1
|
Bonneaud C, Weinert LA, Kuijper B. Understanding the emergence of bacterial pathogens in novel hosts. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180328. [PMID: 31401968 PMCID: PMC6711297 DOI: 10.1098/rstb.2018.0328] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2019] [Indexed: 01/03/2023] Open
Abstract
Our understanding of the ecological and evolutionary context of novel infections is largely based on viral diseases, even though bacterial pathogens may display key differences in the processes underlying their emergence. For instance, host-shift speciation, in which the jump of a pathogen into a novel host species is followed by the specialization on that host and the loss of infectivity of previous host(s), is commonly observed in viruses, but less often in bacteria. Here, we suggest that the extent to which pathogens evolve host generalism or specialism following a jump into a novel host will depend on their level of adaptation to dealing with different environments, their rates of molecular evolution and their ability to recombine. We then explore these hypotheses using a formal model and show that the high levels of phenotypic plasticity, low rates of evolution and the ability to recombine typical of bacterial pathogens should reduce their propensity to specialize on novel hosts. Novel bacterial infections may therefore be more likely to result in transient spillovers or increased host ranges than in host shifts. Finally, consistent with our predictions, we show that, in two unusual cases of contemporary bacterial host shifts, the bacterial pathogens both have small genomes and rapid rates of substitution. Further tests are required across a greater number of emerging pathogens to assess the validity of our hypotheses. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.
Collapse
Affiliation(s)
- Camille Bonneaud
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Bram Kuijper
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| |
Collapse
|
2
|
Yahara K, Lehours P, Vale FF. Analysis of genetic recombination and the pan-genome of a highly recombinogenic bacteriophage species. Microb Genom 2019; 5. [PMID: 31310202 PMCID: PMC6755498 DOI: 10.1099/mgen.0.000282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages are the most prevalent biological entities impacting on the ecosystem and are characterized by their extensive diversity. However, there are two aspects of phages that have remained largely unexplored: genetic flux by recombination between phage populations and characterization of specific phages in terms of the pan-genome. Here, we examined the recombination and pan-genome in Helicobacter pylori prophages at both the genome and gene level. In the genome-level analysis, we applied, for the first time, chromosome painting and fineSTRUCTURE algorithms to a phage species, and showed novel trends in inter-population genetic flux. Notably, hpEastAsia is a phage population that imported a higher proportion of DNA fragments from other phages, whereas the hpSWEurope phages showed weaker signatures of inter-population recombination, suggesting genetic isolation. The gene-level analysis showed that, after parameter tuning of the prokaryote pan-genome analysis program, H. pylori phages have a pan-genome consisting of 75 genes and a soft-core genome of 10 genes, which includes genes involved in the lytic and lysogenic life cycles. Quantitative analysis of recombination events of the soft-core genes showed no substantial variation in the intensity of recombination across the genes, but rather equally frequent recombination among housekeeping genes that were previously reported to be less prone to recombination. The signature of frequent recombination appears to reflect the host–phage evolutionary arms race, either by contributing to escape from bacterial immunity or by protecting the host by producing defective phages.
Collapse
Affiliation(s)
- Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo 189-0002, Japan
| | - Philippe Lehours
- French National Reference Center for Campylobacters and Helicobacters, Bordeaux, France.,University of Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, 33076 Bordeaux, France
| | - Filipa F Vale
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
3
|
Gilbert MJ, Duim B, Zomer AL, Wagenaar JA. Living in Cold Blood: Arcobacter, Campylobacter, and Helicobacter in Reptiles. Front Microbiol 2019; 10:1086. [PMID: 31191467 PMCID: PMC6530492 DOI: 10.3389/fmicb.2019.01086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/30/2019] [Indexed: 01/10/2023] Open
Abstract
Species of the Epsilonproteobacteria genera Arcobacter, Campylobacter, and Helicobacter are commonly associated with vertebrate hosts and some are considered significant pathogens. Vertebrate-associated Epsilonproteobacteria are often considered to be largely confined to endothermic mammals and birds. Recent studies have shown that ectothermic reptiles display a distinct and largely unique Epsilonproteobacteria community, including taxa which can cause disease in humans. Several Arcobacter taxa are widespread amongst reptiles and often show a broad host range. Reptiles carry a large diversity of unique and novel Helicobacter taxa, which apparently evolved in an ectothermic host. Some species, such as Campylobacter fetus, display a distinct intraspecies host dichotomy, with genetically divergent lineages occurring either in mammals or reptiles. These taxa can provide valuable insights in host adaptation and co-evolution between symbiont and host. Here, we present an overview of the biodiversity, ecology, epidemiology, and evolution of reptile-associated Epsilonproteobacteria from a broader vertebrate host perspective.
Collapse
Affiliation(s)
- Maarten J Gilbert
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Reptile, Amphibian and Fish Conservation Netherlands, Nijmegen, Netherlands
| | - Birgitta Duim
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,WHO Collaborating Center for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, Netherlands
| | - Aldert L Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,WHO Collaborating Center for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, Netherlands
| | - Jaap A Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,WHO Collaborating Center for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, Netherlands.,Wageningen Bioveterinary Research, Lelystad, Netherlands
| |
Collapse
|
4
|
Smet A, Yahara K, Rossi M, Tay A, Backert S, Armin E, Fox JG, Flahou B, Ducatelle R, Haesebrouck F, Corander J. Macroevolution of gastric Helicobacter species unveils interspecies admixture and time of divergence. THE ISME JOURNAL 2018; 12:2518-2531. [PMID: 29942073 PMCID: PMC6154992 DOI: 10.1038/s41396-018-0199-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/29/2018] [Accepted: 03/20/2018] [Indexed: 12/17/2022]
Abstract
Since the discovery of the human pathogen Helicobacter pylori, various other Helicobacter species have been identified in the stomach of domesticated and wild mammals. To better understand the evolutionary history of these ecologically similar but genetically distinct species, we analyzed 108 gastric Helicobacter genomes and included 54 enterohepatic Helicobacter genomes for comparison purposes. An admixture analysis supported the presence of an ecological barrier, preventing the genetic exchange between the gastric and enterohepatic Helicobacter species, and unraveled many gene flow events within and across species residing in the stomach. As pets can be colonized by multiple gastric Helicobacter species, the genetic exchange between the canine and feline strains was evident, with H. heilmannii and H. bizzozeronii showing the highest interspecies recombination. An admixture between H. pylori (in particular, the ancestral African strains), H. acinonychis from wild felines and H. cetorum from marine mammals was also identified. Because these latter species do not share the same host, this phenomenon is most likely a remaining signal of shared ancestry. A reconstruction of the time of divergence of the gastric Helicobacter spp. revealed that the domestic animal-related Helicobacter species evolved in parallel with H. pylori and its two closest relatives (H. acinonychis and H. cetorum), rather than together.
Collapse
Affiliation(s)
- Annemieke Smet
- Laboratory Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - Alfred Tay
- The Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Perth, WA, Australia
| | - Steffen Backert
- Department Biology, Division Microbiology, University Erlangen Nuremberg, Erlangen, Germany
| | - Ensser Armin
- Institute of clinical and Molecular Virology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bram Flahou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Welcome Trust Sanger Institute, Cambridge, UK
| |
Collapse
|
5
|
Beckett AC, Loh JT, Chopra A, Leary S, Lin AS, McDonnell WJ, Dixon BREA, Noto JM, Israel DA, Peek RM, Mallal S, Algood HMS, Cover TL. Helicobacter pylori genetic diversification in the Mongolian gerbil model. PeerJ 2018; 6:e4803. [PMID: 29796347 PMCID: PMC5961626 DOI: 10.7717/peerj.4803] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori requires genetic agility to infect new hosts and establish long-term colonization of changing gastric environments. In this study, we analyzed H. pylori genetic adaptation in the Mongolian gerbil model. This model is of particular interest because H. pylori-infected gerbils develop a high level of gastric inflammation and often develop gastric adenocarcinoma or gastric ulceration. We analyzed the whole genome sequences of H. pylori strains cultured from experimentally infected gerbils, in comparison to the genome sequence of the input strain. The mean annualized single nucleotide polymorphism (SNP) rate per site was 1.5e−5, which is similar to the rates detected previously in H. pylori-infected humans. Many of the mutations occurred within or upstream of genes associated with iron-related functions (fur, tonB1, fecA2, fecA3, and frpB3) or encoding outer membrane proteins (alpA, oipA, fecA2, fecA3, frpB3 and cagY). Most of the SNPs within coding regions (86%) were non-synonymous mutations. Several deletion or insertion mutations led to disruption of open reading frames, suggesting that the corresponding gene products are not required or are deleterious during chronic H. pylori colonization of the gerbil stomach. Five variants (three SNPs and two deletions) were detected in isolates from multiple animals, which suggests that these mutations conferred a selective advantage. One of the mutations (FurR88H) detected in isolates from multiple animals was previously shown to confer increased resistance to oxidative stress, and we now show that this SNP also confers a survival advantage when H. pylori is co-cultured with neutrophils. Collectively, these analyses allow the identification of mutations that are positively selected during H. pylori colonization of the gerbil model.
Collapse
Affiliation(s)
- Amber C Beckett
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - John T Loh
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Aung Soe Lin
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Wyatt J McDonnell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Beverly R E A Dixon
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Jennifer M Noto
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Dawn A Israel
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Richard M Peek
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Simon Mallal
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Holly M Scott Algood
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Tennessee Valley Healthcare System, Veterans Affairs, Nashville, TN, United States of America
| | - Timothy L Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Tennessee Valley Healthcare System, Veterans Affairs, Nashville, TN, United States of America
| |
Collapse
|
6
|
Delahay RM, Croxall NJ, Stephens AD. Phylogeographic diversity and mosaicism of the Helicobacter pylori tfs integrative and conjugative elements. Mob DNA 2018; 9:5. [PMID: 29416569 PMCID: PMC5785829 DOI: 10.1186/s13100-018-0109-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022] Open
Abstract
Background The genome of the gastric pathogen Helicobacter pylori is characterised by considerable variation of both gene sequence and content, much of which is contained within three large genomic islands comprising the cag pathogenicity island (cagPAI) and two mobile integrative and conjugative elements (ICEs) termed tfs3 and tfs4. All three islands are implicated as virulence factors, although whereas the cagPAI is well characterised, understanding of how the tfs elements influence H. pylori interactions with different human hosts is significantly confounded by limited definition of their distribution, diversity and structural representation in the global H. pylori population. Results To gain a global perspective of tfs ICE population dynamics we established a bioinformatics workflow to extract and precisely define the full tfs pan-gene content contained within a global collection of 221 draft and complete H. pylori genome sequences. Complete (ca. 35-55kbp) and remnant tfs ICE clusters were reconstructed from a dataset comprising > 12,000 genes, from which orthologous gene complements and distinct alleles descriptive of different tfs ICE types were defined and classified in comparative analyses. The genetic variation within defined ICE modular segments was subsequently used to provide a complete description of tfs ICE diversity and a comprehensive assessment of their phylogeographic context. Our further examination of the apparent ICE modular types identified an ancient and complex history of ICE residence, mobility and interaction within particular H. pylori phylogeographic lineages and further, provided evidence of both contemporary inter-lineage and inter-species ICE transfer and displacement. Conclusions Our collective results establish a clear view of tfs ICE diversity and phylogeographic representation in the global H. pylori population, and provide a robust contextual framework for elucidating the functional role of the tfs ICEs particularly as it relates to the risk of gastric disease associated with different tfs ICE genotypes. Electronic supplementary material The online version of this article (10.1186/s13100-018-0109-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robin M Delahay
- 1Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Nicola J Croxall
- 1Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Amberley D Stephens
- 1Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK.,2Present Address: Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcette Drive, West Cambridge, Cambridge, CB3 0AS UK
| |
Collapse
|
7
|
Achtman M. How old are bacterial pathogens? Proc Biol Sci 2017; 283:rspb.2016.0990. [PMID: 27534956 DOI: 10.1098/rspb.2016.0990] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/21/2016] [Indexed: 12/26/2022] Open
Abstract
Only few molecular studies have addressed the age of bacterial pathogens that infected humans before the beginnings of medical bacteriology, but these have provided dramatic insights. The global genetic diversity of Helicobacter pylori, which infects human stomachs, parallels that of its human host. The time to the most recent common ancestor (tMRCA) of these bacteria approximates that of anatomically modern humans, i.e. at least 100 000 years, after calibrating the evolutionary divergence within H. pylori against major ancient human migrations. Similarly, genomic reconstructions of Mycobacterium tuberculosis, the cause of tuberculosis, from ancient skeletons in South America and mummies in Hungary support estimates of less than 6000 years for the tMRCA of M. tuberculosis Finally, modern global patterns of genetic diversity and ancient DNA studies indicate that during the last 5000 years plague caused by Yersinia pestis has spread globally on multiple occasions from China and Central Asia. Such tMRCA estimates provide only lower bounds on the ages of bacterial pathogens, and additional studies are needed for realistic upper bounds on how long humans and animals have suffered from bacterial diseases.
Collapse
Affiliation(s)
- Mark Achtman
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
8
|
Gilbert MJ, Duim B, Timmerman AJ, Zomer AL, Wagenaar JA. Whole genome-based phylogeny of reptile-associated Helicobacter indicates independent niche adaptation followed by diversification in a poikilothermic host. Sci Rep 2017; 7:8387. [PMID: 28827684 PMCID: PMC5566214 DOI: 10.1038/s41598-017-09091-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/21/2017] [Indexed: 11/26/2022] Open
Abstract
Reptiles have been shown to host a significant Helicobacter diversity. In order to survive, reptile-associated Helicobacter lineages need to be adapted to the thermally dynamic environment encountered in a poikilothermic host. The whole genomes of reptile-associated Helicobacter lineages can provide insights in Helicobacter host adaptation and coevolution. These aspects were explored by comparing the genomes of reptile-, bird-, and mammal-associated Helicobacter lineages. Based on average nucleotide identity, all reptile-associated Helicobacter lineages in this study could be considered distinct species. A whole genome-based phylogeny showed two distinct clades, one associated with chelonians and one associated with lizards. The phylogeny indicates initial adaptation to an anatomical niche, which is followed by an ancient host jump and subsequent diversification. Furthermore, the ability to grow at low temperatures, which might reflect thermal adaptation to a reptilian host, originated at least twice in Helicobacter evolution. A putative tricarballylate catabolism locus was specifically present in Campylobacter and Helicobacter isolates from reptiles. The phylogeny of reptile-associated Helicobacter parallels host association, indicating a high level of host specificity. The high diversity and deep branching within these clades supports long-term coevolution with, and extensive radiation within the respective reptilian host type.
Collapse
Affiliation(s)
- Maarten J Gilbert
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Birgitta Duim
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,WHO Collaborating Centre for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
| | - Arjen J Timmerman
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Aldert L Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,WHO Collaborating Centre for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
| | - Jaap A Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,WHO Collaborating Centre for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands.,Wageningen Bioveterinary Research, Lelystad, The Netherlands
| |
Collapse
|
9
|
Foegeding NJ, Caston RR, McClain MS, Ohi MD, Cover TL. An Overview of Helicobacter pylori VacA Toxin Biology. Toxins (Basel) 2016; 8:toxins8060173. [PMID: 27271669 PMCID: PMC4926140 DOI: 10.3390/toxins8060173] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/18/2016] [Accepted: 05/27/2016] [Indexed: 12/11/2022] Open
Abstract
The VacA toxin secreted by Helicobacter pylori enhances the ability of the bacteria to colonize the stomach and contributes to the pathogenesis of gastric adenocarcinoma and peptic ulcer disease. The amino acid sequence and structure of VacA are unrelated to corresponding features of other known bacterial toxins. VacA is classified as a pore-forming toxin, and many of its effects on host cells are attributed to formation of channels in intracellular sites. The most extensively studied VacA activity is its capacity to stimulate vacuole formation, but the toxin has many additional effects on host cells. Multiple cell types are susceptible to VacA, including gastric epithelial cells, parietal cells, T cells, and other types of immune cells. This review focuses on the wide range of VacA actions that are detectable in vitro, as well as actions of VacA in vivo that are relevant for H. pylori colonization of the stomach and development of gastric disease.
Collapse
Affiliation(s)
- Nora J Foegeding
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Rhonda R Caston
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Mark S McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Timothy L Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
10
|
Vinella D, Fischer F, Vorontsov E, Gallaud J, Malosse C, Michel V, Cavazza C, Robbe-Saule M, Richaud P, Chamot-Rooke J, Brochier-Armanet C, De Reuse H. Evolution of Helicobacter: Acquisition by Gastric Species of Two Histidine-Rich Proteins Essential for Colonization. PLoS Pathog 2015; 11:e1005312. [PMID: 26641249 PMCID: PMC4671568 DOI: 10.1371/journal.ppat.1005312] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/05/2015] [Indexed: 02/07/2023] Open
Abstract
Metal acquisition and intracellular trafficking are crucial for all cells and metal ions have been recognized as virulence determinants in bacterial pathogens. Virulence of the human gastric pathogen Helicobacter pylori is dependent on nickel, cofactor of two enzymes essential for in vivo colonization, urease and [NiFe] hydrogenase. We found that two small paralogous nickel-binding proteins with high content in Histidine (Hpn and Hpn-2) play a central role in maintaining non-toxic intracellular nickel content and in controlling its intracellular trafficking. Measurements of metal resistance, intracellular nickel contents, urease activities and interactomic analysis were performed. We observed that Hpn acts as a nickel-sequestration protein, while Hpn-2 is not. In vivo, Hpn and Hpn-2 form homo-multimers, interact with each other, Hpn interacts with the UreA urease subunit while Hpn and Hpn-2 interact with the HypAB hydrogenase maturation proteins. In addition, Hpn-2 is directly or indirectly restricting urease activity while Hpn is required for full urease activation. Based on these data, we present a model where Hpn and Hpn-2 participate in a common pathway of controlled nickel transfer to urease. Using bioinformatics and top-down proteomics to identify the predicted proteins, we established that Hpn-2 is only expressed by H. pylori and its closely related species Helicobacter acinonychis. Hpn was detected in every gastric Helicobacter species tested and is absent from the enterohepatic Helicobacter species. Our phylogenomic analysis revealed that Hpn acquisition was concomitant with the specialization of Helicobacter to colonization of the gastric environment and the duplication at the origin of hpn-2 occurred in the common ancestor of H. pylori and H. acinonychis. Finally, Hpn and Hpn-2 were found to be required for colonization of the mouse model by H. pylori. Our data show that during evolution of the Helicobacter genus, acquisition of Hpn and Hpn-2 by gastric Helicobacter species constituted a decisive evolutionary event to allow Helicobacter to colonize the hostile gastric environment, in which no other bacteria persistently thrives. This acquisition was key for the emergence of one of the most successful bacterial pathogens, H. pylori. Helicobacter pylori is a bacterium that persistently colonizes the stomach of half of the human population. Infection by H. pylori is associated with gastritis, peptic ulcer disease and adenocarcinoma. To resist gastric acidity and proliferate in the stomach, H. pylori relies on urease, an enzyme that contains a nickel-metallocenter at its active site. Thus, nickel is a virulence determinant for H. pylori. Our aim is to characterize how H. pylori controls the intracellular nickel concentration to avoid toxicity, which protein partners are involved, and how they impact urease activity and virulence. We characterized two H. pylori proteins, Hpn and Hpn-2 that are rich in Histidine residues. We demonstrated that Hpn is involved in nickel sequestration, that the two proteins interact with each other and that their combined activities participate in a nickel transfer pathway to urease. Hpn is only expressed in gastric Helicobacter species able to colonize the stomach and Hpn-2 is restricted to the H. pylori and its close relative H. acinonychis. We found that both proteins are essential for colonization of a mouse model by H. pylori. We conclude that during evolution, the acquisition of Hpn and Hpn-2 by gastric Helicobacter species was decisive for their capacity to colonize the stomach.
Collapse
Affiliation(s)
- Daniel Vinella
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
| | - Frédéric Fischer
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
| | - Egor Vorontsov
- Institut Pasteur, Département de Biologie Structurale et Chimie, Unité Spectrométrie de Masse Structurale et Protéomique, CNRS UMR 3528, Paris, France
| | - Julien Gallaud
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Christian Malosse
- Institut Pasteur, Département de Biologie Structurale et Chimie, Unité Spectrométrie de Masse Structurale et Protéomique, CNRS UMR 3528, Paris, France
| | - Valérie Michel
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
| | | | - Marie Robbe-Saule
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
| | - Pierre Richaud
- CEA, DSV, IBEB, SBVME and CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, France and Aix Marseille Université, BVME UMR7265, Marseille, France
| | - Julia Chamot-Rooke
- Institut Pasteur, Département de Biologie Structurale et Chimie, Unité Spectrométrie de Masse Structurale et Protéomique, CNRS UMR 3528, Paris, France
| | - Céline Brochier-Armanet
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Hilde De Reuse
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
- * E-mail:
| |
Collapse
|
11
|
Vale FF, Vadivelu J, Oleastro M, Breurec S, Engstrand L, Perets TT, Mégraud F, Lehours P. Dormant phages of Helicobacter pylori reveal distinct populations in Europe. Sci Rep 2015; 5:14333. [PMID: 26387443 PMCID: PMC4585682 DOI: 10.1038/srep14333] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/21/2015] [Indexed: 01/01/2023] Open
Abstract
Prophages of Helicobacter pylori, a bacterium known to co-evolve in the stomach of its human host, were recently identified. However, their role in the diversity of H. pylori strains is unknown. We demonstrate here and for the first time that the diversity of the prophage genes offers the ability to distinguish between European populations, and that H. pylori prophages and their host bacteria share a complex evolutionary history. By comparing the phylogenetic trees of two prophage genes (integrase and holin) and the multilocus sequence typing (MLST)-based data obtained for seven housekeeping genes, we observed that the majority of the strains belong to the same phylogeographic group in both trees. Furthermore, we found that the Bayesian analysis of the population structure of the prophage genes identified two H. pylori European populations, hpNEurope and hpSWEurope, while the MLST sequences identified one European population, hpEurope. The population structure analysis of H. pylori prophages was even more discriminative than the traditional MLST-based method for the European population. Prophages are new players to be considered not only to show the diversity of H. pylori strains but also to more sharply define human populations.
Collapse
Affiliation(s)
- F F Vale
- Université de Bordeaux, Laboratoire de Bactériologie, Bordeaux, France.,INSERM U853, Bordeaux, France.,Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Instituto de Medicina Molecular, Faculdade de Farmácia da Universidade de Lisboa
| | - J Vadivelu
- UM Marshall Centre and Dept of Medical Microbiology, University of Malaya, Lembah Pantai, 50490 Kuala Lumpur, Malaysia
| | - M Oleastro
- Laboratório Nacional de Referência das Infeções Gastrintestinais, Departamento de Doenças Infeciosas, Instituto Nacional de Saúde Dr Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - S Breurec
- Institut Pasteur, Laboratoire de Bactériologie, Bangui, République Centrafricaine.,Institut Pasteur, Laboratoire de Bactériologie, Dakar, Senegal
| | - L Engstrand
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - T T Perets
- Gastroenterology Laboratory, Rabin Medical Center - Beilinson Hospital, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - F Mégraud
- Université de Bordeaux, Laboratoire de Bactériologie, Bordeaux, France.,INSERM U853, Bordeaux, France
| | - P Lehours
- Université de Bordeaux, Laboratoire de Bactériologie, Bordeaux, France.,INSERM U853, Bordeaux, France
| |
Collapse
|
12
|
Pan-genome analysis of human gastric pathogen H. pylori: comparative genomics and pathogenomics approaches to identify regions associated with pathogenicity and prediction of potential core therapeutic targets. BIOMED RESEARCH INTERNATIONAL 2015; 2015:139580. [PMID: 25705648 PMCID: PMC4325212 DOI: 10.1155/2015/139580] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 07/11/2014] [Accepted: 07/11/2014] [Indexed: 12/23/2022]
Abstract
Helicobacter pylori is a human gastric pathogen implicated as the major cause of peptic ulcer and second leading cause of gastric cancer (~70%) around the world. Conversely, an increased resistance to antibiotics and hindrances in the development of vaccines against H. pylori are observed. Pan-genome analyses of the global representative H. pylori isolates consisting of 39 complete genomes are presented in this paper. Phylogenetic analyses have revealed close relationships among geographically diverse strains of H. pylori. The conservation among these genomes was further analyzed by pan-genome approach; the predicted conserved gene families (1,193) constitute ~77% of the average H. pylori genome and 45% of the global gene repertoire of the species. Reverse vaccinology strategies have been adopted to identify and narrow down the potential core-immunogenic candidates. Total of 28 nonhost homolog proteins were characterized as universal therapeutic targets against H. pylori based on their functional annotation and protein-protein interaction. Finally, pathogenomics and genome plasticity analysis revealed 3 highly conserved and 2 highly variable putative pathogenicity islands in all of the H. pylori genomes been analyzed.
Collapse
|
13
|
Woolfit M, Iturbe-Ormaetxe I, Brownlie JC, Walker T, Riegler M, Seleznev A, Popovici J, Rancès E, Wee BA, Pavlides J, Sullivan MJ, Beatson SA, Lane A, Sidhu M, McMeniman CJ, McGraw EA, O'Neill SL. Genomic evolution of the pathogenic Wolbachia strain, wMelPop. Genome Biol Evol 2014; 5:2189-204. [PMID: 24190075 PMCID: PMC3845649 DOI: 10.1093/gbe/evt169] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Most strains of the widespread endosymbiotic bacterium Wolbachia pipientis are benign or behave as reproductive parasites. The pathogenic strain wMelPop is a striking exception, however: it overreplicates in its insect hosts and causes severe life shortening. The mechanism of this pathogenesis is currently unknown. We have sequenced the genomes of three variants of wMelPop and of the closely related nonpathogenic strain wMelCS. We show that the genomes of wMelCS and wMelPop appear to be identical in the nonrepeat regions of the genome and differ detectably only by the triplication of a 19-kb region that is unlikely to be associated with life shortening, demonstrating that dramatic differences in the host phenotype caused by this endosymbiont may be the result of only minor genetic changes. We also compare the genomes of the original wMelPop strain from Drosophila melanogaster and two sequential derivatives, wMelPop-CLA and wMelPop-PGYP. To develop wMelPop as a novel biocontrol agent, it was first transinfected into and passaged in mosquito cell lines for approximately 3.5 years, generating wMelPop-CLA. This cell line-passaged strain was then transinfected into Aedes aegypti mosquitoes, creating wMelPop-PGYP, which was sequenced after 4 years in the insect host. We observe a rapid burst of genomic changes during cell line passaging, but no further mutations were detected after transinfection into mosquitoes, indicating either that host preadaptation had occurred in cell lines, that cell lines are a more selectively permissive environment than animal hosts, or both. Our results provide valuable data on the rates of genomic and phenotypic change in Wolbachia associated with host shifts over short time scales.
Collapse
Affiliation(s)
- Megan Woolfit
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shi R, Yang X, Chen L, Chang HT, Liu HY, Zhao J, Wang XW, Wang CQ. Pathogenicity of Shigella in chickens. PLoS One 2014; 9:e100264. [PMID: 24949637 PMCID: PMC4064985 DOI: 10.1371/journal.pone.0100264] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 05/25/2014] [Indexed: 12/29/2022] Open
Abstract
Shigellosis in chickens was first reported in 2004. This study aimed to determine the pathogenicity of Shigella in chickens and the possibility of cross-infection between humans and chickens. The pathogenicity of Shigella in chickens was examined via infection of three-day-old SPF chickens with Shigella strain ZD02 isolated from a human patient. The virulence and invasiveness were examined by infection of the chicken intestines and primary chicken intestinal epithelial cells. The results showed Shigella can cause death via intraperitoneal injection in SPF chickens, but only induce depression via crop injection. Immunohistochemistry and transmission electron microscopy revealed the Shigella can invade the intestinal epithelia. Immunohistochemistry of the primary chicken intestinal epithelial cells infected with Shigella showed the bacteria were internalized into the epithelial cells. Electron microscopy also confirmed that Shigella invaded primary chicken intestinal epithelia and was encapsulated by phagosome-like membranes. Our data demonstrate that Shigella can invade primary chicken intestinal epithelial cells in vitro and chicken intestinal mucosa in vivo, resulting in pathogenicity and even death. The findings suggest Shigella isolated from human or chicken share similar pathogenicity as well as the possibility of human-poultry cross-infection, which is of public health significance.
Collapse
Affiliation(s)
- Run Shi
- Collage of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Xia Yang
- Collage of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Lu Chen
- Collage of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Hong-tao Chang
- Collage of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Hong-ying Liu
- Collage of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Jun Zhao
- Collage of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Xin-wei Wang
- Collage of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Chuan-qing Wang
- Collage of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| |
Collapse
|
15
|
Lu W, Wise MJ, Tay CY, Windsor HM, Marshall BJ, Peacock C, Perkins T. Comparative analysis of the full genome of Helicobacter pylori isolate Sahul64 identifies genes of high divergence. J Bacteriol 2014; 196:1073-83. [PMID: 24375107 PMCID: PMC3957704 DOI: 10.1128/jb.01021-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/20/2013] [Indexed: 12/21/2022] Open
Abstract
Isolates of Helicobacter pylori can be classified phylogeographically. High genetic diversity and rapid microevolution are a hallmark of H. pylori genomes, a phenomenon that is proposed to play a functional role in persistence and colonization of diverse human populations. To provide further genomic evidence in the lineage of H. pylori and to further characterize diverse strains of this pathogen in different human populations, we report the finished genome sequence of Sahul64, an H. pylori strain isolated from an indigenous Australian. Our analysis identified genes that were highly divergent compared to the 38 publically available genomes, which include genes involved in the biosynthesis and modification of lipopolysaccharide, putative prophage genes, restriction modification components, and hypothetical genes. Furthermore, the virulence-associated vacA locus is a pseudogene and the cag pathogenicity island (cagPAI) is not present. However, the genome does contain a gene cluster associated with pathogenicity, including dupA. Our analysis found that with the addition of Sahul64 to the 38 genomes, the core genome content of H. pylori is reduced by approximately 14% (∼170 genes) and the pan-genome has expanded from 2,070 to 2,238 genes. We have identified three putative horizontally acquired regions, including one that is likely to have been acquired from the closely related Helicobacter cetorum prior to speciation. Our results suggest that Sahul64, with the absence of cagPAI, highly divergent cell envelope proteins, and a predicted nontransportable VacA protein, could be more highly adapted to ancient indigenous Australian people but with lower virulence potential compared to other sequenced and cagPAI-positive H. pylori strains.
Collapse
Affiliation(s)
- Wei Lu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Australia
| | - Michael J. Wise
- School of Chemistry and Biochemistry, The University of Western Australia, Perth, Australia
| | - Chin Yen Tay
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Australia
| | - Helen M. Windsor
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Australia
| | - Barry J. Marshall
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Australia
| | - Christopher Peacock
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Australia
- Telethon Institute for Child Health Research, Subiaco, Western Australia, Australia
| | - Tim Perkins
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
16
|
Draft Genome Sequence of Strain X47-2AL, a Feline Helicobacter pylori Isolate. GENOME ANNOUNCEMENTS 2013; 1:1/6/e01095-13. [PMID: 24356847 PMCID: PMC3868871 DOI: 10.1128/genomea.01095-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Helicobacter pylori is a human-specific pathogen that exclusively inhabits the human gastric mucosa. However, occasionally, humans transmit H. pylori to susceptible animal hosts bred in colonies. Here, we report the genome sequence of strain X47-2AL, isolated from a domestic cat and used in anti-H. pylori immunization studies.
Collapse
|
17
|
Kersulyte D, Rossi M, Berg DE. Sequence divergence and conservation in genomes of Helicobacter cetorum strains from a dolphin and a whale. PLoS One 2013; 8:e83177. [PMID: 24358262 PMCID: PMC3866246 DOI: 10.1371/journal.pone.0083177] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 11/08/2013] [Indexed: 02/06/2023] Open
Abstract
Background and Objectives Strains of Helicobacter cetorum have been cultured from several marine mammals and have been found to be closely related in 16 S rDNA sequence to the human gastric pathogen H. pylori, but their genomes were not characterized further. Methods The genomes of H. cetorum strains from a dolphin and a whale were sequenced completely using 454 technology and PCR and capillary sequencing. Results These genomes are 1.8 and 1.95 mb in size, some 7–26% larger than H. pylori genomes, and differ markedly from one another in gene content, and sequences and arrangements of shared genes. However, each strain is more related overall to H. pylori and its descendant H. acinonychis than to other known species. These H. cetorum strains lack cag pathogenicity islands, but contain novel alleles of the virulence-associated vacuolating cytotoxin (vacA) gene. Of particular note are (i) an extra triplet of vacA genes with ≤50% protein-level identity to each other in the 5′ two-thirds of the gene needed for host factor interaction; (ii) divergent sets of outer membrane protein genes; (iii) several metabolic genes distinct from those of H. pylori; (iv) genes for an iron-cofactored urease related to those of Helicobacter species from terrestrial carnivores, in addition to genes for a nickel co-factored urease; and (v) members of the slr multigene family, some of which modulate host responses to infection and improve Helicobacter growth with mammalian cells. Conclusions Our genome sequence data provide a glimpse into the novelty and great genetic diversity of marine helicobacters. These data should aid further analyses of microbial genome diversity and evolution and infection and disease mechanisms in vast and often fragile ocean ecosystems.
Collapse
Affiliation(s)
- Dangeruta Kersulyte
- Department of Molecular Microbiology, Washington University Medical School, St Louis, Missouri, United States of America
| | - Mirko Rossi
- Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Douglas E Berg
- Department of Molecular Microbiology, Washington University Medical School, St Louis, Missouri, United States of America
| |
Collapse
|
18
|
Linz B, Windsor HM, Gajewski JP, Hake CM, Drautz DI, Schuster SC, Marshall BJ. Helicobacter pylori genomic microevolution during naturally occurring transmission between adults. PLoS One 2013; 8:e82187. [PMID: 24340004 PMCID: PMC3858298 DOI: 10.1371/journal.pone.0082187] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/18/2013] [Indexed: 12/19/2022] Open
Abstract
The human gastric pathogen Helicobacter pylori is usually acquired during childhood and, in the absence of treatment, chronic infection persists through most of the host's life. However, the frequency and importance of H. pylori transmission between adults is underestimated. Here we sequenced the complete genomes of H. pylori strains that were transmitted between spouses and analysed the genomic changes. Similar to H. pylori from chronic infection, a significantly high proportion of the determined 31 SNPs and 10 recombinant DNA fragments affected genes of the hop family of outer membrane proteins, some of which are known to be adhesins. In addition, changes in a fucosyltransferase gene modified the LPS component of the bacterial cell surface, suggesting strong diversifying selection. In contrast, virulence factor genes were not affected by the genomic changes. We propose a model of the genomic changes that are associated with the transmission and adaptation of H. pylori to a new human host.
Collapse
Affiliation(s)
- Bodo Linz
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| | - Helen M. Windsor
- School of Pathology, University of Western Australia, Crawley, Western Australia, Australia
| | - John P. Gajewski
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Caylie M. Hake
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Daniela I. Drautz
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Stephan C. Schuster
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Barry J. Marshall
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- School of Pathology, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
19
|
Porcelli I, Reuter M, Pearson BM, Wilhelm T, van Vliet AHM. Parallel evolution of genome structure and transcriptional landscape in the Epsilonproteobacteria. BMC Genomics 2013; 14:616. [PMID: 24028687 PMCID: PMC3847290 DOI: 10.1186/1471-2164-14-616] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/03/2013] [Indexed: 02/26/2023] Open
Abstract
Background Gene reshuffling, point mutations and horizontal gene transfer contribute to bacterial genome variation, but require the genome to rewire its transcriptional circuitry to ensure that inserted, mutated or reshuffled genes are transcribed at appropriate levels. The genomes of Epsilonproteobacteria display very low synteny, due to high levels of reshuffling and reorganisation of gene order, but still share a significant number of gene orthologs allowing comparison. Here we present the primary transcriptome of the pathogenic Epsilonproteobacterium Campylobacter jejuni, and have used this for comparative and predictive transcriptomics in the Epsilonproteobacteria. Results Differential RNA-sequencing using 454 sequencing technology was used to determine the primary transcriptome of C. jejuni NCTC 11168, which consists of 992 transcription start sites (TSS), which included 29 putative non-coding and stable RNAs, 266 intragenic (internal) TSS, and 206 antisense TSS. Several previously unknown features were identified in the C. jejuni transcriptional landscape, like leaderless mRNAs and potential leader peptides upstream of amino acid biosynthesis genes. A cross-species comparison of the primary transcriptomes of C. jejuni and the related Epsilonproteobacterium Helicobacter pylori highlighted a lack of conservation of operon organisation, position of intragenic and antisense promoters or leaderless mRNAs. Predictive comparisons using 40 other Epsilonproteobacterial genomes suggests that this lack of conservation of transcriptional features is common to all Epsilonproteobacterial genomes, and is associated with the absence of genome synteny in this subdivision of the Proteobacteria. Conclusions Both the genomes and transcriptomes of Epsilonproteobacteria are highly variable, both at the genome level by combining and division of multicistronic operons, but also on the gene level by generation or deletion of promoter sequences and 5′ untranslated regions. Regulatory features may have evolved after these species split from a common ancestor, with transcriptome rewiring compensating for changes introduced by genomic reshuffling and horizontal gene transfer.
Collapse
Affiliation(s)
- Ida Porcelli
- Gut Health and Food Safety Programme, Institute of Food Research, Colney Lane, Norwich, NR4 7UA, UK.
| | | | | | | | | |
Collapse
|
20
|
Tegtmeyer N, Rivas Traverso F, Rohde M, Oyarzabal OA, Lehn N, Schneider-Brachert W, Ferrero RL, Fox JG, Berg DE, Backert S. Electron microscopic, genetic and protein expression analyses of Helicobacter acinonychis strains from a Bengal tiger. PLoS One 2013; 8:e71220. [PMID: 23940723 PMCID: PMC3733902 DOI: 10.1371/journal.pone.0071220] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/26/2013] [Indexed: 12/21/2022] Open
Abstract
Colonization by Helicobacter species is commonly noted in many mammals. These infections often remain unrecognized, but can cause severe health complications or more subtle host immune perturbations. The aim of this study was to isolate and characterize putative novel Helicobacter spp. from Bengal tigers in Thailand. Morphological investigation (Gram-staining and electron microscopy) and genetic studies (16SrRNA, 23SrRNA, flagellin, urease and prophage gene analyses, RAPD DNA fingerprinting and restriction fragment polymorphisms) as well as Western blotting were used to characterize the isolated Helicobacters. Electron microscopy revealed spiral-shaped bacteria, which varied in length (2.5-6 µm) and contained up to four monopolar sheathed flagella. The 16SrRNA, 23SrRNA, sequencing and protein expression analyses identified novel H. acinonychis isolates closely related to H. pylori. These Asian isolates are genetically very similar to H. acinonychis strains of other big cats (cheetahs, lions, lion-tiger hybrid and other tigers) from North America and Europe, which is remarkable in the context of the great genetic diversity among worldwide H. pylori strains. We also found by immunoblotting that the Bengal tiger isolates express UreaseA/B, flagellin, BabA adhesin, neutrophil-activating protein NapA, HtrA protease, γ-glutamyl-transpeptidase GGT, Slt lytic transglycosylase and two DNA transfer relaxase orthologs that were known from H. pylori, but not the cag pathogenicity island, nor CagA, VacA, SabA, DupA or OipA proteins. These results give fresh insights into H. acinonychis genetics and the expression of potential pathogenicity-associated factors and their possible pathophysiological relevance in related gastric infections.
Collapse
MESH Headings
- Animals
- Bacterial Proteins/analysis
- DNA Fingerprinting
- Gene Expression Profiling
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Helicobacter/genetics
- Helicobacter/isolation & purification
- Helicobacter/ultrastructure
- Helicobacter Infections/microbiology
- Helicobacter Infections/veterinary
- Microscopy, Electron
- RNA, Ribosomal, 16S/analysis
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/analysis
- RNA, Ribosomal, 23S/genetics
- Random Amplified Polymorphic DNA Technique
- Tigers/microbiology
- Urease/genetics
- Urease/metabolism
Collapse
Affiliation(s)
- Nicole Tegtmeyer
- Institute of Medical Microbiology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | | | - Manfred Rohde
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Omar A. Oyarzabal
- Institute for Environmental Health, Inc., Seattle, Washington, United States of America
| | - Norbert Lehn
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Wulf Schneider-Brachert
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Richard L. Ferrero
- Centre for Innate Immunity & Infectious Diseases, Monash Institute of Medical Research, Clayton, Australia
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Douglas E. Berg
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Steffen Backert
- Institute of Medical Microbiology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
21
|
Helicobacter pylori salvages purines from extracellular host cell DNA utilizing the outer membrane-associated nuclease NucT. J Bacteriol 2013; 195:4387-98. [PMID: 23893109 DOI: 10.1128/jb.00388-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Helicobacter pylori is a bacterial pathogen that establishes life-long infections in humans, and its presence in the gastric epithelium is strongly associated with gastritis, peptic ulcer disease, and gastric cancer. Having evolved in this specific gastric niche for hundreds of thousands of years, this microbe has become dependent on its human host. Bioinformatic analysis reveals that H. pylori has lost several genes involved in the de novo synthesis of purine nucleotides, and without this pathway present, H. pylori must salvage purines from its environment in order to grow. While the presence and abundance of free purines in various mammalian tissues has been loosely quantified, the concentration of purines present within the gastric mucosa remains unknown. There is evidence, however, that a significant amount of extracellular DNA is present in the human gastric mucosal layer as a result of epithelial cell turnover, and this DNA has the potential to serve as an adequate purine source for gastric purine auxotrophs. In this study, we characterize the ability of H. pylori to grow utilizing only DNA as a purine source. We show that this ability is independent of the ComB DNA uptake system, and that H. pylori utilization of DNA as a purine source is largely influenced by the presence of an outer membrane-associated nuclease (NucT). A ΔnucT mutant exhibits significantly reduced extracellular nuclease activity and is deficient in growth when DNA is provided as the sole purine source in laboratory growth media. These growth defects are also evident when this nuclease mutant is grown in the presence of AGS cells or in purine-free tissue culture medium that has been conditioned by AGS cells in the absence of fetal bovine serum. Taken together, these results indicate that the salvage of purines from exogenous host cell DNA plays an important role in allowing H. pylori to meet its purine requirements for growth.
Collapse
|
22
|
Lv XB, Lian GY, Wang HR, Song E, Yao H, Wang MH. Long noncoding RNA HOTAIR is a prognostic marker for esophageal squamous cell carcinoma progression and survival. PLoS One 2013; 8:e63516. [PMID: 23717443 DOI: 10.1371/journal.pone] [Citation(s) in RCA: 536] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/03/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND It is currently unclear whether the expression of HOX transcript antisense RNA (HOTAIR) correlates with the progression of esophageal cancer. The aim of this study was to examine HOTAIR expression in patients with esophageal squamous cell cancer (ESCC) and explore its clinical significance. METHODS Differences in the expression of HOTAIR were examined via in situ hybridization (ISH) and quantitative reverse transcriptase PCR (qRT-PCR). The prognostic significance was evaluated using Kaplan-Meier and Cox regression analyses. Proliferation, colony formation and migration assays were performed in ESCC cell lines to determine the function of HOTAIR in the progression of ESCC in vitro. RESULTS A notably higher level of HOTAIR expression was found in ESCC tissues. High expression levels of HOTAIR in ESCC patients correlated positively with clinical stage, TNM classification, histological differentiation and vital status. HOTAIR expression was found to be an independent prognostic factor in ESCC patients. ESCC patients who expressed high levels of HOTAIR had substantially lower overall 5-year survival rates than HOTAIR-negative patients. In vitro assays of ESCC cell lines demonstrated that HOTAIR mediated the proliferation, colony formation and migratory capacity of ESCC cells. CONCLUSION HOTAIR is a potential biomarker for ESCC prognosis, and the dysregulation of HOTAIR may play an important role in ESCC progression.
Collapse
Affiliation(s)
- Xiao-Bin Lv
- Medical Research Center Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | | | | | | | | | | |
Collapse
|
23
|
Uchiyama J, Takeuchi H, Kato SI, Gamoh K, Takemura-Uchiyama I, Ujihara T, Daibata M, Matsuzaki S. Characterization of Helicobacter pylori bacteriophage KHP30. Appl Environ Microbiol 2013; 79:3176-84. [PMID: 23475617 PMCID: PMC3685256 DOI: 10.1128/aem.03530-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/28/2013] [Indexed: 01/01/2023] Open
Abstract
Helicobacter pylori inhabits the stomach mucosa and is a causative agent of stomach ulcer and cancer. In general, bacteriophages (phages) are strongly associated with bacterial evolution, including the development of pathogenicity. Several tailed phages have so far been reported in H. pylori. We have isolated an H. pylori phage, KHP30, and reported its genomic sequence. In this study, we examined the biological characteristics of phage KHP30. Phage KHP30 was found to be a spherical lipid-containing phage with a diameter of ca. 69 nm. Interestingly, it was stable from pH 2.5 to pH 10, suggesting that it is adapted to the highly acidic environment of the human stomach. Phage KHP30 multiplied on 63.6% of clinical H. pylori isolates. The latent period was ca. 140 min, shorter than the doubling time of H. pylori (ca. 180 min). The burst size was ca. 13, which was smaller than the burst sizes of other known tailed or spherical phages. Phage KHP30 seemed to be maintained as an episome in H. pylori strain NY43 cells, despite a predicted integrase gene in the KHP30 genomic sequence. Seven possible virion proteins of phage KHP30 were analyzed using N-terminal protein sequencing and mass spectrometry, and their genes were found to be located on its genomic DNA. The genomic organization of phage KHP30 differed from the genomic organizations in the known spherical phage families Corticoviridae and Tectiviridae. This evidence suggests that phage KHP30 is a new type of spherical phage that cannot be classified in any existing virus category.
Collapse
Affiliation(s)
- Jumpei Uchiyama
- Department of Microbiology and Infection
- Center for Innovative and Translational Medicine
| | | | | | | | - Iyo Takemura-Uchiyama
- Department of Microbiology and Infection
- Department of Clinical Laboratory Medicine, Faculty of Medicine
| | | | - Masanori Daibata
- Department of Microbiology and Infection
- Center for Innovative and Translational Medicine
| | - Shigenobu Matsuzaki
- Department of Microbiology and Infection
- Center for Innovative and Translational Medicine
| |
Collapse
|
24
|
Benoit SL, Seshadri S, Lamichhane-Khadka R, Maier RJ. Helicobacter hepaticus NikR controls urease and hydrogenase activities via the NikABDE and HH0418 putative nickel import proteins. MICROBIOLOGY-SGM 2012; 159:136-146. [PMID: 23139401 DOI: 10.1099/mic.0.062976-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Helicobacter hepaticus open reading frame HH0352 was identified as a nickel-responsive regulator NikR. The gene was disrupted by insertion of an erythromycin resistance cassette. The H. hepaticus nikR mutant had five- to sixfold higher urease activity and at least twofold greater hydrogenase activity than the wild-type strain. However, the urease apo-protein levels were similar in both the wild-type and the mutant, suggesting the increase in urease activity in the mutant was due to enhanced Ni-maturation of the urease. Compared with the wild-type strain, the nikR strain had increased cytoplasmic nickel levels. Transcription of nikABDE (putative inner membrane Ni transport system) and hh0418 (putative outer membrane Ni transporter) was nickel- and NikR-repressed. Electrophoretic mobility shift assays (EMSAs) revealed that purified HhNikR could bind to the nikABDE promoter (P(nikA)), but not to the urease or the hydrogenase promoter; NikR-P(nikA) binding was enhanced in the presence of nickel. Also, qRT-PCR and EMSAs indicated that neither nikR nor the exbB-exbD-tonB were under the control of the NikR regulator, in contrast with their Helicobacter pylori homologues. Taken together, our results suggest that HhNikR modulates urease and hydrogenase activities by repressing the nickel transport/nickel internalization systems in H. hepaticus, without direct regulation of the Ni-enzyme genes (the latter is the case for H. pylori). Finally, the nikR strain had a two- to threefold lower growth yield than the parent, suggesting that the regulatory protein might play additional roles in the mouse liver pathogen.
Collapse
Affiliation(s)
| | | | | | - Robert J Maier
- Department of Microbiology, University of Georgia, Athens, GA, USA
| |
Collapse
|
25
|
Genome, integration, and transduction of a novel temperate phage of Helicobacter pylori. J Virol 2012; 86:8781-92. [PMID: 22696647 DOI: 10.1128/jvi.00446-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori is a common human pathogen that has been identified to be carcinogenic. This study isolated the temperate bacteriophage 1961P from the lysate of a clinical strain of H. pylori isolated in Taiwan. The bacteriophage has an icosahedral head and a short tail, typical of the Podoviridae family. Its double-stranded DNA genome is 26,836 bp long and has 33 open reading frames. Only 9 of the predicted proteins have homologs of known functions, while the remaining 24 are only similar to unknown proteins encoded by Helicobacter prophages and remnants. Analysis of sequences proximal to the phage-host junctions suggests that 1961P may integrate into the host chromosome via a mechanism similar to that of bacteriophage lambda. In addition, 1961P is capable of generalized transduction. To the best of our knowledge, this is the first report of the isolation, characterization, genome analysis, integration, and transduction of a Helicobacter pylori phage.
Collapse
|
26
|
Moodley Y, Linz B, Bond RP, Nieuwoudt M, Soodyall H, Schlebusch CM, Bernhöft S, Hale J, Suerbaum S, Mugisha L, van der Merwe SW, Achtman M. Age of the association between Helicobacter pylori and man. PLoS Pathog 2012; 8:e1002693. [PMID: 22589724 PMCID: PMC3349757 DOI: 10.1371/journal.ppat.1002693] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 03/27/2012] [Indexed: 02/07/2023] Open
Abstract
When modern humans left Africa ca. 60,000 years ago (60 kya), they were already infected with Helicobacter pylori, and these bacteria have subsequently diversified in parallel with their human hosts. But how long were humans infected by H. pylori prior to the out-of-Africa event? Did this co-evolution predate the emergence of modern humans, spanning the species divide? To answer these questions, we investigated the diversity of H. pylori in Africa, where both humans and H. pylori originated. Three distinct H. pylori populations are native to Africa: hpNEAfrica in Afro-Asiatic and Nilo-Saharan speakers, hpAfrica1 in Niger-Congo speakers and hpAfrica2 in South Africa. Rather than representing a sustained co-evolution over millions of years, we find that the coalescent for all H. pylori plus its closest relative H. acinonychis dates to 88–116 kya. At that time the phylogeny split into two primary super-lineages, one of which is associated with the former hunter-gatherers in southern Africa known as the San. H. acinonychis, which infects large felines, resulted from a later host jump from the San, 43–56 kya. These dating estimates, together with striking phylogenetic and quantitative human-bacterial similarities show that H. pylori is approximately as old as are anatomically modern humans. They also suggest that H. pylori may have been acquired via a single host jump from an unknown, non-human host. We also find evidence for a second Out of Africa migration in the last 52,000 years, because hpEurope is a hybrid population between hpAsia2 and hpNEAfrica, the latter of which arose in northeast Africa 36–52 kya, after the Out of Africa migrations around 60 kya. We previously showed that the population history of H. pylori may be used as a marker for human migrations, including the demonstration that humans carried H. pylori out of Africa 60,000 years ago during their recent global expansions. But how long were humans infected by H. pylori prior to the out-of-Africa event? Here we showed that chimpanzees in Central-East Africa do not possess Helicobacter-like bacteria, as would have been expected for pathogen-host co-evolution over millions of years. Using H. pylori gene sequences isolated from San, a group of click-speaking hunter-gatherers, and numerous other sources, we calculated that humans have been infected with H. pylori for at least 88,000–116,000 years. Phylogenetic comparisons showed similar evolutionary histories for human and H. pylori lineages and suggest that this association stemmed from a single host jump. We showed that hpAfrica2, the most divergent H. pylori population, arose in the San and that their progenitors were the source of H. acinonychis which was acquired by large felines approximately 50,000 years ago. Furthermore, our data provided clear evidence for a recent second exodus Out of Africa in the last 52,000 years which was essential for the formation of the hybrid population that currently infects Europeans.
Collapse
Affiliation(s)
- Yoshan Moodley
- Max-Planck-Institut für Infektionsbiologie, Department of Molecular Biology, Berlin, Germany
- Konrad Lorenz Institute for Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Vienna, Austria
- * E-mail: (YM); (BL); (MA)
| | - Bodo Linz
- Max-Planck-Institut für Infektionsbiologie, Department of Molecular Biology, Berlin, Germany
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (YM); (BL); (MA)
| | - Robert P. Bond
- Hepatology and GI-Research Laboratory, Department of Immunology, University of Pretoria, Pretoria, South Africa
| | - Martin Nieuwoudt
- Hepatology and GI-Research Laboratory, Department of Immunology, University of Pretoria, Pretoria, South Africa
| | - Himla Soodyall
- Human Genomic Diversity and Disease Research Unit, Division of Human Genetics, School of Pathology, University of the Witwatersrand/National Health Laboratory Services, Johannesburg, South Africa
| | - Carina M. Schlebusch
- Human Genomic Diversity and Disease Research Unit, Division of Human Genetics, School of Pathology, University of the Witwatersrand/National Health Laboratory Services, Johannesburg, South Africa
| | - Steffi Bernhöft
- Max-Planck-Institut für Infektionsbiologie, Department of Molecular Biology, Berlin, Germany
| | - James Hale
- Environmental Research Institute and Department of Microbiology, University College Cork, Cork, Ireland
| | - Sebastian Suerbaum
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | | | - Schalk W. van der Merwe
- Hepatology and GI-Research Laboratory, Department of Immunology, University of Pretoria, Pretoria, South Africa
| | - Mark Achtman
- Max-Planck-Institut für Infektionsbiologie, Department of Molecular Biology, Berlin, Germany
- Environmental Research Institute and Department of Microbiology, University College Cork, Cork, Ireland
- * E-mail: (YM); (BL); (MA)
| |
Collapse
|
27
|
Rossi M, Bolz C, Revez J, Javed S, El-Najjar N, Anderl F, Hyytiäinen H, Vuorela P, Gerhard M, Hänninen ML. Evidence for conserved function of γ-glutamyltranspeptidase in Helicobacter genus. PLoS One 2012; 7:e30543. [PMID: 22348013 PMCID: PMC3279353 DOI: 10.1371/journal.pone.0030543] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 12/19/2011] [Indexed: 12/14/2022] Open
Abstract
The confounding consequences of Helicobacter bilis infection in experimental mice populations are well recognized, but the role of this bacterium in human diseases is less known. Limited data are available on virulence determinants of this species. In Helicobacter pylori, γ-glutamyltranspeptidase (γGT) contributes to the colonization of the gastric mucosa and to the pathogenesis of peptic ulcer. The role of γGT in H. bilis infections remains unknown. The annotated genome sequence of H. bilis revealed two putative ggt genes and our aim was to characterize these H. bilis γGT paralogues. We performed a phylogenetic analysis to understand the evolution of Helicobacter γGTs and to predict functional activities of these two genes. In addition, both copies of H. bilis γGTs were expressed as recombinant proteins and their biochemical characteristics were analysed. Functional complementation of Esherichia coli deficient in γGT activity and deletion of γGT in H. bilis were performed. Finally, the inhibitory effect of T-cell and gastric cell proliferation by H. bilis γGT was assessed. Our results indicated that one gene is responsible for γGT activity, while the other showed no γGT activity due to lack of autoprocessing. Although both H. bilis and H. pylori γGTs exhibited a similar affinity to L-Glutamine and γ-Glutamyl-p-nitroanilide, the H. bilis γGT was significantly less active. Nevertheless, H. bilis γGT inhibited T-cell proliferation at a similar level to that observed for H. pylori. Finally, we showed a similar suppressive influence of both H. bilis and H. pylori γGTs on AGS cell proliferation mediated by an apoptosis-independent mechanism. Our data suggest a conserved function of γGT in the Helicobacter genus. Since γGT is present only in a few enterohepatic Helicobacter species, its expression appears not to be essential for colonization of the lower gastrointestinal tract, but it could provide metabolic advantages in colonization capability of different niches.
Collapse
Affiliation(s)
- Mirko Rossi
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Delaney NF, Balenger S, Bonneaud C, Marx CJ, Hill GE, Ferguson-Noel N, Tsai P, Rodrigo A, Edwards SV. Ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, Mycoplasma gallisepticum. PLoS Genet 2012; 8:e1002511. [PMID: 22346765 PMCID: PMC3276549 DOI: 10.1371/journal.pgen.1002511] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 12/09/2011] [Indexed: 12/19/2022] Open
Abstract
Measureable rates of genome evolution are well documented in human pathogens but are less well understood in bacterial pathogens in the wild, particularly during and after host switches. Mycoplasma gallisepticum (MG) is a pathogenic bacterium that has evolved predominantly in poultry and recently jumped to wild house finches (Carpodacus mexicanus), a common North American songbird. For the first time we characterize the genome and measure rates of genome evolution in House Finch isolates of MG, as well as in poultry outgroups. Using whole-genome sequences of 12 House Finch isolates across a 13-year serial sample and an additional four newly sequenced poultry strains, we estimate a nucleotide diversity in House Finch isolates of only ∼2% of ancestral poultry strains and a nucleotide substitution rate of 0.8-1.2×10(-5) per site per year both in poultry and in House Finches, an exceptionally fast rate rivaling some of the highest estimates reported thus far for bacteria. We also found high diversity and complete turnover of CRISPR arrays in poultry MG strains prior to the switch to the House Finch host, but after the invasion of House Finches there is progressive loss of CRISPR repeat diversity, and recruitment of novel CRISPR repeats ceases. Recent (2007) House Finch MG strains retain only ∼50% of the CRISPR repertoire founding (1994-95) strains and have lost the CRISPR-associated genes required for CRISPR function. Our results suggest that genome evolution in bacterial pathogens of wild birds can be extremely rapid and in this case is accompanied by apparent functional loss of CRISPRs.
Collapse
Affiliation(s)
- Nigel F. Delaney
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Susan Balenger
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Camille Bonneaud
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Christopher J. Marx
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Geoffrey E. Hill
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Naola Ferguson-Noel
- Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Peter Tsai
- Bioinformatics Institute, University of Auckland, Auckland, New Zealand
| | - Allen Rodrigo
- Bioinformatics Institute, University of Auckland, Auckland, New Zealand
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
29
|
Abstract
All organisms have pathways that repair the genome, ensuring their survival and that of their progeny. But these pathways also serve to diversify the genome, causing changes at the nucleotide, whole gene, and genome structure levels. Sequencing of bacteria has revealed wide allelic diversity and differences in gene content within the same species, highlighting the importance of understanding pathways of recombination and DNA repair. The human stomach pathogen Helicobacter pylori is an excellent model system for studying these pathways. H. pylori harbors major recombination and repair pathways and is naturally competent, facilitating its ability to diversify its genome. Elucidation of DNA recombination, repair, and diversification programs in this pathogen will reveal connections between these pathways and their importance to infection.
Collapse
Affiliation(s)
- Marion S Dorer
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | | | |
Collapse
|
30
|
Helicobacter pylori relies primarily on the purine salvage pathway for purine nucleotide biosynthesis. J Bacteriol 2011; 194:839-54. [PMID: 22194455 DOI: 10.1128/jb.05757-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Helicobacter pylori is a chronic colonizer of the gastric epithelium and plays a major role in the development of gastritis, peptic ulcer disease, and gastric cancer. In its coevolution with humans, the streamlining of the H. pylori genome has resulted in a significant reduction in metabolic pathways, one being purine nucleotide biosynthesis. Bioinformatic analysis has revealed that H. pylori lacks the enzymatic machinery for de novo production of IMP, the first purine nucleotide formed during GTP and ATP biosynthesis. This suggests that H. pylori must rely heavily on salvage of purines from the environment. In this study, we deleted several genes putatively involved in purine salvage and processing. The growth and survival of these mutants were analyzed in both nutrient-rich and minimal media, and the results confirmed the presence of a robust purine salvage pathway in H. pylori. Of the two phosphoribosyltransferase genes found in the H. pylori genome, only gpt appears to be essential, and an Δapt mutant strain was still capable of growth on adenine, suggesting that adenine processing via Apt is not essential. Deletion of the putative nucleoside phosphorylase gene deoD resulted in an inability of H. pylori to grow on purine nucleosides or the purine base adenine. Our results suggest a purine requirement for growth of H. pylori in standard media, indicating that H. pylori possesses the ability to utilize purines and nucleosides from the environment in the absence of a de novo purine nucleotide biosynthesis pathway.
Collapse
|
31
|
Molecular epidemiology, population genetics, and pathogenic role of Helicobacter pylori. INFECTION GENETICS AND EVOLUTION 2011; 12:203-13. [PMID: 22197766 DOI: 10.1016/j.meegid.2011.12.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 12/17/2022]
Abstract
Helicobacter pylori infection is linked to various gastroduodenal diseases; however, only approximately 20% of infected individuals develop severe diseases. Despite the high prevalence of H. pylori infection in Africa and South Asia, the incidence of gastric cancer in these areas is much lower than in other countries. Furthermore, the incidence of gastric cancer tends to decrease from north to south in East Asia. Such geographic differences in the pathology can be explained, at least in part, by the presence of different types of H. pylori virulence factors, especially cagA, vacA, and the right end of the cag pathogenicity island. The genotype of the virulence genes is also useful as a tool to track human migration utilizing the high genetic diversity and frequent recombination between different H. pylori strains. Multilocus sequence typing (MLST) analysis using seven housekeeping genes can also help to predict the history of human migrations. Population structure analysis based on MLST has revealed seven modern population types of H. pylori, which derived from six ancestral populations. Interestingly, the incidence of gastric cancer is closely related to the distribution of H. pylori populations. The different incidence of gastric cancer can be partly attributed to the different genotypes of H. pylori circulating in different geographic areas. Although approaches by MLST and virulence factors are effective, these methods focus on a small number of genes and may miss information conveyed by the rest of the genome. Genome-wide analyses using DNA microarray or whole-genome sequencing technology give a broad view on the genome of H. pylori. In particular, next-generation sequencers, which can read DNA sequences in less time and at lower costs than Sanger sequencing, enabled us to efficiently investigate not only the evolution of H. pylori, but also novel virulence factors and genomic changes related to drug resistance.
Collapse
|
32
|
Abstract
UNLABELLED Helicobacter pylori chronically infects the gastric mucosa in more than half of the human population; in a subset of this population, its presence is associated with development of severe disease, such as gastric cancer. Genomic analysis of several strains has revealed an extensive H. pylori pan-genome, likely to grow as more genomes are sampled. Here we describe the draft genome sequence (63 contigs; 26× mean coverage) of H. pylori strain B45, isolated from a patient with gastric mucosa-associated lymphoid tissue (MALT) lymphoma. The major finding was a 24.6-kb prophage integrated in the bacterial genome. The prophage shares most of its genes (22/27) with prophage region II of Helicobacter acinonychis strain Sheeba. After UV treatment of liquid cultures, circular DNA carrying the prophage integrase gene could be detected, and intracellular tailed phage-like particles were observed in H. pylori cells by transmission electron microscopy, indicating that phage production can be induced from the prophage. PCR amplification and sequencing of the integrase gene from 341 H. pylori strains from different geographic regions revealed a high prevalence of the prophage (21.4%). Phylogenetic reconstruction showed four distinct clusters in the integrase gene, three of which tended to be specific for geographic regions. Our study implies that phages may play important roles in the ecology and evolution of H. pylori. IMPORTANCE Helicobacter pylori chronically infects the gastric mucosa in more than half of the human population, and while most of the infected individuals do not develop disease, H. pylori infection doubles the risk of developing gastric cancer. An abundance and diversity of viruses (phages) infect microbial populations in most environments and are important mediators of microbial diversity. Our finding of a 24.6-kb prophage integrated inside an H. pylori genome and the observation of circular integrase gene-containing DNA and phage-like particles inside cells upon UV treatment demonstrate that we have discovered a viable H. pylori phage. The additional finding of integrase genes in a large proportion of screened isolates of diverse geographic origins indicates that the prevalence of prophages may have been underestimated in H. pylori. Since phages are important drivers of microbial evolution, the discovery should be important for understanding and predicting genetic diversity in H. pylori.
Collapse
|
33
|
Schott T, Kondadi PK, Hänninen ML, Rossi M. Comparative genomics of Helicobacter pylori and the human-derived Helicobacter bizzozeronii CIII-1 strain reveal the molecular basis of the zoonotic nature of non-pylori gastric Helicobacter infections in humans. BMC Genomics 2011; 12:534. [PMID: 22039924 PMCID: PMC3234257 DOI: 10.1186/1471-2164-12-534] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/31/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The canine Gram-negative Helicobacter bizzozeronii is one of seven species in Helicobacter heilmannii sensu lato that are detected in 0.17-2.3% of the gastric biopsies of human patients with gastric symptoms. At the present, H. bizzozeronii is the only non-pylori gastric Helicobacter sp. cultivated from human patients and is therefore a good alternative model of human gastric Helicobacter disease. We recently sequenced the genome of the H. bizzozeronii human strain CIII-1, isolated in 2008 from a 47-year old Finnish woman suffering from severe dyspeptic symptoms. In this study, we performed a detailed comparative genome analysis with H. pylori, providing new insights into non-pylori Helicobacter infections and the mechanisms of transmission between the primary animal host and humans. RESULTS H. bizzozeronii possesses all the genes necessary for its specialised life in the stomach. However, H. bizzozeronii differs from H. pylori by having a wider metabolic flexibility in terms of its energy sources and electron transport chain. Moreover, H. bizzozeronii harbours a higher number of methyl-accepting chemotaxis proteins, allowing it to respond to a wider spectrum of environmental signals. In this study, H. bizzozeronii has been shown to have high level of genome plasticity. We were able to identify a total of 43 contingency genes, 5 insertion sequences (ISs), 22 mini-IS elements, 1 genomic island and a putative prophage. Although H. bizzozeronii lacks homologues of some of the major H. pylori virulence genes, other candidate virulence factors are present. In particular, we identified a polysaccharide lyase (HBZC1_15820) as a potential new virulence factor of H. bizzozeronii. CONCLUSIONS The comparative genome analysis performed in this study increased the knowledge of the biology of gastric Helicobacter species. In particular, we propose the hypothesis that the high metabolic versatility and the ability to react to a range of environmental signals, factors which differentiate H. bizzozeronii as well as H. felis and H. suis from H. pylori, are the molecular basis of the of the zoonotic nature of H. heilmannii sensu lato infection in humans.
Collapse
Affiliation(s)
- Thomas Schott
- Department of Food Hygiene and Environmental Health (DFHEH), Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, FI-00014 University of Helsinki, Finland
| | - Pradeep K Kondadi
- Department of Food Hygiene and Environmental Health (DFHEH), Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, FI-00014 University of Helsinki, Finland
| | - Marja-Liisa Hänninen
- Department of Food Hygiene and Environmental Health (DFHEH), Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, FI-00014 University of Helsinki, Finland
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health (DFHEH), Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, FI-00014 University of Helsinki, Finland
| |
Collapse
|
34
|
Siebers B, Zaparty M, Raddatz G, Tjaden B, Albers SV, Bell SD, Blombach F, Kletzin A, Kyrpides N, Lanz C, Plagens A, Rampp M, Rosinus A, von Jan M, Makarova KS, Klenk HP, Schuster SC, Hensel R. The complete genome sequence of Thermoproteus tenax: a physiologically versatile member of the Crenarchaeota. PLoS One 2011; 6:e24222. [PMID: 22003381 PMCID: PMC3189178 DOI: 10.1371/journal.pone.0024222] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 08/08/2011] [Indexed: 11/18/2022] Open
Abstract
Here, we report on the complete genome sequence of the hyperthermophilic Crenarchaeum Thermoproteus tenax (strain Kra1, DSM 2078T) a type strain of the crenarchaeotal order Thermoproteales. Its circular 1.84-megabase genome harbors no extrachromosomal elements and 2,051 open reading frames are identified, covering 90.6% of the complete sequence, which represents a high coding density. Derived from the gene content, T. tenax is a representative member of the Crenarchaeota. The organism is strictly anaerobic and sulfur-dependent with optimal growth at 86°C and pH 5.6. One particular feature is the great metabolic versatility, which is not accompanied by a distinct increase of genome size or information density as compared to other Crenarchaeota. T. tenax is able to grow chemolithoautotrophically (CO2/H2) as well as chemoorganoheterotrophically in presence of various organic substrates. All pathways for synthesizing the 20 proteinogenic amino acids are present. In addition, two presumably complete gene sets for NADH:quinone oxidoreductase (complex I) were identified in the genome and there is evidence that either NADH or reduced ferredoxin might serve as electron donor. Beside the typical archaeal A0A1-ATP synthase, a membrane-bound pyrophosphatase is found, which might contribute to energy conservation. Surprisingly, all genes required for dissimilatory sulfate reduction are present, which is confirmed by growth experiments. Mentionable is furthermore, the presence of two proteins (ParA family ATPase, actin-like protein) that might be involved in cell division in Thermoproteales, where the ESCRT system is absent, and of genes involved in genetic competence (DprA, ComF) that is so far unique within Archaea.
Collapse
Affiliation(s)
- Bettina Siebers
- Faculty of Chemistry, Biofilm Centre, Molecular Enzyme Technology and Biochemistry, University of Duisburg-Essen, Essen, Germany
- * E-mail: (BS); (MZ)
| | - Melanie Zaparty
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
- * E-mail: (BS); (MZ)
| | - Guenter Raddatz
- Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Britta Tjaden
- Prokaryotic RNA Biology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Steve D. Bell
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Fabian Blombach
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Arnulf Kletzin
- Institute of Microbiology and Genetics, Technical University Darmstadt, Darmstadt, Germany
| | - Nikos Kyrpides
- DOE Joint Genome Institute, Walnut Creek, California, United States of America
| | - Christa Lanz
- Genome Centre, Max-Planck-Institute for Developmental Biology, Tuebingen, Germany
| | - André Plagens
- Prokaryotic RNA Biology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Markus Rampp
- Computer Centre Garching of the Max-Planck-Society (RZG), Max-Planck-Institute for Plasma Physics, München, Germany
| | - Andrea Rosinus
- Genome Centre, Max-Planck-Institute for Developmental Biology, Tuebingen, Germany
| | - Mathias von Jan
- DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hans-Peter Klenk
- DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Stephan C. Schuster
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Reinhard Hensel
- Prokaryotic RNA Biology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
35
|
Kawai M, Furuta Y, Yahara K, Tsuru T, Oshima K, Handa N, Takahashi N, Yoshida M, Azuma T, Hattori M, Uchiyama I, Kobayashi I. Evolution in an oncogenic bacterial species with extreme genome plasticity: Helicobacter pylori East Asian genomes. BMC Microbiol 2011; 11:104. [PMID: 21575176 PMCID: PMC3120642 DOI: 10.1186/1471-2180-11-104] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 05/16/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The genome of Helicobacter pylori, an oncogenic bacterium in the human stomach, rapidly evolves and shows wide geographical divergence. The high incidence of stomach cancer in East Asia might be related to bacterial genotype. We used newly developed comparative methods to follow the evolution of East Asian H. pylori genomes using 20 complete genome sequences from Japanese, Korean, Amerind, European, and West African strains. RESULTS A phylogenetic tree of concatenated well-defined core genes supported divergence of the East Asian lineage (hspEAsia; Japanese and Korean) from the European lineage ancestor, and then from the Amerind lineage ancestor. Phylogenetic profiling revealed a large difference in the repertoire of outer membrane proteins (including oipA, hopMN, babABC, sabAB and vacA-2) through gene loss, gain, and mutation. All known functions associated with molybdenum, a rare element essential to nearly all organisms that catalyzes two-electron-transfer oxidation-reduction reactions, appeared to be inactivated. Two pathways linking acetyl~CoA and acetate appeared intact in some Japanese strains. Phylogenetic analysis revealed greater divergence between the East Asian (hspEAsia) and the European (hpEurope) genomes in proteins in host interaction, specifically virulence factors (tipα), outer membrane proteins, and lipopolysaccharide synthesis (human Lewis antigen mimicry) enzymes. Divergence was also seen in proteins in electron transfer and translation fidelity (miaA, tilS), a DNA recombinase/exonuclease that recognizes genome identity (addA), and DNA/RNA hybrid nucleases (rnhAB). Positively selected amino acid changes between hspEAsia and hpEurope were mapped to products of cagA, vacA, homC (outer membrane protein), sotB (sugar transport), and a translation fidelity factor (miaA). Large divergence was seen in genes related to antibiotics: frxA (metronidazole resistance), def (peptide deformylase, drug target), and ftsA (actin-like, drug target). CONCLUSIONS These results demonstrate dramatic genome evolution within a species, especially in likely host interaction genes. The East Asian strains appear to differ greatly from the European strains in electron transfer and redox reactions. These findings also suggest a model of adaptive evolution through proteome diversification and selection through modulation of translational fidelity. The results define H. pylori East Asian lineages and provide essential information for understanding their pathogenesis and designing drugs and therapies that target them.
Collapse
Affiliation(s)
- Mikihiko Kawai
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Comparing de novo genome assembly: the long and short of it. PLoS One 2011; 6:e19175. [PMID: 21559467 PMCID: PMC3084767 DOI: 10.1371/journal.pone.0019175] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/29/2011] [Indexed: 01/30/2023] Open
Abstract
Recent advances in DNA sequencing technology and their focal role in Genome Wide Association Studies (GWAS) have rekindled a growing interest in the whole-genome sequence assembly (WGSA) problem, thereby, inundating the field with a plethora of new formalizations, algorithms, heuristics and implementations. And yet, scant attention has been paid to comparative assessments of these assemblers' quality and accuracy. No commonly accepted and standardized method for comparison exists yet. Even worse, widely used metrics to compare the assembled sequences emphasize only size, poorly capturing the contig quality and accuracy. This paper addresses these concerns: it highlights common anomalies in assembly accuracy through a rigorous study of several assemblers, compared under both standard metrics (N50, coverage, contig sizes, etc.) as well as a more comprehensive metric (Feature-Response Curves, FRC) that is introduced here; FRC transparently captures the trade-offs between contigs' quality against their sizes. For this purpose, most of the publicly available major sequence assemblers--both for low-coverage long (Sanger) and high-coverage short (Illumina) reads technologies--are compared. These assemblers are applied to microbial (Escherichia coli, Brucella, Wolbachia, Staphylococcus, Helicobacter) and partial human genome sequences (Chr. Y), using sequence reads of various read-lengths, coverages, accuracies, and with and without mate-pairs. It is hoped that, based on these evaluations, computational biologists will identify innovative sequence assembly paradigms, bioinformaticists will determine promising approaches for developing "next-generation" assemblers, and biotechnologists will formulate more meaningful design desiderata for sequencing technology platforms. A new software tool for computing the FRC metric has been developed and is available through the AMOS open-source consortium.
Collapse
|
37
|
Arnold IC, Zigova Z, Holden M, Lawley TD, Rad R, Dougan G, Falkow S, Bentley SD, Müller A. Comparative whole genome sequence analysis of the carcinogenic bacterial model pathogen Helicobacter felis. Genome Biol Evol 2011; 3:302-8. [PMID: 21402865 PMCID: PMC4197744 DOI: 10.1093/gbe/evr022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2011] [Indexed: 12/14/2022] Open
Abstract
The gram-negative bacterium Helicobacter felis naturally colonizes the gastric mucosa of dogs and cats. Due to its ability to persistently infect laboratory mice, H. felis has been used extensively to experimentally model gastric disorders induced in humans by H. pylori. We determined the 1.67 Mb genome sequence of H. felis using combined Solexa and 454 pyrosequencing, annotated the genome, and compared it with multiple previously published Helicobacter genomes. About 1,063 (63.6%) of the 1,671 genes identified in the H. felis genome have orthologues in H. pylori, its closest relative among the fully sequenced Helicobacter species. Many H. pylori virulence factors are shared by H. felis: these include the gamma-glutamyl transpeptidase GGT, the immunomodulator NapA, and the secreted enzymes collagenase and HtrA. Helicobacter felis lacks a Cag pathogenicity island and the vacuolating cytotoxin VacA but possesses a complete comB system conferring natural competence. Remarkable features of the H. felis genome include its paucity of transcriptional regulators and an extraordinary abundance of chemotaxis sensors and restriction/modification systems. Helicobacter felis possesses an episomally replicating 6.7-kb plasmid and harbors three chromosomal regions with deviating GC content. These putative horizontally acquired regions show homology and synteny with the recently isolated H. pylori plasmid pHPPC4 and homology to Campylobacter bacteriophage genes (transposases, structural, and lytic genes), respectively. In summary, the H. felis genome harbors a variety of putative mobile elements that are unique among Helicobacter species and may contribute to this pathogen's carcinogenic properties.
Collapse
Affiliation(s)
- Isabelle C. Arnold
- Institute of Molecular Cancer Research, University of
Zürich, Zürich, Switzerland
| | - Zuzana Zigova
- Institute of Molecular Cancer Research, University of
Zürich, Zürich, Switzerland
| | - Matthew Holden
- Pathogen Genomics, The Wellcome Trust Sanger
Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United
Kingdom
| | - Trevor D. Lawley
- Pathogen Genomics, The Wellcome Trust Sanger
Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United
Kingdom
| | - Roland Rad
- Pathogen Genomics, The Wellcome Trust Sanger
Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United
Kingdom
| | - Gordon Dougan
- Pathogen Genomics, The Wellcome Trust Sanger
Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United
Kingdom
| | - Stanley Falkow
- Department of Microbiology and Immunology, Stanford
University School of Medicine
| | - Stephen D. Bentley
- Pathogen Genomics, The Wellcome Trust Sanger
Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United
Kingdom
| | - Anne Müller
- Institute of Molecular Cancer Research, University of
Zürich, Zürich, Switzerland
| |
Collapse
|
38
|
Lara-Ramírez EE, Segura-Cabrera A, Guo X, Yu G, García-Pérez CA, Rodríguez-Pérez MA. New implications on genomic adaptation derived from the Helicobacter pylori genome comparison. PLoS One 2011; 6:e17300. [PMID: 21387011 PMCID: PMC3046158 DOI: 10.1371/journal.pone.0017300] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 01/28/2011] [Indexed: 02/07/2023] Open
Abstract
Background Helicobacter pylori has a reduced genome and lives in a tough environment for long-term persistence. It evolved with its particular characteristics for biological adaptation. Because several H. pylori genome sequences are available, comparative analysis could help to better understand genomic adaptation of this particular bacterium. Principal Findings We analyzed nine H. pylori genomes with emphasis on microevolution from a different perspective. Inversion was an important factor to shape the genome structure. Illegitimate recombination not only led to genomic inversion but also inverted fragment duplication, both of which contributed to the creation of new genes and gene family, and further, homological recombination contributed to events of inversion. Based on the information of genomic rearrangement, the first genome scaffold structure of H. pylori last common ancestor was produced. The core genome consists of 1186 genes, of which 22 genes could particularly adapt to human stomach niche. H. pylori contains high proportion of pseudogenes whose genesis was principally caused by homopolynucleotide (HPN) mutations. Such mutations are reversible and facilitate the control of gene expression through the change of DNA structure. The reversible mutations and a quasi-panmictic feature could allow such genes or gene fragments frequently transferred within or between populations. Hence, pseudogenes could be a reservoir of adaptation materials and the HPN mutations could be favorable to H. pylori adaptation, leading to HPN accumulation on the genomes, which corresponds to a special feature of Helicobacter species: extremely high HPN composition of genome. Conclusion Our research demonstrated that both genome content and structure of H. pylori have been highly adapted to its particular life style.
Collapse
Affiliation(s)
| | - Aldo Segura-Cabrera
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| | - Xianwu Guo
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
- * E-mail:
| | - Gongxin Yu
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | | | | |
Collapse
|
39
|
Frese SA, Benson AK, Tannock GW, Loach DM, Kim J, Zhang M, Oh PL, Heng NCK, Patil PB, Juge N, MacKenzie DA, Pearson BM, Lapidus A, Dalin E, Tice H, Goltsman E, Land M, Hauser L, Ivanova N, Kyrpides NC, Walter J. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet 2011; 7:e1001314. [PMID: 21379339 PMCID: PMC3040671 DOI: 10.1371/journal.pgen.1001314] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 01/18/2011] [Indexed: 02/07/2023] Open
Abstract
Recent research has provided mechanistic insight into the important contributions of the gut microbiota to vertebrate biology, but questions remain about the evolutionary processes that have shaped this symbiosis. In the present study, we showed in experiments with gnotobiotic mice that the evolution of Lactobacillus reuteri with rodents resulted in the emergence of host specialization. To identify genomic events marking adaptations to the murine host, we compared the genome of the rodent isolate L. reuteri 100-23 with that of the human isolate L. reuteri F275, and we identified hundreds of genes that were specific to each strain. In order to differentiate true host-specific genome content from strain-level differences, comparative genome hybridizations were performed to query 57 L. reuteri strains originating from six different vertebrate hosts in combination with genome sequence comparisons of nine strains encompassing five phylogenetic lineages of the species. This approach revealed that rodent strains, although showing a high degree of genomic plasticity, possessed a specific genome inventory that was rare or absent in strains from other vertebrate hosts. The distinct genome content of L. reuteri lineages reflected the niche characteristics in the gastrointestinal tracts of their respective hosts, and inactivation of seven out of eight representative rodent-specific genes in L. reuteri 100-23 resulted in impaired ecological performance in the gut of mice. The comparative genomic analyses suggested fundamentally different trends of genome evolution in rodent and human L. reuteri populations, with the former possessing a large and adaptable pan-genome while the latter being subjected to a process of reductive evolution. In conclusion, this study provided experimental evidence and a molecular basis for the evolution of host specificity in a vertebrate gut symbiont, and it identified genomic events that have shaped this process.
Collapse
Affiliation(s)
- Steven A. Frese
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Andrew K. Benson
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Diane M. Loach
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Jaehyoung Kim
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Min Zhang
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Phaik Lyn Oh
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Nicholas C. K. Heng
- Sir John Walsh Research Institute (Faculty of Dentistry), University of Otago, Dunedin, New Zealand
| | - Prabhu B. Patil
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, United States of America
- Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Nathalie Juge
- Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | | | - Bruce M. Pearson
- Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Alla Lapidus
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Eileen Dalin
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Hope Tice
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Eugene Goltsman
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Miriam Land
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Loren Hauser
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Nikos C. Kyrpides
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Jens Walter
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, United States of America
| |
Collapse
|
40
|
Abstract
Helicobacter pylori is a genetically diverse organism that is adapted for colonization of the human stomach. All strains contain a gene encoding a secreted, pore-forming toxin known as VacA. Genetic variation at this locus could be under strong selection as H. pylori adapts to the host immune response, colonizes new human hosts, or inhabits different host environments. Here, we analyze the molecular evolution of VacA. Phylogenetic reconstructions indicate the subdivision of VacA sequences into three main groups with distinct geographic distributions. Divergence of the three groups is principally due to positively selected sequence changes in the p55 domain, a central region required for binding of the toxin to host cells. Divergent amino acids map to surface-exposed sites in the p55 crystal structure. Comparative phylogenetic analyses of vacA sequences and housekeeping gene sequences indicate that vacA does not share the same evolutionary history as the core genome. Further, rooting the VacA tree with outgroup sequences from the close relative Helicobacter acinonychis reveals that the ancestry of VacA is different from the African origin that typifies the core genome. Finally, sequence analyses of the virulence determinant CagA reveal three main groups strikingly similar to the three groups of VacA sequences. Taken together, these results indicate that positive selection has shaped the phylogenetic structure of VacA and CagA, and each of these virulence determinants has evolved separately from the core genome.
Collapse
|
41
|
Olbermann P, Josenhans C, Moodley Y, Uhr M, Stamer C, Vauterin M, Suerbaum S, Achtman M, Linz B. A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathogenicity island. PLoS Genet 2010; 6:e1001069. [PMID: 20808891 PMCID: PMC2924317 DOI: 10.1371/journal.pgen.1001069] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 07/15/2010] [Indexed: 12/16/2022] Open
Abstract
The Helicobacter pylori cag pathogenicity island (cagPAI) encodes a type IV secretion system. Humans infected with cagPAI–carrying H. pylori are at increased risk for sequelae such as gastric cancer. Housekeeping genes in H. pylori show considerable genetic diversity; but the diversity of virulence factors such as the cagPAI, which transports the bacterial oncogene CagA into host cells, has not been systematically investigated. Here we compared the complete cagPAI sequences for 38 representative isolates from all known H. pylori biogeographic populations. Their gene content and gene order were highly conserved. The phylogeny of most cagPAI genes was similar to that of housekeeping genes, indicating that the cagPAI was probably acquired only once by H. pylori, and its genetic diversity reflects the isolation by distance that has shaped this bacterial species since modern humans migrated out of Africa. Most isolates induced IL-8 release in gastric epithelial cells, indicating that the function of the Cag secretion system has been conserved despite some genetic rearrangements. More than one third of cagPAI genes, in particular those encoding cell-surface exposed proteins, showed signatures of diversifying (Darwinian) selection at more than 5% of codons. Several unknown gene products predicted to be under Darwinian selection are also likely to be secreted proteins (e.g. HP0522, HP0535). One of these, HP0535, is predicted to code for either a new secreted candidate effector protein or a protein which interacts with CagA because it contains two genetic lineages, similar to cagA. Our study provides a resource that can guide future research on the biological roles and host interactions of cagPAI proteins, including several whose function is still unknown. Most humans are infected with Helicobacter pylori. The H. pylori cag pathogenicity island (cagPAI) encodes a secretion apparatus that can translocate the CagA protein into host cells. Humans infected with cagPAI–carrying H. pylori are at increased risk of severe disease, including gastric cancer. We analyzed the nucleotide sequences and functional diversity of the cagPAI in a globally representative collection of isolates. Complete cagPAI sequences were obtained for 29 strains from all known H. pylori biogeographic populations. The gene content and arrangement of the cagPAI and its function were highly conserved. Diversity in most cag genes consisted in large part of synonymous polymorphisms. However some genes—in particular those that encode proteins predicted to be secreted or located on the outside of the bacterial cell—had particularly high frequencies of non-synonymous polymorphisms, suggesting that they were under diversifying selection. Our study provides evidence that the cagPAI was only acquired once and provides an important resource that can guide future research on the biological roles and host interactions of cagPAI proteins, including several whose function is still unknown.
Collapse
Affiliation(s)
- Patrick Olbermann
- Institute for Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Christine Josenhans
- Institute for Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Yoshan Moodley
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Markus Uhr
- Institute for Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Christiana Stamer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Sebastian Suerbaum
- Institute for Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, Hannover, Germany
- * E-mail: ;
| | - Mark Achtman
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Environmental Research Institute, University College Cork, Cork, Ireland
- * E-mail: ;
| | - Bodo Linz
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
42
|
Microevolution of Helicobacter pylori during prolonged infection of single hosts and within families. PLoS Genet 2010; 6:e1001036. [PMID: 20661309 PMCID: PMC2908706 DOI: 10.1371/journal.pgen.1001036] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 06/21/2010] [Indexed: 12/30/2022] Open
Abstract
Our understanding of basic evolutionary processes in bacteria is still very limited. For example, multiple recent dating estimates are based on a universal inter-species molecular clock rate, but that rate was calibrated using estimates of geological dates that are no longer accepted. We therefore estimated the short-term rates of mutation and recombination in Helicobacter pylori by sequencing an average of 39,300 bp in 78 gene fragments from 97 isolates. These isolates included 34 pairs of sequential samples, which were sampled at intervals of 0.25 to 10.2 years. They also included single isolates from 29 individuals (average age: 45 years) from 10 families. The accumulation of sequence diversity increased with time of separation in a clock-like manner in the sequential isolates. We used Approximate Bayesian Computation to estimate the rates of mutation, recombination, mean length of recombination tracts, and average diversity in those tracts. The estimates indicate that the short-term mutation rate is 1.4×10−6 (serial isolates) to 4.5×10−6 (family isolates) per nucleotide per year and that three times as many substitutions are introduced by recombination as by mutation. The long-term mutation rate over millennia is 5–17-fold lower, partly due to the removal of non-synonymous mutations due to purifying selection. Comparisons with the recent literature show that short-term mutation rates vary dramatically in different bacterial species and can span a range of several orders of magnitude. Mutation rates in bacteria have generally been considered to be much slower than in viruses. This is partly because estimates of long-term mutation rates for the evolution of distinct species have been inappropriately used for dating divergence within species. Furthermore, the most commonly used long-term mutation rate is based on geological dates that are no longer accepted. In addition, only few short-term mutation rates have been calculated within bacterial species, and these differ with the species by several orders of magnitude. Here, we provide robust estimates for short-term mutation and recombination rates within Helicobacter pylori, a bacterium that commonly infects the human gastric mucosa, based on serial isolates from long-term infections and on differences between isolates from multiple family members. These short-term mutation rates are 5–17-fold faster than long-term mutation rates in H. pylori that have been calibrated by parallel ancient migrations of humans. Short-term mutation rates in bacteria, including those for H. pylori, can be quite fast, partially overlapping with those for viruses. Future calculations of ages of bacterial species will need to account for dramatic differences in mutation rate between species and for dramatic differences between short- and long-term mutation rates.
Collapse
|
43
|
An ABC transporter and a TonB ortholog contribute to Helicobacter mustelae nickel and cobalt acquisition. Infect Immun 2010; 78:4261-7. [PMID: 20643857 DOI: 10.1128/iai.00365-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The genomes of Helicobacter species colonizing the mammalian gastric mucosa (like Helicobacter pylori) contain a large number of genes annotated as iron acquisition genes but only few nickel acquisition genes, which contrasts with the central position of nickel in the urease-mediated acid resistance of these gastric pathogens. In this study we have investigated the predicted iron and nickel acquisition systems of the ferret pathogen Helicobacter mustelae. The expression of the outer membrane protein-encoding frpB2 gene was iron and Fur repressed, whereas the expression of the ABC transporter genes fecD and ceuE was iron and Fur independent. The inactivation of the two tonB genes showed that TonB1 is required for heme utilization, whereas the absence of TonB2 only marginally affected iron-dependent growth but led to reduced cellular nickel content and urease activity. The inactivation of the fecD and ceuE ABC transporter genes did not affect iron levels but resulted in significantly reduced urease activity and cellular nickel content. Surprisingly, the inactivation of the nixA nickel transporter gene affected cellular nickel content and urease activity only when combined with the inactivation of other nickel acquisition genes, like fecD or ceuE. The FecDE ABC transporter is not specific for nickel, since an fecD mutant also showed reduced cellular cobalt levels and increased cobalt resistance. We conclude that the H. mustelae fecDE and ceuE genes encode an ABC transporter involved in nickel and cobalt acquisition, which works independently of the nickel transporter NixA, while TonB2 is required primarily for nickel acquisition, with TonB1 being required for heme utilization.
Collapse
|
44
|
Guinane CM, Ben Zakour NL, Tormo-Mas MA, Weinert LA, Lowder BV, Cartwright RA, Smyth DS, Smyth CJ, Lindsay JA, Gould KA, Witney A, Hinds J, Bollback JP, Rambaut A, Penadés JR, Fitzgerald JR. Evolutionary genomics of Staphylococcus aureus reveals insights into the origin and molecular basis of ruminant host adaptation. Genome Biol Evol 2010; 2:454-66. [PMID: 20624747 PMCID: PMC2997551 DOI: 10.1093/gbe/evq031] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2010] [Indexed: 12/21/2022] Open
Abstract
Phenotypic biotyping has traditionally been used to differentiate bacteria occupying distinct ecological niches such as host species. For example, the capacity of Staphylococcus aureus from sheep to coagulate ruminant plasma, reported over 60 years ago, led to the description of small ruminant and bovine S. aureus ecovars. The great majority of small ruminant isolates are represented by a single, widespread clonal complex (CC133) of S. aureus, but its evolutionary origin and the molecular basis for its host tropism remain unknown. Here, we provide evidence that the CC133 clone evolved as the result of a human to ruminant host jump followed by adaptive genome diversification. Comparative whole-genome sequencing revealed molecular evidence for host adaptation including gene decay and diversification of proteins involved in host-pathogen interactions. Importantly, several novel mobile genetic elements encoding virulence proteins with attenuated or enhanced activity in ruminants were widely distributed in CC133 isolates, suggesting a key role in its host-specific interactions. To investigate this further, we examined the activity of a novel staphylococcal pathogenicity island (SaPIov2) found in the great majority of CC133 isolates which encodes a variant of the chromosomally encoded von Willebrand-binding protein (vWbp(Sov2)), previously demonstrated to have coagulase activity for human plasma. Remarkably, we discovered that SaPIov2 confers the ability to coagulate ruminant plasma suggesting an important role in ruminant disease pathogenesis and revealing the origin of a defining phenotype of the classical S. aureus biotyping scheme. Taken together, these data provide broad new insights into the origin and molecular basis of S. aureus ruminant host specificity.
Collapse
Affiliation(s)
- Caitriona M. Guinane
- The Roslin Institute and Centre for Infectious Diseases, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Nouri L. Ben Zakour
- The Roslin Institute and Centre for Infectious Diseases, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Maria A. Tormo-Mas
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Castellón, Spain
| | - Lucy A. Weinert
- Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Bethan V. Lowder
- The Roslin Institute and Centre for Infectious Diseases, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Robyn A. Cartwright
- The Roslin Institute and Centre for Infectious Diseases, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Davida S. Smyth
- University of Mississippi Medical Center, Jackson, Mississippi
| | - Cyril J. Smyth
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, University of Dublin, Trinity College, Dublin, Ireland
| | - Jodi A. Lindsay
- Department of Cellular & Molecular Medicine, St George’s Hospital Medical School, University of London, London, United Kingdom
| | - Katherine A. Gould
- Department of Cellular & Molecular Medicine, St George’s Hospital Medical School, University of London, London, United Kingdom
| | - Adam Witney
- Department of Cellular & Molecular Medicine, St George’s Hospital Medical School, University of London, London, United Kingdom
| | - Jason Hinds
- Department of Cellular & Molecular Medicine, St George’s Hospital Medical School, University of London, London, United Kingdom
| | - Jonathan P. Bollback
- Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Andrew Rambaut
- Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - José R. Penadés
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Castellón, Spain
| | - J. Ross Fitzgerald
- The Roslin Institute and Centre for Infectious Diseases, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
45
|
Thiberge JM, Boursaux-Eude C, Lehours P, Dillies MA, Creno S, Coppée JY, Rouy Z, Lajus A, Ma L, Burucoa C, Ruskoné-Foumestraux A, Courillon-Mallet A, De Reuse H, Boneca IG, Lamarque D, Mégraud F, Delchier JC, Médigue C, Bouchier C, Labigne A, Raymond J. From array-based hybridization of Helicobacter pylori isolates to the complete genome sequence of an isolate associated with MALT lymphoma. BMC Genomics 2010; 11:368. [PMID: 20537153 PMCID: PMC3091627 DOI: 10.1186/1471-2164-11-368] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 06/10/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Helicobacter pylori infection is associated with several gastro-duodenal inflammatory diseases of various levels of severity. To determine whether certain combinations of genetic markers can be used to predict the clinical source of the infection, we analyzed well documented and geographically homogenous clinical isolates using a comparative genomics approach. RESULTS A set of 254 H. pylori genes was used to perform array-based comparative genomic hybridization among 120 French H. pylori strains associated with chronic gastritis (n = 33), duodenal ulcers (n = 27), intestinal metaplasia (n = 17) or gastric extra-nodal marginal zone B-cell MALT lymphoma (n = 43). Hierarchical cluster analyses of the DNA hybridization values allowed us to identify a homogeneous subpopulation of strains that clustered exclusively with cagPAI minus MALT lymphoma isolates. The genome sequence of B38, a representative of this MALT lymphoma strain-cluster, was completed, fully annotated, and compared with the six previously released H. pylori genomes (i.e. J99, 26695, HPAG1, P12, G27 and Shi470). B38 has the smallest H. pylori genome described thus far (1,576,758 base pairs containing 1,528 CDSs); it contains the vacAs2m2 allele and lacks the genes encoding the major virulence factors (absence of cagPAI, babB, babC, sabB, and homB). Comparative genomics led to the identification of very few sequences that are unique to the B38 strain (9 intact CDSs and 7 pseudogenes). Pair-wise genomic synteny comparisons between B38 and the 6 H. pylori sequenced genomes revealed an almost complete co-linearity, never seen before between the genomes of strain Shi470 (a Peruvian isolate) and B38. CONCLUSION These isolates are deprived of the main H. pylori virulence factors characterized previously, but are nonetheless associated with gastric neoplasia.
Collapse
Affiliation(s)
- Jean-Michel Thiberge
- Institut Pasteur, Unité postulante de Pathogenèse de Helicobacter, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
From array-based hybridization of Helicobacter pylori isolates to the complete genome sequence of an isolate associated with MALT lymphoma. BMC Genomics 2010. [PMID: 20537153 DOI: 10.1186/1471-2164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Helicobacter pylori infection is associated with several gastro-duodenal inflammatory diseases of various levels of severity. To determine whether certain combinations of genetic markers can be used to predict the clinical source of the infection, we analyzed well documented and geographically homogenous clinical isolates using a comparative genomics approach. RESULTS A set of 254 H. pylori genes was used to perform array-based comparative genomic hybridization among 120 French H. pylori strains associated with chronic gastritis (n = 33), duodenal ulcers (n = 27), intestinal metaplasia (n = 17) or gastric extra-nodal marginal zone B-cell MALT lymphoma (n = 43). Hierarchical cluster analyses of the DNA hybridization values allowed us to identify a homogeneous subpopulation of strains that clustered exclusively with cagPAI minus MALT lymphoma isolates. The genome sequence of B38, a representative of this MALT lymphoma strain-cluster, was completed, fully annotated, and compared with the six previously released H. pylori genomes (i.e. J99, 26695, HPAG1, P12, G27 and Shi470). B38 has the smallest H. pylori genome described thus far (1,576,758 base pairs containing 1,528 CDSs); it contains the vacAs2m2 allele and lacks the genes encoding the major virulence factors (absence of cagPAI, babB, babC, sabB, and homB). Comparative genomics led to the identification of very few sequences that are unique to the B38 strain (9 intact CDSs and 7 pseudogenes). Pair-wise genomic synteny comparisons between B38 and the 6 H. pylori sequenced genomes revealed an almost complete co-linearity, never seen before between the genomes of strain Shi470 (a Peruvian isolate) and B38. CONCLUSION These isolates are deprived of the main H. pylori virulence factors characterized previously, but are nonetheless associated with gastric neoplasia.
Collapse
|
47
|
Farnbacher M, Jahns T, Willrodt D, Daniel R, Haas R, Goesmann A, Kurtz S, Rieder G. Sequencing, annotation, and comparative genome analysis of the gerbil-adapted Helicobacter pylori strain B8. BMC Genomics 2010; 11:335. [PMID: 20507619 PMCID: PMC3091624 DOI: 10.1186/1471-2164-11-335] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 05/27/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The Mongolian gerbils are a good model to mimic the Helicobacter pylori-associated pathogenesis of the human stomach. In the current study the gerbil-adapted strain B8 was completely sequenced, annotated and compared to previous genomes, including the 73 supercontigs of the parental strain B128. RESULTS The complete genome of H. pylori B8 was manually curated gene by gene, to assign as much function as possible. It consists of a circular chromosome of 1,673,997 bp and of a small plasmid of 6,032 bp carrying nine putative genes. The chromosome contains 1,711 coding sequences, 293 of which are strain-specific, coding mainly for hypothetical proteins, and a large plasticity zone containing a putative type-IV-secretion system and coding sequences with unknown function. The cag-pathogenicity island is rearranged such that the cagA-gene is located 13,730 bp downstream of the inverted gene cluster cagB-cag1. Directly adjacent to the cagA-gene, there are four hypothetical genes and one variable gene with a different codon usage compared to the rest of the H. pylori B8-genome. This indicates that these coding sequences might be acquired via horizontal gene transfer.The genome comparison of strain B8 to its parental strain B128 delivers 425 unique B8-proteins. Due to the fact that strain B128 was not fully sequenced and only automatically annotated, only 12 of these proteins are definitive singletons that might have been acquired during the gerbil-adaptation process of strain B128. CONCLUSION Our sequence data and its analysis provide new insight into the high genetic diversity of H. pylori-strains. We have shown that the gerbil-adapted strain B8 has the potential to build, possibly by a high rate of mutation and recombination, a dynamic pool of genetic variants (e.g. fragmented genes and repetitive regions) required for the adaptation-processes. We hypothesize that these variants are essential for the colonization and persistence of strain B8 in the gerbil stomach during in ammation.
Collapse
Affiliation(s)
- Max Farnbacher
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig Maximilian University Munich, 80336 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Host-interactive genes in Amerindian Helicobacter pylori diverge from their Old World homologs and mediate inflammatory responses. J Bacteriol 2010; 192:3078-92. [PMID: 20400544 DOI: 10.1128/jb.00063-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is the dominant member of the gastric microbiota and has been associated with an increased risk of gastric cancer and peptic ulcers in adults. H. pylori populations have migrated and diverged with human populations, and health effects vary. Here, we describe the whole genome of the cag-positive strain V225d, cultured from a Venezuelan Piaroa Amerindian subject. To gain insight into the evolution and host adaptation of this bacterium, we undertook comparative H. pylori genomic analyses. A robust multiprotein phylogenetic tree reflects the major human migration out of Africa, across Europe, through Asia, and into the New World, placing Amerindian H. pylori as a particularly close sister group to East Asian H. pylori. In contrast, phylogenetic analysis of the host-interactive genes vacA and cagA shows substantial divergence of Amerindian from Old World forms and indicates new genotypes (e.g., VacA m3) involving these loci. Despite deletions in CagA EPIYA and CRPIA domains, V225d stimulates interleukin-8 secretion and the hummingbird phenotype in AGS cells. However, following a 33-week passage in the mouse stomach, these phenotypes were lost in isolate V225-RE, which had a 15-kb deletion in the cag pathogenicity island that truncated CagA and eliminated some of the type IV secretion system genes. Thus, the unusual V225d cag architecture was fully functional via conserved elements, but the natural deletion of 13 cag pathogenicity island genes and the truncation of CagA impaired the ability to induce inflammation.
Collapse
|
49
|
Latifi-Navid S, Ghorashi SA, Siavoshi F, Linz B, Massarrat S, Khegay T, Salmanian AH, Shayesteh AA, Masoodi M, Ghanadi K, Ganji A, Suerbaum S, Achtman M, Malekzadeh R, Falush D. Ethnic and geographic differentiation of Helicobacter pylori within Iran. PLoS One 2010; 5:e9645. [PMID: 20339588 PMCID: PMC2842290 DOI: 10.1371/journal.pone.0009645] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 02/12/2010] [Indexed: 12/15/2022] Open
Abstract
The bacterium Helicobacter pylori colonizes the human stomach, with individual infections persisting for decades. The spread of the bacterium has been shown to reflect both ancient and recent human migrations. We have sequenced housekeeping genes from H. pylori isolated from 147 Iranians with well-characterized geographical and ethnic origins sampled throughout Iran and compared them with sequences from strains from other locations. H. pylori from Iran are similar to others isolated from Western Eurasia and can be placed in the previously described HpEurope population. Despite the location of Iran at the crossroads of Eurasia, we found no evidence that the region been a major source of ancestry for strains across the continent. On a smaller scale, we found genetic affinities between the H. pylori isolated from particular Iranian populations and strains from Turks, Uzbeks, Palestinians and Israelis, reflecting documented historical contacts over the past two thousand years.
Collapse
Affiliation(s)
- Saeid Latifi-Navid
- Department of Bacteriology and Virology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- Digestive Disease Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Ghorashi
- Department of Bacteriology and Virology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, College of Sciences, University of Tehran, Tehran, Iran
| | - Bodo Linz
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sadegh Massarrat
- Digestive Disease Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Tanya Khegay
- Uzbek Academy of Sciences, Institute of Immunology, Tashkent, Uzbekistan
| | - Ali-Hatef Salmanian
- Department of Plant Molecular Biology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ali Akbar Shayesteh
- Department of Internal Medicine, Imam Khomeini Hospital, Jundishapur University of Medical Sciences, Ahwaz, Iran
| | - Mohsen Masoodi
- Department of Internal Medicine, Gastrointestinal and Liver Disease Research Center (GILDRC), Iran University of Medical Sciences, Tehran, Iran
- Tropical and Infectious Disease Research Center, Hormozgan University of Medical Sciences, Bandar-Abbas, Iran
| | | | - Azita Ganji
- Department of Gastroenterology, Imam Reza Hospital, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
| | - Sebastian Suerbaum
- Medizinische Hochschule Hannover, Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Hannover, Germany
| | - Mark Achtman
- Department of Microbiology, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Reza Malekzadeh
- Digestive Disease Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Daniel Falush
- Department of Microbiology, Environmental Research Institute, University College Cork, Cork, Ireland
- * E-mail:
| |
Collapse
|
50
|
O'Toole PW, Snelling WJ, Canchaya C, Forde BM, Hardie KR, Josenhans C, Graham RL, McMullan G, Parkhill J, Belda E, Bentley SD. Comparative genomics and proteomics of Helicobacter mustelae, an ulcerogenic and carcinogenic gastric pathogen. BMC Genomics 2010; 11:164. [PMID: 20219135 PMCID: PMC2846917 DOI: 10.1186/1471-2164-11-164] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 03/10/2010] [Indexed: 12/11/2022] Open
Abstract
Background Helicobacter mustelae causes gastritis, ulcers and gastric cancer in ferrets and other mustelids. H. mustelae remains the only helicobacter other than H. pylori that causes gastric ulceration and cancer in its natural host. To improve understanding of H. mustelae pathogenesis, and the ulcerogenic and carcinogenic potential of helicobacters in general, we sequenced the H. mustelae genome, and identified 425 expressed proteins in the envelope and cytosolic proteome. Results The H. mustelae genome lacks orthologs of major H. pylori virulence factors including CagA, VacA, BabA, SabA and OipA. However, it encodes ten autotransporter surface proteins, seven of which were detected in the expressed proteome, and which, except for the Hsr protein, are of unknown function. There are 26 putative outer membrane proteins in H. mustelae, some of which are most similar to the Hof proteins of H. pylori. Although homologs of putative virulence determinants of H. pylori (NapA, plasminogen adhesin, collagenase) and Campylobacter jejuni (CiaB, Peb4a) are present in the H. mustelae genome, it also includes a distinct complement of virulence-related genes including a haemagglutinin/haemolysin protein, and a glycosyl transferase for producing blood group A/B on its lipopolysaccharide. The most highly expressed 264 proteins in the cytosolic proteome included many corresponding proteins from H. pylori, but the rank profile in H. mustelae was distinctive. Of 27 genes shown to be essential for H. pylori colonization of the gerbil, all but three had orthologs in H. mustelae, identifying a shared set of core proteins for gastric persistence. Conclusions The determination of the genome sequence and expressed proteome of the ulcerogenic species H mustelae provides a comparative model for H. pylori to investigate bacterial gastric carcinogenesis in mammals, and to suggest ways whereby cag minus H. pylori strains might cause ulceration and cancer. The genome sequence was deposited in EMBL/GenBank/DDBJ under accession number FN555004.
Collapse
Affiliation(s)
- Paul W O'Toole
- Department of Microbiology, & Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|