1
|
Vanagas L, Muñoz D, Cristaldi C, Ganuza A, Nájera R, Bonardi MC, Turowski VR, Guzman F, Deng B, Kim K, Sullivan WJ, Angel SO. Histone variant H2B.Z acetylation is necessary for maintenance of Toxoplasma gondii biological fitness. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194943. [PMID: 37217032 PMCID: PMC10524646 DOI: 10.1016/j.bbagrm.2023.194943] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Through regulation of DNA packaging, histone proteins are fundamental to a wide array of biological processes. A variety of post-translational modifications (PTMs), including acetylation, constitute a proposed histone code that is interpreted by "reader" proteins to modulate chromatin structure. Canonical histones can be replaced with variant versions that add an additional layer of regulatory complexity. The protozoan parasite Toxoplasma gondii is unique among eukaryotes in possessing a novel variant of H2B designated H2B.Z. The combination of PTMs and the use of histone variants are important for gene regulation in T. gondii, offering new targets for drug development. In this work, T. gondii parasites were generated in which the 5 N-terminal acetylatable lysines in H2B.Z were mutated to either alanine (c-Myc-A) or arginine (c-Myc-R). The c-Myc-A mutant displayed no phenotype over than a mild defect in its ability to kill mice. The c-Myc-R mutant presented an impaired ability to grow and an increase in differentiation to latent bradyzoites. The c-Myc-R mutant was also more sensitive to DNA damage, displayed no virulence in mice, and provided protective immunity against future infection. While nucleosome composition was unaltered, key genes were abnormally expressed during in vitro bradyzoite differentiation. Our results show that regulation of the N-terminal positive charge patch of H2B.Z is important for these processes. We also show that acetylated N-terminal H2B.Z interacts with some unique proteins compared to its unacetylated counterpart; the acetylated peptide pulled down proteins associated with chromosome maintenance/segregation and cell cycle, suggesting a link between H2B.Z acetylation status and mitosis.
Collapse
Affiliation(s)
- Laura Vanagas
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina.
| | - Daniela Muñoz
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina
| | - Constanza Cristaldi
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina
| | - Agustina Ganuza
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina
| | - Rosario Nájera
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina
| | - Mabel C Bonardi
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina
| | - Valeria R Turowski
- Laboratorio de Bioquímica y Biología Celular de Parásitos, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA Chascomús, Prov. Buenos Aires, Argentina
| | - Fanny Guzman
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaiso, Av. Universidad 330 Curauma, Valparaiso, Chile
| | - Bin Deng
- Department of Biology and VBRN, University of Vermont, VT, USA
| | - Kami Kim
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - William J Sullivan
- Department of Pharmacology and Toxicology, Indiana School of Medicine, Indianapolis, IN 46202, USA
| | - Sergio O Angel
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina.
| |
Collapse
|
2
|
Hulett RE, Kimura JO, Bolaños DM, Luo YJ, Rivera-López C, Ricci L, Srivastava M. Acoel single-cell atlas reveals expression dynamics and heterogeneity of adult pluripotent stem cells. Nat Commun 2023; 14:2612. [PMID: 37147314 PMCID: PMC10163032 DOI: 10.1038/s41467-023-38016-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/11/2023] [Indexed: 05/07/2023] Open
Abstract
Adult pluripotent stem cell (aPSC) populations underlie whole-body regeneration in many distantly-related animal lineages, but how the underlying cellular and molecular mechanisms compare across species is unknown. Here, we apply single-cell RNA sequencing to profile transcriptional cell states of the acoel worm Hofstenia miamia during postembryonic development and regeneration. We identify cell types shared across stages and their associated gene expression dynamics during regeneration. Functional studies confirm that the aPSCs, also known as neoblasts, are the source of differentiated cells and reveal transcription factors needed for differentiation. Subclustering of neoblasts recovers transcriptionally distinct subpopulations, the majority of which are likely specialized to differentiated lineages. One neoblast subset, showing enriched expression of the histone variant H3.3, appears to lack specialization. Altogether, the cell states identified in this study facilitate comparisons to other species and enable future studies of stem cell fate potentials.
Collapse
Affiliation(s)
- Ryan E Hulett
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Julian O Kimura
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - D Marcela Bolaños
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Yi-Jyun Luo
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Carlos Rivera-López
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
- Department of Molecular and Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Lorenzo Ricci
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
3
|
Vanagas L, Muñoz D, Cristaldi C, Ganuza A, Nájera R, Bonardi MC, Turowski VR, Guzman F, Deng B, Kim K, Sullivan WJ, Angel SO. Histone variant H2B.Z acetylation is necessary for maintenance of Toxoplasma gondii biological fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528480. [PMID: 36824796 PMCID: PMC9949044 DOI: 10.1101/2023.02.14.528480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Through regulation of DNA packaging, histone proteins are fundamental to a wide array of biological processes. A variety of post-translational modifications (PTMs), including acetylation, constitute a proposed histone code that is interpreted by "reader" proteins to modulate chromatin structure. Canonical histones can be replaced with variant versions that add an additional layer of regulatory complexity. The protozoan parasite Toxoplasma gondii is unique among eukaryotes in possessing a novel variant of H2B designated H2B.Z. The combination of PTMs and the use of histone variants is important for gene regulation in T. gondii, offering new targets for drug development. In this work, T. gondii parasites were generated in which the 5 N-terminal acetylatable lysines in H2B.Z were mutated to either alanine (c-Myc-A) or arginine (c-Myc-R). c-Myc-A mutant only displayed a mild effect in its ability to kill mice. c-Myc-R mutant presented an impaired ability to grow and an increase in differentiation to latent bradyzoites. This mutant line was also more sensitive to DNA damage, displayed no virulence in mice, and provided protective immunity against future infection. While nucleosome composition was unaltered, key genes were abnormally expressed during in vitro bradyzoite differentiation. Our results show that the N-terminal positive charge patch of H2B.Z is important for these procceses. Pull down assays with acetylated N-terminal H2B.Z peptide and unacetylated one retrieved common and differential interactors. Acetylated peptide pulled down proteins associated with chromosome maintenance/segregation and cell cycle, opening the question of a possible link between H2B.Z acetylation status and mitosis.
Collapse
Affiliation(s)
- Laura Vanagas
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Daniela Muñoz
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Constanza Cristaldi
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Agustina Ganuza
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Rosario Nájera
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Mabel C. Bonardi
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Valeria R. Turowski
- Laboratorio de Bioquímica y Biología Celular de Parásitos, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Fanny Guzman
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaiso. Av. Universidad 330 Curauma, Valparaiso
| | - Bin Deng
- Department of Biology and VBRN, University of Vermont, Vermont, USA
| | - Kami Kim
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - William J. Sullivan
- Department of Pharmacology and Toxicology, Indiana School of Medicine, Indianapolis, Indiana 46202, USA
| | - Sergio O. Angel
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| |
Collapse
|
4
|
Dijkwel Y, Tremethick DJ. The Role of the Histone Variant H2A.Z in Metazoan Development. J Dev Biol 2022; 10:jdb10030028. [PMID: 35893123 PMCID: PMC9326617 DOI: 10.3390/jdb10030028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
During the emergence and radiation of complex multicellular eukaryotes from unicellular ancestors, transcriptional systems evolved by becoming more complex to provide the basis for this morphological diversity. The way eukaryotic genomes are packaged into a highly complex structure, known as chromatin, underpins this evolution of transcriptional regulation. Chromatin structure is controlled by a variety of different epigenetic mechanisms, including the major mechanism for altering the biochemical makeup of the nucleosome by replacing core histones with their variant forms. The histone H2A variant H2A.Z is particularly important in early metazoan development because, without it, embryos cease to develop and die. However, H2A.Z is also required for many differentiation steps beyond the stage that H2A.Z-knockout embryos die. H2A.Z can facilitate the activation and repression of genes that are important for pluripotency and differentiation, and acts through a variety of different molecular mechanisms that depend upon its modification status, its interaction with histone and nonhistone partners, and where it is deposited within the genome. In this review, we discuss the current knowledge about the different mechanisms by which H2A.Z regulates chromatin function at various developmental stages and the chromatin remodeling complexes that determine when and where H2A.Z is deposited.
Collapse
|
5
|
Mazina MY, Vorobyeva NE. Chromatin Modifiers in Transcriptional Regulation: New Findings and Prospects. Acta Naturae 2021; 13:16-30. [PMID: 33959384 PMCID: PMC8084290 DOI: 10.32607/actanaturae.11101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/17/2020] [Indexed: 02/04/2023] Open
Abstract
Histone-modifying and remodeling complexes are considered the main coregulators that affect transcription by changing the chromatin structure. Coordinated action by these complexes is essential for the transcriptional activation of any eukaryotic gene. In this review, we discuss current trends in the study of histone modifiers and chromatin remodelers, including the functional impact of transcriptional proteins/ complexes i.e., "pioneers"; remodeling and modification of non-histone proteins by transcriptional complexes; the supplementary functions of the non-catalytic subunits of remodelers, and the participation of histone modifiers in the "pause" of RNA polymerase II. The review also includes a scheme illustrating the mechanisms of recruitment of the main classes of remodelers and chromatin modifiers to various sites in the genome and their functional activities.
Collapse
Affiliation(s)
- M. Yu. Mazina
- Institute of Gene Biology RAS, Group of transcriptional complexes dynamics, Moscow, 119334 Russia
| | - N. E. Vorobyeva
- Institute of Gene Biology RAS, Group of transcriptional complexes dynamics, Moscow, 119334 Russia
| |
Collapse
|
6
|
Shinkai Y, Kuramochi M, Doi M. Regulation of chromatin states and gene expression during HSN neuronal maturation is mediated by EOR-1/PLZF, MAU-2/cohesin loader, and SWI/SNF complex. Sci Rep 2018; 8:7942. [PMID: 29786685 PMCID: PMC5962631 DOI: 10.1038/s41598-018-26149-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/01/2018] [Indexed: 01/03/2023] Open
Abstract
Newborn neurons mature by distinct and sequential steps through the timely induction of specific gene expression programs in concert with epigenetic changes. However, it has been difficult to investigate the relationship between gene expression and epigenetic changes at a single-cell resolution during neuronal maturation. In this study, we investigated the maturation of hermaphrodite-specific neurons (HSNs) in C. elegans, which provided the link between chromatin dynamics, gene expression, and the degree of neuronal maturation at a single-cell resolution. Our results demonstrated that chromatin composition in the promoter region of several genes acting for neuronal terminal maturation was modulated at an early developmental stage, and is dependent on the function of the transcription factor EOR-1/PLZF and the cohesin loader MAU-2/MAU2. Components of the SWI/SNF chromatin remodeling complex were also required for the proper expression of terminal maturation genes. Epistasis analyses suggested that eor-1 functions with mau-2 and swsn-1 in the same genetic pathway to regulate the maturation of HSNs. Collectively, our study provides a novel approach to analyze neuronal maturation and proposes that predefined epigenetic modifications, mediated by EOR-1, MAU-2, and the SWI/SNF complex, are important for the preparation of future gene expression programs in neuronal terminal maturation.
Collapse
Affiliation(s)
- Yoichi Shinkai
- Molecular Neurobiology Research Group and DAI-Lab, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Masahiro Kuramochi
- Molecular Neurobiology Research Group and DAI-Lab, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa City, Chiba, 277-8561, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Chiba, 277-8565, Japan
| | - Motomichi Doi
- Molecular Neurobiology Research Group and DAI-Lab, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
7
|
Abstract
Pioneer transcription factors have the unique and important role of unmasking chromatin domains during development to allow the implementation of new cellular programs. Compared with those of other transcription factors, this activity implies that pioneer factors can recognize their target DNA sequences in so-called compacted or "closed" heterochromatin and can trigger remodeling of the adjoining chromatin landscape to provide accessibility to nonpioneer transcription factors. Recent studies identified several steps of pioneer action, namely rapid but weak initial binding to heterochromatin and stabilization of binding followed by chromatin opening and loss of cytosine-phosphate-guanine (CpG) methylation that provides epigenetic memory. Whereas CpG demethylation depends on replication, chromatin opening does not. In this Minireview, we highlight the unique properties of this transcription factor class and the challenges of understanding their mechanism of action.
Collapse
Affiliation(s)
- Alexandre Mayran
- From the Laboratory of Molecular Genetics, Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Quebec H2W 1R7, Canada
| | - Jacques Drouin
- From the Laboratory of Molecular Genetics, Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Quebec H2W 1R7, Canada
| |
Collapse
|
8
|
Abstract
Forkhead box (Fox) transcription factors are evolutionarily conserved in organisms ranging from yeast to humans. They regulate diverse biological processes both during development and throughout adult life. Mutations in many Fox genes are associated with human disease and, as such, various animal models have been generated to study the function of these transcription factors in mechanistic detail. In many cases, the absence of even a single Fox transcription factor is lethal. In this Primer, we provide an overview of the Fox family, highlighting several key Fox transcription factor families that are important for mammalian development.
Collapse
Affiliation(s)
- Maria L Golson
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Dankert JF, Rona G, Clijsters L, Geter P, Skaar JR, Bermudez-Hernandez K, Sassani E, Fenyö D, Ueberheide B, Schneider R, Pagano M. Cyclin F-Mediated Degradation of SLBP Limits H2A.X Accumulation and Apoptosis upon Genotoxic Stress in G2. Mol Cell 2016; 64:507-519. [PMID: 27773672 DOI: 10.1016/j.molcel.2016.09.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/01/2016] [Accepted: 09/08/2016] [Indexed: 10/20/2022]
Abstract
SLBP (stem-loop binding protein) is a highly conserved factor necessary for the processing, translation, and degradation of H2AFX and canonical histone mRNAs. We identified the F-box protein cyclin F, a substrate recognition subunit of an SCF (Skp1-Cul1-F-box protein) complex, as the G2 ubiquitin ligase for SLBP. SLBP interacts with cyclin F via an atypical CY motif, and mutation of this motif prevents SLBP degradation in G2. Expression of an SLBP stable mutant results in increased loading of H2AFX mRNA onto polyribosomes, resulting in increased expression of H2A.X (encoded by H2AFX). Upon genotoxic stress in G2, high levels of H2A.X lead to persistent γH2A.X signaling, high levels of H2A.X phosphorylated on Tyr142, high levels of p53, and induction of apoptosis. We propose that cyclin F co-evolved with the appearance of stem-loops in vertebrate H2AFX mRNA to mediate SLBP degradation, thereby limiting H2A.X synthesis and cell death upon genotoxic stress.
Collapse
Affiliation(s)
- John F Dankert
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Perlmutter NYU Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA
| | - Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Perlmutter NYU Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA
| | - Linda Clijsters
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Perlmutter NYU Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA
| | - Phillip Geter
- Department of Microbiology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA
| | - Jeffrey R Skaar
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Perlmutter NYU Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA
| | - Keria Bermudez-Hernandez
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Institute for System Genetics, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA
| | - Elizabeth Sassani
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Perlmutter NYU Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Institute for System Genetics, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Proteomics Resource Center, Office of Collaborative Science, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA
| | - Robert Schneider
- Department of Microbiology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Department of Radiation Oncology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Perlmutter NYU Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Howard Hughes Medical Institute, 522 First Avenue, SRB 1107, New York, NY 10016, USA.
| |
Collapse
|
10
|
Pioneer transcription factors, chromatin dynamics, and cell fate control. Curr Opin Genet Dev 2016; 37:76-81. [PMID: 26826681 DOI: 10.1016/j.gde.2015.12.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/15/2015] [Accepted: 12/19/2015] [Indexed: 11/21/2022]
Abstract
Among the diverse transcription factors that are necessary to elicit changes in cell fate, both in embryonic development and in cellular reprogramming, a subset of factors are capable of binding to their target sequences on nucleosomal DNA and initiating regulatory events in silent chromatin. Such 'pioneer transcription factors' initiate cooperative interactions with other regulatory proteins to elicit changes in local chromatin structure. As a consequence of pioneer factor binding, the local chromatin can either become open and competent for activation, closed and repressed, or transcriptionally active. Understanding how pioneer factors initiate chromatin dynamics and how such can be blocked at heterochromatic sites provides insights into controlling cell fate transitions at will.
Collapse
|
11
|
Kuzmich AI, Tyulkina DV, Vinogradova TV, Sverdlov ED. Pioneer transcription factors in normal development and carcinogenesis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 41:636-43. [DOI: 10.1134/s1068162015060084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Crane-Robinson C. Linker histones: History and current perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:431-5. [PMID: 26459501 DOI: 10.1016/j.bbagrm.2015.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 12/11/2022]
Abstract
Although the overall structure of the fifth histone (linker histone, H1) is understood, its location on the nucleosome is only partially defined. Whilst it is clear that H1 helps condense the chromatin fibre, precisely how this is achieved remains to be determined. H1 is not a general gene repressor in that although it must be displaced from transcription start sites for activity to occur, there is only partial loss along the body of genes. How the deposition and removal of H1 occurs in particular need of further study. Linker histones are highly abundant nuclear proteins about which we know too little.
Collapse
Affiliation(s)
- C Crane-Robinson
- Biophysics Laboratories, School of Biology, University of Portsmouth, PO1 2DT, UK
| |
Collapse
|
13
|
Hsu HT, Chen HM, Yang Z, Wang J, Lee NK, Burger A, Zaret K, Liu T, Levine E, Mango SE. TRANSCRIPTION. Recruitment of RNA polymerase II by the pioneer transcription factor PHA-4. Science 2015; 348:1372-6. [PMID: 26089518 PMCID: PMC4861314 DOI: 10.1126/science.aab1223] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pioneer transcription factors initiate cell-fate changes by binding to silent target genes. They are among the first factors to bind key regulatory sites and facilitate chromatin opening. Here, we identify an additional role for pioneer factors. In early Caenorhabditis elegans foregut development, the pioneer factor PHA-4/FoxA binds promoters and recruits RNA polymerase II (Pol II), often in a poised configuration in which Pol II accumulates near transcription start sites. At a later developmental stage, PHA-4 promotes chromatin opening. We found many more genes with poised RNA polymerase than had been observed previously in unstaged embryos, revealing that early embryos accumulate poised Pol II and that poising is dynamic. Our results suggest that Pol II recruitment, in addition to chromatin opening, is an important feature of PHA-4 pioneer factor activity.
Collapse
Affiliation(s)
- H-T Hsu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - H-M Chen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Z Yang
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - J Wang
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA
| | - N K Lee
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - A Burger
- Department of Physics and Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - K Zaret
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - T Liu
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA. Department of Biostatistics, University at Buffalo, Buffalo, NY 14214, USA
| | - E Levine
- Department of Physics and Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - S E Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
14
|
Larance M, Pourkarimi E, Wang B, Brenes Murillo A, Kent R, Lamond AI, Gartner A. Global Proteomics Analysis of the Response to Starvation in C. elegans. Mol Cell Proteomics 2015; 14:1989-2001. [PMID: 25963834 PMCID: PMC4587315 DOI: 10.1074/mcp.m114.044289] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Indexed: 12/31/2022] Open
Abstract
Periodic starvation of animals induces large shifts in metabolism but may also influence many other cellular systems and can lead to adaption to prolonged starvation conditions. To date, there is limited understanding of how starvation affects gene expression, particularly at the protein level. Here, we have used mass-spectrometry-based quantitative proteomics to identify global changes in the Caenorhabditis elegans proteome due to acute starvation of young adult animals. Measuring changes in the abundance of over 5,000 proteins, we show that acute starvation rapidly alters the levels of hundreds of proteins, many involved in central metabolic pathways, highlighting key regulatory responses. Surprisingly, we also detect changes in the abundance of chromatin-associated proteins, including specific linker histones, histone variants, and histone posttranslational modifications associated with the epigenetic control of gene expression. To maximize community access to these data, they are presented in an online searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/).
Collapse
Affiliation(s)
- Mark Larance
- From the ‡Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St, Dundee, United Kingdom, DD15EH
| | - Ehsan Pourkarimi
- From the ‡Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St, Dundee, United Kingdom, DD15EH
| | - Bin Wang
- From the ‡Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St, Dundee, United Kingdom, DD15EH
| | - Alejandro Brenes Murillo
- From the ‡Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St, Dundee, United Kingdom, DD15EH
| | - Robert Kent
- From the ‡Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St, Dundee, United Kingdom, DD15EH
| | - Angus I Lamond
- From the ‡Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St, Dundee, United Kingdom, DD15EH
| | - Anton Gartner
- From the ‡Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St, Dundee, United Kingdom, DD15EH
| |
Collapse
|
15
|
Latorre I, Chesney MA, Garrigues JM, Stempor P, Appert A, Francesconi M, Strome S, Ahringer J. The DREAM complex promotes gene body H2A.Z for target repression. Genes Dev 2015; 29:495-500. [PMID: 25737279 PMCID: PMC4358402 DOI: 10.1101/gad.255810.114] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The DREAM (DP, Retinoblastoma [Rb]-like, E2F, and MuvB) complex controls cellular quiescence by repressing cell cycle genes. Latorre et al. show that Caenorhabditis elegans DREAM targets have an unusual pattern of high gene body HTZ-1/H2A.Z. In mutants of lin-35, the sole p130/Rb-like gene in C. elegans, DREAM targets have reduced gene body HTZ-1/H2A.Z and increased expression. Consistent with a repressive role for gene body H2A.Z, many DREAM targets are up-regulated in htz-1/H2A.Z mutants. The DREAM (DP, Retinoblastoma [Rb]-like, E2F, and MuvB) complex controls cellular quiescence by repressing cell cycle genes, but its mechanism of action is poorly understood. Here we show that Caenorhabditis elegans DREAM targets have an unusual pattern of high gene body HTZ-1/H2A.Z. In mutants of lin-35, the sole p130/Rb-like gene in C. elegans, DREAM targets have reduced gene body HTZ-1/H2A.Z and increased expression. Consistent with a repressive role for gene body H2A.Z, many DREAM targets are up-regulated in htz-1/H2A.Z mutants. Our results indicate that the DREAM complex facilitates high gene body HTZ-1/H2A.Z, which plays a role in target gene repression.
Collapse
Affiliation(s)
- Isabel Latorre
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Michael A Chesney
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Jacob M Garrigues
- Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Przemyslaw Stempor
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Alex Appert
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Mirko Francesconi
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Susan Strome
- Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Julie Ahringer
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom;
| |
Collapse
|
16
|
Law C, Cheung P. Expression of Non-acetylatable H2A.Z in Myoblast Cells Blocks Myoblast Differentiation through Disruption of MyoD Expression. J Biol Chem 2015; 290:13234-49. [PMID: 25839232 DOI: 10.1074/jbc.m114.595462] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Indexed: 11/06/2022] Open
Abstract
H2A.Z is a histone H2A variant that is essential for viability in Tetrahymena and Drosophila and also during embryonic development of mice. Although implicated in diverse cellular processes, including transcriptional regulation, chromosome segregation, and heterochromatin formation, its essential function in cells remains unknown. Cellular differentiation is part of the developmental process of multicellular organisms. To elucidate the roles of H2A.Z and H2A.Z acetylation in cellular differentiation, we examined the effects of expressing wild type (WT) or a non-acetylatable form of H2A.Z in the growth and differentiation of the myoblast C2C12 cell line. Ectopic expression of wild type or mutant H2A.Z resulted in distinct phenotypes in the differentiation of the C2C12 cells and the formation of myotubes. Most strikingly, expression of the H2A.Z non-acetylatable mutant (H2A.Z-Ac-mut) resulted in a complete block of myoblast differentiation. We determined that this phenotype is caused by a loss of MyoD expression in the Ac-mut-expressing cells prior to and after induction of differentiation. Moreover, chromatin accessibility assays showed that the promoter region of MyoD is less accessible in the differentiation-defective cells. Altogether, these new findings show that expression of the Ac-mut form of H2A.Z resulted in a dominant phenotype that blocked differentiation due to chromatin changes at the MyoD promoter.
Collapse
Affiliation(s)
- Cindy Law
- From the Department of Medical Biophysics, University of Toronto, Ontario M5G 1L7, Canada and
| | - Peter Cheung
- From the Department of Medical Biophysics, University of Toronto, Ontario M5G 1L7, Canada and the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
17
|
Gu M, Naiyachit Y, Wood TJ, Millar CB. H2A.Z marks antisense promoters and has positive effects on antisense transcript levels in budding yeast. BMC Genomics 2015; 16:99. [PMID: 25765960 PMCID: PMC4337092 DOI: 10.1186/s12864-015-1247-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/15/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The histone variant H2A.Z, which has been reported to have both activating and repressive effects on gene expression, is known to occupy nucleosomes at the 5' ends of protein-coding genes. RESULTS We now find that H2A.Z is also significantly enriched in gene coding regions and at the 3' ends of genes in budding yeast, where it co-localises with histone marks associated with active promoters. By comparing H2A.Z binding to global gene expression in budding yeast strains engineered so that normally unstable transcripts are abundant, we show that H2A.Z is required for normal levels of antisense transcripts as well as sense ones. High levels of H2A.Z at antisense promoters are associated with decreased antisense transcript levels when H2A.Z is deleted, indicating that H2A.Z has an activating effect on antisense transcripts. Decreases in antisense transcripts affected by H2A.Z are accompanied by increased levels of paired sense transcripts. CONCLUSIONS The effect of H2A.Z on protein coding gene expression is a reflection of its importance for normal levels of both sense and antisense transcripts.
Collapse
Affiliation(s)
- Muxin Gu
- Faculty of Life Sciences, University of Manchester, M13 9PT, Manchester, UK.
| | - Yanin Naiyachit
- Faculty of Life Sciences, University of Manchester, M13 9PT, Manchester, UK.
| | - Thomas J Wood
- Faculty of Life Sciences, University of Manchester, M13 9PT, Manchester, UK.
| | - Catherine B Millar
- Faculty of Life Sciences, University of Manchester, M13 9PT, Manchester, UK.
| |
Collapse
|
18
|
Abstract
Biochemical and genomic studies have shown that transcription factors with the highest reprogramming activity often have the special ability to engage their target sites on nucleosomal DNA, thus behaving as “pioneer factors” to initiate events in closed chromatin. This review by Iwafuchi-Doi and Zaret focuses on the most recent studies of pioneer factors in cell programming and reprogramming, how pioneer factors have special chromatin-binding properties, and facilitators and impediments to chromatin binding. A subset of eukaryotic transcription factors possesses the remarkable ability to reprogram one type of cell into another. The transcription factors that reprogram cell fate are invariably those that are crucial for the initial cell programming in embryonic development. To elicit cell programming or reprogramming, transcription factors must be able to engage genes that are developmentally silenced and inappropriate for expression in the original cell. Developmentally silenced genes are typically embedded in “closed” chromatin that is covered by nucleosomes and not hypersensitive to nuclease probes such as DNase I. Biochemical and genomic studies have shown that transcription factors with the highest reprogramming activity often have the special ability to engage their target sites on nucleosomal DNA, thus behaving as “pioneer factors” to initiate events in closed chromatin. Other reprogramming factors appear dependent on pioneer factors for engaging nucleosomes and closed chromatin. However, certain genomic domains in which nucleosomes are occluded by higher-order chromatin structures, such as in heterochromatin, are resistant to pioneer factor binding. Understanding the means by which pioneer factors can engage closed chromatin and how heterochromatin can prevent such binding promises to advance our ability to reprogram cell fates at will and is the topic of this review.
Collapse
Affiliation(s)
- Makiko Iwafuchi-Doi
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
19
|
Abstract
Histones package and compact DNA by assembling into nucleosome core particles. Most histones are synthesized at S phase for rapid deposition behind replication forks. In addition, the replacement of histones deposited during S phase by variants that can be deposited independently of replication provide the most fundamental level of chromatin differentiation. Alternative mechanisms for depositing different variants can potentially establish and maintain epigenetic states. Variants have also evolved crucial roles in chromosome segregation, transcriptional regulation, DNA repair, and other processes. Investigations into the evolution, structure, and metabolism of histone variants provide a foundation for understanding the participation of chromatin in important cellular processes and in epigenetic memory.
Collapse
Affiliation(s)
- Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024
| | - M Mitchell Smith
- Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
20
|
Samson M, Jow MM, Wong CCL, Fitzpatrick C, Aslanian A, Saucedo I, Estrada R, Ito T, Park SKR, Yates JR, Chu DS. The specification and global reprogramming of histone epigenetic marks during gamete formation and early embryo development in C. elegans. PLoS Genet 2014; 10:e1004588. [PMID: 25299455 PMCID: PMC4191889 DOI: 10.1371/journal.pgen.1004588] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 07/09/2014] [Indexed: 11/18/2022] Open
Abstract
In addition to the DNA contributed by sperm and oocytes, embryos receive parent-specific epigenetic information that can include histone variants, histone post-translational modifications (PTMs), and DNA methylation. However, a global view of how such marks are erased or retained during gamete formation and reprogrammed after fertilization is lacking. To focus on features conveyed by histones, we conducted a large-scale proteomic identification of histone variants and PTMs in sperm and mixed-stage embryo chromatin from C. elegans, a species that lacks conserved DNA methylation pathways. The fate of these histone marks was then tracked using immunostaining. Proteomic analysis found that sperm harbor ∼2.4 fold lower levels of histone PTMs than embryos and revealed differences in classes of PTMs between sperm and embryos. Sperm chromatin repackaging involves the incorporation of the sperm-specific histone H2A variant HTAS-1, a widespread erasure of histone acetylation, and the retention of histone methylation at sites that mark the transcriptional history of chromatin domains during spermatogenesis. After fertilization, we show HTAS-1 and 6 histone PTM marks distinguish sperm and oocyte chromatin in the new embryo and characterize distinct paternal and maternal histone remodeling events during the oocyte-to-embryo transition. These include the exchange of histone H2A that is marked by ubiquitination, retention of HTAS-1, removal of the H2A variant HTZ-1, and differential reprogramming of histone PTMs. This work identifies novel and conserved features of paternal chromatin that are specified during spermatogenesis and processed in the embryo. Furthermore, our results show that different species, even those with diverged DNA packaging and imprinting strategies, use conserved histone modification and removal mechanisms to reprogram epigenetic information.
Collapse
Affiliation(s)
- Mark Samson
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Margaret M. Jow
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Catherine C. L. Wong
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Division, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, Shanghai, China
| | - Colin Fitzpatrick
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Aaron Aslanian
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Israel Saucedo
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Rodrigo Estrada
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Sung-kyu Robin Park
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Diana S. Chu
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| |
Collapse
|
21
|
Drouin J. Minireview: pioneer transcription factors in cell fate specification. Mol Endocrinol 2014; 28:989-98. [PMID: 24825399 DOI: 10.1210/me.2014-1084] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The specification of cell fate is critical for proper cell differentiation and organogenesis. In endocrine tissues, this process leads to the differentiation, often a multistep process, of hormone-producing cells. This process is driven by a combination of transcription factors (TFs) that includes general factor, tissue-restricted, and/or cell-restricted factors. The last 2 decades have seen the discovery of many TFs of restricted expression and function in endocrine tissues. These factors are typically critical for expression of hormone-coding genes as well as for differentiation and proper function of hormone-producing cells. Further, genes encoding these tissue-restricted TFs are themselves subject to mutations that cause hormone deficiencies. Although the model that emerged from these 2 decades is one in which a specific combination of TFs drives a unique cell specification and genetic program, recent findings have led to the discovery of TFs that have the unique property of being able to remodel chromatin and thus modify the epigenome. Most importantly, such factors, known as pioneer TFs, appear to play critical roles in programming the epigenome during the successive steps involved in cell specification. This review summarizes our current understanding of the mechanisms for pioneer TF remodeling of chromatin. Currently, very few TFs that have proven pioneer activity are known, but it will be critical to identify these factors and understand their mechanisms of action if we are to harness the potential of regenerative therapies in endocrinology.
Collapse
Affiliation(s)
- Jacques Drouin
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montréal, Quebec, H2W 1R7 Canada
| |
Collapse
|
22
|
Shibata Y, Nishiwaki K. Maintenance of cell fates through acetylated histone and the histone variant H2A.z in C. elegans. WORM 2014; 3:e29048. [PMID: 25254151 DOI: 10.4161/worm.29048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/17/2014] [Accepted: 04/28/2014] [Indexed: 01/04/2023]
Abstract
Maintenance of cell fates is essential for the development and homeostasis of multicellular organisms and involves the preservation of the expression status of selector genes that control many target genes. Epigenetic marks have pivotal roles in the maintenance of gene expression status, as occurs with methylation on lysine 27 of histone H3 (H3K27me) for Hox gene regulation. In contrast, because the levels of histone acetylation decrease during the mitotic phase, acetylated histone has not been believed to contribute to the maintenance of cell fates. Because members of the bromodomain and extra terminal (BET) family bind to acetylated histones localized on mitotic chromosomes, it is possible that they may regulate the transcriptional status of genes throughout the cell cycle. In this commentary, we discuss the recent analyses of C. elegans BET family protein BET-1, which contributes to the maintenance of cell fates through the histone H2A variant HTZ-1/H2A.z. This mechanism represses transcription of selector genes in the genomic region where lysine 27 of histone H3 (H3K27) is demethylated by histone demethylase UTX-1. We discuss the possibility that BET-1 and HTZ-1 maintain the poised state of RNA polymerase II in the cell such that it is ready to respond to differentiation signals.
Collapse
Affiliation(s)
- Yukimasa Shibata
- Department of Bioscience; Kwansei Gakuin University; Sanda, Hyogo, Japan
| | - Kiyoji Nishiwaki
- Department of Bioscience; Kwansei Gakuin University; Sanda, Hyogo, Japan
| |
Collapse
|
23
|
Xu Z, Chen H, Ling J, Yu D, Struffi P, Small S. Impacts of the ubiquitous factor Zelda on Bicoid-dependent DNA binding and transcription in Drosophila. Genes Dev 2014; 28:608-21. [PMID: 24637116 PMCID: PMC3967049 DOI: 10.1101/gad.234534.113] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Drosophila transcription factor Bicoid (Bcd) binds thousands of genomic sites during early embryogenesis, but it is unclear how many of these binding events are functionally important. Here, Small and colleagues test the role of the maternal factor Zelda (Zld) in Bcd-mediated binding and transcription. Embryos lacking Zld show enhanced Bcd binding to a subset of genomic locations, causing early activation of target genes normally silent until later stages. This study demonstrates a critical role for Zld in controlling Bcd binding and target gene activation in the early embryo. In vivo cross-linking studies suggest that the Drosophila transcription factor Bicoid (Bcd) binds to several thousand sites during early embryogenesis, but it is not clear how many of these binding events are functionally important. In contrast, reporter gene studies have identified >60 Bcd-dependent enhancers, all of which contain clusters of the consensus binding sequence TAATCC. These studies also identified clusters of TAATCC motifs (inactive fragments) that failed to drive Bcd-dependent activation. In general, active fragments showed higher levels of Bcd binding in vivo and were enriched in predicted binding sites for the ubiquitous maternal protein Zelda (Zld). Here we tested the role of Zld in Bcd-mediated binding and transcription. Removal of Zld function and mutations in Zld sites caused significant reductions in Bcd binding to known enhancers and variable effects on the activation and spatial positioning of Bcd-dependent expression patterns. Also, insertion of Zld sites converted one of six inactive fragments into a Bcd-responsive enhancer. Genome-wide binding experiments in zld mutants showed variable effects on Bcd-binding peaks, ranging from strong reductions to significantly enhanced levels of binding. Increases in Bcd binding caused the precocious Bcd-dependent activation of genes that are normally not expressed in early embryos, suggesting that Zld controls the genome-wide binding profile of Bcd at the qualitative level and is critical for selecting target genes for activation in the early embryo. These results underscore the importance of combinatorial binding in enhancer function and provide data that will help predict regulatory activities based on DNA sequence.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Biology, New York University, New York, New York 10003, USA
| | | | | | | | | | | |
Collapse
|
24
|
Shibata Y, Sawa H, Nishiwaki K. HTZ-1/H2A.z and MYS-1/MYST HAT act redundantly to maintain cell fates in somatic gonadal cells through repression of ceh-22 in C. elegans. Development 2014; 141:209-18. [PMID: 24346701 DOI: 10.1242/dev.090746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The stable maintenance of acquired cell fates is important during development and for maintaining tissue homeostasis. Although histone modification is one of the major strategies used by cells to maintain their fates, the mechanisms by which histone variants maintain cell fates are not well understood. In C. elegans, the acetylated-histone-H4 (AcH4)-binding protein BET-1 acts downstream of the MYST family histone acetyltransferases MYS-1 and MYS-2 to establish and maintain cell fates in multiple cell lineages. Here we show that, in the bet-1 pathway, the histone H2A variant HTZ-1/H2A.z and MYS-1 are required for the maintenance of cell fates in a redundant manner. BET-1 controlled the subnuclear localization of HTZ-1. HTZ-1 and MYS-1 maintained the fates of the somatic gonadal cells (SGCs) through the repression of a target, ceh-22/Nkx2.5, which induced the formation of the leader cells of the gonad. H3K27 demethylase, UTX-1, had an antagonistic effect relative to HTZ-1 in the regulation of ceh-22. Nuclear spot assay revealed that HTZ-1 localized to the ceh-22 locus in SGCs in an utx-1-dependent manner. We propose that HTZ-1 and MYS-1 repress ceh-22 when UTX-1 removes its silencing mark, H3K27 methylation on the ceh-22 locus, thereby maintaining the fates of SGCs.
Collapse
Affiliation(s)
- Yukimasa Shibata
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | | | | |
Collapse
|
25
|
Abstract
Chromatin acts as an organizer and indexer of genomic DNA and is a highly dynamic and regulated structure with properties directly related to its constituent parts. Histone variants are abundant components of chromatin that replace canonical histones in a subset of nucleosomes, thereby altering nucleosomal characteristics. The present review focuses on the H2A variant histones, summarizing current knowledge of how H2A variants can introduce chemical and functional heterogeneity into chromatin, the positions that nucleosomes containing H2A variants occupy in eukaryotic genomes, and the regulation of these localization patterns.
Collapse
|
26
|
Abstract
Histones are the protein components of chromatin and are important for its organization and compaction. Although core histones are exclusively expressed during S phase of the cell cycle, there exist variants of canonical histones that are expressed throughout the cell cycle. These histone variants are often deposited at defined regions of the genome and they play important roles in a variety of cellular processes, such as transcription regulation, heterochromatin formation and DNA repair. In this chapter, we will focus on several histone variants that have been linked to transcription regulation, and highlight their physical and functional features that facilitate their activities in this context.
Collapse
Affiliation(s)
- Cindy Law
- Ontario Cancer Institute, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | | |
Collapse
|
27
|
Dalvai M, Bellucci L, Fleury L, Lavigne AC, Moutahir F, Bystricky K. H2A.Z-dependent crosstalk between enhancer and promoter regulates cyclin D1 expression. Oncogene 2012; 32:4243-51. [PMID: 23108396 DOI: 10.1038/onc.2012.442] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 02/08/2023]
Abstract
H2A.Z association with specific genomic loci is thought to contribute to a chromatin structure that promotes transcription activation. Acetylation of H2A.Z at promoters of oncogenes has been linked to tumorigenesis. The mechanism is unknown. Here, we show that in triple negative breast cancer cells, H2A.Z bound to the promoter of the constitutively, weakly expressed cyclin D1 oncogene (CCND1), a key regulator of cellular proliferation. Depleting the pool of H2A.Z stimulated transcription of CCND1 in the absence of its cognate transcription factor, the estrogen receptor (ER). During activation of CCND1, H2A.Z was released from the transcription start site (TSS) and downstream enhancer (enh2) sequences. Concurrently, acetylation of H2A.Z, H3 and H4 at the TSS was increased but only H2A.Z was acetylated at enh2. Acetylation of H2A.Z required the Tip60 acetyltransferase to be associated with the activated CCND1 on both TSS and enh2 sites. Depletion of Tip60 prevented CCND1 activation. Chromosome conformation capture experiments (3C) revealed specific contacts between the TSS and enh2 chromatin regions. These results suggest that release of a histone H2A.Z-mediated repression loop activates CCND1 for transcription. Our findings open new avenues for controlling and understanding aberrant gene expression associated with tumorigenesis.
Collapse
Affiliation(s)
- M Dalvai
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), University of Toulouse, Toulouse, France
| | | | | | | | | | | |
Collapse
|
28
|
Coleman-Derr D, Zilberman D. Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. PLoS Genet 2012; 8:e1002988. [PMID: 23071449 PMCID: PMC3469445 DOI: 10.1371/journal.pgen.1002988] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 08/10/2012] [Indexed: 01/07/2023] Open
Abstract
The regulation of eukaryotic chromatin relies on interactions between many epigenetic factors, including histone modifications, DNA methylation, and the incorporation of histone variants. H2A.Z, one of the most conserved but enigmatic histone variants that is enriched at the transcriptional start sites of genes, has been implicated in a variety of chromosomal processes. Recently, we reported a genome-wide anticorrelation between H2A.Z and DNA methylation, an epigenetic hallmark of heterochromatin that has also been found in the bodies of active genes in plants and animals. Here, we investigate the basis of this anticorrelation using a novel h2a.z loss-of-function line in Arabidopsis thaliana. Through genome-wide bisulfite sequencing, we demonstrate that loss of H2A.Z in Arabidopsis has only a minor effect on the level or profile of DNA methylation in genes, and we propose that the global anticorrelation between DNA methylation and H2A.Z is primarily caused by the exclusion of H2A.Z from methylated DNA. RNA sequencing and genomic mapping of H2A.Z show that H2A.Z enrichment across gene bodies, rather than at the TSS, is correlated with lower transcription levels and higher measures of gene responsiveness. Loss of H2A.Z causes misregulation of many genes that are disproportionately associated with response to environmental and developmental stimuli. We propose that H2A.Z deposition in gene bodies promotes variability in levels and patterns of gene expression, and that a major function of genic DNA methylation is to exclude H2A.Z from constitutively expressed genes. Eukaryotes package their DNA to fit within the nucleus using well-conserved proteins, called histones, that form the building blocks of nucleosomes, the fundamental units of chromatin. Histone variants are specialized versions of these proteins that change the chromatin landscape by altering the biochemical properties and interacting partners of the nucleosome. H2A.Z, a conserved eukaryotic histone variant, is preferentially enriched at the beginnings of genes, though the significance of this enrichment remains unknown. We and others have shown that H2A.Z is conspicuously absent from methylated DNA across the genome in plants and animals. Typically considered a mark of epigenetic silencing, DNA methylation has more recently been discovered in the bodies of many genes. Here, we present evidence that the genome-wide anticorrelation between DNA methylation and H2A.Z enrichment in Arabidopsis is the result of DNA methylation acting to prevent H2A.Z incorporation. We demonstrate that the presence of H2A.Z within gene bodies is correlated with lower transcription levels and higher variability in expression patterns across tissue types and environmental conditions, and we propose that a major function of gene-body DNA methylation is to exclude H2A.Z from the bodies of highly and constitutively expressed genes.
Collapse
Affiliation(s)
| | - Daniel Zilberman
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Zaret KS, Carroll JS. Pioneer transcription factors: establishing competence for gene expression. Genes Dev 2011; 25:2227-41. [PMID: 22056668 DOI: 10.1101/gad.176826.111] [Citation(s) in RCA: 1174] [Impact Index Per Article: 83.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transcription factors are adaptor molecules that detect regulatory sequences in the DNA and target the assembly of protein complexes that control gene expression. Yet much of the DNA in the eukaryotic cell is in nucleosomes and thereby occluded by histones, and can be further occluded by higher-order chromatin structures and repressor complexes. Indeed, genome-wide location analyses have revealed that, for all transcription factors tested, the vast majority of potential DNA-binding sites are unoccupied, demonstrating the inaccessibility of most of the nuclear DNA. This raises the question of how target sites at silent genes become bound de novo by transcription factors, thereby initiating regulatory events in chromatin. Binding cooperativity can be sufficient for many kinds of factors to simultaneously engage a target site in chromatin and activate gene expression. However, in cases in which the binding of a series of factors is sequential in time and thus not initially cooperative, special "pioneer transcription factors" can be the first to engage target sites in chromatin. Such initial binding can passively enhance transcription by reducing the number of additional factors that are needed to bind the DNA, culminating in activation. In addition, pioneer factor binding can actively open up the local chromatin and directly make it competent for other factors to bind. Passive and active roles for the pioneer factor FoxA occur in embryonic development, steroid hormone induction, and human cancers. Herein we review the field and describe how pioneer factors may enable cellular reprogramming.
Collapse
Affiliation(s)
- Kenneth S Zaret
- Epigenetics Program, Institute for Regenerative Medicine, Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, USA.
| | | |
Collapse
|
30
|
Multiple phenotypes resulting from a mutagenesis screen for pharynx muscle mutations in Caenorhabditis elegans. PLoS One 2011; 6:e26594. [PMID: 22073173 PMCID: PMC3206800 DOI: 10.1371/journal.pone.0026594] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 09/29/2011] [Indexed: 01/30/2023] Open
Abstract
We describe a novel screen to isolate pharyngeal cell morphology mutants in Caenorhabditis elegans using myo-2::GFP to rapidly identify abnormally shaped pharynxes in EMS (Ethyl Methanesulfonate) mutagenized worms. We observed over 83 C. elegans lines with distinctive pharyngeal phenotypes in worms surviving to the L1 larval stage, with phenotypes ranging from short pharynx, unattached pharynx, missing cells, asymmetric morphology, and non-adherent pharynx cells. Thirteen of these mutations have been chromosomally mapped using Single Nucleotide Polymorphisms (SNPs) and deficiency strain complementation. Our studies have focused on genetically mapping and functionally testing two phenotypes, the short pharynx and the loss of muscle cohesion phenotypes. We have also identified new alleles of sma-1, and our screen suggests many genes directing pharynx assembly and structure may be either pharynx specific or less critical in other tissues.
Collapse
|
31
|
Couteau F, Zetka M. DNA damage during meiosis induces chromatin remodeling and synaptonemal complex disassembly. Dev Cell 2011; 20:353-63. [PMID: 21397846 DOI: 10.1016/j.devcel.2011.01.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 12/02/2010] [Accepted: 01/28/2011] [Indexed: 11/17/2022]
Abstract
DNA damage to the germline genome must be accurately repaired to ensure transmission of intact genetic information to following generations. Meiosis presents challenges to the DNA damage response (DDR) because it universally requires changes to chromosome structure that can affect DNA repair outcomes. We report the existence of a meiotic DDR at chromosome axes that results in chromatin remodeling, synaptonemal complex disassembly, and axis separation in response to irradiation at late pachytene stages in C. elegans. The axis component HTP-3 is required for germline acquisition of H2AacK5, an axis-specific chromatin mark that is DNA damage responsive. Irradiated wild-types show reduction of H2AacK5 and axis separation that are dependent on the acetyltransferase MYS-1/TIP60. Restoration of H2AacK5 levels requires ATM-1 kinase and correlates with resynapsis. We propose that the meiotic DDR involves early chromatin remodeling at chromosome axes to dismantle structures promoting interhomolog recombination and facilitate efficient nonhomolog-based repair before pachytene exit.
Collapse
Affiliation(s)
- Florence Couteau
- Department of Biology, McGill University, 1205 avenue Doctor Penfield, Montréal, QC H3A 1B1, Canada
| | | |
Collapse
|
32
|
Abstract
Embryonic development is regulated by both genetic and epigenetic mechanisms, with nearly all DNA-templated processes influenced by chromatin architecture. Sequence variations in histone proteins, core components of chromatin, provide a means to generate diversity in the chromatin structure, resulting in distinct and profound biological outcomes in the developing embryo. Emerging literature suggests that epigenetic contributions from histone variants play key roles in a number of developmental processes such as the initiation and maintenance of pericentric heterochromatin, X-inactivation, and germ cell differentiation. Here, we review the role of histone variants in the embryo with particular emphasis on early mammalian development.
Collapse
Affiliation(s)
- Laura A Banaszynski
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
33
|
Mehta M, Braberg H, Wang S, Lozsa A, Shales M, Solache A, Krogan NJ, Keogh MC. Individual lysine acetylations on the N terminus of Saccharomyces cerevisiae H2A.Z are highly but not differentially regulated. J Biol Chem 2010; 285:39855-65. [PMID: 20952395 DOI: 10.1074/jbc.m110.185967] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The multi-functional histone variant Htz1 (Saccharomyces cerevisiae H2A.Z) is acetylated on up to four N-terminal lysines at positions 3, 8, 10, and 14. It has thus been posited that specific acetylated forms of the histone could regulate distinct roles. Antibodies against Htz1-K8(Ac), -K10(Ac), and -K14(Ac) show that all three modifications are added by Esa1 acetyltransferase and removed by Hda1 deacetylase. Completely unacetylatable htz1 alleles exhibit widespread interactions in genome scale genetic screening. However, singly mutated (e.g. htz1-K8R) or singly acetylable (e.g. the triple mutant htz1-K3R/K10R/K14R) alleles show no significant defects in these analyses. This suggests that the N-terminal acetylations on Htz1 are internally redundant. Further supporting this proposal, each acetylation decays with similar kinetics when Htz1 transcription is repressed, and proteomic screening did not find a single condition in which one Htz1(Ac) was differentially regulated. However, whereas the individual acetylations on Htz1 may be redundant, they are not dispensable. Completely unacetylatable htz1 alleles display genetic interactions and phenotypes in common with and distinct from htz1Δ. In addition, each Htz1 N-terminal lysine is deacetylated by Hda1 in response to benomyl and reacetylated when this agent is removed. Such active regulation suggests that acetylation plays a significant role in Htz1 function.
Collapse
Affiliation(s)
- Monika Mehta
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gaudet J, McGhee JD. Recent advances in understanding the molecular mechanisms regulating C. elegans transcription. Dev Dyn 2010; 239:1388-404. [PMID: 20175193 DOI: 10.1002/dvdy.22246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We review recent studies that have advanced our understanding of the molecular mechanisms regulating transcription in the nematode C. elegans. Topics covered include: (i) general properties of C. elegans promoters; (ii) transcription factors and transcription factor combinations involved in cell fate specification and cell differentiation; (iii) new roles for general transcription factors; (iv) nucleosome positioning in C. elegans "chromatin"; and (v) some characteristics of histone variants and histone modifications and their possible roles in controlling C. elegans transcription.
Collapse
Affiliation(s)
- Jeb Gaudet
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
35
|
Fakhouri THI, Stevenson J, Chisholm AD, Mango SE. Dynamic chromatin organization during foregut development mediated by the organ selector gene PHA-4/FoxA. PLoS Genet 2010; 6. [PMID: 20714352 PMCID: PMC2920861 DOI: 10.1371/journal.pgen.1001060] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 07/12/2010] [Indexed: 01/08/2023] Open
Abstract
Central regulators of cell fate, or selector genes, establish the identity of cells by direct regulation of large cohorts of genes. In Caenorhabditis elegans, foregut (or pharynx) identity relies on the FoxA transcription factor PHA-4, which activates different sets of target genes at various times and in diverse cellular environments. An outstanding question is how PHA-4 distinguishes between target genes for appropriate transcriptional control. We have used the Nuclear Spot Assay and GFP reporters to examine PHA-4 interactions with target promoters in living embryos and with single cell resolution. While PHA-4 was found throughout the digestive tract, binding and activation of pharyngeally expressed promoters was restricted to a subset of pharyngeal cells and excluded from the intestine. An RNAi screen of candidate nuclear factors identified emerin (emr-1) as a negative regulator of PHA-4 binding within the pharynx, but emr-1 did not modulate PHA-4 binding in the intestine. Upon promoter association, PHA-4 induced large-scale chromatin de-compaction, which, we hypothesize, may facilitate promoter access and productive transcription. Our results reveal two tiers of PHA-4 regulation. PHA-4 binding is prohibited in intestinal cells, preventing target gene expression in that organ. PHA-4 binding within the pharynx is limited by the nuclear lamina component EMR-1/emerin. The data suggest that association of PHA-4 with its targets is a regulated step that contributes to promoter selectivity during organ formation. We speculate that global re-organization of chromatin architecture upon PHA-4 binding promotes competence of pharyngeal gene transcription and, by extension, foregut development. Central regulators of cell fate establish the identity of cells by direct regulation of large cohorts of genes. In Caenorhabditis elegans, foregut (or pharynx) identity relies on the FoxA transcription factor PHA-4, which activates different target genes in different cellular environments. An outstanding question is how PHA-4 distinguishes between target genes for appropriate transcriptional control. Here we examine PHA-4 interactions with target promoters in living embryos and with single-cell resolution. While PHA-4 was found throughout the digestive tract, binding and activation of pharyngeally expressed promoters was restricted to a subset of pharyngeal cells and excluded from the intestine. An RNAi screen identified emerin (emr-1) as a negative regulator of PHA-4 binding within the pharynx. Upon promoter association, PHA-4 induced large-scale chromatin de-compaction, which, we hypothesize, facilitates promoter access. Our results reveal two tiers of PHA-4 regulation. PHA-4 binding is prohibited in intestinal cells and is limited in the pharynx by the nuclear lamina component EMR-1/emerin. The data suggest that association of PHA-4 with its targets is a regulated step that contributes to promoter selectivity during organ formation. We speculate that global re-organization of chromatin architecture upon PHA-4 binding promotes competence of pharyngeal gene transcription and, by extension, foregut development.
Collapse
Affiliation(s)
- Tala H. I. Fakhouri
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Jeff Stevenson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Andrew D. Chisholm
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Susan E. Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
36
|
Essential role of p18Hamlet/SRCAP-mediated histone H2A.Z chromatin incorporation in muscle differentiation. EMBO J 2010; 29:2014-25. [PMID: 20473270 DOI: 10.1038/emboj.2010.85] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 04/12/2010] [Indexed: 11/08/2022] Open
Abstract
The chromatin-remodelling complex SNF2-related CBP activator protein (SRCAP) regulates chromatin structure in yeast by modulating the exchange of histone H2A for the H2A.Z variant. Here, we have investigated the contribution of H2A.Z-mediated chromatin remodelling to mammalian cell differentiation reprogramming. We show that the SRCAP subunit named ZNHIT1 or p18(Hamlet), which is a substrate of p38 MAPK, is recruited to the myogenin promoter at the onset of muscle differentiation, in a p38 MAPK-dependent manner. We also show that p18(Hamlet) is required for H2A.Z accumulation into this genomic region and for subsequent muscle gene transcriptional activation. Accordingly, downregulation of several subunits or the SRCAP complex impairs muscle gene expression. These results identify SRCAP/H2A.Z-mediated chromatin remodelling as a key early event in muscle differentiation-specific gene expression. We also propose a mechanism by which p38 MAPK-mediated signals are converted into chromatin structural changes, thereby facilitating transcriptional activation during mammalian cell differentiation.
Collapse
|
37
|
Vohanka J, Simecková K, Machalová E, Behenský F, Krause MW, Kostrouch Z, Kostrouchová M. Diversification of fasting regulated transcription in a cluster of duplicated nuclear hormone receptors in C. elegans. Gene Expr Patterns 2010; 10:227-36. [PMID: 20460175 DOI: 10.1016/j.gep.2010.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/26/2010] [Accepted: 05/03/2010] [Indexed: 11/18/2022]
Abstract
The genome of Caenorhabditis elegans encodes more than 280 nuclear hormone receptors (NHRs) in contrast to the 48 NHRs in humans and 18 NHRs in Drosophila. The majority of the C. elegans NHRs are categorized as supplementary nuclear receptors (supnrs) that evolved by successive duplications of a single ancestral gene. The evolutionary pressures that lead to the expansion of NHRs in nematodes, as well as the function of the majority of supnrs, are not known. Here, we have studied the expression of seven genes organized in a cluster on chromosome V: nhr-206, nhr-208, nhr-207, nhr-209, nhr-154, nhr-153 and nhr-136. Reverse transcription-quantitative PCR and analyses using transgenic lines carrying GFP fusion genes with their putative promoters revealed that all seven genes of this cluster are expressed and five have partially overlapping expression patterns including in the pharynx, intestine, certain neurons, the anal sphincter muscle, and male specific cells. Four genes in this cluster are conserved between C. elegans and Caenorhabditis briggsae whereas three genes are present only in C. elegans, the apparent result of a relatively recent expansion. Interestingly, we find that a subset of the conserved and non-conserved genes in this cluster respond transcriptionally to fasting in tissue-specific patterns. Our results reveal the diversification of the temporal, spatial, and metabolic gene expression patterns coupled with evolutionary drift within supnr family members.
Collapse
Affiliation(s)
- Jaroslav Vohanka
- Laboratory of Molecular Biology and Genetics, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
38
|
Kim HS, Vanoosthuyse V, Fillingham J, Roguev A, Watt S, Kislinger T, Treyer A, Carpenter LR, Bennett CS, Emili A, Greenblatt JF, Hardwick KG, Krogan NJ, Bähler J, Keogh MC. An acetylated form of histone H2A.Z regulates chromosome architecture in Schizosaccharomyces pombe. Nat Struct Mol Biol 2009; 16:1286-93. [PMID: 19915592 PMCID: PMC2788674 DOI: 10.1038/nsmb.1688] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 09/10/2009] [Indexed: 12/31/2022]
Abstract
Histone variant H2A.Z has a conserved role in genome stability, although it remains unclear how this is mediated. Here we demonstrate that the fission yeast Swr1 ATPase inserts H2A.Z (Pht1) into chromatin and Kat5 acetyltransferase (Mst1) acetylates it. Deletion or an unacetylatable mutation of Pht1 leads to genome instability, primarily caused by chromosome entanglement and breakage at anaphase. This leads to the loss of telomere-proximal markers, though telomere protection and repeat length are unaffected by the absence of Pht1. Strikingly, the chromosome entanglement in pht1Delta anaphase cells can be rescued by forcing chromosome condensation before anaphase onset. We show that the condensin complex, required for the maintenance of anaphase chromosome condensation, prematurely dissociates from chromatin in the absence of Pht1. This and other findings suggest an important role for H2A.Z in the architecture of anaphase chromosomes.
Collapse
Affiliation(s)
- Hyun-Soo Kim
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ang SL. Foxa1 and Foxa2 transcription factors regulate differentiation of midbrain dopaminergic neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 651:58-65. [PMID: 19731550 DOI: 10.1007/978-1-4419-0322-8_5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Midbrain dopaminergic neurons (mDA), comprising the substanti nigra pars compacta (A8), the ventral tegmental area (A9) and the retrorubal field (A10) subgroups, are generated from floor plate progenitors, rostral to the isthmic boundary. Floor plate progenitors are specified to become mDA progenitors between embryonic days 8.0 and 10.5. Subsequently these progenitors undergo neuronal differentiation in two phases, termed early and late differentiation to generate immature and mature neurons respectively. Genes that regulate specification, early and late phases of differentiation ofmDA cells have recently been identified. Among them, the forkhead winged helix transcription factors Foxal and Foxa2 (Foxa1/2), have been shown to have essential and dose dependent roles at multiple phases of development. In this chapter, I will summarize recent studies demonstrating a role for Foxa1/2 in regulating the neuronal specification and differentiation ofmDA progenitors and conclude with projections on future directions of this area of research.
Collapse
|
40
|
Petty EL, Collette KS, Cohen AJ, Snyder MJ, Csankovszki G. Restricting dosage compensation complex binding to the X chromosomes by H2A.Z/HTZ-1. PLoS Genet 2009; 5:e1000699. [PMID: 19851459 PMCID: PMC2760203 DOI: 10.1371/journal.pgen.1000699] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 09/23/2009] [Indexed: 01/15/2023] Open
Abstract
Dosage compensation ensures similar levels of X-linked gene products in males (XY or XO) and females (XX), despite their different numbers of X chromosomes. In mammals, flies, and worms, dosage compensation is mediated by a specialized machinery that localizes to one or both of the X chromosomes in one sex resulting in a change in gene expression from the affected X chromosome(s). In mammals and flies, dosage compensation is associated with specific histone posttranslational modifications and replacement with variant histones. Until now, no specific histone modifications or histone variants have been implicated in Caenorhabditis elegans dosage compensation. Taking a candidate approach, we have looked at specific histone modifications and variants on the C. elegans dosage compensated X chromosomes. Using RNAi-based assays, we show that reducing levels of the histone H2A variant, H2A.Z (HTZ-1 in C. elegans), leads to partial disruption of dosage compensation. By immunofluorescence, we have observed that HTZ-1 is under-represented on the dosage compensated X chromosomes, but not on the non-dosage compensated male X chromosome. We find that reduction of HTZ-1 levels by RNA interference (RNAi) and mutation results in only a very modest change in dosage compensation complex protein levels. However, in these animals, the X chromosome-specific localization of the complex is partially disrupted, with some nuclei displaying DCC localization beyond the X chromosome territory. We propose a model in which HTZ-1, directly or indirectly, serves to restrict the dosage compensation complex to the X chromosome by acting as or regulating the activity of an autosomal repellant.
Collapse
Affiliation(s)
- Emily L. Petty
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Karishma S. Collette
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alysse J. Cohen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Martha J. Snyder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Györgyi Csankovszki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
41
|
Yuzyuk T, Fakhouri THI, Kiefer J, Mango SE. The polycomb complex protein mes-2/E(z) promotes the transition from developmental plasticity to differentiation in C. elegans embryos. Dev Cell 2009; 16:699-710. [PMID: 19460346 DOI: 10.1016/j.devcel.2009.03.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 01/08/2009] [Accepted: 03/06/2009] [Indexed: 12/19/2022]
Abstract
We have used expression profiling and in vivo imaging to characterize Caenorhabditis elegans embryos as they transit from a developmentally plastic state to the onset of differentiation. Normally, this transition is accompanied by activation of developmental regulators and differentiation genes, downregulation of early-expressed genes, and large-scale reorganization of chromatin. We find that loss of plasticity and differentiation onset depends on the Polycomb complex protein mes-2/E(Z). mes-2 mutants display prolonged developmental plasticity in response to heterologous developmental regulators. Early-expressed genes remain active, differentiation genes fail to reach wild-type levels, and chromatin retains a decompacted morphology in mes-2 mutants. By contrast, loss of the developmental regulators pha-4/FoxA or end-1/GATA does not prolong plasticity. This study establishes a model by which to analyze developmental plasticity within an intact embryo. mes-2 orchestrates large-scale changes in chromatin organization and gene expression to promote the timely loss of developmental plasticity. Our findings indicate that loss of plasticity can be uncoupled from cell fate specification.
Collapse
Affiliation(s)
- T Yuzyuk
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
42
|
Gévry N, Hardy S, Jacques PE, Laflamme L, Svotelis A, Robert F, Gaudreau L. Histone H2A.Z is essential for estrogen receptor signaling. Genes Dev 2009; 23:1522-33. [PMID: 19515975 DOI: 10.1101/gad.1787109] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Incorporation of H2A.Z into the chromatin of inactive promoters has been shown to poise genes for their expression. Here we provide strong evidence that H2A.Z is incorporated into the promoter regions of estrogen receptor (ERalpha) target genes only upon gene induction, and that, in a cyclic pattern. Moreover, members of the human H2A.Z-depositing complex, p400, also follow the same gene recruitment kinetics as H2A.Z. Importantly, cellular depletion of H2A.Z or p400 leads to a severe defect in estrogen signaling, including loss of estrogen-specific cell proliferation. We find that incorporation of H2A.Z within TFF1 promoter chromatin allows nucleosomes to adopt preferential positions along the DNA translational axis. Finally, we provide evidence that H2A.Z is essential to allow estrogen-responsive enhancer function. Taken together, our results provide strong mechanistic insight into how H2A.Z regulates ERalpha-mediated gene expression and provide a novel link between H2A.Z-p400 and ERalpha-dependent gene regulation and enhancer function.
Collapse
Affiliation(s)
- Nicolas Gévry
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Gervais AL, Gaudreau L. Discriminating nucleosomes containing histone H2A.Z or H2A based on genetic and epigenetic information. BMC Mol Biol 2009; 10:18. [PMID: 19261190 PMCID: PMC2660331 DOI: 10.1186/1471-2199-10-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 03/04/2009] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nucleosomes are nucleoproteic complexes, formed of eight histone molecules and DNA, and they are responsible for the compaction of the eukaryotic genome. Their presence on DNA influences many cellular processes, such as transcription, DNA replication, and DNA repair. The evolutionarily conserved histone variant H2A.Z alters nucleosome stability and is highly enriched at gene promoters. Its localization to specific genomic loci in human cells is presumed to depend either on the underlying DNA sequence or on a certain epigenetic modification pattern. RESULTS We analyzed the differences in histone post-translational modifications and DNA sequences near nucleosomes that do or do not contain H2A.Z. We show that both the epigenetic context and underlying sequences can be used to classify nucleosomal regions, with highly significant accuracy, as likely to either contain H2A.Z or canonical histone H2A. Furthermore, our models accurately recapitulate the observed nucleosome occupancy near the transcriptional start sites of human promoters. CONCLUSION We conclude that both genetic and epigenetic features are likely to participate in targeting H2A.Z to distinct chromatin loci.
Collapse
Affiliation(s)
- Alain L Gervais
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | | |
Collapse
|
44
|
Abstract
The digestive tracts of many animals are epithelial tubes with specialized compartments to break down food, remove wastes, combat infection, and signal nutrient availability. C. elegans possesses a linear, epithelial gut tube with foregut, midgut, and hindgut sections. The simple anatomy belies the developmental complexity that is involved in forming the gut from a pool of heterogeneous precursor cells. Here, I focus on the processes that specify cell fates and control morphogenesis within the embryonic foregut (pharynx) and the developmental roles of the pharynx after birth. Maternally donated factors in the pregastrula embryo converge on pha-4, a FoxA transcription factor that specifies organ identity for pharyngeal precursors. Positive feedback loops between PHA-4 and other transcription factors ensure commitment to pharyngeal fate. Binding-site affinity of PHA-4 for its target promoters contributes to the progression of the pharyngeal precursors towards differentiation. During morphogenesis, the pharyngeal precursors form an epithelial tube in a process that is independent of cadherins, catenins, and integrins but requires the kinesin zen-4/MKLP1. After birth, the pharynx and/or pha-4 are involved in repelling pathogens and controlling aging.
Collapse
Affiliation(s)
- Susan E Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
45
|
Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 2008; 456:125-9. [PMID: 18815594 PMCID: PMC2877514 DOI: 10.1038/nature07324] [Citation(s) in RCA: 421] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Accepted: 08/07/2008] [Indexed: 11/09/2022]
Abstract
Eukaryotic chromatin is separated into functional domains differentiated by post-translational histone modifications, histone variants and DNA methylation. Methylation is associated with repression of transcriptional initiation in plants and animals, and is frequently found in transposable elements. Proper methylation patterns are crucial for eukaryotic development, and aberrant methylation-induced silencing of tumour suppressor genes is a common feature of human cancer. In contrast to methylation, the histone variant H2A.Z is preferentially deposited by the Swr1 ATPase complex near 5' ends of genes where it promotes transcriptional competence. How DNA methylation and H2A.Z influence transcription remains largely unknown. Here we show that in the plant Arabidopsis thaliana regions of DNA methylation are quantitatively deficient in H2A.Z. Exclusion of H2A.Z is seen at sites of DNA methylation in the bodies of actively transcribed genes and in methylated transposons. Mutation of the MET1 DNA methyltransferase, which causes both losses and gains of DNA methylation, engenders opposite changes (gains and losses) in H2A.Z deposition, whereas mutation of the PIE1 subunit of the Swr1 complex that deposits H2A.Z leads to genome-wide hypermethylation. Our findings indicate that DNA methylation can influence chromatin structure and effect gene silencing by excluding H2A.Z, and that H2A.Z protects genes from DNA methylation.
Collapse
Affiliation(s)
- Daniel Zilberman
- University of California, 211 Koshland Hall, Berkeley, California 94720, USA.
| | | | | | | |
Collapse
|
46
|
Whittle CM, McClinic KN, Ercan S, Zhang X, Green RD, Kelly WG, Lieb JD. The genomic distribution and function of histone variant HTZ-1 during C. elegans embryogenesis. PLoS Genet 2008; 4:e1000187. [PMID: 18787694 PMCID: PMC2522285 DOI: 10.1371/journal.pgen.1000187] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 08/04/2008] [Indexed: 12/29/2022] Open
Abstract
In all eukaryotes, histone variants are incorporated into a subset of nucleosomes to create functionally specialized regions of chromatin. One such variant, H2A.Z, replaces histone H2A and is required for development and viability in all animals tested to date. However, the function of H2A.Z in development remains unclear. Here, we use ChIP-chip, genetic mutation, RNAi, and immunofluorescence microscopy to interrogate the function of H2A.Z (HTZ-1) during embryogenesis in Caenorhabditis elegans, a key model of metazoan development. We find that HTZ-1 is expressed in every cell of the developing embryo and is essential for normal development. The sites of HTZ-1 incorporation during embryogenesis reveal a genome wrought by developmental processes. HTZ-1 is incorporated upstream of 23% of C. elegans genes. While these genes tend to be required for development and occupied by RNA polymerase II, HTZ-1 incorporation does not specify a stereotypic transcription program. The data also provide evidence for unexpectedly widespread independent regulation of genes within operons during development; in 37% of operons, HTZ-1 is incorporated upstream of internally encoded genes. Fewer sites of HTZ-1 incorporation occur on the X chromosome relative to autosomes, which our data suggest is due to a paucity of developmentally important genes on X, rather than a direct function for HTZ-1 in dosage compensation. Our experiments indicate that HTZ-1 functions in establishing or maintaining an essential chromatin state at promoters regulated dynamically during C. elegans embryogenesis. To fit within a cell's nucleus, DNA is wrapped around protein spools composed of the histones H3, H4, H2A, and H2B. One spool and the DNA wrapped around it are called a nucleosome, and all of the packaged DNA in a cell's nucleus is collectively called “chromatin.” Chromatin is important because it modulates access to information encoded in the underlying DNA. Spools with specialized functions can be created by replacing a typical histone component with a variant version of the histone protein. Here, we examine the distribution and function of the C. elegans histone H2A variant H2A.Z (called HTZ-1) during development. We demonstrate that HTZ-1 is required for proper development, and that embryos are dependent on a contribution of HTZ-1 from their mothers for survival. We mapped the location of HTZ-1 incorporation genome-wide and found that HTZ-1 binds upstream of 23% of genes, which tend to be genes that are essential for development and occupied by RNA polymerase. Fewer sites of HTZ-1 incorporation were found on the X chromosome, probably due to an under-representation of essential genes on X rather than a direct role for HTZ-1 in X-chromosome dosage compensation. Our study reveals how the genome is remodeled by HTZ-1 to allow the proper regulation of genes critical for development.
Collapse
Affiliation(s)
- Christina M. Whittle
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for the Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Karissa N. McClinic
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Genetics and Molecular Biology Program, Emory University, Atlanta, Georgia, United States of America
| | - Sevinc Ercan
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for the Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Xinmin Zhang
- Nimblegen Systems, Inc., Madison, Wisconsin, United States of America
| | - Roland D. Green
- Nimblegen Systems, Inc., Madison, Wisconsin, United States of America
| | - William G. Kelly
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Genetics and Molecular Biology Program, Emory University, Atlanta, Georgia, United States of America
| | - Jason D. Lieb
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for the Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
47
|
Mavrich TN, Jiang C, Ioshikhes IP, Li X, Venters BJ, Zanton SJ, Tomsho LP, Qi J, Glaser RL, Schuster SC, Gilmour DS, Albert I, Pugh BF. Nucleosome organization in the Drosophila genome. Nature 2008; 453:358-62. [PMID: 18408708 PMCID: PMC2735122 DOI: 10.1038/nature06929] [Citation(s) in RCA: 552] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 03/26/2008] [Indexed: 01/22/2023]
Abstract
Comparative genomics of nucleosome positions provides a powerful means for understanding how the organization of chromatin and the transcription machinery co-evolve. Here we produce a high-resolution reference map of H2A.Z and bulk nucleosome locations across the genome of the fly Drosophila melanogaster and compare it to that from the yeast Saccharomyces cerevisiae. Like Saccharomyces, Drosophila nucleosomes are organized around active transcription start sites in a canonical -1, nucleosome-free region, +1 arrangement. However, Drosophila does not incorporate H2A.Z into the -1 nucleosome and does not bury its transcriptional start site in the +1 nucleosome. At thousands of genes, RNA polymerase II engages the +1 nucleosome and pauses. How the transcription initiation machinery contends with the +1 nucleosome seems to be fundamentally different across major eukaryotic lines.
Collapse
Affiliation(s)
- Travis N Mavrich
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zlatanova J, Thakar A. H2A.Z: view from the top. Structure 2008; 16:166-79. [PMID: 18275809 DOI: 10.1016/j.str.2007.12.008] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 11/26/2007] [Accepted: 12/12/2007] [Indexed: 12/22/2022]
Abstract
For a couple of decades the chromatin field has endured undeserved neglect. Indeed, what could be so exciting about a monotonous repeating structure whose purpose in life was to package DNA? Chromatin glamour is triumphantly back, due to the realization that chromatin is a major player in the regulation of gene expression and other nuclear processes that occur on the DNA template. The dynamics of the structure that regulates transcription is itself regulated by a variety of complex processes, including histone postsynthetic modifications, chromatin remodeling, and the use of nonallelic histone variants. This review is an attempt to understand the mechanisms of action of the evolutionarily conserved variant H2A.Z, a player with a variety of seemingly unrelated, even contrary, functions. This attempt was prompted by the recent avalanche of genome-wide studies that provide insights that were unthinkable until very recently.
Collapse
Affiliation(s)
- Jordanka Zlatanova
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| | | |
Collapse
|
49
|
Rocheleau CE, Cullison K, Huang K, Bernstein Y, Spilker AC, Sundaram MV. The Caenorhabditis elegans ekl (enhancer of ksr-1 lethality) genes include putative components of a germline small RNA pathway. Genetics 2008; 178:1431-43. [PMID: 18245826 PMCID: PMC2278074 DOI: 10.1534/genetics.107.084608] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 01/04/2008] [Indexed: 01/12/2023] Open
Abstract
A canonical Ras-ERK signaling pathway specifies the fate of the excretory duct cell during Caenorhabditis elegans embryogenesis. The paralogs ksr-1 and ksr-2 encode scaffolding proteins that facilitate signaling through this pathway and that act redundantly to promote the excretory duct fate. In a genomewide RNAi screen for genes that, like ksr-2, are required in combination with ksr-1 for the excretory duct cell fate, we identified 16 "ekl" (enhancer of ksr-1 lethality) genes that are largely maternally required and that have molecular identities suggesting roles in transcriptional or post-transcriptional gene regulation. These include the Argonaute gene csr-1 and a specific subset of other genes implicated in endogenous small RNA processes, orthologs of multiple components of the NuA4/Tip60 histone acetyltransferase and CCR4/NOT deadenylase complexes, and conserved enzymes involved in ubiquitination and deubiquitination. The identification of four small RNA regulators (csr-1, drh-3, ego-1, and ekl-1) that share the Ekl phenotype suggests that these genes define a functional pathway required for the production and/or function of particular germline small RNA(s). These small RNAs and the other ekl genes likely control the expression of one or more regulators of Ras-ERK signaling that function at or near the level of kinase suppressor of Ras (KSR).
Collapse
|
50
|
Elgar SJ, Han J, Taylor MV. mef2 activity levels differentially affect gene expression during Drosophila muscle development. Proc Natl Acad Sci U S A 2008; 105:918-23. [PMID: 18198273 PMCID: PMC2242723 DOI: 10.1073/pnas.0711255105] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Indexed: 01/21/2023] Open
Abstract
Cell differentiation is controlled by key transcription factors, and a major question is how they orchestrate cell-type-specific genetic programs. Muscle differentiation is a well studied paradigm in which the conserved Mef2 transcription factor plays a pivotal role. Recent genomic studies have identified a large number of mef2-regulated target genes with distinct temporal expression profiles during Drosophila myogenesis. However, the question remains as to how a single transcription factor can control such diverse patterns of gene expression. In this study we used a strategy combining genomics and developmental genetics to address this issue in vivo during Drosophila muscle development. We found that groups of mef2-regulated genes respond differently to changes in mef2 activity levels: some require higher levels for their expression than others. Furthermore, this differential requirement correlates with when the gene is first expressed during the muscle differentiation program. Genes that require higher levels are activated later. These results implicate mef2 in the temporal regulation of muscle gene expression, and, consistent with this, we show that changes in mef2 activity levels can alter the start of gene expression in a predictable manner. Together these results indicate that Mef2 is not an all-or-none regulator; rather, its action is more subtle, and levels of its activity are important in the differential expression of muscle genes. This suggests a route by which mef2 can orchestrate the muscle differentiation program and contribute to the stringent regulation of gene expression during myogenesis.
Collapse
Affiliation(s)
- Stuart J. Elgar
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, United Kingdom
| | - Jun Han
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, United Kingdom
| | - Michael V. Taylor
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, United Kingdom
| |
Collapse
|