1
|
Schmidleithner L, Stüve P, Feuerer M. Transposable elements as instructors of the immune system. Nat Rev Immunol 2025:10.1038/s41577-025-01172-3. [PMID: 40301669 DOI: 10.1038/s41577-025-01172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2025] [Indexed: 05/01/2025]
Abstract
Transposable elements (TEs) are mobile repetitive nucleic acid sequences that have been incorporated into the genome through spontaneous integration, accounting for almost 50% of human DNA. Even though most TEs are no longer mobile today, studies have demonstrated that they have important roles in different biological processes, such as ageing, embryonic development, and cancer. TEs influence these processes through various mechanisms, including active transposition of TEs contributing to ongoing evolution, transposon transcription generating RNA or protein, and by influencing gene regulation as enhancers. However, how TEs interact with the immune system remains a largely unexplored field. In this Perspective, we describe how TEs might influence different aspects of the immune system, such as innate immune responses, T cell activation and differentiation, and tissue adaptation. Furthermore, TEs can serve as a source of neoantigens for T cells in antitumour immunity. We suggest that TE biology is an important emerging field of immunology and discuss the potential to harness the TE network therapeutically, for example, to improve immunotherapies for cancer and autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
| | - Philipp Stüve
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Markus Feuerer
- Leibniz Institute for Immunotherapy, Regensburg, Germany.
- Chair for Immunology, University Regensburg, Regensburg, Germany.
| |
Collapse
|
2
|
Cranz-Mileva S, Reilly E, Chalhoub N, Patel R, Atanassova T, Cao W, Ellison C, Zaratiegui M. Transposon Removal Reveals Their Adaptive Fitness Contribution. Genome Biol Evol 2024; 16:evae010. [PMID: 38245838 PMCID: PMC10836971 DOI: 10.1093/gbe/evae010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
Transposable elements are molecular parasites that persist in their host genome by generating new copies to outpace natural selection. Transposable elements exert a large influence on host genome evolution, in some cases providing adaptive changes. Here we measure the fitness effect of the transposable element insertions in the fission yeast Schizosaccharomyces pombe type strain by removing all insertions of its only native transposable element family, the long terminal repeat retrotransposon Tf2. We show that Tf2 elements provide a positive fitness contribution to its host. Tf2 ablation results in changes to the regulation of a mitochondrial gene and, consistently, the fitness effect are sensitive to growth conditions. We propose that Tf2 influences host fitness in a directed manner by dynamically rewiring the transcriptional response to metabolic stress.
Collapse
Affiliation(s)
- Susanne Cranz-Mileva
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Eve Reilly
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Noor Chalhoub
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Rohan Patel
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Tania Atanassova
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Weihuan Cao
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Christopher Ellison
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Mikel Zaratiegui
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
3
|
Hays M, Schwartz K, Schmidtke DT, Aggeli D, Sherlock G. Paths to adaptation under fluctuating nitrogen starvation: The spectrum of adaptive mutations in Saccharomyces cerevisiae is shaped by retrotransposons and microhomology-mediated recombination. PLoS Genet 2023; 19:e1010747. [PMID: 37192196 PMCID: PMC10218751 DOI: 10.1371/journal.pgen.1010747] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/26/2023] [Accepted: 04/14/2023] [Indexed: 05/18/2023] Open
Abstract
There are many mechanisms that give rise to genomic change: while point mutations are often emphasized in genomic analyses, evolution acts upon many other types of genetic changes that can result in less subtle perturbations. Changes in chromosome structure, DNA copy number, and novel transposon insertions all create large genomic changes, which can have correspondingly large impacts on phenotypes and fitness. In this study we investigate the spectrum of adaptive mutations that arise in a population under consistently fluctuating nitrogen conditions. We specifically contrast these adaptive alleles and the mutational mechanisms that create them, with mechanisms of adaptation under batch glucose limitation and constant selection in low, non-fluctuating nitrogen conditions to address if and how selection dynamics influence the molecular mechanisms of evolutionary adaptation. We observe that retrotransposon activity accounts for a substantial number of adaptive events, along with microhomology-mediated mechanisms of insertion, deletion, and gene conversion. In addition to loss of function alleles, which are often exploited in genetic screens, we identify putative gain of function alleles and alleles acting through as-of-yet unclear mechanisms. Taken together, our findings emphasize that how selection (fluctuating vs. non-fluctuating) is applied also shapes adaptation, just as the selective pressure (nitrogen vs. glucose) does itself. Fluctuating environments can activate different mutational mechanisms, shaping adaptive events accordingly. Experimental evolution, which allows a wider array of adaptive events to be assessed, is thus a complementary approach to both classical genetic screens and natural variation studies to characterize the genotype-to-phenotype-to-fitness map.
Collapse
Affiliation(s)
- Michelle Hays
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Katja Schwartz
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Danica T. Schmidtke
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Dimitra Aggeli
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
4
|
Gusa A, Yadav V, Roth C, Williams JD, Shouse EM, Magwene P, Heitman J, Jinks-Robertson S. Genome-wide analysis of heat stress-stimulated transposon mobility in the human fungal pathogen Cryptococcus deneoformans. Proc Natl Acad Sci U S A 2023; 120:e2209831120. [PMID: 36669112 PMCID: PMC9942834 DOI: 10.1073/pnas.2209831120] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/16/2022] [Indexed: 01/21/2023] Open
Abstract
We recently reported transposon mutagenesis as a significant driver of spontaneous mutations in the human fungal pathogen Cryptococcus deneoformans during murine infection. Mutations caused by transposable element (TE) insertion into reporter genes were dramatically elevated at high temperatures (37° vs. 30°) in vitro, suggesting that heat stress stimulates TE mobility in the Cryptococcus genome. To explore the genome-wide impact of TE mobilization, we generated transposon accumulation lines by in vitro passage of C. deneoformans strain XL280α for multiple generations at both 30° and at the host-relevant temperature of 37°. Utilizing whole-genome sequencing, we identified native TE copies and mapped multiple de novo TE insertions in these lines. Movements of the T1 DNA transposon occurred at both temperatures with a strong bias for insertion between gene-coding regions. By contrast, the Tcn12 retrotransposon integrated primarily within genes and movement occurred exclusively at 37°. In addition, we observed a dramatic amplification in copy number of the Cnl1 (Cryptococcus neoformans LINE-1) retrotransposon in subtelomeric regions under heat-stress conditions. Comparing TE mutations to other sequence variations detected in passaged lines, the increase in genomic changes at elevated temperatures was primarily due to mobilization of the retroelements Tcn12 and Cnl1. Finally, we found multiple TE movements (T1, Tcn12, and Cnl1) in the genomes of single C. deneoformans isolates recovered from infected mice, providing evidence that mobile elements are likely to facilitate microevolution and rapid adaptation during infection.
Collapse
Affiliation(s)
- Asiya Gusa
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC27710
| | - Vikas Yadav
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC27710
| | - Cullen Roth
- Department of Biology, Duke University, Durham, NC27710
| | - Jonathan D. Williams
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC27710
| | - Eva Mei Shouse
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC27710
| | - Paul Magwene
- Department of Biology, Duke University, Durham, NC27710
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC27710
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC27710
| |
Collapse
|
5
|
Tusso S, Suo F, Liang Y, Du LL, Wolf JBW. Reactivation of transposable elements following hybridization in fission yeast. Genome Res 2021; 32:324-336. [PMID: 34907076 PMCID: PMC8805722 DOI: 10.1101/gr.276056.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022]
Abstract
Hybridization is thought to reactivate transposable elements (TEs) that were efficiently suppressed in the genomes of the parental hosts. Here, we provide evidence for this “genomic shock hypothesis” in the fission yeast Schizosaccharomyces pombe. In this species, two divergent lineages (Sp and Sk) have experienced recent, likely human-induced, hybridization. We used long-read sequencing data to assemble genomes of 37 samples derived from 31 S. pombe strains spanning a wide range of ancestral admixture proportions. A comprehensive TE inventory revealed exclusive presence of long terminal repeat (LTR) retrotransposons. Sequence analysis of active full-length elements, as well as solo LTRs, revealed a complex history of homologous recombination. Population genetic analyses of syntenic sequences placed insertion of many solo LTRs before the split of the Sp and Sk lineages. Most full-length elements were inserted more recently, after hybridization. With the exception of a single full-length element with signs of positive selection, both solo LTRs and, in particular, full-length elements carry signatures of purifying selection indicating effective removal by the host. Consistent with reactivation upon hybridization, the number of full-length LTR retrotransposons, varying extensively from zero to 87 among strains, significantly increases with the degree of genomic admixture. This study gives a detailed account of global TE diversity in S. pombe, documents complex recombination histories within TE elements, and provides evidence for the “genomic shock hypothesis.”
Collapse
Affiliation(s)
| | - Fang Suo
- National Institute of Biological Sciences
| | - Yue Liang
- National Institute of Biological Sciences
| | - Li-Lin Du
- National Institute of Biological Sciences
| | | |
Collapse
|
6
|
Long Terminal Repeat Retrotransposon Afut4 Promotes Azole Resistance of Aspergillus fumigatus by Enhancing the Expression of sac1 Gene. Antimicrob Agents Chemother 2021; 65:e0029121. [PMID: 34516252 DOI: 10.1128/aac.00291-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus causes a series of invasive diseases, including the high-mortality invasive aspergillosis, and has been a serious global health threat because of its increased resistance to the first-line clinical triazoles. We analyzed the whole-genome sequence of 15 A. fumigatus strains from China and found that long terminal repeat retrotransposons (LTR-RTs), including Afut1, Afut2, Afut3, and Afut4, are most common and have the largest total nucleotide length among all transposable elements in A. fumigatus. Deleting one of the most enriched Afut4977-sac1 in azole-resistant strains decreased azole resistance and downregulated its nearby gene, sac1, but it did not significantly affect the expression of genes of the ergosterol synthesis pathway. We then discovered that 5'LTR of Afut4977-sac1 had promoter activity and enhanced the adjacent sac1 gene expression. We found that sac1 is important to A. fumigatus, and the upregulated sac1 caused elevated resistance of A. fumigatus to azoles. Finally, we showed that Afut4977-sac1 has an evolution pattern similar to that of the whole genome of azole-resistant strains due to azoles; phylogenetic analysis of both the whole genome and Afut4977-sac1 suggests that the insertion of Afut4977-sac1 might have preceded the emergence of azole-resistant strains. Taking these data together, we found that the Afut4977-sac1 LTR-RT might be involved in the regulation of azole resistance of A. fumigatus by upregulating its nearby sac1 gene.
Collapse
|
7
|
Maxwell PH. Diverse transposable element landscapes in pathogenic and nonpathogenic yeast models: the value of a comparative perspective. Mob DNA 2020; 11:16. [PMID: 32336995 PMCID: PMC7175516 DOI: 10.1186/s13100-020-00215-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Genomics and other large-scale analyses have drawn increasing attention to the potential impacts of transposable elements (TEs) on their host genomes. However, it remains challenging to transition from identifying potential roles to clearly demonstrating the level of impact TEs have on genome evolution and possible functions that they contribute to their host organisms. I summarize TE content and distribution in four well-characterized yeast model systems in this review: the pathogens Candida albicans and Cryptococcus neoformans, and the nonpathogenic species Saccharomyces cerevisiae and Schizosaccharomyces pombe. I compare and contrast their TE landscapes to their lifecycles, genomic features, as well as the presence and nature of RNA interference pathways in each species to highlight the valuable diversity represented by these models for functional studies of TEs. I then review the regulation and impacts of the Ty1 and Ty3 retrotransposons from Saccharomyces cerevisiae and Tf1 and Tf2 retrotransposons from Schizosaccharomyces pombe to emphasize parallels and distinctions between these well-studied elements. I propose that further characterization of TEs in the pathogenic yeasts would enable this set of four yeast species to become an excellent set of models for comparative functional studies to address outstanding questions about TE-host relationships.
Collapse
|
8
|
Potocki L, Kuna E, Filip K, Kasprzyk B, Lewinska A, Wnuk M. Activation of transposable elements and genetic instability during long-term culture of the human fungal pathogen Candida albicans. Biogerontology 2019; 20:457-474. [PMID: 30989423 PMCID: PMC6593122 DOI: 10.1007/s10522-019-09809-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/08/2019] [Indexed: 02/08/2023]
Abstract
It has been repeatedly reported that transposable elements (TE) become active and/or mobile in the genomes of replicatively and stress-induced senescent mammalian cells. However, the biological role of senescence-associated transposon activation and its occurrence and relevance in other eukaryotic cells remain to be elucidated. In the present study, Candida albicans, a prevalent opportunistic fungal pathogen in humans, was used to analyze changes in gene copy number of selected TE, namely Cirt2, Moa and Cmut1 during long-term culture (up to 90 days). The effects of stress stimuli (fluconazole, hydrogen peroxide, hypochlorite) and ploidy state (haploid, diploid, tetraploid cells) were also considered. An increase in copy number of Cirt2 and Moa was the most accented in tetraploid cells after 90 days of culture that was accompanied by changes in karyotype patterns and slightly more limited growth rate compared to haploid and diploid cells. Stress stimuli did not potentiate TE activity. Elevation in chromosomal DNA breaks was also observed during long-term culture of cells of different ploidy, however this was not correlated with increased TE activity. Our results suggest that increased TE activity may promote genomic diversity and plasticity, and cellular heterogeneity during long-term culture of C. albicans cells.
Collapse
Affiliation(s)
- Leszek Potocki
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Ewelina Kuna
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Kamila Filip
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Beata Kasprzyk
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Anna Lewinska
- Department of Cell Biochemistry, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland.
| | - Maciej Wnuk
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland.
| |
Collapse
|
9
|
Esnault C, Lee M, Ham C, Levin HL. Transposable element insertions in fission yeast drive adaptation to environmental stress. Genome Res 2018; 29:85-95. [PMID: 30541785 PMCID: PMC6314160 DOI: 10.1101/gr.239699.118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/15/2018] [Indexed: 01/06/2023]
Abstract
Cells are regularly exposed to a range of naturally occurring stress that can restrict growth or cause lethality. In response, cells activate expression networks with hundreds of genes that together increase resistance to common environmental insults. However, stress response networks can be insufficient to ensure survival, which raises the question of whether cells possess genetic programs that can promote adaptation to novel forms of stress. We found transposable element (TE) mobility in Schizosaccharomyces pombe was greatly increased when cells were exposed to unusual forms of stress such as heavy metals, caffeine, and the plasticizer phthalate. By subjecting TE-tagged cells to CoCl2, we found the TE integration provided the major path to resistance. Groups of insertions that provided resistance were linked to TOR regulation and metal response genes. We extended our study of adaptation by analyzing TE positions in 57 genetically distinct wild strains. The genomic positions of 1048 polymorphic LTRs were strongly associated with a range of stress response genes, indicating TE integration promotes adaptation in natural conditions. These data provide strong support for the idea, first proposed by Barbara McClintock, that TEs provide a system to modify the genome in response to stress.
Collapse
Affiliation(s)
- Caroline Esnault
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael Lee
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chloe Ham
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Henry L Levin
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
10
|
Nakase Y, Matsumoto T. The RHEB-mTOR axis regulates expression of Tf2 transposons in fission yeast. J Cell Sci 2018; 131:jcs.221457. [PMID: 30301783 DOI: 10.1242/jcs.221457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/01/2018] [Indexed: 01/12/2023] Open
Abstract
The human TSC2 gene, mutations in which predispose individuals to the disease tuberous sclerosis complex (TSC), encodes a GTPase-activating protein for the GTPase RHEB. Loss of TSC2 results in constitutive activation of RHEB and its target mammalian target of rapamycin (mTOR). We have previously reported that fission yeast (Schizosaccharomyces pombe) Tf2 retrotransposons (hereafter Tf2s) are abnormally induced upon nitrogen starvation in cells lacking the tsc2+ gene (Δtsc2), a homolog of the human TSC2 gene, and in cells with a dominant-active mutation in the fission yeast RHEB GTPase (rhb1-DA4). We report here that induction of Tf2s in these mutants is suppressed upon overexpression of the cgs2+ gene, which encodes a cAMP-specific phosphodiesterase, or upon deletion of components in the glucose/cAMP signaling pathway, namely Cyr1, Pka1, Tor1 and the stress-activated transcription factor Atf1. The results suggest that the glucose/cAMP signaling pathway is downregulated when cells are starved for nitrogen. We also show that Tf2 proteins are degraded via autophagy, which is under control of Tor2, a homolog of human mTOR. It appears that failure in the two processes, downregulation of the glucose/cAMP signaling pathway and induction of autophagy, allows abnormal induction of Tf2s upon nitrogen starvation in Δtsc2 and rhb1-DA4 cells.
Collapse
Affiliation(s)
- Yukiko Nakase
- Radiation Biology Center, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto 606-8501, Japan
| | - Tomohiro Matsumoto
- Radiation Biology Center, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto 606-8501, Japan .,Graduate School of Biostudies, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto 606-8501, Japan
| |
Collapse
|
11
|
Zhao RY. Yeast for virus research. MICROBIAL CELL (GRAZ, AUSTRIA) 2017; 4:311-330. [PMID: 29082230 PMCID: PMC5657823 DOI: 10.15698/mic2017.10.592] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/27/2017] [Indexed: 12/25/2022]
Abstract
Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented.
Collapse
Affiliation(s)
- Richard Yuqi Zhao
- Department of Pathology, Department of Microbiology and Immunology, Institute of Global Health, and Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet 2017; 18:292-308. [PMID: 28286338 DOI: 10.1038/nrg.2017.7] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transposable elements and retroviruses are found in most genomes, can be pathogenic and are widely used as gene-delivery and functional genomics tools. Exploring whether these genetic elements target specific genomic sites for integration and how this preference is achieved is crucial to our understanding of genome evolution, somatic genome plasticity in cancer and ageing, host-parasite interactions and genome engineering applications. High-throughput profiling of integration sites by next-generation sequencing, combined with large-scale genomic data mining and cellular or biochemical approaches, has revealed that the insertions are usually non-random. The DNA sequence, chromatin and nuclear context, and cellular proteins cooperate in guiding integration in eukaryotic genomes, leading to a remarkable diversity of insertion site distribution and evolutionary strategies.
Collapse
|
13
|
Multiple Transcriptional and Post-transcriptional Pathways Collaborate to Control Sense and Antisense RNAs of Tf2 Retroelements in Fission Yeast. Genetics 2016; 205:621-632. [PMID: 28007890 DOI: 10.1534/genetics.116.193870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/21/2016] [Indexed: 01/06/2023] Open
Abstract
Retrotransposons are mobile genetic elements that colonize eukaryotic genomes by replicating through an RNA intermediate. As retrotransposons can move within the host genome, defense mechanisms have evolved to repress their potential mutagenic activities. In the fission yeast Schizosaccharomyces pombe, the mRNA of Tf2 long terminal repeat retrotransposons is targeted for degradation by the 3'-5' exonucleolytic activity of the exosome-associated protein Rrp6. Here, we show that the nuclear poly(A)-binding protein Pab2 functions with Rrp6 to negatively control Tf2 mRNA accumulation. Furthermore, we found that Pab2/Rrp6-dependent RNA elimination functions redundantly to the transcriptional silencing mediated by the CENP-B homolog, Abp1, in the suppression of antisense Tf2 RNA accumulation. Interestingly, the absence of Pab2 attenuated the derepression of Tf2 transcription and the increased frequency of Tf2 mobilization caused by the deletion of abp1 Our data also reveal that the expression of antisense Tf2 transcripts is developmentally regulated and correlates with decreased levels of Tf2 mRNA. Our findings suggest that transcriptional and post-transcriptional pathways cooperate to control sense and antisense RNAs expressed from Tf2 retroelements.
Collapse
|
14
|
Restriction of Retrotransposon Mobilization in Schizosaccharomyces pombe by Transcriptional Silencing and Higher-Order Chromatin Organization. Genetics 2016; 203:1669-78. [PMID: 27343236 PMCID: PMC4981269 DOI: 10.1534/genetics.116.189118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/20/2016] [Indexed: 12/23/2022] Open
Abstract
Uncontrolled propagation of retrotransposons is potentially detrimental to host genome integrity. Therefore, cells have evolved surveillance mechanisms to restrict the mobility of these elements. In Schizosaccharomyces pombe the Tf2 LTR retrotransposons are transcriptionally silenced and are also clustered in the nucleus into structures termed Tf bodies. Here we describe the impact of silencing and clustering on the mobility of an endogenous Tf2 element. Deletion of genes such as set1+ (histone H3 lysine 4 methyltransferase) or abp1+ (CENP-B homolog) that both alleviate silencing and clustering, result in a corresponding increase in mobilization. Furthermore, expression of constitutively active Sre1, a transcriptional activator of Tf2 elements, also alleviates clustering and induces mobilization. In contrast, clustering is not disrupted by loss of the HIRA histone chaperone, despite high levels of expression, and in this background, mobilization frequency is only marginally increased. Thus, mutations that compromise transcriptional silencing but not Tf bodies are insufficient to drive mobilization. Furthermore, analyses of mutant alleles that separate the transcriptional repression and clustering functions of Set1 are consistent with control of Tf2 propagation via a combination of silencing and spatial organization. Our results indicate that host surveillance mechanisms operate at multiple levels to restrict Tf2 retrotransposon mobilization.
Collapse
|
15
|
Biochemical Characterization of Kat1: a Domesticated hAT-Transposase that Induces DNA Hairpin Formation and MAT-Switching. Sci Rep 2016; 6:21671. [PMID: 26902909 PMCID: PMC4763223 DOI: 10.1038/srep21671] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/28/2016] [Indexed: 11/08/2022] Open
Abstract
Kluyveromyces lactis hAT-transposase 1 (Kat1) generates hairpin-capped DNA double strand breaks leading to MAT-switching (MATa to MATα). Using purified Kat1, we demonstrate the importance of terminal inverted repeats and subterminal repeats for its endonuclease activity. Kat1 promoted joining of the transposon end into a target DNA molecule in vitro, a biochemical feature that ties Kat1 to transposases. Gas-phase Electrophoretic Mobility Macromolecule analysis revealed that Kat1 can form hexamers when complexed with DNA. Kat1 point mutants were generated in conserved positions to explore structure-function relationships. Mutants of predicted catalytic residues abolished both DNA cleavage and strand-transfer. Interestingly, W576A predicted to be impaired for hairpin formation, was active for DNA cleavage and supported wild type levels of mating-type switching. In contrast, the conserved CXXH motif was critical for hairpin formation because Kat1 C402A/H405A completely blocked hairpinning and switching, but still generated nicks in the DNA. Mutations in the BED zinc-finger domain (C130A/C133A) resulted in an unspecific nuclease activity, presumably due to nonspecific DNA interaction. Kat1 mutants that were defective for cleavage in vitro were also defective for mating-type switching. Collectively, this study reveals Kat1 sharing extensive biochemical similarities with cut and paste transposons despite being domesticated and evolutionary diverged from active transposons.
Collapse
|
16
|
Persson J, Steglich B, Smialowska A, Boyd M, Bornholdt J, Andersson R, Schurra C, Arcangioli B, Sandelin A, Nielsen O, Ekwall K. Regulating retrotransposon activity through the use of alternative transcription start sites. EMBO Rep 2016; 17:753-68. [PMID: 26902262 PMCID: PMC5341516 DOI: 10.15252/embr.201541866] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/13/2016] [Indexed: 01/22/2023] Open
Abstract
Retrotransposons, the ancestors of retroviruses, have the potential for gene disruption and genomic takeover if not kept in check. Paradoxically, although host cells repress these elements by multiple mechanisms, they are transcribed and are even activated under stress conditions. Here, we describe a new mechanism of retrotransposon regulation through transcription start site (TSS) selection by altered nucleosome occupancy. We show that Fun30 chromatin remodelers cooperate to maintain a high level of nucleosome occupancy at retrotransposon-flanking long terminal repeat (LTR) elements. This enforces the use of a downstream TSS and the production of a truncated RNA incapable of reverse transcription and retrotransposition. However, in stressed cells, nucleosome occupancy at LTR elements is reduced, and the TSS shifts to allow for productive transcription. We propose that controlled retrotransposon transcription from a nonproductive TSS allows for rapid stress-induced activation, while preventing uncontrolled transposon activity in the genome.
Collapse
Affiliation(s)
- Jenna Persson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Babett Steglich
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Agata Smialowska
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Mette Boyd
- Department of Biology, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jette Bornholdt
- Department of Biology, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Robin Andersson
- Department of Biology, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | - Catherine Schurra
- Unite Dynamique du Génome, Département Génomes et Génétique, Pasteur Institute, Paris, France
| | - Benoit Arcangioli
- Unite Dynamique du Génome, Département Génomes et Génétique, Pasteur Institute, Paris, France
| | - Albin Sandelin
- Department of Biology, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Olaf Nielsen
- Department of Biology, Cell Cycle and Genome Stability Group, University of Copenhagen, Copenhagen, Denmark
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
17
|
Esnault C, Levin HL. The Long Terminal Repeat Retrotransposons Tf1 and Tf2 of Schizosaccharomyces pombe. Microbiol Spectr 2015; 3:10.1128/microbiolspec.MDNA3-0040-2014. [PMID: 26350316 PMCID: PMC6388632 DOI: 10.1128/microbiolspec.mdna3-0040-2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Indexed: 12/15/2022] Open
Abstract
The long terminal repeat (LTR) retrotransposons Tf1 and Tf2 of Schizosaccharomyces pombe are active mobile elements of the Ty3/gypsy family. The mobilization of these retrotransposons depends on particle formation, reverse transcription and integration, processes typical of other LTR retrotransposons. However, Tf1 and Tf2 are distinct from other LTR elements in that they assemble virus-like particles from a single primary translation product, initiate reverse transcription with an unusual self-priming mechanism, and, in the case of Tf1, integrate with a pattern that favors specific promoters of RNA pol II-transcribed genes. To avoid the chromosome instability and genome damage that results from increased copy number, S. pombe applies a variety of defense mechanisms that restrict Tf1 and Tf2 activity. The mRNA of the Tf elements is eliminated by an exosome-based pathway when cells are in favorable conditions whereas nutrient deprivation triggers an RNA interference-dependent pathway that results in the heterochromatization of the elements. Interestingly, Tf1 integrates into the promoters of stress-induced genes and these insertions are capable of increasing the expression of adjacent genes. These properties of Tf1 transposition raise the possibility that Tf1 benefits cells with specific insertions by providing resistance to environmental stress.
Collapse
Affiliation(s)
- Caroline Esnault
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Henry L Levin
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
18
|
Domesticated transposase Kat1 and its fossil imprints induce sexual differentiation in yeast. Proc Natl Acad Sci U S A 2014; 111:15491-6. [PMID: 25313032 DOI: 10.1073/pnas.1406027111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transposable elements (TEs) have had a major influence on shaping both prokaryotic and eukaryotic genomes, largely through stochastic events following random or near-random insertions. In the mammalian immune system, the recombination activation genes1/2 (Rag1/2) recombinase has evolved from a transposase gene, demonstrating that TEs can be domesticated by the host. In this study, we uncovered a domesticated transposase, Kluyveromyces lactis hobo/Activator/Tam3 (hAT) transposase 1 (Kat1), operating at the fossil imprints of an ancient transposon, that catalyzes the differentiation of cell type. Kat1 induces mating-type switching from mating type a (MATa) to MATα in the yeast K. lactis. Kat1 activates switching by introducing two hairpin-capped DNA double-strand breaks (DSBs) in the MATa1-MATa2 intergenic region, as we demonstrate both in vivo and in vitro. The DSBs stimulate homologous recombination with the cryptic hidden MAT left alpha (HMLα) locus resulting in a switch of the cell type. The sites where Kat1 acts in the MATa locus most likely are ancient remnants of terminal inverted repeats from a long-lost TE. The KAT1 gene is annotated as a pseudogene because it contains two overlapping ORFs. We demonstrate that translation of full-length Kat1 requires a programmed -1 frameshift. The frameshift limited Kat1 activity, because restoring the zero frame causes switching to the MATα genotype. Kat1 also was transcriptionally activated by nutrient limitation via the transcription factor mating type switch 1 (Mts1). A phylogenetic analysis indicated that KAT1 was domesticated specifically in the Kluyveromyces clade of the budding yeasts. We conclude that Kat1 is a highly regulated transposase-derived endonuclease vital for sexual differentiation.
Collapse
|
19
|
Tong Z, Kim MS, Pandey A, Espenshade PJ. Identification of candidate substrates for the Golgi Tul1 E3 ligase using quantitative diGly proteomics in yeast. Mol Cell Proteomics 2014; 13:2871-82. [PMID: 25078903 DOI: 10.1074/mcp.m114.040774] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Maintenance of protein homeostasis is essential for cellular survival. Central to this regulation are mechanisms of protein quality control in which misfolded proteins are recognized and degraded by the ubiquitin-proteasome system. One well-studied protein quality control pathway requires endoplasmic reticulum (ER)-resident, multi-subunit E3 ubiquitin ligases that function in ER-associated degradation. Using fission yeast, our lab identified the Golgi Dsc E3 ligase as required for proteolytic activation of fungal sterol regulatory element-binding protein transcription factors. The Dsc E3 ligase contains five integral membrane subunits and structurally resembles ER-associated degradation E3 ligases. Saccharomyces cerevisiae codes for homologs of Dsc E3 ligase subunits, including the Dsc1 E3 ligase homolog Tul1 that functions in Golgi protein quality control. Interestingly, S. cerevisiae lacks sterol regulatory element-binding protein homologs, indicating that novel Tul1 E3 ligase substrates exist. Here, we show that the S. cerevisiae Tul1 E3 ligase consists of Tul1, Dsc2, Dsc3, and Ubx3 and define Tul1 complex architecture. Tul1 E3 ligase function required each subunit as judged by vacuolar sorting of the artificial substrate Pep12D. Genetic studies demonstrated that Tul1 E3 ligase was required in cells lacking the multivesicular body pathway and under conditions of ubiquitin depletion. To identify candidate substrates, we performed quantitative diGly proteomics using stable isotope labeling by amino acids in cell culture to survey ubiquitylation in wild-type and tul1Δ cells. We identified 3116 non-redundant ubiquitylation sites, including 10 sites in candidate substrates. Quantitative proteomics found 4.5% of quantified proteins (53/1172) to be differentially expressed in tul1Δ cells. Correcting the diGly dataset for these differences increased the number of Tul1-dependent ubiquitylation sites. Together, our data demonstrate that the Tul1 E3 ligase functions in protein homeostasis under non-stress conditions and support a role in protein quality control. This quantitative diGly proteomics methodology will serve as a robust platform for screening for stress conditions that require Tul1 E3 ligase activity.
Collapse
Affiliation(s)
- Zongtian Tong
- From the ‡Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Min-Sik Kim
- §McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Akhilesh Pandey
- §McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ¶Departments of Biological Chemistry, Oncology and Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ‖Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130; **Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana 70130
| | - Peter J Espenshade
- From the ‡Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
20
|
Wheeler BS. Small RNAs, big impact: small RNA pathways in transposon control and their effect on the host stress response. Chromosome Res 2014; 21:587-600. [PMID: 24254230 DOI: 10.1007/s10577-013-9394-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transposons are mobile genetic elements that are a major constituent of most genomes. Organisms regulate transposable element expression, transposition, and insertion site preference, mitigating the genome instability caused by uncontrolled transposition. A recent burst of research has demonstrated the critical role of small non-coding RNAs in regulating transposition in fungi, plants, and animals. While mechanistically distinct, these pathways work through a conserved paradigm. The presence of a transposon is communicated by the presence of its RNA or by its integration into specific genomic loci. These signals are then translated into small non-coding RNAs that guide epigenetic modifications and gene silencing back to the transposon. In addition to being regulated by the host, transposable elements are themselves capable of influencing host gene expression. Transposon expression is responsive to environmental signals, and many transposons are activated by various cellular stresses. TEs can confer local gene regulation by acting as enhancers and can also confer global gene regulation through their non-coding RNAs. Thus, transposable elements can act as stress-responsive regulators that control host gene expression in cis and trans.
Collapse
Affiliation(s)
- Bayly S Wheeler
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, 94720, USA,
| |
Collapse
|
21
|
Mourier T, Nielsen LP, Hansen AJ, Willerslev E. Transposable elements in cancer as a by-product of stress-induced evolvability. Front Genet 2014; 5:156. [PMID: 24910642 PMCID: PMC4038923 DOI: 10.3389/fgene.2014.00156] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/11/2014] [Indexed: 01/18/2023] Open
Abstract
Transposable elements (TEs) are ubiquitous in eukaryotic genomes. Barbara McClintock's famous notion of TEs acting as controlling elements modifying the genetic response of an organism upon exposure to stressful environments has since been solidly supported in a series of model organisms. This requires the TE activity response to possess an element of specificity and be targeted toward certain parts of the genome. We propose that a similar TE response is present in human cells, and that this stress response may drive the onset of human cancers. As such, TE-driven cancers may be viewed as an evolutionary by-product of organisms' abilities to genetically adapt to environmental stress.
Collapse
Affiliation(s)
- Tobias Mourier
- Natural History Museum of Denmark, Centre for GeoGenetics, University of Copenhagen Copenhagen, Denmark
| | - Lars P Nielsen
- Department of Virology and the Danish National Biobank, Statens Serum Institut Copenhagen, Denmark
| | - Anders J Hansen
- Natural History Museum of Denmark, Centre for GeoGenetics, University of Copenhagen Copenhagen, Denmark
| | - Eske Willerslev
- Natural History Museum of Denmark, Centre for GeoGenetics, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
22
|
Rubini A, Riccioni C, Belfiori B, Paolocci F. Impact of the competition between mating types on the cultivation of Tuber melanosporum: Romeo and Juliet and the matter of space and time. MYCORRHIZA 2014; 24 Suppl 1:S19-S27. [PMID: 24384788 DOI: 10.1007/s00572-013-0551-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/11/2013] [Indexed: 06/03/2023]
Abstract
Major breakthroughs in our understanding of the life cycles of the symbiotic ascomycetes belonging to the genus Tuber have occurred over the last several years. A number of Tuber species produce edible fruiting bodies, known as truffles, that are marketed worldwide. A better understanding of the basic biological characteristics of Tuber spp. is likely to have tremendous practical relevance for their cultivation. Tuber melanosporum produces the most valuable black truffles and its genome has been recently sequenced. This species is now serving as a model for studying the biology of truffles. Here, we review recent progress in the understanding of sexual reproduction modalities in T. melanosporum. The practical relevance of these findings is outlined. In particular, the discoveries that T. melanosporum is heterothallic and that strains of different mating types compete to persist on the roots of host plants suggest that the spatial and temporal distributional patterns of strains of different mating types are key determinants of truffle fructification. The spatial segregation of the two mating types in areas where T. melanosporum occurs likely limits truffle production. Thus, host plant inoculation techniques and agronomic practices that might be pursued to manage T. melanosporum orchards with a balanced presence of the two mating partners are described.
Collapse
Affiliation(s)
- Andrea Rubini
- Institute of Biosciences and BioResources-Perugia Division, National Research Council, Via della Madonna Alta 130, 06128, Perugia, Italy
| | | | | | | |
Collapse
|
23
|
Huber F, Bignell E. Distribution, expression and expansion of Aspergillus fumigatus LINE-like retrotransposon populations in clinical and environmental isolates. Fungal Genet Biol 2014; 64:36-44. [DOI: 10.1016/j.fgb.2014.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 11/28/2022]
|
24
|
Brookheart RT, Lee CYS, Espenshade PJ. Casein kinase 1 regulates sterol regulatory element-binding protein (SREBP) to control sterol homeostasis. J Biol Chem 2013; 289:2725-35. [PMID: 24327658 DOI: 10.1074/jbc.m113.511899] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sterol homeostasis is tightly controlled by the sterol regulatory element-binding protein (SREBP) transcription factor that is highly conserved from fungi to mammals. In fission yeast, SREBP functions in an oxygen-sensing pathway to promote adaptation to decreased oxygen supply that limits oxygen-dependent sterol synthesis. Low oxygen stimulates proteolytic cleavage of the SREBP homolog Sre1, generating the active transcription factor Sre1N that drives expression of sterol biosynthetic enzymes. In addition, low oxygen increases the stability and DNA binding activity of Sre1N. To identify additional signals controlling Sre1 activity, we conducted a genetic overexpression screen. Here, we describe our isolation and characterization of the casein kinase 1 family member Hhp2 as a novel regulator of Sre1N. Deletion of Hhp2 increases Sre1N protein stability and ergosterol levels in the presence of oxygen. Hhp2-dependent Sre1N degradation by the proteasome requires Hhp2 kinase activity, and Hhp2 binds and phosphorylates Sre1N at specific residues. Our results describe a role for casein kinase 1 as a direct regulator of sterol homeostasis. Given the role of mammalian Hhp2 homologs, casein kinase 1δ and 1ε, in regulation of the circadian clock, these findings may provide a mechanism for coordinating circadian rhythm and lipid metabolism.
Collapse
Affiliation(s)
- Rita T Brookheart
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|
25
|
Influence of long terminal repeat retrotransposons in the genomes of fission yeasts. Biochem Soc Trans 2013; 41:1629-33. [DOI: 10.1042/bst20130207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LTR (long terminal repeat) RTs (retrotransposons) are almost ubiquitous in eukaryotic genomes. Their abundance and selfish properties make them a major influence in the regulation and evolution of their host genome. Recently, several striking properties of the LTR RTs of fission yeast have been uncovered, affecting important cellular processes such as gene regulation, nuclear architecture and genome integrity. The present review summarizes the current information and puts it in the context of the wider search for understanding the influence of transposable elements on the host genome.
Collapse
|
26
|
Zhou ZX, Zhang MJ, Peng X, Takayama Y, Xu XY, Huang LZ, Du LL. Mapping genomic hotspots of DNA damage by a single-strand-DNA-compatible and strand-specific ChIP-seq method. Genome Res 2012; 23:705-15. [PMID: 23249883 PMCID: PMC3613587 DOI: 10.1101/gr.146357.112] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Spontaneous DNA damage may occur nonrandomly in the genome, especially when genome maintenance mechanisms are undermined. We developed single-strand DNA (ssDNA)–associated protein immunoprecipitation followed by sequencing (SPI-seq) to map genomic hotspots of DNA damage. We demonstrated this method with Rad52, a homologous recombination repair protein, which binds to ssDNA formed at DNA lesions. SPI-seq faithfully detected, in fission yeast, Rad52 enrichment at artificially induced double-strand breaks (DSBs) as well as endogenously programmed DSBs for mating-type switching. Applying Rad52 SPI-seq to fission yeast mutants defective in DNA helicase Pfh1 or histone H3K56 deacetylase Hst4, led to global views of DNA lesion hotspots emerging in these mutants. We also found serendipitously that histone dosage aberration can activate retrotransposon Tf2 and cause the accumulation of a Tf2 cDNA species bound by Rad52. SPI-seq should be widely applicable for mapping sites of DNA damage and uncovering the causes of genome instability.
Collapse
Affiliation(s)
- Zhi-Xiong Zhou
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Transposable elements possess specific patterns of integration. The biological impact of these integration profiles is not well understood. Tf1, a long-terminal repeat retrotransposon in Schizosaccharomyces pombe, integrates into promoters with a preference for the promoters of stress response genes. To determine the biological significance of Tf1 integration, we took advantage of saturated maps of insertion activity and studied how integration at hot spots affected the expression of the adjacent genes. Our study revealed that Tf1 integration did not reduce gene expression. Importantly, the insertions activated the expression of 6 of 32 genes tested. We found that Tf1 increased gene expression by inserting enhancer activity. Interestingly, the enhancer activity of Tf1 could be limited by Abp1, a host surveillance factor that sequesters transposon sequences into structures containing histone deacetylases. We found the Tf1 promoter was activated by heat treatment and, remarkably, only genes that themselves were induced by heat could be activated by Tf1 integration, suggesting a synergy of Tf1 enhancer sequence with the stress response elements of target promoters. We propose that the integration preference of Tf1 for the promoters of stress response genes and the ability of Tf1 to enhance the expression of these genes co-evolved to promote the survival of cells under stress.
Collapse
Affiliation(s)
- Gang Feng
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
28
|
CENP-B cooperates with Set1 in bidirectional transcriptional silencing and genome organization of retrotransposons. Mol Cell Biol 2012; 32:4215-25. [PMID: 22907751 DOI: 10.1128/mcb.00395-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of transposable elements (TEs) is critical to the integrity of the host genome. The fission yeast Schizosaccharomyces pombe homologs of mammalian CENP-B perform a host genome surveillance role by controlling Tf2 long terminal repeat (LTR) retrotransposons. However, the mechanisms by which CENP-Bs effect their functions are ill defined. Here, we show that the multifaceted roles of Abp1, the prominent member of fission yeast CENP-Bs, are mediated in part via recognition of a 10-bp AT-rich motif present in most LTRs and require the DNA-binding, transposase, and dimerization domains of Abp1 to maintain transcriptional repression and genome organization. Expression profiling analyses indicated that Abp1 recruits class I/II histone deacetylases (HDACs) to repress Tf2 retrotransposons and genes activated in response to stresses. We demonstrate that class I/II HDACs and sirtuins mediate the clustering of dispersed Tf2 retrotransposons into Tf bodies. Intriguingly, we uncovered an unexpected cooperation between Abp1 and the histone H3K4 methyltransferase Set1 in regulating sense and antisense transcriptional silencing of Tf2 retrotransposons and Tf body integrity. Moreover, Set1-mediated regulation of Tf2 expression and nuclear organization appears to be largely independent of H3K4 methylation. Our study illuminates a molecular pathway involving a transposase-containing transcription factor that cooperates with chromatin modifiers to regulate TE activities.
Collapse
|
29
|
Servant G, Pinson B, Tchalikian-Cosson A, Coulpier F, Lemoine S, Pennetier C, Bridier-Nahmias A, Todeschini AL, Fayol H, Daignan-Fornier B, Lesage P. Tye7 regulates yeast Ty1 retrotransposon sense and antisense transcription in response to adenylic nucleotides stress. Nucleic Acids Res 2012; 40:5271-82. [PMID: 22379133 PMCID: PMC3384299 DOI: 10.1093/nar/gks166] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transposable elements play a fundamental role in genome evolution. It is proposed that their mobility, activated under stress, induces mutations that could confer advantages to the host organism. Transcription of the Ty1 LTR-retrotransposon of Saccharomyces cerevisiae is activated in response to a severe deficiency in adenylic nucleotides. Here, we show that Ty2 and Ty3 are also stimulated under these stress conditions, revealing the simultaneous activation of three active Ty retrotransposon families. We demonstrate that Ty1 activation in response to adenylic nucleotide depletion requires the DNA-binding transcription factor Tye7. Ty1 is transcribed in both sense and antisense directions. We identify three Tye7 potential binding sites in the region of Ty1 DNA sequence where antisense transcription starts. We show that Tye7 binds to Ty1 DNA and regulates Ty1 antisense transcription. Altogether, our data suggest that, in response to adenylic nucleotide reduction, TYE7 is induced and activates Ty1 mRNA transcription, possibly by controlling Ty1 antisense transcription. We also provide the first evidence that Ty1 antisense transcription can be regulated by environmental stress conditions, pointing to a new level of control of Ty1 activity by stress, as Ty1 antisense RNAs play an important role in regulating Ty1 mobility at both the transcriptional and post-transcriptional stages.
Collapse
Affiliation(s)
- Géraldine Servant
- CNRS UPR9073, associated with Univ Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-chimique, F-75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lee CYS, Yeh TL, Hughes BT, Espenshade PJ. Regulation of the Sre1 hypoxic transcription factor by oxygen-dependent control of DNA binding. Mol Cell 2011; 44:225-34. [PMID: 22017871 DOI: 10.1016/j.molcel.2011.08.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 06/20/2011] [Accepted: 08/12/2011] [Indexed: 11/18/2022]
Abstract
Regulation of gene expression plays an integral role in adaptation of cells to hypoxic stress. In mammals, prolyl hydroxylases control levels of the central transcription factor hypoxia inducible factor (HIF) through regulation of HIFα subunit stability. Here, we report that the hydroxylase Ofd1 regulates the Sre1 hypoxic transcription factor in fission yeast by controlling DNA binding. Prolyl hydroxylases require oxygen as a substrate, and the activity of Ofd1 regulates Sre1-dependent transcription. In the presence of oxygen, Ofd1 binds the Sre1 N-terminal transcription factor domain (Sre1N) and inhibits Sre1-dependent transcription by blocking DNA binding. In the absence of oxygen, the inhibitor Nro1 binds Ofd1, thereby releasing Sre1N and leading to activation of genes required for hypoxic growth. In contrast to the HIF system, where proline hydroxylation is essential for regulation, Ofd1 inhibition of Sre1N does not require hydroxylation and, thus, defines a new mechanism for hypoxic gene regulation.
Collapse
Affiliation(s)
- Chih-Yung S Lee
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Transposable elements (TEs) have a unique ability to mobilize to new genomic locations, and the major advance of second-generation DNA sequencing has provided insights into the dynamic relationship between TEs and their hosts. It now is clear that TEs have adopted diverse strategies - such as specific integration sites or patterns of activity - to thrive in host environments that are replete with mechanisms, such as small RNAs or epigenetic marks, that combat TE amplification. Emerging evidence suggests that TE mobilization might sometimes benefit host genomes by enhancing genetic diversity, although TEs are also implicated in diseases such as cancer. Here, we discuss recent findings about how, where and when TEs insert in diverse organisms.
Collapse
Affiliation(s)
- Henry L. Levin
- Section on Eukaryotic Transposable Elements, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892, USA, Tel. 301-402-4281, Fax. 301-496-4491,
| | - John V. Moran
- Departments of Human Genetics and Internal Medicine, and Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, 48109-6518, USA, Tel. 734-615-4046, Fax. 734-763-3784,
| |
Collapse
|
32
|
Bleykasten-Grosshans C, Neuvéglise C. Transposable elements in yeasts. C R Biol 2011; 334:679-86. [PMID: 21819950 DOI: 10.1016/j.crvi.2011.05.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/31/2011] [Indexed: 11/19/2022]
Abstract
With the development of new sequencing technologies in the past decade, yeast genomes have been extensively sequenced and their structures investigated. Transposable elements (TEs) are ubiquitous in eukaryotes and constitute a limited part of yeast genomes. However, due to their ability to move in genomes and generate dispersed repeated sequences, they contribute to modeling yeast genomes and thereby induce plasticity. This review assesses the TE contents of yeast genomes investigated so far. Their diversity and abundance at the inter- and intraspecific levels are presented, and their effects on gene expression and genome stability is considered. Recent results concerning TE-host interactions are also analyzed.
Collapse
Affiliation(s)
- Claudine Bleykasten-Grosshans
- CNRS UMR 7156, Laboratoire Génétique Moléculaire Génomique Microbiologie, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg cedex, France.
| | | |
Collapse
|
33
|
Zaratiegui M, Vaughn MW, Irvine DV, Goto D, Watt S, Bähler J, Arcangioli B, Martienssen RA. CENP-B preserves genome integrity at replication forks paused by retrotransposon LTR. Nature 2010; 469:112-5. [PMID: 21151105 PMCID: PMC3057531 DOI: 10.1038/nature09608] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 10/22/2010] [Indexed: 11/25/2022]
Abstract
Centromere-binding protein B (CENP-B) is a widely conserved DNA binding factor associated with heterochromatin and centromeric satellite repeats1. In fission yeast, CENP-B homologs have been shown to silence Long Terminal Repeat (LTR) retrotransposons by recruiting histone deacetylases2. However, CENP-B factors also have unexplained roles in DNA replication3, 4. Here, we show that a molecular function of CENP-B is to promote replication fork progression through the LTR. Mutants have increased genomic instability caused by replication fork blockage that depends on the DNA binding factor Switch Activating Protein 1 (Sap1), which is directly recruited by the LTR. The loss of Sap1-dependent barrier activity allows the unhindered progression of the replication fork, but results in rearrangements deleterious to the retrotransposon. We conclude that retrotransposons influence replication polarity through recruitment of Sap1 and transposition near replication fork blocks, while CENP-B counteracts this activity and promotes fork stability. Our results may account for the role of LTR in fragile sites, and for the association of CENP-B with pericentromeric heterochromatin and tandem satellite repeats.
Collapse
Affiliation(s)
- Mikel Zaratiegui
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Guo Y, Levin HL. High-throughput sequencing of retrotransposon integration provides a saturated profile of target activity in Schizosaccharomyces pombe. Genome Res 2009; 20:239-48. [PMID: 20040583 DOI: 10.1101/gr.099648.109] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The biological impact of transposons on the physiology of the host depends greatly on the frequency and position of integration. Previous studies of Tf1, a long terminal repeat retrotransposon in Schizosaccharomyces pombe, showed that integration occurs at the promoters of RNA polymerase II (Pol II) transcribed genes. To determine whether specific promoters are preferred targets of integration, we sequenced large numbers of insertions using high-throughput pyrosequencing. In four independent experiments we identified a total of 73,125 independent integration events. These data provided strong support for the conclusion that Pol II promoters are the targets of Tf1 integration. The size and number of the integration experiments resulted in reproducible measures of integration for each intergenic region and ORF in the S. pombe genome. The reproducibility of the integration activity from experiment to experiment demonstrates that we have saturated the full set of insertion sites that are actively targeted by Tf1. We found Tf1 integration was highly biased in favor of a specific set of Pol II promoters. The overwhelming majority (76%) of the insertions were distributed in intergenic sequences that contained 31% of the promoters of S. pombe. Interestingly, there was no correlation between the amount of integration at these promoters and their level of transcription. Instead, we found Tf1 had a strong preference for promoters that are induced by conditions of stress. This targeting of stress response genes coupled with the ability of Tf1 to regulate the expression of adjacent genes suggests Tf1 may improve the survival of S. pombe when cells are exposed to environmental stress.
Collapse
Affiliation(s)
- Yabin Guo
- Section on Eukaryotic Transposable Elements, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
35
|
Osborne TF, Espenshade PJ. Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it's been. Genes Dev 2009; 23:2578-91. [PMID: 19933148 DOI: 10.1101/gad.1854309] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sterol regulatory element-binding proteins (SREBPs) are a subfamily of basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factors that are conserved from fungi to humans and are defined by two key features: a signature tyrosine residue in the DNA-binding domain, and a membrane-tethering domain that is a target for regulated proteolysis. Recent studies including genome-wide and model organism approaches indicate SREBPs coordinate cellular lipid metabolism with other cellular physiologic processes. These functions are broadly related as cellular adaptation to environmental changes ranging from nutrient fluctuations to toxin exposure. This review integrates classic features of the SREBP pathway with newer information regarding the regulation and sensing mechanisms that serve to assimilate different cellular physiologic processes for optimal function and growth.
Collapse
Affiliation(s)
- Timothy F Osborne
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, California 92697, USA.
| | | |
Collapse
|
36
|
The fission yeast HIRA histone chaperone is required for promoter silencing and the suppression of cryptic antisense transcripts. Mol Cell Biol 2009; 29:5158-67. [PMID: 19620282 DOI: 10.1128/mcb.00698-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The assembly of nucleosomes by histone chaperones is an important component of transcriptional regulation. Here, we have assessed the global roles of the HIRA histone chaperone in Schizosaccharomyces pombe. Microarray analysis indicates that inactivation of the HIRA complex results in increased expression of at least 4% of fission yeast genes. HIRA-regulated genes overlap with those which are normally repressed in vegetatively growing cells, such as targets of the Clr6 histone deacetylase and silenced genes located in subtelomeric regions. HIRA is also required for silencing of all 13 intact copies of the Tf2 long terminal repeat (LTR) retrotransposon. However, the role of HIRA is not restricted to bona fide promoters, because HIRA also suppresses noncoding transcripts from solo LTR elements and spurious antisense transcripts from cryptic promoters associated with transcribed regions. Furthermore, the HIRA complex is essential in the absence of the quality control provided by nuclear exosome-mediated degradation of illegitimate transcripts. This suggests that HIRA restricts genomic accessibility, and consistent with this, the chromosomes of cells lacking HIRA are more susceptible to genotoxic agents that cause double-strand breaks. Thus, the HIRA histone chaperone is required to maintain the protective functions of chromatin.
Collapse
|
37
|
Lee CYS, Stewart EV, Hughes BT, Espenshade PJ. Oxygen-dependent binding of Nro1 to the prolyl hydroxylase Ofd1 regulates SREBP degradation in yeast. EMBO J 2009; 28:135-43. [PMID: 19158663 DOI: 10.1038/emboj.2008.271] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 12/02/2008] [Indexed: 11/09/2022] Open
Abstract
Sre1, the fission yeast sterol regulatory element-binding protein, is an ER membrane-bound transcription factor that controls adaptation to low oxygen growth. Under low oxygen, Sre1 is proteolytically cleaved and the N-terminal transcription factor domain (Sre1N) is released from the membrane and enters the nucleus to activate hypoxic gene expression. Ofd1, a prolyl 4-hydroxylase-like 2-oxoglutarate dioxygenase, controls the oxygen-dependent stability of Sre1N. In the presence of oxygen, Ofd1 accelerates the degradation of Sre1N, but under low oxygen Ofd1 is inhibited and Sre1N accumulates. To identify the regulators of Sre1N, we performed a plasmid-based screen for genes that increased Sre1N transcriptional activity. Here, we identify Nro1 (SPCC4B3.07) as a positive regulator of Sre1N stability and a direct inhibitor of Ofd1. In the absence of oxygen, Nro1 binds to the Ofd1 C-terminal degradation domain and inhibits Sre1N degradation. In the presence of oxygen, Nro1 binding to Ofd1 is disrupted, leading to rapid degradation of Sre1N. We conclude that the Ofd1 dioxygenase domain functions as an oxygen sensor that regulates binding of Nro1 to Ofd1 to control oxygen-dependent Sre1N stability.
Collapse
Affiliation(s)
- Chih-Yung S Lee
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
38
|
Beauregard A, Curcio MJ, Belfort M. The take and give between retrotransposable elements and their hosts. Annu Rev Genet 2009; 42:587-617. [PMID: 18680436 DOI: 10.1146/annurev.genet.42.110807.091549] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Retrotransposons mobilize via RNA intermediates and usually carry with them the agent of their mobility, reverse transcriptase. Retrotransposons are streamlined, and therefore rely on host factors to proliferate. However, retrotransposons are exposed to cellular forces that block their paths. For this review, we have selected for our focus elements from among target-primed (TP) retrotransposons, also called non-LTR retrotransposons, and extrachromosomally-primed (EP) retrotransposons, also called LTR retrotransposons. The TP retrotransposons considered here are group II introns, LINEs and SINEs, whereas the EP elements considered are the Ty and Tf retrotransposons, with a brief comparison to retroviruses. Recurring themes for these elements, in hosts ranging from bacteria to humans, are tie-ins of the retrotransposons to RNA metabolism, DNA replication and repair, and cellular stress. Likewise, there are parallels among host-cell defenses to combat rampant retrotransposon spread. The interactions between the retrotransposon and the host, and their coevolution to balance the tension between retrotransposon proliferation and host survival, form the basis of this review.
Collapse
Affiliation(s)
- Arthur Beauregard
- New York State Department of Health, Center for Medical Sciences, Albany, New York 12208, 12201-2002, USA.
| | | | | |
Collapse
|
39
|
Anoxia-induced suspended animation in budding yeast as an experimental paradigm for studying oxygen-regulated gene expression. EUKARYOTIC CELL 2008; 7:1795-808. [PMID: 18708563 DOI: 10.1128/ec.00160-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A lack of oxygen can force many organisms to enter into recoverable hypometabolic states. To better understand how organisms cope with oxygen deprivation, our laboratory previously had shown that when challenged with anoxia, both the nematode Caenorhabditis elegans and embryos of the zebrafish Danio rerio enter into suspended animation, in which all life processes that can be observed by light microscopy reversibly halt pending the restoration of oxygen (P. A. Padilla and M. B. Roth, Proc. Natl. Acad. Sci. USA 98:7331-7335, 2001, and P. A. Padilla, T. G. Nystul, R. A. Zager, A. C. Johnson, and M. B. Roth, Mol. Biol. Cell 13:1473-1483, 2002). Here, we show that both sporulating and vegetative cells of the budding yeast Saccharomyces cerevisiae also enter into a similar state of suspended animation when made anoxic on a nonfermentable carbon source. Transcriptional profiling using cDNA microarrays and follow-on quantitative real-time PCR analysis revealed a relative derepression of aerobic metabolism genes in carbon monoxide (CO)-induced anoxia when compared to nitrogen (N(2)) gas-induced anoxia, which is consistent with the known oxygen-mimetic effects of CO. We also found that mutants deleted for components of the mitochondrial retrograde signaling pathway can tolerate prolonged exposure to CO but not to N(2). We conclude that the cellular response to anoxia is dependent on whether the anoxic gas is an oxygen mimetic and that the mitochondrial retrograde signaling pathway is functionally important for mediating this response.
Collapse
|
40
|
Remodeling yeast gene transcription by activating the Ty1 long terminal repeat retrotransposon under severe adenine deficiency. Mol Cell Biol 2008; 28:5543-54. [PMID: 18591253 DOI: 10.1128/mcb.00416-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ty1 long terminal repeat (LTR) retrotransposon of Saccharomyces cerevisiae is a powerful model to understand the activation of transposable elements by stress and their impact on genome expression. We previously discovered that Ty1 transcription is activated under conditions of severe adenine starvation. The mechanism of activation is independent of the Bas1 transcriptional activator of the de novo AMP biosynthesis pathway and probably involves chromatin remodeling at the Ty1 promoter. Here, we show that the 5' LTR has a weak transcriptional activity and is sufficient for the activation by severe adenine starvation. Furthermore, we demonstrate that Ty1 insertions that bring Ty1 promoter sequences into the vicinity of a reporter gene confer adenine starvation regulation on it. We provide evidence that similar coactivation of genes adjacent to Ty1 sequences occurs naturally in the yeast genome, indicating that Ty1 insertions can mediate transcriptional control of yeast gene expression under conditions of severe adenine starvation. Finally, the transcription pattern of genes adjacent to Ty1 insertions suggests that severe adenine starvation facilitates the initiation of transcription at alternative sites, partly located in the 5' LTR. We propose that Ty1-driven transcription of coding and noncoding sequences could regulate yeast gene expression in response to stress.
Collapse
|
41
|
Hughes AL, Stewart EV, Espenshade PJ. Identification of twenty-three mutations in fission yeast Scap that constitutively activate SREBP. J Lipid Res 2008; 49:2001-12. [PMID: 18503029 DOI: 10.1194/jlr.m800207-jlr200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The endoplasmic reticulum membrane protein SREBP cleavage-activating protein (Scap) senses sterols and regulates activation of sterol-regulatory element binding proteins (SREBPs), membrane-bound transcription factors that control lipid homeostasis in fission yeast and mammals. Transmembrane segments 2-6 of Scap function as a sterol-sensing domain (SSD) that recognizes changes in cellular sterols and facilitates activation of SREBP. Previous studies identified conserved mutations Y298C, L315F, and D443N in the SSD of mammalian Scap and fission yeast Scap (Scp1) that render cells insensitive to sterols and cause constitutive SREBP activation. In this study, we utilized fission yeast genetics to identify additional functionally important residues in the SSD of Scp1 and Scap. Using a site-directed mutagenesis selection, we sampled all possible amino acid substitutions at 50 conserved residues in the SSD of Scp1 for their effects on yeast SREBP (Sre1) activation. We found mutations at 23 different amino acids in Scp1 that rendered Scp1 insensitive to sterols and caused constitutive activation of Sre1. To our surprise, the majority of the homologous Scap mutants displayed wild-type function, and only one mutation, V439G, caused constitutive activation of SREBP in mammals. These results suggest that the sterol-sensing mechanism of Scap and the functional requirements for SREBP activation are different between fission yeast and mammals.
Collapse
Affiliation(s)
- Adam L Hughes
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
42
|
Retrotransposon Tf1 is targeted to Pol II promoters by transcription activators. Mol Cell 2008; 30:98-107. [PMID: 18406330 DOI: 10.1016/j.molcel.2008.02.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 10/29/2007] [Accepted: 02/06/2008] [Indexed: 11/22/2022]
Abstract
The LTR-retrotransposon Tf1 preserves the coding capacity of its host Schizosaccharomyces pombe by integrating upstream of open reading frames (ORFs). To determine which features of the target sites were recognized by the transposon, we introduced plasmids containing candidate insertion sites into S. pombe and mapped the positions of integration. We found that Tf1 was targeted specifically to the promoters of Pol II-transcribed genes. A detailed analysis of integration in plasmids that contained either ade6 or fbp1 revealed insertions occurred in the promoters at positions where transcription factors bound. Further experiments revealed that the activator Atf1p and its binding site were required for directing integration to the promoter of fbp1. An interaction between Tf1 integrase and Atf1p was observed, indicating that integration at fbp1 was mediated by the activator bound to its promoter. Surprisingly, we found Tf1 contained sequences that activated transcription, and these substituted for elements of the ade6 promoter disrupted by integration.
Collapse
|
43
|
Sehgal A, Hughes BT, Espenshade PJ. Oxygen-dependent, alternative promoter controls translation of tco1+ in fission yeast. Nucleic Acids Res 2008; 36:2024-31. [PMID: 18276645 PMCID: PMC2330238 DOI: 10.1093/nar/gkn027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic cells respond to changes in environmental oxygen supply by increasing transcription and subsequent translation of gene products required for adaptation to low oxygen. In fission yeast, the ortholog of mammalian sterol regulatory element binding protein (SREBP), called Sre1, activates low-oxygen gene expression and is essential for anaerobic growth. Previous studies in multiple organisms indicate that SREBP transcription factors function as positive regulators of gene expression by increasing transcription. Here, we describe a unique mechanism by which activation of Sre1-dependent transcription downregulates protein expression under low oxygen. Paradoxically, Sre1 inhibits expression of tco1+ gene product by activating its transcription. Under low oxygen, Sre1 directs transcription of tco1+ from an alternate, upstream promoter and inhibits expression of the normoxic tco1+ transcript. The resulting low-oxygen transcript contains an additional 751 nt in the 5′ untranslated region that is predicted to form a stable, complex secondary structure. Interestingly, polysome profile experiments revealed that this new longer transcript is translationally silent, leading to a decrease in Tco1 protein expression under low oxygen. Together, these results describe a new mechanism for oxygen-dependent control of gene expression and provide an example of negative regulation of protein expression by an SREBP homolog.
Collapse
Affiliation(s)
- Alfica Sehgal
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
44
|
Cam HP, Noma KI, Ebina H, Levin HL, Grewal SIS. Host genome surveillance for retrotransposons by transposon-derived proteins. Nature 2007; 451:431-6. [PMID: 18094683 DOI: 10.1038/nature06499] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 11/22/2007] [Indexed: 12/23/2022]
Abstract
Transposable elements and their remnants constitute a substantial fraction of eukaryotic genomes. Host genomes have evolved defence mechanisms, including chromatin modifications and RNA interference, to regulate transposable elements. Here we describe a genome surveillance mechanism for retrotransposons by transposase-derived centromeric protein CENP-B homologues of the fission yeast Schizosaccharomyces pombe. CENP-B homologues of S. pombe localize at and recruit histone deacetylases to silence Tf2 retrotransposons. CENP-Bs also repress solo long terminal repeats (LTRs) and LTR-associated genes. Tf2 elements are clustered into 'Tf' bodies, the organization of which depends on CENP-Bs that display discrete nuclear structures. Furthermore, CENP-Bs prevent an 'extinct' Tf1 retrotransposon from re-entering the host genome by blocking its recombination with extant Tf2, and silence and immobilize a Tf1 integrant that becomes sequestered into Tf bodies. Our results reveal a probable ancient retrotransposon surveillance pathway important for host genome integrity, and highlight potential conflicts between DNA transposons and retrotransposons, major transposable elements believed to have greatly moulded the evolution of genomes.
Collapse
Affiliation(s)
- Hugh P Cam
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|