trait increased severe-malaria risk and parasite density during infections. CONCLUSIONS Resistance to severe malaria was not acquired after one or two mild infections. Although the parasite burden was higher on average during episodes of severe malaria, a high parasite burden was often insufficient to cause severe malaria even in children who later were susceptible. The diverging rates of severe disease and high-density infection after infancy, as well as the similar parasite burdens before and after severe malaria, indicate that naturally acquired resistance to severe malaria is not explained by improved control of parasite density. (Funded by the National Institute of Allergy and Infectious Diseases and others.).
Collapse
Affiliation(s)
- Bronner P Gonçalves
- From the Laboratory of Malaria Immunology and Vaccinology (B.P.G., M.F., P.E.D.), Laboratory of Clinical Infectious Diseases-Epidemiology Unit (B.P.G., D.R.P.), and Biostatistics Research Branch (C.-Y.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD; the Seattle Biomedical Research Institute (R.M., M.F., P.E.D.) and the Fred Hutchinson Cancer Research Center (S.H.) - both in Seattle; and the Mother-Offspring Malaria Studies Project, Muheza Designated District Hospital, Muheza, Tanzania (E.K., M.F., P.E.D.)
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Cheong FW, Fong MY, Lau YL, Mahmud R. Immunogenicity of bacterial-expressed recombinant Plasmodium knowlesi merozoite surface protein-142 (MSP-142). Malar J 2013; 12:454. [PMID: 24354660 PMCID: PMC3878241 DOI: 10.1186/1475-2875-12-454] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/17/2013] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium knowlesi is the fifth Plasmodium species that can infect humans. The Plasmodium merozoite surface protein-142 (MSP-142) is a potential candidate for malaria vaccine. However, limited studies have focused on P. knowlesi MSP-142. Methods A ~42 kDa recombinant P. knowlesi MSP-142 (pkMSP-142) was expressed using an Escherichia coli system. The purified pkMSP-142 was evaluated with malaria and non-malaria human patient sera (n = 189) using Western blots and ELISA. The immunogenicity of pkMSP-142 was evaluated in mouse model. Results The purified pkMSP-142 had a sensitivity of 91.0% for detection of human malaria in both assays. Specificity was 97.5 and 92.6% in Western blots and ELISA, respectively. Levels of cytokine interferon-gamma, interleukin-2, interleukin-4, and interleukin-10 significantly increased in pkMSP-142-immunized mice as compared to the negative control mice. pkMSP-142-raised antibody had high endpoint titres, and the IgG isotype distribution was IgG1 > IgG2b > IgG3 > IgG2a. Conclusions pkMSP-142 was highly immunogenic and able to detect human malaria. Hence, pkMSP-142 would be a useful candidate for malaria vaccine development and seroprevalence studies.
Collapse
Affiliation(s)
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | | |
Collapse
|
21
|
Zeituni AE, Miura K, Diakite M, Doumbia S, Moretz SE, Diouf A, Tullo G, Lopera-Mesa TM, Bess CD, Mita-Mendoza NK, Anderson JM, Fairhurst RM, Long CA. Effects of age, hemoglobin type and parasite strain on IgG recognition of Plasmodium falciparum-infected erythrocytes in Malian children. PLoS One 2013; 8:e76734. [PMID: 24124591 PMCID: PMC3790723 DOI: 10.1371/journal.pone.0076734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 08/28/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Naturally-acquired antibody responses to antigens on the surface of Plasmodium falciparum-infected red blood cells (iRBCs) have been implicated in antimalarial immunity. To profile the development of this immunity, we have been studying a cohort of Malian children living in an area with intense seasonal malaria transmission. METHODOLOGY/PRINCIPAL FINDINGS We collected plasma from a sub-cohort of 176 Malian children aged 3-11 years, before (May) and after (December) the 2009 transmission season. To measure the effect of hemoglobin (Hb) type on antibody responses, we enrolled age-matched HbAA, HbAS and HbAC children. To quantify antibody recognition of iRBCs, we designed a high-throughput flow cytometry assay to rapidly test numerous plasma samples against multiple parasite strains. We evaluated antibody reactivity of each plasma sample to 3 laboratory-adapted parasite lines (FCR3, D10, PC26) and 4 short-term-cultured parasite isolates (2 Malian and 2 Cambodian). 97% of children recognized ≥1 parasite strain and the proportion of IgG responders increased significantly during the transmission season for most parasite strains. Both strain-specific and strain-transcending IgG responses were detected, and varied by age, Hb type and parasite strain. In addition, the breadth of IgG responses to parasite strains increased with age in HbAA, but not in HbAS or HbAC, children. CONCLUSIONS/SIGNIFICANCE Our assay detects both strain-specific and strain-transcending IgG responses to iRBCs. The magnitude and breadth of these responses varied not only by age, but also by Hb type and parasite strain used. These findings indicate that studies of acquired humoral immunity should account for Hb type and test large numbers of diverse parasite strains.
Collapse
Affiliation(s)
- Amir E. Zeituni
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Mahamadou Diakite
- Faculty of Medicine, Pharmacy and Odontostomatology, University of Bamako, Bamako, Mali
| | - Saibou Doumbia
- Faculty of Medicine, Pharmacy and Odontostomatology, University of Bamako, Bamako, Mali
| | - Samuel E. Moretz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Gregory Tullo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Tatiana M. Lopera-Mesa
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Cameron D. Bess
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Neida K. Mita-Mendoza
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados, México City, México
| | - Jennifer M. Anderson
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
22
|
Alaro JR, Partridge A, Miura K, Diouf A, Lopez AM, Angov E, Long CA, Burns JM. A chimeric Plasmodium falciparum merozoite surface protein vaccine induces high titers of parasite growth inhibitory antibodies. Infect Immun 2013; 81:3843-54. [PMID: 23897613 PMCID: PMC3811772 DOI: 10.1128/iai.00522-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/23/2013] [Indexed: 01/20/2023] Open
Abstract
The C-terminal 19-kDa domain of Plasmodium falciparum merozoite surface protein 1 (PfMSP119) is an established target of protective antibodies. However, clinical trials of PfMSP142, a leading blood-stage vaccine candidate which contains the protective epitopes of PfMSP119, revealed suboptimal immunogenicity and efficacy. Based on proof-of-concept studies in the Plasmodium yoelii murine model, we produced a chimeric vaccine antigen containing recombinant PfMSP119 (rPfMSP119) fused to the N terminus of P. falciparum merozoite surface protein 8 that lacked its low-complexity Asn/Asp-rich domain, rPfMSP8 (ΔAsn/Asp). Immunization of mice with the chimeric rPfMSP1/8 vaccine elicited strong T cell responses to conserved epitopes associated with the rPfMSP8 (ΔAsn/Asp) fusion partner. While specific for PfMSP8, this T cell response was adequate to provide help for the production of high titers of antibodies to both PfMSP119 and rPfMSP8 (ΔAsn/Asp) components. This occurred with formulations adjuvanted with either Quil A or with Montanide ISA 720 plus CpG oligodeoxynucleotide (ODN) and was observed in both inbred and outbred strains of mice. PfMSP1/8-induced antibodies were highly reactive with two major alleles of PfMSP119 (FVO and 3D7). Of particular interest, immunization with PfMSP1/8 elicited higher titers of PfMSP119-specific antibodies than a combined formulation of rPfMSP142 and rPfMSP8 (ΔAsn/Asp). As a measure of functionality, PfMSP1/8-specific rabbit IgG was shown to potently inhibit the in vitro growth of blood-stage parasites of the FVO and 3D7 strains of P. falciparum. These data support the further testing and evaluation of this chimeric PfMSP1/8 antigen as a component of a multivalent vaccine for P. falciparum malaria.
Collapse
Affiliation(s)
- James R. Alaro
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Andrea Partridge
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Kazutoyo Miura
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Ababacar Diouf
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Ana M. Lopez
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Evelina Angov
- U.S. Military Malaria Research Program, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Carole A. Long
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - James M. Burns
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
N-terminal Plasmodium vivax merozoite surface protein-1, a potential subunit for malaria vivax vaccine. Clin Dev Immunol 2013; 2013:965841. [PMID: 24187566 PMCID: PMC3804292 DOI: 10.1155/2013/965841] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/14/2013] [Indexed: 11/18/2022]
Abstract
The human malaria is widely distributed in the Middle East, Asia, the western Pacific, and Central and South America. Plasmodium vivax started to have the attention of many researchers since it is causing diseases to millions of people and several reports of severe malaria cases have been noticed in the last few years. The lack of in vitro cultures for P. vivax represents a major delay in developing a functional malaria vaccine. One of the major candidates to antimalarial vaccine is the merozoite surface protein-1 (MSP1), which is expressed abundantly on the merozoite surface and capable of activating the host protective immunity. Studies have shown that MSP-1 possesses highly immunogenic fragments, capable of generating immune response and protection in natural infection in endemic regions. This paper shows humoral immune response to different proteins of PvMSP1 and the statement of N-terminal to be added to the list of potential candidates for malaria vivax vaccine.
Collapse
|
24
|
Miura K, Diakite M, Diouf A, Doumbia S, Konate D, Keita AS, Moretz SE, Tullo G, Zhou H, Lopera-Mesa TM, Anderson JM, Fairhurst RM, Long CA. Relationship between malaria incidence and IgG levels to Plasmodium falciparum merozoite antigens in Malian children: impact of hemoglobins S and C. PLoS One 2013; 8:e60182. [PMID: 23555917 PMCID: PMC3610890 DOI: 10.1371/journal.pone.0060182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/22/2013] [Indexed: 11/18/2022] Open
Abstract
Heterozygous hemoglobin (Hb) AS (sickle-cell trait) and HbAC are hypothesized to protect against Plasmodium falciparum malaria in part by enhancing naturally-acquired immunity to this disease. To investigate this hypothesis, we compared antibody levels to four merozoite antigens from the P. falciparum 3D7 clone (apical membrane antigen 1, AMA1-3D7; merozoite surface protein 1, MSP1-3D7; 175 kDa erythrocyte-binding antigen, EBA175-3D7; and merozoite surface protein 2, MSP2-3D7) in a cohort of 103 HbAA, 73 HbAS and 30 HbAC children aged 3 to 11 years in a malaria-endemic area of Mali. In the 2009 transmission season we found that HbAS, but not HbAC, significantly reduced the risk of malaria compared to HbAA. IgG levels to MSP1 and MSP2 at the start of this transmission season inversely correlated with malaria incidence after adjusting for age and Hb type. However, HbAS children had significantly lower IgG levels to EBA175 and MSP2 compared to HbAA children. On the other hand, HbAC children had similar IgG levels to all four antigens. The parasite growth-inhibitory activity of purified IgG samples did not differ significantly by Hb type. Changes in antigen-specific IgG levels during the 2009 transmission and 2010 dry seasons also did not differ by Hb type, and none of these IgG levels dropped significantly during the dry season. These data suggest that sickle-cell trait does not reduce the risk of malaria by enhancing the acquisition of IgG responses to merozoite antigens.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Mahamadou Diakite
- Faculty of Medicine, Pharmacy and Odontostomatology, University of Bamako, Bamako, Mali
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Saibou Doumbia
- Faculty of Medicine, Pharmacy and Odontostomatology, University of Bamako, Bamako, Mali
| | - Drissa Konate
- Faculty of Medicine, Pharmacy and Odontostomatology, University of Bamako, Bamako, Mali
| | - Abdoul S. Keita
- Faculty of Medicine, Pharmacy and Odontostomatology, University of Bamako, Bamako, Mali
| | - Samuel E. Moretz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Gregory Tullo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Hong Zhou
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Tatiana M. Lopera-Mesa
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jennifer M. Anderson
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
25
|
Cheong FW, Lau YL, Fong MY, Mahmud R. Evaluation of recombinant Plasmodium knowlesi merozoite surface protein-1(33) for detection of human malaria. Am J Trop Med Hyg 2013; 88:835-40. [PMID: 23509118 DOI: 10.4269/ajtmh.12-0250] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Plasmodium knowlesi is now known as the fifth Plasmodium species that can cause human malaria. The Plasmodium merozoite surface protein (MSP) has been reported to be potential target for vaccination and diagnosis of malaria. MSP-1(33) has been shown to be immunogenic and its T cell epitopes could mediate cellular immune protection. However, limited studies have focused on P. knowlesi MSP-133. In this study, an approximately 28-kDa recombinant P. knowlesi MSP-1(33) (pkMSP-1(33)) was expressed by using an Escherichia coli system. The purified pkMSP-1(33) reacted with serum samples of patients infected with P. knowlesi (31 of 31, 100%) and non-P. knowlesi malaria (27 of 28, 96.43%) by Western blotting. The pkMSP-1(33) also reacted with P. knowlesi (25 of 31, 80.65%) and non-P. knowlesi malaria sera (20 of 28, 71.43%) in an enzyme-linked immunosorbent assay (ELISA). Most of the non-malarial infection (49 of 52 in by Western blotting and 46 of 52 in the ELISA) and healthy donor serum samples (65 of 65 by Western blotting and ELISA) did not react with recombinant pkMSP-1(33).
Collapse
Affiliation(s)
- Fei Wen Cheong
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
26
|
Otsyula N, Angov E, Bergmann-Leitner E, Koech M, Khan F, Bennett J, Otieno L, Cummings J, Andagalu B, Tosh D, Waitumbi J, Richie N, Shi M, Miller L, Otieno W, Otieno GA, Ware L, House B, Godeaux O, Dubois MC, Ogutu B, Ballou WR, Soisson L, Diggs C, Cohen J, Polhemus M, Heppner DG, Ockenhouse CF, Spring MD. Results from tandem Phase 1 studies evaluating the safety, reactogenicity and immunogenicity of the vaccine candidate antigen Plasmodium falciparum FVO merozoite surface protein-1 (MSP1(42)) administered intramuscularly with adjuvant system AS01. Malar J 2013; 12:29. [PMID: 23342996 PMCID: PMC3582548 DOI: 10.1186/1475-2875-12-29] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 01/14/2013] [Indexed: 01/06/2023] Open
Abstract
Background The development of an asexual blood stage vaccine against Plasmodium falciparum malaria based on the major merozoite surface protein-1 (MSP1) antigen is founded on the protective efficacy observed in preclinical studies and induction of invasion and growth inhibitory antibody responses. The 42 kDa C-terminus of MSP1 has been developed as the recombinant protein vaccine antigen, and the 3D7 allotype, formulated with the Adjuvant System AS02A, has been evaluated extensively in human clinical trials. In preclinical rabbit studies, the FVO allele of MSP142 has been shown to have improved immunogenicity over the 3D7 allele, in terms of antibody titres as well as growth inhibitory activity of antibodies against both the heterologous 3D7 and homologous FVO parasites. Methods Two Phase 1 clinical studies were conducted to examine the safety, reactogenicity and immunogenicity of the FVO allele of MSP142 in the adjuvant system AS01 administered intramuscularly at 0-, 1-, and 2-months: one in the USA and, after evaluation of safety data results, one in Western Kenya. The US study was an open-label, dose escalation study of 10 and 50 μg doses of MSP142 in 26 adults, while the Kenya study, evaluating 30 volunteers, was a double-blind, randomized study of only the 50 μg dose with a rabies vaccine comparator. Results In these studies it was demonstrated that this vaccine formulation has an acceptable safety profile and is immunogenic in malaria-naïve and malaria-experienced populations. High titres of anti-MSP1 antibodies were induced in both study populations, although there was a limited number of volunteers whose serum demonstrated significant inhibition of blood-stage parasites as measured by growth inhibition assay. In the US volunteers, the antibodies generated exhibited better cross-reactivity to heterologous MSP1 alleles than a MSP1-based vaccine (3D7 allele) previously tested at both study sites. Conclusions Given that the primary effector mechanism for blood stage vaccine targets is humoral, the antibody responses demonstrated to this vaccine candidate, both quantitative (total antibody titres) and qualitative (functional antibodies inhibiting parasite growth) warrant further consideration of its application in endemic settings. Trial registrations Clinical Trials NCT00666380
Collapse
Affiliation(s)
- Nekoye Otsyula
- Walter Reed Project, Kenya Medical Research Institute, Kisumu, Kenya
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ellis RD, Wu Y, Martin LB, Shaffer D, Miura K, Aebig J, Orcutt A, Rausch K, Zhu D, Mogensen A, Fay MP, Narum DL, Long C, Miller L, Durbin AP. Phase 1 study in malaria naïve adults of BSAM2/Alhydrogel®+CPG 7909, a blood stage vaccine against P. falciparum malaria. PLoS One 2012; 7:e46094. [PMID: 23056238 PMCID: PMC3464250 DOI: 10.1371/journal.pone.0046094] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/27/2012] [Indexed: 11/25/2022] Open
Abstract
A Phase 1 dose escalating study was conducted in malaria naïve adults to assess the safety, reactogenicity, and immunogenicity of the blood stage malaria vaccine BSAM2/Alhydrogel®+ CPG 7909. BSAM2 is a combination of the FVO and 3D7 alleles of recombinant AMA1 and MSP142, with equal amounts by weight of each of the four proteins mixed, bound to Alhydrogel®, and administered with the adjuvant CPG 7909. Thirty (30) volunteers were enrolled in two dose groups, with 15 volunteers receiving up to three doses of 40 µg total protein at Days 0, 56, and 180, and 15 volunteers receiving up to three doses of 160 µg protein on the same schedule. Most related adverse events were mild or moderate, but 4 volunteers experienced severe systemic reactions and two were withdrawn from vaccinations due to adverse events. Geometric mean antibody levels after two vaccinations with the high dose formulation were 136 µg/ml for AMA1 and 78 µg/ml for MSP142. Antibody responses were not significantly different in the high dose versus low dose groups and did not further increase after third vaccination. In vitro growth inhibition was demonstrated and was closely correlated with anti-AMA1 antibody responses. A Phase 1b trial in malaria-exposed adults is being conducted.
Collapse
Affiliation(s)
- Ruth D. Ellis
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Yimin Wu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
- * E-mail:
| | - Laura B. Martin
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Donna Shaffer
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Kazutoyo Miura
- Biostatistics Research Branch, NIAID/NIH, Rockville, Maryland, United States of America
| | - Joan Aebig
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Andrew Orcutt
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Kelly Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Daming Zhu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Anders Mogensen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Michael P. Fay
- Biostatistics Research Branch, NIAID/NIH, Rockville, Maryland, United States of America
| | - David L. Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Carole Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, United States of America
| | - Louis Miller
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Anna P. Durbin
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
28
|
Kang JM, Ju HL, Kang YM, Lee DH, Moon SU, Sohn WM, Park JW, Kim TS, Na BK. Genetic polymorphism and natural selection in the C-terminal 42 kDa region of merozoite surface protein-1 among Plasmodium vivax Korean isolates. Malar J 2012; 11:206. [PMID: 22709605 PMCID: PMC3487983 DOI: 10.1186/1475-2875-11-206] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/05/2012] [Indexed: 11/30/2022] Open
Abstract
Background The carboxy-terminal 42 kDa region of Plasmodium vivax merozoite surface protein-1 (PvMSP-142) is a leading candidate antigen for blood stage vaccine development. However, this region has been observed to be highly polymorphic among filed isolates of P. vivax. Therefore it is important to analyse the existing diversity of this antigen in the field isolates of P. vivax. In this study, the genetic diversity and natural selection in PvMSP-142 among P. vivax Korean isolates were analysed. Methods A total of 149 P. vivax-infected blood samples collected from patients in Korea were used. The region flanking PvMSP-142 was amplified by PCR, cloned into Escherichia coli, and then sequenced. The polymorphic characteristic and natural selection of PvMSP-142 were analysed using the DNASTAR, MEGA4 and DnaSP programs. Results A total of 11 distinct haplotypes of PvMSP-142 with 40 amino acid changes, as compared to the reference Sal I sequence, were identified in the Korean P. vivax isolates. Most of the mutations were concentrated in the 33 kDa fragment (PvMSP-133), but a novel mutation was found in the 19 kDa fragment (PvMSP-119). PvMSP-142 of Korean isolates appeared to be under balancing selection. Recombination may also play a role in the resulting genetic diversity of PvMSP-142. Conclusions PvMSP-142 of Korean P. vivax isolates displayed allelic polymorphisms caused by mutation, recombination and balancing selection. These results will be useful for understanding the nature of the P. vivax population in Korea and for development of a PvMSP-142 based vaccine against P. vivax.
Collapse
|
29
|
Qian F, Reiter K, Zhang Y, Shimp RL, Nguyen V, Aebig JA, Rausch KM, Zhu D, Lambert L, Mullen GED, Martin LB, Long CA, Miller LH, Narum DL. Immunogenicity of self-associated aggregates and chemically cross-linked conjugates of the 42 kDa Plasmodium falciparum merozoite surface protein-1. PLoS One 2012; 7:e36996. [PMID: 22675476 PMCID: PMC3366955 DOI: 10.1371/journal.pone.0036996] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 04/11/2012] [Indexed: 12/04/2022] Open
Abstract
Self-associated protein aggregates or cross-linked protein conjugates are, in general, more immunogenic than oligomeric or monomeric forms. In particular, the immunogenicity in mice of a recombinant malaria transmission blocking vaccine candidate, the ookinete specific Plasmodium falciparum 25 kDa protein (Pfs25), was increased more than 1000-fold when evaluated as a chemical cross-linked protein-protein conjugate as compared to a formulated monomer. Whether alternative approaches using protein complexes improve the immunogenicity of other recombinant malaria vaccine candidates is worth assessing. In this work, the immunogenicity of the recombinant 42 kDa processed form of the P. falciparum merozoite surface protein 1 (MSP142) was evaluated as a self-associated, non-covalent aggregate and as a chemical cross-linked protein-protein conjugate to ExoProtein A, which is a recombinant detoxified form of Pseudomonas aeruginosa exotoxin A. MSP142 conjugates were prepared and characterized biochemically and biophysically to determine their molar mass in solution and stoichiometry, when relevant. The immunogenicity of the MSP142 self-associated aggregates, cross-linked chemical conjugates and monomers were compared in BALB/c mice after adsorption to aluminum hydroxide adjuvant, and in one instance in association with the TLR9 agonist CPG7909 with an aluminum hydroxide formulation. Antibody titers were assessed by ELISA. Unlike observations made for Pfs25, no significant enhancement in MSP142 specific antibody titers was observed for any conjugate as compared to the formulated monomer or dimer, except for the addition of the TLR9 agonist CPG7909. Clearly, enhancing the immunogenicity of a recombinant protein vaccine candidate by the formation of protein complexes must be established on an empirical basis.
Collapse
Affiliation(s)
- Feng Qian
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Department of Rheumatology and Immunology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Karine Reiter
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yanling Zhang
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Richard L. Shimp
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Vu Nguyen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Joan A. Aebig
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Kelly M. Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Daming Zhu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Lynn Lambert
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Gregory E. D. Mullen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Division of Imaging Sciences, School of Medicine, King’s College London, London, United Kingdom
| | - Laura B. Martin
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Novartis Vaccines Institute for Global Health S.r.l. (NVGH), Siena, Italy
| | - Carole A. Long
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Louis H. Miller
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - David L. Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
30
|
Schwartz L, Brown GV, Genton B, Moorthy VS. A review of malaria vaccine clinical projects based on the WHO rainbow table. Malar J 2012; 11:11. [PMID: 22230255 PMCID: PMC3286401 DOI: 10.1186/1475-2875-11-11] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/09/2012] [Indexed: 12/14/2022] Open
Abstract
Development and Phase 3 testing of the most advanced malaria vaccine, RTS,S/AS01, indicates that malaria vaccine R&D is moving into a new phase. Field trials of several research malaria vaccines have also confirmed that it is possible to impact the host-parasite relationship through vaccine-induced immune responses to multiple antigenic targets using different platforms. Other approaches have been appropriately tested but turned out to be disappointing after clinical evaluation. As the malaria community considers the potential role of a first-generation malaria vaccine in malaria control efforts, it is an apposite time to carefully document terminated and ongoing malaria vaccine research projects so that lessons learned can be applied to increase the chances of success for second-generation malaria vaccines over the next 10 years. The most comprehensive resource of malaria vaccine projects is a spreadsheet compiled by WHO thanks to the input from funding agencies, sponsors and investigators worldwide. This spreadsheet, available from WHO's website, is known as "the rainbow table". By summarizing the published and some unpublished information available for each project on the rainbow table, the most comprehensive review of malaria vaccine projects to be published in the last several years is provided below.
Collapse
Affiliation(s)
- Lauren Schwartz
- Initiative for Vaccine Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Avenue Appia 20, 1211-CH 27, Geneva, Switzerland
| | | | | | | |
Collapse
|
31
|
Blood stage merozoite surface protein conjugated to nanoparticles induce potent parasite inhibitory antibodies. Vaccine 2011; 29:8898-908. [PMID: 21963870 DOI: 10.1016/j.vaccine.2011.09.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/23/2011] [Accepted: 09/16/2011] [Indexed: 11/21/2022]
Abstract
In this proof-of-concept study we report the use of <15 nm, water soluble, inorganic nanoparticles as a vaccine delivery system for a blood stage malaria vaccine. The recombinant malarial antigen, Merozoite Surface Protein 1 (rMSP1) of Plasmodium falciparum served as the model vaccine. The rMSP1 was covalently conjugated to polymer-coated quantum dot CdSe/ZnS nanoparticles (QDs) via surface carboxyl groups, forming rMSP1-QDs. Anti-MSP1 antibody responses induced by rMSP1-QDs were found to have 2-3 log higher titers than those obtained with rMSP1 administered with the conventional adjuvants, Montanide ISA51 and CFA. Moreover, the immune responsiveness and the induction of parasite inhibitory antibodies were significantly superior in mice injected with rMSP1-QDs. The rMSP1-QDs delivered via intra-peritoneal (i.p.), intra-muscular (i.m.), and subcutaneous (s.c.) routes were equally efficacious. The high level of immunogenicity exhibited by the rMSP1-QDs was achieved without further addition of other adjuvant components. Bone marrow derived dendritic cells were shown to efficiently take up the nanoparticles leading to their activation and the expression/secretion of key cytokines, suggesting that this may be a mode of action for the enhanced immunogenicity. This study provides promising results for the use of water soluble, inorganic nanoparticles (<15 nm) as potent vehicles/platforms to enhance the immunogenicity of polypeptide antigens in adjuvant-free immunizations.
Collapse
|
32
|
Pusic KM, Hashimoto CN, Lehrer A, Aniya C, Clements DE, Hui GS. T cell epitope regions of the P. falciparum MSP1-33 critically influence immune responses and in vitro efficacy of MSP1-42 vaccines. PLoS One 2011; 6:e24782. [PMID: 21931852 PMCID: PMC3172285 DOI: 10.1371/journal.pone.0024782] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/17/2011] [Indexed: 12/01/2022] Open
Abstract
The C-terminal 42 kDa fragments of the P. falciparum Merozoite Surface Protein 1, MSP1-42 is a leading malaria vaccine candidate. MSP1-33, the N-terminal processed fragment of MSP1-42, is rich in T cell epitopes and it is hypothesized that they enhance antibody response toward MSP1-19. Here, we gave in vivo evidence that T cell epitope regions of MSP1-33 provide functional help in inducing anti-MSP1-19 antibodies. Eleven truncated MSP1-33 segments were expressed in tandem with MSP1-19, and immunogenicity was evaluated in Swiss Webster mice and New Zealand White rabbits. Analyses of anti-MSP1-19 antibody responses revealed striking differences in these segments' helper function despite that they all possess T cell epitopes. Only a few fragments induced a generalized response (100%) in outbred mice. These were comparable to or surpassed the responses observed with the full length MSP1-42. In rabbits, only a subset of truncated antigens induced potent parasite growth inhibitory antibodies. Notably, two constructs were more efficacious than MSP1-42, with one containing only conserved T cell epitopes. Moreover, another T cell epitope region induced high titers of non-inhibitory antibodies and they interfered with the inhibitory activities of anti-MSP1-42 antibodies. In mice, this region also induced a skewed TH2 cellular response. This is the first demonstration that T cell epitope regions of MSP1-33 positively or negatively influenced antibody responses. Differential recognition of these regions by humans may play critical roles in vaccine induced and/or natural immunity to MSP1-42. This study provides the rational basis to re-engineer more efficacious MSP1-42 vaccines by selective inclusion and exclusion of MSP1-33 specific T cell epitopes.
Collapse
Affiliation(s)
- Kae M Pusic
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America.
| | | | | | | | | | | |
Collapse
|
33
|
Almeida APMM, Bruna-Romero O. Synergism/complementarity of recombinant adenoviral vectors and other vaccination platforms during induction of protective immunity against malaria. Mem Inst Oswaldo Cruz 2011; 106 Suppl 1:193-201. [PMID: 21881774 DOI: 10.1590/s0074-02762011000900024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/15/2011] [Indexed: 12/19/2022] Open
Abstract
The lack of immunogenicity of most malaria antigens and the complex immune responses required for achieving protective immunity against this infectious disease have traditionally hampered the development of an efficient human malaria vaccine. The current boom in development of recombinant viral vectors and their use in prime-boost protocols that result in enhanced immune outcomes have increased the number of malaria vaccine candidates that access pre-clinical and clinical trials. In the frontline, adenoviruses and poxviruses seem to be giving the best immunization results in experimental animals and their mutual combination, or their combination with recombinant proteins (formulated in adjuvants and given in sequence or being given as protein/virus admixtures), has been shown to reach unprecedented levels of anti-malaria immunity that predictably will be somehow reproduced in the human setting. However, all this optimism was previously seen in the malaria vaccine development field without many real applicable results to date. We describe here the current state-of-the-art in the field of recombinant adenovirus research for malaria vaccine development, in particular referring to their use in combination with other immunogens in heterologous prime-boost protocols, while trying to simultaneously show our contributions and point of view on this subject.
Collapse
|
34
|
Ellis RD, Sagara I, Doumbo O, Wu Y. Blood stage vaccines for Plasmodium falciparum: current status and the way forward. HUMAN VACCINES 2011; 6:627-34. [PMID: 20519960 DOI: 10.4161/hv.6.8.11446] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Since the recent call for a shift from malaria control to eradication, the role of asexual blood stage vaccines for falciparum malaria, which are not expected to prevent infection, has become less clear. However, blood stage antigens remain likely to be a critical component of a highly effective malaria vaccine. The inclusion of a blood stage component in a multistage malaria vaccine would not only prevent disease caused by “leaky” pre-erythrocytic immunity, but would also protect against epidemics in newly vulnerable populations. Recent clinical results of blood stage vaccine candidates have shown strain specific and partial efficacy, although no protection against clinical outcomes has been demonstrated in experimental infection or field trials to date. The current status of Plasmodium falciparum blood stage vaccine development is summarized and the potential role of these vaccines in the changed malaria landscape is discussed. Alternative preclinical and clinical development paths will speed iterative development.
Collapse
Affiliation(s)
- Ruth D Ellis
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA.
| | | | | | | |
Collapse
|
35
|
Trieu A, Kayala MA, Burk C, Molina DM, Freilich DA, Richie TL, Baldi P, Felgner PL, Doolan DL. Sterile protective immunity to malaria is associated with a panel of novel P. falciparum antigens. Mol Cell Proteomics 2011; 10:M111.007948. [PMID: 21628511 DOI: 10.1074/mcp.m111.007948] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of an effective malaria vaccine remains a global public health priority. Less than 0.5% of the Plasmodium falciparum genome has been assessed as potential vaccine targets and candidate vaccines have been based almost exclusively on single antigens. It is possible that the failure to develop a malaria vaccine despite decades of effort might be attributed to this historic focus. To advance malaria vaccine development, we have fabricated protein microarrays representing 23% of the entire P. falciparum proteome and have probed these arrays with plasma from subjects with sterile protection or no protection after experimental immunization with radiation attenuated P. falciparum sporozoites. A panel of 19 pre-erythrocytic stage antigens was identified as strongly associated with sporozoite-induced protective immunity; 16 of these antigens were novel and 85% have been independently identified in sporozoite and/or liver stage proteomic or transcriptomic data sets. Reactivity to any individual antigen did not correlate with protection but there was a highly significant difference in the cumulative signal intensity between protected and not protected individuals. Functional annotation indicates that most of these signature proteins are involved in cell cycle/DNA processing and protein synthesis. In addition, 21 novel blood-stage specific antigens were identified. Our data provide the first evidence that sterile protective immunity against malaria is directed against a panel of novel P. falciparum antigens rather than one antigen in isolation. These results have important implications for vaccine development, suggesting that an efficacious malaria vaccine should be multivalent and targeted at a select panel of key antigens, many of which have not been previously characterized.
Collapse
Affiliation(s)
- Angela Trieu
- Division of Immunology, Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dodoo D, Atuguba F, Bosomprah S, Ansah NA, Ansah P, Lamptey H, Egyir B, Oduro AR, Gyan B, Hodgson A, Koram KA. Antibody levels to multiple malaria vaccine candidate antigens in relation to clinical malaria episodes in children in the Kasena-Nankana district of Northern Ghana. Malar J 2011; 10:108. [PMID: 21529376 PMCID: PMC3101166 DOI: 10.1186/1475-2875-10-108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/01/2011] [Indexed: 11/20/2022] Open
Abstract
Background Considering the natural history of malaria of continued susceptibility to infection and episodes of illness that decline in frequency and severity over time, studies which attempt to relate immune response to protection must be longitudinal and have clearly specified definitions of immune status. Putative vaccines are expected to protect against infection, mild or severe disease or reduce transmission, but so far it has not been easy to clearly establish what constitutes protective immunity or how this develops naturally, especially among the affected target groups. The present study was done in under six year old children to identify malaria antigens which induce antibodies that correlate with protection from Plasmodium falciparum malaria. Methods In this longitudinal study, the multiplex assay was used to measure IgG antibody levels to 10 malaria antigens (GLURP R0, GLURP R2, MSP3 FVO, AMA1 FVO, AMA1 LR32, AMA1 3D7, MSP1 3D7, MSP1 FVO, LSA-1and EBA175RII) in 325 children aged 1 to 6 years in the Kassena Nankana district of northern Ghana. The antigen specific antibody levels were then related to the risk of clinical malaria over the ensuing year using a negative binomial regression model. Results IgG levels generally increased with age. The risk of clinical malaria decreased with increasing antibody levels. Except for FMPOII-LSA, (p = 0.05), higher IgG levels were associated with reduced risk of clinical malaria (defined as axillary temperature ≥37.5°C and parasitaemia of ≥5000 parasites/ul blood) in a univariate analysis, upon correcting for the confounding effect of age. However, in a combined multiple regression analysis, only IgG levels to MSP1-3D7 (Incidence rate ratio = 0.84, [95% C.I.= 0.73, 0.97, P = 0.02]) and AMA1 3D7 (IRR = 0.84 [95% C.I.= 0.74, 0.96, P = 0.01]) were associated with a reduced risk of clinical malaria over one year of morbidity surveillance. Conclusion The data from this study support the view that a multivalent vaccine involving different antigens is most likely to be more effective than a monovalent one. Functional assays, like the parasite growth inhibition assay will be necessary to confirm if these associations reflect functional roles of antibodies to MSP1-3D7 and AMA1-3D7 in this population.
Collapse
Affiliation(s)
- Daniel Dodoo
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hamid MMA, Remarque EJ, El Hassan IM, Hussain AA, Narum DL, Thomas AW, Kocken CHM, Weiss WR, Faber BW. Malaria infection by sporozoite challenge induces high functional antibody titres against blood stage antigens after a DNA prime, poxvirus boost vaccination strategy in Rhesus macaques. Malar J 2011; 10:29. [PMID: 21303498 PMCID: PMC3046915 DOI: 10.1186/1475-2875-10-29] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/08/2011] [Indexed: 11/22/2022] Open
Abstract
Background A DNA prime, poxvirus (COPAK) boost vaccination regime with four antigens, i.e. a combination of two Plasmodium knowlesi sporozoite (csp/ssp2) and two blood stage (ama1/msp142) genes, leads to self-limited parasitaemia in 60% of rhesus monkeys and survival from an otherwise lethal infection with P. knowlesi. In the present study, the role of the blood stage antigens in protection was studied in depth, focusing on antibody formation against the blood stage antigens and the functionality thereof. Methods Rhesus macaques were immunized with the four-component vaccine and subsequently challenged i.v. with 100 P. knowlesi sporozoites. During immunization and challenge, antibody titres against the two blood stage antigens were determined, as well as the in vitro growth inhibition capacity of those antibodies. Antigen reversal experiments were performed to determine the relative contribution of antibodies against each of the two blood stage antigens to the inhibition. Results After vaccination, PkAMA1 and PkMSP119 antibody titres in vaccinated animals were low, which was reflected in low levels of inhibition by these antibodies as determined by in vitro inhibition assays. Interestingly, after sporozoite challenge antibody titres against blood stage antigens were boosted over 30-fold in both protected and not protected animals. The in vitro inhibition levels increased to high levels (median inhibitions of 59% and 56% at 6 mg/mL total IgG, respectively). As growth inhibition levels were not significantly different between protected and not protected animals, the ability to control infection appeared cannot be explained by GIA levels. Judged by in vitro antigen reversal growth inhibition assays, over 85% of the inhibitory activity of these antibodies was directed against PkAMA1. Conclusions This is the first report that demonstrates that a DNA prime/poxvirus boost vaccination regimen induces low levels of malaria parasite growth inhibitory antibodies, which are boosted to high levels upon challenge. No association could, however, be established between the levels of inhibitory capacity in vitro and protection, either after vaccination or after challenge.
Collapse
|
38
|
Abstract
The Plasmodium parasite, the causative agent of malaria, is an excellent model for immunomic-based approaches to vaccine development. The Plasmodium parasite has a complex life cycle with multiple stages and stage-specific expression of ∼5300 putative proteins. No malaria vaccine has yet been licensed. Many believe that an effective vaccine will need to target several antigens and multiple stages, and will require the generation of both antibody and cellular immune responses. Vaccine efforts to date have been stage-specific and based on only a very limited number of proteins representing <0.5% of the genome. The recent availability of comprehensive genomic, proteomic and transcriptomic datasets from human and selected non-human primate and rodent malarias provide a foundation to exploit for vaccine development. This information can be mined to identify promising vaccine candidate antigens, by proteome-wide screening of antibody and T cell reactivity using specimens from individuals exposed to malaria and technology platforms such as protein arrays, high throughput protein production and epitope prediction algorithms. Such antigens could be incorporated into a rational vaccine development process that targets specific stages of the Plasmodium parasite life cycle with immune responses implicated in parasite elimination and control. Immunomic approaches which enable the selection of the best possible targets by prioritising antigens according to clinically relevant criteria may overcome the problem of poorly immunogenic, poorly protective vaccines that has plagued malaria vaccine developers for the past 25 years. Herein, current progress and perspectives regarding Plasmodium immunomics are reviewed.
Collapse
Affiliation(s)
- Denise L Doolan
- Division of Immunology, Queensland Institute of Medical Research, The Bancroft Centre, 300 Herston Road, P.O. Royal Brisbane Hospital, Brisbane, QLD 4029, Australia.
| |
Collapse
|
39
|
Dauvillée D, Delhaye S, Gruyer S, Slomianny C, Moretz SE, d'Hulst C, Long CA, Ball SG, Tomavo S. Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules. PLoS One 2010; 5:e15424. [PMID: 21179538 PMCID: PMC3002285 DOI: 10.1371/journal.pone.0015424] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/01/2010] [Indexed: 11/18/2022] Open
Abstract
Background Malaria, an Anopheles-borne parasitic disease, remains a major global health problem causing illness and death that disproportionately affects developing countries. Despite the incidence of malaria, which remains one of the most severe infections of human populations, there is no licensed vaccine against this life-threatening disease. In this context, we decided to explore the expression of Plasmodium vaccine antigens fused to the granule bound starch synthase (GBSS), the major protein associated to the starch matrix in all starch-accumulating plants and algae such as Chlamydomonas reinhardtii. Methods and Findings We describe the development of genetically engineered starch granules containing plasmodial vaccine candidate antigens produced in the unicellular green algae Chlamydomonas reinhardtii. We show that the C-terminal domains of proteins from the rodent Plasmodium species, Plasmodium berghei Apical Major Antigen AMA1, or Major Surface Protein MSP1 fused to the algal granule bound starch synthase (GBSS) are efficiently expressed and bound to the polysaccharide matrix. Mice were either immunized intraperitoneally with the engineered starch particles and Freund adjuvant, or fed with the engineered particles co-delivered with the mucosal adjuvant, and challenged intraperitoneally with a lethal inoculum of P. Berghei. Both experimental strategies led to a significantly reduced parasitemia with an extension of life span including complete cure for intraperitoneal delivery as assessed by negative blood thin smears. In the case of the starch bound P. falciparum GBSS-MSP1 fusion protein, the immune sera or purified immunoglobulin G of mice immunized with the corresponding starch strongly inhibited in vitro the intra-erythrocytic asexual development of the most human deadly plasmodial species. Conclusion This novel system paves the way for the production of clinically relevant plasmodial antigens as algal starch-based particles designated herein as amylosomes, demonstrating that efficient production of edible vaccines can be genetically produced in Chlamydomonas.
Collapse
Affiliation(s)
- David Dauvillée
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Stéphane Delhaye
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Sébastien Gruyer
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Christian Slomianny
- Laboratoire de Physiologie Cellulaire, INSERM U 1003, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Samuel E. Moretz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Christophe d'Hulst
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Steven G. Ball
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Stanislas Tomavo
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- * E-mail:
| |
Collapse
|
40
|
Abstract
The concept of a malaria vaccine has sparked great interest for decades; however, the challenge is proving to be a difficult one. Immune dysregulation by Plasmodium and the ability of the parasite to mutate critical epitopes in surface antigens have proved to be strong defense weapons. This has led to reconsideration of polyvalent and whole parasite strategies and ways to enhance cellular immunity to malaria that may be more likely to target conserved antigens and an expanded repertoire of antigens. These and other concepts will be discussed in this review.
Collapse
|
41
|
Protective immune responses elicited by immunization with a chimeric blood-stage malaria vaccine persist but are not boosted by Plasmodium yoelii challenge infection. Vaccine 2010; 28:6876-84. [PMID: 20709001 DOI: 10.1016/j.vaccine.2010.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/17/2010] [Accepted: 08/02/2010] [Indexed: 11/20/2022]
Abstract
An efficacious malaria vaccine remains elusive despite concerted efforts. Using the Plasmodium yoelii murine model, we previously reported that immunization with the C-terminal 19 kDa domain of merozoite surface protein 1 (MSP1(19)) fused to full-length MSP8 protected against lethal P. yoelii 17XL, well beyond that achieved by single or combined immunizations with the component antigens. Here, we continue the evaluation of the chimeric PyMSP1/8 vaccine. We show that immunization with rPyMSP1/8 vaccine elicited an MSP8-restricted T cell response that was sufficient to provide help for both PyMSP1(19) and PyMSP8-specific B cells to produce high and sustained levels of protective antibodies. The enhanced efficacy of immunization with rPyMSP1/8, in comparison to a combined formulation of rPyMSP1(42) and rPyMSP8, was not due to improved conformation of protective B cell epitopes in the chimeric molecule. Unexpectedly, rPyMSP1/8 vaccine-induced antibody responses were not boosted by exposure to P. yoelii 17XL infected RBCs. However, rPyMSP1/8 immunized and infected mice mounted robust responses to a diverse set of blood-stage antigens. The data support the further development of an MSP1/8 chimeric vaccine but also suggest that vaccines that prime for responses to a diverse set of parasite proteins will be required to maximize vaccine efficacy.
Collapse
|
42
|
Persson KE. Erythrocyte invasion and functionally inhibitory antibodies in Plasmodium falciparum malaria. Acta Trop 2010; 114:138-43. [PMID: 19481996 DOI: 10.1016/j.actatropica.2009.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 05/19/2009] [Accepted: 05/22/2009] [Indexed: 11/26/2022]
Abstract
Malaria is a disease that kills several million people every year. P. falciparum merozoites invade new erythrocytes every 48 h, causing fever, anemia and cerebral malaria. Effective immunity against malaria develops slowly and only after repeated exposure. Antibodies are an important part of this immunity. However, the antigens that mediate immunity by inducing functionally imperative antibodies have not yet been identified. This review gives an overview of the erythrocyte invasion process, which has been described to include several different antigens. Invasion inhibitory antibodies can inhibit merozoite penetration of new erythrocytes, and different methods for measurement of the presence of functionally important antibodies have been employed. ELISA, Invasion inhibition assays and ADCI are some of the methods discussed.
Collapse
|
43
|
Ellis RD, Martin LB, Shaffer D, Long CA, Miura K, Fay MP, Narum DL, Zhu D, Mullen GED, Mahanty S, Miller LH, Durbin AP. Phase 1 trial of the Plasmodium falciparum blood stage vaccine MSP1(42)-C1/Alhydrogel with and without CPG 7909 in malaria naïve adults. PLoS One 2010; 5:e8787. [PMID: 20107498 PMCID: PMC2809736 DOI: 10.1371/journal.pone.0008787] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 12/02/2009] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Merozoite surface protein 1(42) (MSP1(42)) is a leading blood stage malaria vaccine candidate. In order to induce immune responses that cover the major antigenic polymorphisms, FVO and 3D7 recombinant proteins of MSP1(42) were mixed (MSP1(42)-C1). To improve the level of antibody response, MSP1(42)-C1 was formulated with Alhydrogel plus the novel adjuvant CPG 7909. METHODS A Phase 1 clinical trial was conducted in healthy malaria-naïve adults at the Center for Immunization Research in Washington, D.C., to evaluate the safety and immunogenicity of MSP1(42)-C1/Alhydrogel +/- CPG 7909. Sixty volunteers were enrolled in dose escalating cohorts and randomized to receive three vaccinations of either 40 or 160 microg protein adsorbed to Alhydrogel +/- 560 microg CPG 7909 at 0, 1 and 2 months. RESULTS Vaccinations were well tolerated, with only one related adverse event graded as severe (Grade 3 injection site erythema) and all other vaccine related adverse events graded as either mild or moderate. Local adverse events were more frequent and severe in the groups receiving CPG. The addition of CPG enhanced anti-MSP1(42) antibody responses following vaccination by up to 49-fold two weeks after second immunization and 8-fold two weeks after the third immunization when compared to MSP1(42)-C1/Alhydrogel alone (p<0.0001). After the third immunization, functionality of the antibody was tested by an in vitro growth inhibition assay. Inhibition was a function of antibody titer, with an average of 3% (range -2 to 10%) in the non CPG groups versus 14% (3 to 32%) in the CPG groups. CONCLUSION/SIGNIFICANCE The favorable safety profile and high antibody responses induced with MSP1(42)-C1/Alhydrogel + CPG 7909 are encouraging. MSP1(42)-C1/Alhydrogel is being combined with other blood stage antigens and will be taken forward in a formulation adjuvanted with CPG 7909. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT00320658.
Collapse
Affiliation(s)
- Ruth D Ellis
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Rockville, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Anti-apical-membrane-antigen-1 antibody is more effective than anti-42-kilodalton-merozoite-surface-protein-1 antibody in inhibiting plasmodium falciparum growth, as determined by the in vitro growth inhibition assay. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:963-8. [PMID: 19439523 DOI: 10.1128/cvi.00042-09] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Apical membrane antigen 1 (AMA1) and the 42-kDa merozoite surface protein 1 (MSP1(42)) are leading malaria vaccine candidates. Several preclinical and clinical trials have been conducted, and an in vitro parasite growth inhibition assay has been used to evaluate the biological activities of the resulting antibodies. In a U.S. phase 1 trial with AMA1-C1/Alhydrogel plus CPG 7909, the vaccination elicited anti-AMA1 immunoglobulin G (IgG) which showed up to 96% inhibition. However, antibodies induced by MSP1(42)-C1/Alhydrogel plus CPG 7909 vaccine showed less than 32% inhibition in vitro. To determine whether anti-MSP1(42) IgG had less growth-inhibitory activity than anti-AMA1 IgG in vitro, the amounts of IgG that produced 50% inhibition of parasite growth (Ab(50)) were compared for rabbit and human antibodies. The Ab(50)s of rabbit and human anti-MSP1(42) IgGs were significantly higher (0.21 and 0.62 mg/ml, respectively) than those of anti-AMA1 IgGs (0.07 and 0.10 mg/ml, respectively) against 3D7 parasites. Ab(50) data against FVO parasites also demonstrated significant differences. We further investigated the Ab(50)s of mouse and monkey anti-AMA1 IgGs and showed that there were significant differences between the species (mouse, 0.28 mg/ml, and monkey, 0.14 mg/ml, against 3D7 parasites). Although it is unknown whether growth-inhibitory activity in vitro reflects protective immunity in vivo, this study showed that the Ab(50) varies with both antigen and species. Our data provide a benchmark for antibody levels for future AMA1- or MSP1(42)-based vaccine development efforts in preclinical and clinical trials.
Collapse
|
45
|
|
46
|
Spring MD, Cummings JF, Ockenhouse CF, Dutta S, Reidler R, Angov E, Bergmann-Leitner E, Stewart VA, Bittner S, Juompan L, Kortepeter MG, Nielsen R, Krzych U, Tierney E, Ware LA, Dowler M, Hermsen CC, Sauerwein RW, de Vlas SJ, Ofori-Anyinam O, Lanar DE, Williams JL, Kester KE, Tucker K, Shi M, Malkin E, Long C, Diggs CL, Soisson L, Dubois MC, Ballou WR, Cohen J, Heppner DG. Phase 1/2a study of the malaria vaccine candidate apical membrane antigen-1 (AMA-1) administered in adjuvant system AS01B or AS02A. PLoS One 2009; 4:e5254. [PMID: 19390585 PMCID: PMC2669163 DOI: 10.1371/journal.pone.0005254] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 03/23/2009] [Indexed: 11/19/2022] Open
Abstract
Background This Phase 1/2a study evaluated the safety, immunogenicity, and efficacy of an experimental malaria vaccine comprised of the recombinant Plasmodium falciparum protein apical membrane antigen-1 (AMA-1) representing the 3D7 allele formulated with either the AS01B or AS02A Adjuvant Systems. Methodology/Principal Findings After a preliminary safety evaluation of low dose AMA-1/AS01B (10 µg/0.5 mL) in 5 adults, 30 malaria-naïve adults were randomly allocated to receive full dose (50 µg/0.5 mL) of AMA-1/AS01B (n = 15) or AMA-1/AS02A (n = 15), followed by a malaria challenge. All vaccinations were administered intramuscularly on a 0-, 1-, 2-month schedule. All volunteers experienced transient injection site erythema, swelling and pain. Two weeks post-third vaccination, anti-AMA-1 Geometric Mean Antibody Concentrations (GMCs) with 95% Confidence Intervals (CIs) were high: low dose AMA-1/AS01B 196 µg/mL (103–371 µg/mL), full dose AMA-1/AS01B 279 µg/mL (210–369 µg/mL) and full dose AMA-1/AS02A 216 µg/mL (169–276 µg/mL) with no significant difference among the 3 groups. The three vaccine formulations elicited equivalent functional antibody responses, as measured by growth inhibition assay (GIA), against homologous but not against heterologous (FVO) parasites as well as demonstrable interferon-gamma (IFN-γ) responses. To assess efficacy, volunteers were challenged with P. falciparum-infected mosquitoes, and all became parasitemic, with no significant difference in the prepatent period by either light microscopy or quantitative polymerase chain reaction (qPCR). However, a small but significant reduction of parasitemia in the AMA-1/AS02A group was seen with a statistical model employing qPCR measurements. Significance All three vaccine formulations were found to be safe and highly immunogenic. These immune responses did not translate into significant vaccine efficacy in malaria-naïve adults employing a primary sporozoite challenge model, but encouragingly, estimation of parasite growth rates from qPCR data may suggest a partial biological effect of the vaccine. Further evaluation of the immunogenicity and efficacy of the AMA-1/AS02A formulation is ongoing in a malaria-experienced pediatric population in Mali. Trial Registration www.clinicaltrials.govNCT00385047
Collapse
Affiliation(s)
- Michele D Spring
- United States Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jordan SJ, Branch OH, Castro JC, Castro JC, Oster RA, Rayner JC. Genetic diversity of the malaria vaccine candidate Plasmodium falciparum merozoite surface protein-3 in a hypoendemic transmission environment. Am J Trop Med Hyg 2009; 80:479-86. [PMID: 19270302 PMCID: PMC2723947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
The N-terminal domain of Plasmodium falciparum merozoite surface protein-3 (PfMSP3) has been excluded from malaria vaccine development largely because of genetic diversity concerns. However, no study to date has followed N-terminal diversity over time. This study describes PfMSP3 variation in a hypoendemic longitudinal cohort in the Peruvian Amazon over the 2003-2006 transmission seasons. Polymerase chain reaction was used to amplify the N-terminal domain in 630 distinct P. falciparum infections, which were allele-typed by size and also screened for sequence variation using a new high-throughput technique, denaturing high performance liquid chromatography. PfMSP3 allele frequencies fluctuated significantly over the 4-year period, but sequence variation was very limited, with only 10 mutations being identified of 630 infections screened. The sequence of the PfMSP3 N-terminal domain is relatively stable over time in this setting, and further studies of its status as a vaccine candidate are therefore warranted.
Collapse
Affiliation(s)
- Stephen J Jordan
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-2170, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Prediction of merozoite surface protein 1 and apical membrane antigen 1 vaccine efficacies against Plasmodium chabaudi malaria based on prechallenge antibody responses. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 16:293-302. [PMID: 19116303 DOI: 10.1128/cvi.00230-08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
For the development of blood-stage malaria vaccines, there is a clear need to establish in vitro measures of the antibody-mediated and the cell-mediated immune responses that correlate with protection. In this study, we focused on establishing correlates of antibody-mediated immunity induced by immunization with apical membrane antigen 1 (AMA1) and merozoite surface protein 1(42) (MSP1(42)) subunit vaccines. To do so, we exploited the Plasmodium chabaudi rodent model, with which we can immunize animals with both protective and nonprotective vaccine formulations and allow the parasitemia in the challenged animals to peak. Vaccine formulations were varied with regard to the antigen dose, the antigen conformation, and the adjuvant used. Prechallenge antibody responses were evaluated by enzyme-linked immunosorbent assay and were tested for a correlation with protection against nonlethal P. chabaudi malaria, as measured by a reduction in the peak level of parasitemia. The analysis showed that neither the isotype profile nor the avidity of vaccine-induced antibodies correlated with protective efficacy. However, high titers of antibodies directed against conformation-independent epitopes were associated with poor vaccine performance and may limit the effectiveness of protective antibodies that recognize conformation-dependent epitopes. We were able to predict the efficacies of the P. chabaudi AMA1 (PcAMA1) and P. chabaudi MSP1(42) (PcMSP1(42)) vaccines only when the prechallenge antibody titers to both refolded and reduced/alkylated antigens were considered in combination. The relative importance of these two measures of vaccine-induced responses as predictors of protection differed somewhat for the PcAMA1 and the PcMSP1(42) vaccines, a finding confirmed in our final immunization and challenge study. A similar approach to the evaluation of vaccine-induced antibody responses may be useful during clinical trials of Plasmodium falciparum AMA1 and MSP1(42) vaccines.
Collapse
|
49
|
Roestenberg M, Remarque E, de Jonge E, Hermsen R, Blythman H, Leroy O, Imoukhuede E, Jepsen S, Ofori-Anyinam O, Faber B, Kocken CHM, Arnold M, Walraven V, Teelen K, Roeffen W, de Mast Q, Ballou WR, Cohen J, Dubois MC, Ascarateil S, van der Ven A, Thomas A, Sauerwein R. Safety and immunogenicity of a recombinant Plasmodium falciparum AMA1 malaria vaccine adjuvanted with Alhydrogel, Montanide ISA 720 or AS02. PLoS One 2008; 3:e3960. [PMID: 19093004 PMCID: PMC2602972 DOI: 10.1371/journal.pone.0003960] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 11/13/2008] [Indexed: 11/18/2022] Open
Abstract
Background Plasmodium falciparum Apical Membrane Antigen 1 (PfAMA1) is a candidate vaccine antigen expressed by merozoites and sporozoites. It plays a key role in red blood cell and hepatocyte invasion that can be blocked by antibodies. Methodology/Principal Findings We assessed the safety and immunogenicity of recombinant PfAMA1 in a dose-escalating, phase Ia trial. PfAMA1 FVO strain, produced in Pichia pastoris, was reconstituted at 10 µg and 50 µg doses with three different adjuvants, Alhydrogel™, Montanide ISA720 and AS02 Adjuvant System. Six randomised groups of healthy male volunteers, 8–10 volunteers each, were scheduled to receive three immunisations at 4-week intervals. Safety and immunogenicity data were collected over one year. Transient pain was the predominant injection site reaction (80–100%). Induration occurred in the Montanide 50 µg group, resulting in a sterile abscess in two volunteers. Systemic adverse events occurred mainly in the AS02 groups lasting for 1–2 days. Erythema was observed in 22% of Montanide and 59% of AS02 group volunteers. After the second dose, six volunteers in the AS02 group and one in the Montanide group who reported grade 3 erythema (>50 mm) were withdrawn as they met the stopping criteria. All adverse events resolved. There were no vaccine-related serious adverse events. Humoral responses were highest in the AS02 groups. Antibodies showed activity in an in vitro growth inhibition assay up to 80%. Upon stimulation with the vaccine, peripheral mononuclear cells from all groups proliferated and secreted IFNγ and IL-5 cytokines. Conclusions/Significance All formulations showed distinct reactogenicity profiles. All formulations with PfAMA1 were immunogenic and induced functional antibodies. Trial Registration Clinicaltrials.gov NCT00730782
Collapse
Affiliation(s)
- Meta Roestenberg
- Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Targett GA, Greenwood BM. Malaria vaccines and their potential role in the elimination of malaria. Malar J 2008; 7 Suppl 1:S10. [PMID: 19091034 PMCID: PMC2604874 DOI: 10.1186/1475-2875-7-s1-s10] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Research on malaria vaccines is currently directed primarily towards the development of vaccines that prevent clinical malaria. Malaria elimination, now being considered seriously in some epidemiological situations, requires a different vaccine strategy, since success will depend on killing all parasites in the community in order to stop transmission completely. The feature of the life-cycles of human malarias that presents the greatest challenge to an elimination programme is the persistence of parasites as asymptomatic infections. These are an important source from which transmission to mosquitoes can occur. Consequently, an elimination strategy requires a community-based approach covering all individuals and not just those who are susceptible to clinical malaria. The progress that has been made in development of candidate malaria vaccines is reviewed. It is unlikely that many of these will have the efficacy required for complete elimination of parasites, though they may have an important role to play as part of future integrated control programmes. Vaccines for elimination must have a high level of efficacy in order to stop transmission to mosquitoes. This might be achieved with some pre-erythrocytic stage candidate vaccines or by targeting the sexual stages directly with transmission-blocking vaccines. An expanded malaria vaccine programme with such objectives is now a priority.
Collapse
Affiliation(s)
- Geoffrey A Targett
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | | |
Collapse
|