1
|
Soo TCC, Bhassu S. Differential STAT gene expressions of Penaeus monodon and Macrobrachium rosenbergii in response to white spot syndrome virus (WSSV) and bacterial infections: Additional insight into genetic variations and transcriptomic highlights. PLoS One 2021; 16:e0258655. [PMID: 34653229 PMCID: PMC8519450 DOI: 10.1371/journal.pone.0258655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023] Open
Abstract
Diseases have remained the major issue for shrimp aquaculture industry for decades by which different shrimp species demonstrated alternative disease resistance or tolerance. However, there had been insufficient studies on the underlying host mechanisms of such phenomenon. Hence, in this study, the main objective involves gaining a deeper understanding into the functional importance of shrimp STAT gene from the aspects of expression, sequence, structure, and associated genes. STAT gene was selected primarily because of its vital signalling roles in stress, endocrine, and immune response. The differential gene expressions of Macrobrachium rosenbergii STAT (MrST) and Penaeus monodon STAT (PmST) under White Spot Syndrome Virus (WSSV) and Vibrio parahaemolyticus/VpAHPND infections were identified through qPCR analysis. Notably, during both pathogenic infections, MrST demonstrated significant gene expression down-regulations (during either early or later post-infection time points) whereas PmST showed only significant gene expression up-regulations. Important sequence conservation or divergence was highlighted through STAT sequence comparison especially amino acid alterations at 614 aa [K (Lysine) to E (Glutamic Acid)] and 629 aa [F (Phenylalanine) to V (Valine)] from PmST (AY327491.1) to PmST (disease tolerant strain). There were significant differences observed between in silico characterized structures of MrST and PmST proteins. Important functional differentially expressed genes (DEGs) in the aspects of stress, endocrine, immune, signalling, and structural were uncovered through comparative transcriptomic analysis. The DEGs associated with STAT functioning were identified including inositol 1,4,5-trisphosphate receptor, hsp90, caspase, ATP binding cassette transmembrane transporter, C-type Lectin, HMGB, ALF1, ALF3, superoxide dismutase, glutathione peroxidase, catalase, and TBK1. The main findings of this study are STAT differential gene expression patterns, sequence divergence, structural differences, and associated functional DEGs. These findings can be further utilized for shrimp health or host response diagnostic studies. STAT gene can also be proposed as a suitable candidate for future studies of shrimp innate immune enhancement.
Collapse
Affiliation(s)
- Tze Chiew Christie Soo
- Faculty of Science, Animal Genetics and Genome Evolutionary Laboratory (AGAGEL), Department of Genetics and Molecular Biology, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Faculty of Science, Animal Genetics and Genome Evolutionary Laboratory (AGAGEL), Department of Genetics and Molecular Biology, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
- Terra Aqua Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), Research Management and Innovation Complex, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Petit‐Marty N, Nagelkerken I, Connell SD, Schunter C. Natural CO 2 seeps reveal adaptive potential to ocean acidification in fish. Evol Appl 2021; 14:1794-1806. [PMID: 34295364 PMCID: PMC8288007 DOI: 10.1111/eva.13239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023] Open
Abstract
Volcanic CO2 seeps are natural laboratories that can provide insights into the adaptation of species to ocean acidification. While many species are challenged by reduced-pH levels, some species benefit from the altered environment and thrive. Here, we explore the molecular mechanisms of adaptation to ocean acidification in a population of a temperate fish species that experiences increased population sizes under elevated CO2. Fish from CO2 seeps exhibited an overall increased gene expression in gonad tissue compared with those from ambient CO2 sites. Up-regulated genes at CO2 seeps are possible targets of adaptive selection as they can directly influence the physiological performance of fishes exposed to ocean acidification. Most of the up-regulated genes at seeps were functionally involved in the maintenance of pH homeostasis and increased metabolism, and presented a deviation from neutral evolution expectations in their patterns of DNA polymorphisms, providing evidence for adaptive selection to ocean acidification. The targets of this adaptive selection are likely regulatory sequences responsible for the increased expression of these genes, which would allow a fine-tuned physiological regulation to maintain homeostasis and thrive at CO2 seeps. Our findings reveal that standing genetic variation in DNA sequences regulating the expression of genes in response to a reduced-pH environment could provide for adaptive potential to near-future ocean acidification in fishes. Moreover, with this study we provide a forthright methodology combining transcriptomics and genomics, which can be applied to infer the adaptive potential to different environmental conditions in wild marine populations.
Collapse
Affiliation(s)
- Natalia Petit‐Marty
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong KongHong Kong SAR
| | - Ivan Nagelkerken
- Southern Seas Ecology LaboratoriesSchool of Biological Sciences and the Environment InstituteDX 650 418The University of AdelaideAdelaideSAAustralia
| | - Sean D. Connell
- Southern Seas Ecology LaboratoriesSchool of Biological Sciences and the Environment InstituteDX 650 418The University of AdelaideAdelaideSAAustralia
| | - Celia Schunter
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong KongHong Kong SAR
| |
Collapse
|
3
|
Luo Z, Xiong J, Xia H, Ma X, Gao M, Wang L, Liu G, Yu X, Luo L. Transcriptomic divergence between upland and lowland ecotypes contributes to rice adaptation to a drought-prone agroecosystem. Evol Appl 2020; 13:2484-2496. [PMID: 33005236 PMCID: PMC7513727 DOI: 10.1111/eva.13054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Transcriptomic divergence drives plant ecological adaptation. Upland rice is differentiated in drought tolerance from lowland rice during its adaptation to the drought-prone environment. They provide a good system to learn the evolution of drought tolerance in rice. METHODS AND RESULTS We estimate morphological differences between the two rice ecotypes under well-watered and drought conditions, as well as their genetic and transcriptomic divergences by the high-throughput sequencing. Upland rice possesses higher expression diversity than lowland rice does. Thousands of genes exhibit expression divergences between the two rice ecotypes, which contributes to their morphological differences in drought tolerance. These transcriptomic divergences contribute to drought adaptation of upland rice during its domestication. Mutations in transcriptional regulatory regions, which cause presence and absence of cis-elements, are the cause of expression divergence. About 15.3% transcriptionally selected genes also receive sequence-based selection in upland or lowland ecotype. Some highly differentiated genes promote the transcriptomic divergence between rice ecotypes via gene co-expression network. In addition, we also detected transcriptomic trade-offs between drought tolerance and productivity. DISCUSSION Many key genes, which promote transcriptomic adaptation to drought in upland rice, have great prospective in breeding water-saving and drought-resistant rice. Meanwhile, appropriate strategies are required in breeding to overcome the potential transcriptomic trade-off.
Collapse
Affiliation(s)
- Zhi Luo
- College of Plant Sciences & Technology Huazhong Agricultural University Wuhan China
- Shanghai Agrobiological Gene Center Shanghai China
| | - Jie Xiong
- College of Plant Sciences & Technology Huazhong Agricultural University Wuhan China
- Shanghai Agrobiological Gene Center Shanghai China
| | - Hui Xia
- College of Plant Sciences & Technology Huazhong Agricultural University Wuhan China
- Shanghai Agrobiological Gene Center Shanghai China
| | - Xiaosong Ma
- Shanghai Agrobiological Gene Center Shanghai China
| | - Min Gao
- College of Plant Sciences & Technology Huazhong Agricultural University Wuhan China
- Shanghai Agrobiological Gene Center Shanghai China
| | - Lei Wang
- Shanghai Agrobiological Gene Center Shanghai China
| | - Guolan Liu
- Shanghai Agrobiological Gene Center Shanghai China
| | - Xinqiao Yu
- Shanghai Agrobiological Gene Center Shanghai China
| | - Lijun Luo
- College of Plant Sciences & Technology Huazhong Agricultural University Wuhan China
- Shanghai Agrobiological Gene Center Shanghai China
| |
Collapse
|
4
|
Franssen SU, Durrant C, Stark O, Moser B, Downing T, Imamura H, Dujardin JC, Sanders MJ, Mauricio I, Miles MA, Schnur LF, Jaffe CL, Nasereddin A, Schallig H, Yeo M, Bhattacharyya T, Alam MZ, Berriman M, Wirth T, Schönian G, Cotton JA. Global genome diversity of the Leishmania donovani complex. eLife 2020; 9:e51243. [PMID: 32209228 PMCID: PMC7105377 DOI: 10.7554/elife.51243] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/27/2020] [Indexed: 12/30/2022] Open
Abstract
Protozoan parasites of the Leishmania donovani complex - L. donovani and L. infantum - cause the fatal disease visceral leishmaniasis. We present the first comprehensive genome-wide global study, with 151 cultured field isolates representing most of the geographical distribution. L. donovani isolates separated into five groups that largely coincide with geographical origin but vary greatly in diversity. In contrast, the majority of L. infantum samples fell into one globally-distributed group with little diversity. This picture is complicated by several hybrid lineages. Identified genetic groups vary in heterozygosity and levels of linkage, suggesting different recombination histories. We characterise chromosome-specific patterns of aneuploidy and identified extensive structural variation, including known and suspected drug resistance loci. This study reveals greater genetic diversity than suggested by geographically-focused studies, provides a resource of genomic variation for future work and sets the scene for a new understanding of the evolution and genetics of the Leishmania donovani complex.
Collapse
Affiliation(s)
| | - Caroline Durrant
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | | | | | - Tim Downing
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- Dublin City UniversityDublinIreland
| | | | - Jean-Claude Dujardin
- Institute of Tropical MedicineAntwerpBelgium
- Department of Biomedical Sciences, University of AntwerpAntwerpBelgium
| | - Mandy J Sanders
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Isabel Mauricio
- Universidade Nova de Lisboa Instituto de Higiene e MedicinaLisboaPortugal
| | - Michael A Miles
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Lionel F Schnur
- Kuvin Centre for the Study of Infectious and Tropical Diseases, IMRIC, Hebrew University-Hadassah, Medical SchoolJerusalemIsrael
| | - Charles L Jaffe
- Kuvin Centre for the Study of Infectious and Tropical Diseases, IMRIC, Hebrew University-Hadassah, Medical SchoolJerusalemIsrael
| | - Abdelmajeed Nasereddin
- Kuvin Centre for the Study of Infectious and Tropical Diseases, IMRIC, Hebrew University-Hadassah, Medical SchoolJerusalemIsrael
| | - Henk Schallig
- Amsterdam University Medical Centres – Academic Medical Centre at the University of Amsterdam, Department of Medical Microbiology – Experimental ParasitologyAmsterdamNetherlands
| | - Matthew Yeo
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | | | - Mohammad Z Alam
- Department of Parasitology, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Thierry Wirth
- Institut de Systématique, Evolution, Biodiversité, ISYEB, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des AntillesParisFrance
- École Pratique des Hautes Études (EPHE)Paris Sciences & Lettres (PSL)ParisFrance
| | | | - James A Cotton
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| |
Collapse
|
5
|
Popovic I, Riginos C. Comparative genomics reveals divergent thermal selection in warm‐ and cold‐tolerant marine mussels. Mol Ecol 2020; 29:519-535. [DOI: 10.1111/mec.15339] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Iva Popovic
- School of Biological Sciences University of Queensland St Lucia Qld Australia
| | - Cynthia Riginos
- School of Biological Sciences University of Queensland St Lucia Qld Australia
| |
Collapse
|
6
|
Abstract
In this perspective, we evaluate the explanatory power of the neutral theory of molecular evolution, 50 years after its introduction by Kimura. We argue that the neutral theory was supported by unreliable theoretical and empirical evidence from the beginning, and that in light of modern, genome-scale data, we can firmly reject its universality. The ubiquity of adaptive variation both within and between species means that a more comprehensive theory of molecular evolution must be sought.
Collapse
Affiliation(s)
- Andrew D Kern
- Department of Genetics, Rutgers University, Piscataway, NJ
| | - Matthew W Hahn
- Department of Biology and Department of Computer Science, Indiana University Bloomington, IN
| |
Collapse
|
7
|
Mack KL, Ballinger MA, Phifer-Rixey M, Nachman MW. Gene regulation underlies environmental adaptation in house mice. Genome Res 2018; 28:1636-1645. [PMID: 30194096 PMCID: PMC6211637 DOI: 10.1101/gr.238998.118] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022]
Abstract
Changes in cis-regulatory regions are thought to play a major role in the genetic basis of adaptation. However, few studies have linked cis-regulatory variation with adaptation in natural populations. Here, using a combination of exome and RNA-seq data, we performed expression quantitative trait locus (eQTL) mapping and allele-specific expression analyses to study the genetic architecture of regulatory variation in wild house mice (Mus musculus domesticus) using individuals from five populations collected along a latitudinal cline in eastern North America. Mice in this transect showed clinal patterns of variation in several traits, including body mass. Mice were larger in more northern latitudes, in accordance with Bergmann's rule. We identified 17 genes where cis-eQTLs were clinal outliers and for which expression level was correlated with latitude. Among these clinal outliers, we identified two genes (Adam17 and Bcat2) with cis-eQTLs that were associated with adaptive body mass variation and for which expression is correlated with body mass both within and between populations. Finally, we performed a weighted gene co-expression network analysis (WGCNA) to identify expression modules associated with measures of body size variation in these mice. These findings demonstrate the power of combining gene expression data with scans for selection to identify genes involved in adaptive phenotypic evolution, and also provide strong evidence for cis-regulatory elements as essential loci of environmental adaptation in natural populations.
Collapse
Affiliation(s)
- Katya L Mack
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California 94720, USA
| | - Mallory A Ballinger
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California 94720, USA
| | - Megan Phifer-Rixey
- Department of Biology, Monmouth University, West Long Branch, New Jersey 07764, USA
| | - Michael W Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
8
|
Xiong P, Hulsey CD, Meyer A, Franchini P. Evolutionary divergence of 3' UTRs in cichlid fishes. BMC Genomics 2018; 19:433. [PMID: 29866078 PMCID: PMC5987618 DOI: 10.1186/s12864-018-4821-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/23/2018] [Indexed: 01/18/2023] Open
Abstract
Background Post-transcriptional regulation is crucial for the control of eukaryotic gene expression and might contribute to adaptive divergence. The three prime untranslated regions (3’ UTRs), that are located downstream of protein-coding sequences, play important roles in post-transcriptional regulation. These regions contain functional elements that influence the fate of mRNAs and could be exceptionally important in groups such as rapidly evolving cichlid fishes. Results To examine cichlid 3’ UTR evolution, we 1) identified gene features in nine teleost genomes and 2) performed comparative analyses to assess evolutionary variation in length, functional motifs, and evolutionary rates of 3’ UTRs. In all nine teleost genomes, we found a smaller proportion of repetitive elements in 3’ UTRs than in the whole genome. We found that the 3’ UTRs in cichlids tend to be longer than those in non-cichlids, and this was associated, on average, with one more miRNA target per gene in cichlids. Moreover, we provided evidence that 3’ UTRs on average have evolved faster in cichlids than in non-cichlids. Finally, analyses of gene function suggested that both the top 5% longest and 5% most rapidly evolving 3’ UTRs in cichlids tended to be involved in ribosome-associated pathways and translation. Conclusions Our results reveal novel patterns of evolution in the 3’ UTRs of teleosts in general and cichlids in particular. The data suggest that 3’ UTRs might serve as important meta-regulators, regulators of other mechanisms governing post-transcriptional regulation, especially in groups like cichlids that have undergone extremely fast rates of phenotypic diversification and speciation. Electronic supplementary material The online version of this article (10.1186/s12864-018-4821-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peiwen Xiong
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - C Darrin Hulsey
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Axel Meyer
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany.,Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA, 02138, USA
| | - Paolo Franchini
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
9
|
Glaser-Schmitt A, Parsch J. Functional characterization of adaptive variation within a cis-regulatory element influencing Drosophila melanogaster growth. PLoS Biol 2018; 16:e2004538. [PMID: 29324742 PMCID: PMC5783415 DOI: 10.1371/journal.pbio.2004538] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/24/2018] [Accepted: 12/18/2017] [Indexed: 11/18/2022] Open
Abstract
Gene expression variation is a major contributor to phenotypic diversity within species and is thought to play an important role in adaptation. However, examples of adaptive regulatory polymorphism are rare, especially those that have been characterized at both the molecular genetic level and the organismal level. In this study, we perform a functional analysis of the Drosophila melanogaster CG9509 enhancer, a cis-regulatory element that shows evidence of adaptive evolution in populations outside the species’ ancestral range in sub-Saharan Africa. Using site-directed mutagenesis and transgenic reporter gene assays, we determined that 3 single nucleotide polymorphisms are responsible for the difference in CG9509 expression that is observed between sub-Saharan African and cosmopolitan populations. Interestingly, while 2 of these variants appear to have been the targets of a selective sweep outside of sub-Saharan Africa, the variant with the largest effect on expression remains polymorphic in cosmopolitan populations, suggesting it may be subject to a different mode of selection. To elucidate the function of CG9509, we performed a series of functional and tolerance assays on flies in which CG9509 expression was disrupted. We found that CG9509 plays a role in larval growth and influences adult body and wing size, as well as wing loading. Furthermore, variation in several of these traits was associated with variation within the CG9509 enhancer. The effect on growth appears to result from a modulation of active ecdysone levels and expression of growth factors. Taken together, our findings suggest that selection acted on 3 sites within the CG9509 enhancer to increase CG9509 expression and, as a result, reduce wing loading as D. melanogaster expanded out of sub-Saharan Africa. Much of the phenotypic variation that is observed within species is thought to be caused by variation in gene expression. Variants within cis-regulatory elements, which affect the expression of nearby genes within the same DNA strand, are thought to be an abundant resource upon which natural selection can act. Understanding the functional consequences of adaptive cis-regulatory changes is important, as it can help elucidate the mechanisms underlying phenotypic evolution in general and provide insight into the development and maintenance of biodiversity. However, functional analyses of these types of changes remain rare. Here we present a functional analysis of an adaptively evolving enhancer element of a D. melanogaster gene called CG9509, of previously unknown function. We show that 3 single nucleotide polymorphisms located within the enhancer of this gene are responsible for an increase in CG9509 expression in cosmopolitan populations (outside of south and central Africa) relative to sub-Saharan populations, which include ancestral populations. We further show that CG9509 is involved in the regulation of growth rate and body size determination and propose that the CG9509 enhancer underwent positive selection to reduce wing loading as the species expanded out of sub-Saharan Africa.
Collapse
Affiliation(s)
- Amanda Glaser-Schmitt
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail: (AGS); (JP)
| | - John Parsch
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail: (AGS); (JP)
| |
Collapse
|
10
|
Mähler N, Wang J, Terebieniec BK, Ingvarsson PK, Street NR, Hvidsten TR. Gene co-expression network connectivity is an important determinant of selective constraint. PLoS Genet 2017; 13:e1006402. [PMID: 28406900 PMCID: PMC5407845 DOI: 10.1371/journal.pgen.1006402] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 04/27/2017] [Accepted: 03/31/2017] [Indexed: 12/12/2022] Open
Abstract
While several studies have investigated general properties of the genetic architecture of natural variation in gene expression, few of these have considered natural, outbreeding populations. In parallel, systems biology has established that a general feature of biological networks is that they are scale-free, rendering them buffered against random mutations. To date, few studies have attempted to examine the relationship between the selective processes acting to maintain natural variation of gene expression and the associated co-expression network structure. Here we utilised RNA-Sequencing to assay gene expression in winter buds undergoing bud flush in a natural population of Populus tremula, an outbreeding forest tree species. We performed expression Quantitative Trait Locus (eQTL) mapping and identified 164,290 significant eQTLs associating 6,241 unique genes (eGenes) with 147,419 unique SNPs (eSNPs). We found approximately four times as many local as distant eQTLs, with local eQTLs having significantly higher effect sizes. eQTLs were primarily located in regulatory regions of genes (UTRs or flanking regions), regardless of whether they were local or distant. We used the gene expression data to infer a co-expression network and investigated the relationship between network topology, the genetic architecture of gene expression and signatures of selection. Within the co-expression network, eGenes were underrepresented in network module cores (hubs) and overrepresented in the periphery of the network, with a negative correlation between eQTL effect size and network connectivity. We additionally found that module core genes have experienced stronger selective constraint on coding and non-coding sequence, with connectivity associated with signatures of selection. Our integrated genetics and genomics results suggest that purifying selection is the primary mechanism underlying the genetic architecture of natural variation in gene expression assayed in flushing leaf buds of P. tremula and that connectivity within the co-expression network is linked to the strength of purifying selection.
Collapse
Affiliation(s)
- Niklas Mähler
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Jing Wang
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Centre for Integrative Genetics, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Barbara K. Terebieniec
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Pär K. Ingvarsson
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Nathaniel R. Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Torgeir R. Hvidsten
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| |
Collapse
|
11
|
Rutledge GG, Böhme U, Sanders M, Reid AJ, Cotton JA, Maiga-Ascofare O, Djimdé AA, Apinjoh TO, Amenga-Etego L, Manske M, Barnwell JW, Renaud F, Ollomo B, Prugnolle F, Anstey NM, Auburn S, Price RN, McCarthy JS, Kwiatkowski DP, Newbold CI, Berriman M, Otto TD. Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution. Nature 2017; 542:101-104. [PMID: 28117441 PMCID: PMC5326575 DOI: 10.1038/nature21038] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 12/04/2016] [Indexed: 01/12/2023]
Abstract
Elucidation of the evolutionary history and interrelatedness of Plasmodium species that infect humans has been hampered by a lack of genetic information for three human-infective species: P. malariae and two P. ovale species (P. o. curtisi and P. o. wallikeri). These species are prevalent across most regions in which malaria is endemic and are often undetectable by light microscopy, rendering their study in human populations difficult. The exact evolutionary relationship of these species to the other human-infective species has been contested. Using a new reference genome for P. malariae and a manually curated draft P. o. curtisi genome, we are now able to accurately place these species within the Plasmodium phylogeny. Sequencing of a P. malariae relative that infects chimpanzees reveals similar signatures of selection in the P. malariae lineage to another Plasmodium lineage shown to be capable of colonization of both human and chimpanzee hosts. Molecular dating suggests that these host adaptations occurred over similar evolutionary timescales. In addition to the core genome that is conserved between species, differences in gene content can be linked to their specific biology. The genome suggests that P. malariae expresses a family of heterodimeric proteins on its surface that have structural similarities to a protein crucial for invasion of red blood cells. The data presented here provide insight into the evolution of the Plasmodium genus as a whole.
Collapse
Affiliation(s)
- Gavin G Rutledge
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Ulrike Böhme
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Adam J Reid
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - James A Cotton
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Oumou Maiga-Ascofare
- Malaria Research and Training Center, University of Science, Techniques, and Technologies of Bamako, Bamako BP E.2528, Mali
- German Center for Infection Research, 20359 Hamburg, Germany
| | - Abdoulaye A Djimdé
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Malaria Research and Training Center, University of Science, Techniques, and Technologies of Bamako, Bamako BP E.2528, Mali
| | - Tobias O Apinjoh
- University of Buea, Post Office Box 63, Buea, South West Region, Republic of Cameroon
| | - Lucas Amenga-Etego
- Navrongo Health Research Centre, Post Office Box 114, Navrongo, Upper East Region, Ghana
| | - Magnus Manske
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - John W Barnwell
- Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - François Renaud
- Laboratoire MIVEGEC (UM1-CNRS-IRD), 34394 Montpellier, France
| | - Benjamin Ollomo
- Centre International de Recherches Médicales de Franceville, BP 709 Franceville, Gabon
| | - Franck Prugnolle
- Laboratoire MIVEGEC (UM1-CNRS-IRD), 34394 Montpellier, France
- Centre International de Recherches Médicales de Franceville, BP 709 Franceville, Gabon
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory 0810, Australia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory 0810, Australia
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory 0810, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7LJ, UK
| | - James S McCarthy
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, University of Queensland, Brisbane, Queensland 4006, Australia
| | - Dominic P Kwiatkowski
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Chris I Newbold
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Thomas D Otto
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
12
|
Marchant A, Mougel F, Jacquin-Joly E, Costa J, Almeida CE, Harry M. Under-Expression of Chemosensory Genes in Domiciliary Bugs of the Chagas Disease Vector Triatoma brasiliensis. PLoS Negl Trop Dis 2016; 10:e0005067. [PMID: 27792774 PMCID: PMC5085048 DOI: 10.1371/journal.pntd.0005067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/22/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In Latin America, the bloodsucking bugs Triatominae are vectors of Trypanosoma cruzi, the parasite that causes Chagas disease. Chemical elimination programs have been launched to control Chagas disease vectors. However, the disease persists because native vectors from sylvatic habitats are able to (re)colonize houses-a process called domiciliation. Triatoma brasiliensis is one example. Because the chemosensory system allows insects to interact with their environment and plays a key role in insect adaption, we conducted a descriptive and comparative study of the chemosensory transcriptome of T. brasiliensis samples from different ecotopes. METHODOLOGY/PRINCIPAL FINDING In a reference transcriptome built using de novo assembly, we found transcripts encoding 27 odorant-binding proteins (OBPs), 17 chemosensory proteins (CSPs), 3 odorant receptors (ORs), 5 transient receptor potential channel (TRPs), 1 sensory neuron membrane protein (SNMPs), 25 takeout proteins, 72 cytochrome P450s, 5 gluthatione S-transferases, and 49 cuticular proteins. Using protein phylogenies, we showed that most of the OBPs and CSPs for T. brasiliensis had well supported orthologs in the kissing bug Rhodnius prolixus. We also showed a higher number of these genes within the bloodsucking bugs and more generally within all Hemipterans compared to the other species in the super-order Paraneoptera. Using both DESeq2 and EdgeR software, we performed differential expression analyses between samples of T. brasiliensis, taking into account their environment (sylvatic, peridomiciliary and domiciliary) and sex. We also searched clusters of co-expressed contigs using HTSCluster. Among differentially expressed (DE) contigs, most were under-expressed in the chemosensory organs of the domiciliary bugs compared to the other samples and in females compared to males. We clearly identified DE genes that play a role in the chemosensory system. CONCLUSION/SIGNIFICANCE Chemosensory genes could be good candidates for genes that contribute to adaptation or plastic rearrangement to an anthropogenic system. The domiciliary environment probably includes less diversity of xenobiotics and probably has more stable abiotic parameters than do sylvatic and peridomiciliary environments. This could explain why both detoxification and cuticle protein genes are less expressed in domiciliary bugs. Understanding the molecular basis for how vectors adapt to human dwellings may reveal new tools to control disease vectors; for example, by disrupting chemical communication.
Collapse
Affiliation(s)
- Axelle Marchant
- UMR Evolution, Génomes, Comportement, Ecologie, CNRS-IRD- Univ. Paris-Sud, Université Paris Saclay, Campus CNRS, Gif-sur-Yvette – France
- UFR Sciences, Université Paris Sud, Orsay, France
| | - Florence Mougel
- UMR Evolution, Génomes, Comportement, Ecologie, CNRS-IRD- Univ. Paris-Sud, Université Paris Saclay, Campus CNRS, Gif-sur-Yvette – France
- UFR Sciences, Université Paris Sud, Orsay, France
| | - Emmanuelle Jacquin-Joly
- INRA, UMR 1392, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Route de Saint Cyr, Versailles, France
| | - Jane Costa
- Laboratório de Biodiversidade Entomológica; Instituto Oswaldo Cruz - Fiocruz; Rio de Janeiro; Brasil Instituto Oswaldo Cruz, Fiocruz – Brazil
| | - Carlos Eduardo Almeida
- Universidade Estadual de Campinas (Uncamp), Campinas São Paulo – Brazil
- Universidade Federal da Paraíba (UFPB), Paraíba – Brazil
| | - Myriam Harry
- UMR Evolution, Génomes, Comportement, Ecologie, CNRS-IRD- Univ. Paris-Sud, Université Paris Saclay, Campus CNRS, Gif-sur-Yvette – France
- UFR Sciences, Université Paris Sud, Orsay, France
| |
Collapse
|
13
|
Whole genome resequencing of the human parasite Schistosoma mansoni reveals population history and effects of selection. Sci Rep 2016; 6:20954. [PMID: 26879532 PMCID: PMC4754680 DOI: 10.1038/srep20954] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/13/2016] [Indexed: 12/30/2022] Open
Abstract
Schistosoma mansoni is a parasitic fluke that infects millions of people in the developing world. This study presents the first application of population genomics to S. mansoni based on high-coverage resequencing data from 10 global isolates and an isolate of the closely-related Schistosoma rodhaini, which infects rodents. Using population genetic tests, we document genes under directional and balancing selection in S. mansoni that may facilitate adaptation to the human host. Coalescence modeling reveals the speciation of S. mansoni and S. rodhaini as 107.5-147.6KYA, a period which overlaps with the earliest archaeological evidence for fishing in Africa. Our results indicate that S. mansoni originated in East Africa and experienced a decline in effective population size 20-90KYA, before dispersing across the continent during the Holocene. In addition, we find strong evidence that S. mansoni migrated to the New World with the 16-19th Century Atlantic Slave Trade.
Collapse
|
14
|
Guo J, Liu R, Huang L, Zheng XM, Liu PL, Du YS, Cai Z, Zhou L, Wei XH, Zhang FM, Ge S. Widespread and Adaptive Alterations in Genome-Wide Gene Expression Associated with Ecological Divergence of Two Oryza Species. Mol Biol Evol 2015; 33:62-78. [PMID: 26362653 DOI: 10.1093/molbev/msv196] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ecological speciation is a common mechanism by which new species arise. Despite great efforts, the role of gene expression in ecological divergence and speciation is poorly understood. Here, we conducted a genome-wide gene expression investigation of two Oryza species that are evolutionarily young and distinct in ecology and morphology. Using digital gene expression technology and the paired-end RNA sequencing method, we obtained 21,415 expressed genes across three reproduction-related tissues. Of them, approximately 8% (1,717) differed significantly in expression levels between the two species and these differentially expressed genes are randomly distributed across the genome. Moreover, 62% (1,064) of the differentially expressed genes exhibited a signature of directional selection in at least one species. Importantly, the genes with differential expression between species evolved more rapidly at the 5' flanking sequences than the genes without differential expression relative to coding sequences, suggesting that cis-regulatory changes are likely adaptive and play an important role in the ecological divergence of the two species. Finally, we showed evidence of significant differentiation between species in phenotype traits and observed that genes with differential expression were overrepresented with functional terms involving phenotypic and ecological differentiation between the two species, including reproduction- and stress-related characteristics. Our findings demonstrate that ecological speciation is associated with widespread and adaptive alterations in genome-wide gene expression and provide new insights into the importance of regulatory evolution in ecological speciation in plants.
Collapse
Affiliation(s)
- Jie Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Rong Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Lei Huang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Ming Zheng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ping-Li Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yu-Su Du
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Cai
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Lian Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Hua Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Fu-Min Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Collembolan Transcriptomes Highlight Molecular Evolution of Hexapods and Provide Clues on the Adaptation to Terrestrial Life. PLoS One 2015; 10:e0130600. [PMID: 26075903 PMCID: PMC4468109 DOI: 10.1371/journal.pone.0130600] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/21/2015] [Indexed: 11/19/2022] Open
Abstract
Background Collembola (springtails) represent a soil-living lineage of hexapods in between insects and crustaceans. Consequently, their genomes may hold key information on the early processes leading to evolution of Hexapoda from a crustacean ancestor. Method We assembled and annotated transcriptomes of the Collembola Folsomia candida and Orchesella cincta, and performed comparative analysis with protein-coding gene sequences of three crustaceans and three insects to identify adaptive signatures associated with the evolution of hexapods within the pancrustacean clade. Results Assembly of the springtail transcriptomes resulted in 37,730 transcripts with predicted open reading frames for F. candida and 32,154 for O. cincta, of which 34.2% were functionally annotated for F. candida and 38.4% for O. cincta. Subsequently, we predicted orthologous clusters among eight species and applied the branch-site test to detect episodic positive selection in the Hexapoda and Collembola lineages. A subset of 250 genes showed significant positive selection along the Hexapoda branch and 57 in the Collembola lineage. Gene Ontology categories enriched in these genes include metabolism, stress response (i.e. DNA repair, immune response), ion transport, ATP metabolism, regulation and development-related processes (i.e. eye development, neurological development). Conclusions We suggest that the identified gene families represent processes that have played a key role in the divergence of hexapods within the pancrustacean clade that eventually evolved into the most species-rich group of all animals, the hexapods. Furthermore, some adaptive signatures in collembolans may provide valuable clues to understand evolution of hexapods on land.
Collapse
|
16
|
Otto TD, Rayner JC, Böhme U, Pain A, Spottiswoode N, Sanders M, Quail M, Ollomo B, Renaud F, Thomas AW, Prugnolle F, Conway DJ, Newbold C, Berriman M. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts. Nat Commun 2014; 5:4754. [PMID: 25203297 PMCID: PMC4166903 DOI: 10.1038/ncomms5754] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/18/2014] [Indexed: 01/19/2023] Open
Abstract
Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete conservation of genomic synteny, but against this strikingly conserved background we observe major differences at loci involved in erythrocyte invasion. The organization of most virulence-associated multigene families, including the hypervariable var genes, is broadly conserved, but P. falciparum has a smaller subset of rif and stevor genes whose products are expressed on the infected erythrocyte surface. Genome-wide analysis identifies other loci under recent positive selection, but a limited number of changes at the host-parasite interface may have mediated host switching.
Collapse
Affiliation(s)
- Thomas D. Otto
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Julian C. Rayner
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Ulrike Böhme
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Arnab Pain
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
- Biological and Environmental Sciences and Engineering (BESE) Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Natasha Spottiswoode
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Mandy Sanders
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Michael Quail
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Benjamin Ollomo
- Centre International de Recherches Médicales de Franceville, CIRMF, BP 769 Franceville, Gabon
| | - François Renaud
- Laboratoire MIVEGEC, UMR 5290 CNRS-IRD-UMI-UMII, IRD, BP 64501, 34394 Montpellier, France
| | - Alan W. Thomas
- Biomedical Primate Research Centre, Department of Parasitology, 2280 GH Rijswijk, The Netherlands
| | - Franck Prugnolle
- Centre International de Recherches Médicales de Franceville, CIRMF, BP 769 Franceville, Gabon
- Laboratoire MIVEGEC, UMR 5290 CNRS-IRD-UMI-UMII, IRD, BP 64501, 34394 Montpellier, France
| | - David J. Conway
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Chris Newbold
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
- These authors contributed equally to this work
| | - Matthew Berriman
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
- These authors contributed equally to this work
| |
Collapse
|
17
|
Trypsin isozymes in the lobster Panulirus argus (Latreille, 1804): from molecules to physiology. J Comp Physiol B 2014; 185:17-35. [PMID: 25192870 DOI: 10.1007/s00360-014-0851-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/10/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
Abstract
Trypsin enzymes have been studied in a wide variety of animal taxa due to their central role in protein digestion as well as in other important physiological and biotechnological processes. Crustacean trypsins exhibit a high number of isoforms. However, while differences in properties of isoenzymes are known to play important roles in regulating different physiological processes, there is little information on this aspect for decapod trypsins. The aim of this review is to integrate recent findings at the molecular level on trypsin enzymes of the spiny lobster Panulirus argus, into higher levels of organization (biochemical, organism) and to interpret those findings in relation to the feeding ecology of these crustaceans. Trypsin in lobster is a polymorphic enzyme, showing isoforms that differ in their biochemical features and catalytic efficiencies. Molecular studies suggest that polymorphism in lobster trypsins may be non-neutral. Trypsin isoenzymes are differentially regulated by dietary proteins, and it seems that some isoenzymes have undergone adaptive evolution coupled with a divergence in expression rate to increase fitness. This review highlights important but poorly studied issues in crustaceans in general, such as the relation among trypsin polymorphism, phenotypic (digestive) flexibility, digestion efficiency, and feeding ecology.
Collapse
|
18
|
Massoumi Alamouti S, Haridas S, Feau N, Robertson G, Bohlmann J, Breuil C. Comparative Genomics of the Pine Pathogens and Beetle Symbionts in the Genus Grosmannia. Mol Biol Evol 2014; 31:1454-74. [DOI: 10.1093/molbev/msu102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
19
|
Warnefors M, Kaessmann H. Evolution of the correlation between expression divergence and protein divergence in mammals. Genome Biol Evol 2013; 5:1324-35. [PMID: 23781097 PMCID: PMC3730345 DOI: 10.1093/gbe/evt093] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Divergence of protein sequences and gene expression patterns are two fundamental mechanisms that generate organismal diversity. Here, we have used genome and transcriptome data from eight mammals and one bird to study the positive correlation of these two processes throughout mammalian evolution. We demonstrate that the correlation is stable over time and most pronounced in neural tissues, which indicates that it is the result of strong negative selection. The correlation is not driven by genes with specific functions and may instead best be viewed as an evolutionary default state, which can nevertheless be evaded by certain gene types. In particular, genes with developmental and neural functions are skewed toward changes in gene expression, consistent with selection against pleiotropic effects associated with changes in protein sequences. Surprisingly, we find that the correlation between expression divergence and protein divergence is not explained by between-gene variation in expression level, tissue specificity, protein connectivity, or other investigated gene characteristics, suggesting that it arises independently of these gene traits. The selective constraints on protein sequences and gene expression patterns also fluctuate in a coordinate manner across phylogenetic branches: We find that gene-specific changes in the rate of protein evolution in a specific mammalian lineage tend to be accompanied by similar changes in the rate of expression evolution. Taken together, our findings highlight many new aspects of the correlation between protein divergence and expression divergence, and attest to its role as a fundamental property of mammalian genome evolution.
Collapse
Affiliation(s)
- Maria Warnefors
- Center for Integrative Genomics, University of Lausanne, Switzerland.
| | | |
Collapse
|
20
|
Kozak GM, Brennan RS, Berdan EL, Fuller RC, Whitehead A. Functional and population genomic divergence within and between two species of killifish adapted to different osmotic niches. Evolution 2013; 68:63-80. [PMID: 24134703 DOI: 10.1111/evo.12265] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 08/23/2013] [Indexed: 12/16/2022]
Abstract
Adaptation to salinity affects species distributions, promotes speciation, and guides many evolutionary patterns in fishes. To uncover the basis of a complex trait like osmoregulation, genome-level analyses are sensible. We combine population genomic scans with genome expression profiling to discover candidate genes and pathways associated with divergence between osmotic environments. We compared transcriptome sequence divergence between multiple freshwater and saltwater populations of the rainwater killifish, Lucania parva. We also compared sequence divergence between L. parva and its sister species, Lucania goodei, a freshwater specialist. We found highly differentiated single nucleotide polymorphisms (SNPs) between freshwater and saltwater L. parva populations in cell junction and ion transport genes, including V-type H(+) ATPase. Between species, we found divergence in reproduction and osmotic stress genes. Genes that were differentially expressed between species during osmotic acclimation included genes involved in ion transport and cell volume regulation. Gene sets that were divergent in coding sequence and divergent in expression did not overlap, although they did converge in function. Like many studies using genomic scans, our approach may miss some loci that contribute to adaptation but have complicated patterns of allelic variation. Our study suggests that gene expression and coding sequence may evolve independently as populations adapt to a complex physiological challenge.
Collapse
Affiliation(s)
- Genevieve M Kozak
- Department of Animal Biology, University of Illinois, Champaign, Illinois, 61820.
| | | | | | | | | |
Collapse
|
21
|
Szövényi P, Ricca M, Hock Z, Shaw JA, Shimizu KK, Wagner A. Selection is no more efficient in haploid than in diploid life stages of an angiosperm and a moss. Mol Biol Evol 2013; 30:1929-39. [PMID: 23686659 DOI: 10.1093/molbev/mst095] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The masking hypothesis predicts that selection is more efficient in haploids than in diploids, because dominant alleles can mask the deleterious effects of recessive alleles in diploids. However, gene expression breadth and noise can potentially counteract the effect of masking on the rate at which genes evolve. Land plants are ideal to ask whether masking, expression breadth, or expression noise dominate in their influence on the rate of molecular evolution, because they have a biphasic life cycle in which the duration and complexity of the haploid and diploid phase varies among organisms. Here, we generate and compile genome-wide gene expression, sequence divergence, and polymorphism data for Arabidopsis thaliana and for the moss Funaria hygrometrica to show that the evolutionary rates of haploid- and diploid-specific genes contradict the masking hypothesis. Haploid-specific genes do not evolve more slowly than diploid-specific genes in either organism. Our data suggest that gene expression breadth influence the evolutionary rate of phase-specific genes more strongly than masking. Our observations have implications for the role of haploid life stages in the purging of deleterious mutations, as well as for the evolution of ploidy.
Collapse
Affiliation(s)
- Péter Szövényi
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
22
|
Innocenti P, Chenoweth SF. Interspecific divergence of transcription networks along lines of genetic variance in Drosophila: dimensionality, evolvability, and constraint. Mol Biol Evol 2013; 30:1358-67. [PMID: 23519314 DOI: 10.1093/molbev/mst047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Change in gene expression is a major facilitator of phenotypic evolution. Understanding the evolutionary potential of gene expression requires taking into account complex systems of regulatory networks, the structure of which could potentially bias evolutionary trajectories. We analyzed the evolutionary potential and divergence of multigene expression in three well-characterized signaling pathways in Drosophila, the mitogen-activated protein kinase (MapK), the Toll, and the insulin receptor/Foxo (InR/Foxo or InR/TOR) pathways in a multivariate quantitative genetic framework. Gene expression data from a natural population of D. melanogaster were used to estimate the genetic variance-covariance matrices (G) for each network. Although most genes within each pathway exhibited significant genetic variance, the number of independent dimensions of multivariate genetic variance was fewer than the number of genes analyzed. However, for expression, the reduction in dimensionality was not as large as seen for other trait types such as morphology. We then tested whether gene expression divergence between D. melanogaster and an additional six species of the Drosophila genus was biased along the major axes of standing variation observed in D. melanogaster. In many cases, divergence was restricted to directions of phenotypic space harboring above average levels of genetic variance in D. melanogaster, indicating that genetic covariances between genes within pathways have biased interspecific divergence. We tested whether co-expression of genes in both sexes has also biased the pattern of divergence. Including cross-sex genetic covariances increased the degree to which divergence was biased along major axes of genetic variance, suggesting that the co-expression of genes in males and females can generate further constraints on divergence across the Drosophila phylogeny. In contrast to patterns seen for morphological traits in vertebrates, transcriptional constraints do not appear to break down as divergence time between species increases, instead they persist over tens of millions of years of divergence.
Collapse
Affiliation(s)
- Paolo Innocenti
- Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
23
|
Olson-Manning CF, Lee CR, Rausher MD, Mitchell-Olds T. Evolution of flux control in the glucosinolate pathway in Arabidopsis thaliana. Mol Biol Evol 2013; 30:14-23. [PMID: 22923463 PMCID: PMC3525143 DOI: 10.1093/molbev/mss204] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Network characteristics of biochemical pathways are believed to influence the rate of evolutionary change in constituent enzymes. One characteristic that may affect rate heterogeneity is control of the amount of product produced by a biochemical pathway or flux control. In particular, theoretical analyses suggest that adaptive substitutions should be concentrated in the enzyme(s) that exert the greatest control over flux. Although a handful of studies have found a correlation between position in a pathway and evolutionary rate, these investigations have not examined the relationship between evolutionary rate and flux control. Given that genes with greater control will experience stronger selection and that the probability of fixation is proportional to the selective advantage, we ask the following: 1) do upstream enzymes have majority flux control, 2) do enzymes with majority flux control accumulate adaptive substitutions, and 3) are upstream enzymes under higher selective constraint? First, by perturbing the enzymes in the aliphatic glucosinolate pathway in Arabidopsis thaliana with gene insertion lines, we show that flux control is focused in the first enzyme in the pathway. Next, by analyzing several sequence signatures of selection, we also show that this enzyme is the only one in the pathway that shows convincing evidence of selection. Our results support the hypothesis that natural selection preferentially acts on enzymes with high flux control.
Collapse
|
24
|
Nolte V, Pandey RV, Kofler R, Schlötterer C. Genome-wide patterns of natural variation reveal strong selective sweeps and ongoing genomic conflict in Drosophila mauritiana. Genome Res 2013; 23:99-110. [PMID: 23051690 PMCID: PMC3530687 DOI: 10.1101/gr.139873.112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 09/24/2012] [Indexed: 12/25/2022]
Abstract
Although it is well understood that selection shapes the polymorphism pattern in Drosophila, signatures of classic selective sweeps are scarce. Here, we focus on Drosophila mauritiana, an island endemic, which is closely related to Drosophila melanogaster. Based on a new, annotated genome sequence, we characterized the genome-wide polymorphism by sequencing pooled individuals (Pool-seq). We show that the interplay between selection and recombination results in a genome-wide polymorphism pattern characteristic for D. mauritiana. Two large genomic regions (>500 kb) showed the signature of almost complete selective sweeps. We propose that the absence of population structure and limited geographic distribution could explain why such pronounced sweep patterns are restricted to D. mauritiana. Further evidence for strong adaptive evolution was detected for several nucleoporin genes, some of which were not previously identified as genes involved in genomic conflict. Since this adaptive evolution is continuing after the split of D. mauritiana and Drosophila simulans, we conclude that genomic conflict is not restricted to short episodes, but rather an ongoing process in Drosophila.
Collapse
Affiliation(s)
- Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
| | - Ram Vinay Pandey
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
| | | |
Collapse
|
25
|
Ni X, Zhang YE, Nègre N, Chen S, Long M, White KP. Adaptive evolution and the birth of CTCF binding sites in the Drosophila genome. PLoS Biol 2012; 10:e1001420. [PMID: 23139640 PMCID: PMC3491045 DOI: 10.1371/journal.pbio.1001420] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 09/28/2012] [Indexed: 02/02/2023] Open
Abstract
Comparative ChIP-seq data reveal adaptive evolution of insulator protein CTCF binding in multiple Drosophila species. Changes in the physical interaction between cis-regulatory DNA sequences and proteins drive the evolution of gene expression. However, it has proven difficult to accurately quantify evolutionary rates of such binding change or to estimate the relative effects of selection and drift in shaping the binding evolution. Here we examine the genome-wide binding of CTCF in four species of Drosophila separated by between ∼2.5 and 25 million years. CTCF is a highly conserved protein known to be associated with insulator sequences in the genomes of human and Drosophila. Although the binding preference for CTCF is highly conserved, we find that CTCF binding itself is highly evolutionarily dynamic and has adaptively evolved. Between species, binding divergence increased linearly with evolutionary distance, and CTCF binding profiles are diverging rapidly at the rate of 2.22% per million years (Myr). At least 89 new CTCF binding sites have originated in the Drosophila melanogaster genome since the most recent common ancestor with Drosophila simulans. Comparing these data to genome sequence data from 37 different strains of Drosophila melanogaster, we detected signatures of selection in both newly gained and evolutionarily conserved binding sites. Newly evolved CTCF binding sites show a significantly stronger signature for positive selection than older sites. Comparative gene expression profiling revealed that expression divergence of genes adjacent to CTCF binding site is significantly associated with the gain and loss of CTCF binding. Further, the birth of new genes is associated with the birth of new CTCF binding sites. Our data indicate that binding of Drosophila CTCF protein has evolved under natural selection, and CTCF binding evolution has shaped both the evolution of gene expression and genome evolution during the birth of new genes. A large proportion of the diversity of living organisms results from differential regulation of gene transcription. Transcriptional regulation is thought to differ between species because of evolutionary changes in the physical interactions between regulatory DNA elements and DNA-binding proteins; these can generate variation in the spatial and temporal patterns of gene expression. The mechanisms by which these protein–DNA interactions evolve is therefore an important question in evolutionary biology. Does adaptive evolution play a role, or is the process dominated by neutral genetic drift? Insulator proteins are a special group of DNA-binding proteins—instead of directly serving to activate or repress genes, they can function to coordinate the interactions between other regulatory elements (such as enhancers and promoters). Additionally, insulator proteins can limit the spreading of chromatin condensation and help to demarcate the boundaries of regulatory domains in the genome. In spite of their critical role in genome regulation, little is known about the evolution of interactions between insulator proteins and DNA. Here, we use ChIP-seq to examine the distribution of binding sites for CTCF, a highly conserved insulator protein, in four closely related Drosophila species. We find that genome-wide binding profiles of CTCF are highly dynamic across evolutionary time, with frequent births of new CTCF-DNA interactions, and we demonstrate that this evolutionary process is driven by natural selection. By comparing these with RNA-seq data, we find that gain or loss of CTCF binding impacts the expression levels of nearby genes and correlates with structural evolution of the genome. Together these results suggest a potential mechanism of regulatory re-wiring through adaptive evolution of CTCF binding.
Collapse
Affiliation(s)
- Xiaochun Ni
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Yong E. Zhang
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Nicolas Nègre
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Sidi Chen
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Manyuan Long
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Kevin P. White
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
26
|
Extensive evolutionary changes in regulatory element activity during human origins are associated with altered gene expression and positive selection. PLoS Genet 2012; 8:e1002789. [PMID: 22761590 PMCID: PMC3386175 DOI: 10.1371/journal.pgen.1002789] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 05/07/2012] [Indexed: 11/19/2022] Open
Abstract
Understanding the molecular basis for phenotypic differences between humans and other primates remains an outstanding challenge. Mutations in non-coding regulatory DNA that alter gene expression have been hypothesized as a key driver of these phenotypic differences. This has been supported by differential gene expression analyses in general, but not by the identification of specific regulatory elements responsible for changes in transcription and phenotype. To identify the genetic source of regulatory differences, we mapped DNaseI hypersensitive (DHS) sites, which mark all types of active gene regulatory elements, genome-wide in the same cell type isolated from human, chimpanzee, and macaque. Most DHS sites were conserved among all three species, as expected based on their central role in regulating transcription. However, we found evidence that several hundred DHS sites were gained or lost on the lineages leading to modern human and chimpanzee. Species-specific DHS site gains are enriched near differentially expressed genes, are positively correlated with increased transcription, show evidence of branch-specific positive selection, and overlap with active chromatin marks. Species-specific sequence differences in transcription factor motifs found within these DHS sites are linked with species-specific changes in chromatin accessibility. Together, these indicate that the regulatory elements identified here are genetic contributors to transcriptional and phenotypic differences among primate species. The human genome shares a remarkable amount of genomic sequence with our closest living primate relatives. Researchers have long sought to understand what regions of the genome are responsible for unique species-specific traits. Previous studies have shown that many genes are differentially expressed between species, but the regulatory elements contributing to these differences are largely unknown. Here we report a genome-wide comparison of active gene regulatory elements in human, chimpanzee, and macaque, and we identify hundreds of regulatory elements that have been gained or lost in the human or chimpanzee genomes since their evolutionary divergence. These elements contain evidence of natural selection and correlate with species-specific changes in gene expression. Polymorphic DNA bases in transcription factor motifs that we found in these regulatory elements may be responsible for the varied biological functions across species. This study directly links phenotypic and transcriptional differences between species with changes in chromatin structure.
Collapse
|
27
|
Warnefors M, Eyre-Walker A. A selection index for gene expression evolution and its application to the divergence between humans and chimpanzees. PLoS One 2012; 7:e34935. [PMID: 22529958 PMCID: PMC3329554 DOI: 10.1371/journal.pone.0034935] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 03/09/2012] [Indexed: 12/22/2022] Open
Abstract
The importance of gene regulation in animal evolution is a matter of long-standing interest, but measuring the impact of selection on gene expression has proven a challenge. Here, we propose a selection index of gene expression as a straightforward method for assessing the mode and strength of selection operating on gene expression levels. The index is based on the widely used McDonald-Kreitman test and requires the estimation of four quantities: the within-species and between-species expression variances as well as the sequence heterozygosity and divergence of neutrally evolving sequences. We apply the method to data from human and chimpanzee lymphoblastoid cell lines and show that gene expression is in general under strong stabilizing selection. We also demonstrate how the same framework can be used to estimate the proportion of adaptive gene expression evolution.
Collapse
Affiliation(s)
- Maria Warnefors
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
28
|
Perera E, Rodríguez-Viera L, Rodríguez-Casariego J, Fraga I, Carrillo O, Martínez-Rodríguez G, Mancera JM. Dietary protein quality differentially regulates trypsin enzymes at the secretion and transcription level in Panulirus argus by distinct signaling pathways. J Exp Biol 2012; 215:853-62. [DOI: 10.1242/jeb.063925] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The effects of pelleted diets with different protein composition (fish, squid or soybean meals as main protein sources) on trypsin secretion and expression were studied in the lobster Panulirus argus. Trypsin secretion was shown to be maximal 4 h after ingestion. At this time, fish- and squid-based diets induced trypsin secretion, as well as up-regulation of the major trypsin isoform at the transcription level. While fish- and squid-based diets elicited a prandial response, soybean-based diet failed to stimulate the digestive gland to secrete trypsin into the gastric fluid or induce trypsin expression above the levels observed in fasting lobsters. In vitro assays showed that intact proteins rather than protein hydrolysates stimulate trypsin secretion in the lobster. However, the signal for trypsin transcription appears to be different to that for secretion and is probably mediated by the appearance of free amino acids in the digestive gland, suggesting a stepwise regulation of trypsin enzymes during digestion. We conclude that trypsin enzymes in P. argus are regulated at the transcription and secretion level by the quality of dietary proteins through two distinct signaling pathways. Our results indicate that protein digestion efficiency in spiny lobsters can be improved by selecting appropriated protein sources. However, other factors like the poor solubility of dietary proteins in dry diets could hamper further enhancement of digestion efficiency.
Collapse
Affiliation(s)
- Erick Perera
- Center for Marine Research, University of Havana, Cuba
| | | | | | | | | | | | - Juan M. Mancera
- Department of Biology, Faculty of Marine and Environmental Science, University of Cadiz, Spain
| |
Collapse
|
29
|
Graze RM, Novelo LL, Amin V, Fear JM, Casella G, Nuzhdin SV, McIntyre LM. Allelic imbalance in Drosophila hybrid heads: exons, isoforms, and evolution. Mol Biol Evol 2012; 29:1521-32. [PMID: 22319150 DOI: 10.1093/molbev/msr318] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Unraveling how regulatory divergence contributes to species differences and adaptation requires identifying functional variants from among millions of genetic differences. Analysis of allelic imbalance (AI) reveals functional genetic differences in cis regulation and has demonstrated differences in cis regulation within and between species. Regulatory mechanisms are often highly conserved, yet differences between species in gene expression are extensive. What evolutionary forces explain widespread divergence in cis regulation? AI was assessed in Drosophila melanogaster-Drosophila simulans hybrid female heads using RNA-seq technology. Mapping bias was virtually eliminated by using genotype-specific references. Allele representation in DNA sequencing was used as a prior in a novel Bayesian model for the estimation of AI in RNA. Cis regulatory divergence was common in the organs and tissues of the head with 41% of genes analyzed showing significant AI. Using existing population genomic data, the relationship between AI and patterns of sequence evolution was examined. Evidence of positive selection was found in 30% of cis regulatory divergent genes. Genes involved in defense, RNAi/RISC complex genes, and those that are sex regulated are enriched among adaptively evolving cis regulatory divergent genes. For genes in these groups, adaptive evolution may play a role in regulatory divergence between species. However, there is no evidence that adaptive evolution drives most of the cis regulatory divergence that is observed. The majority of genes showed patterns consistent with stabilizing selection and neutral evolutionary processes.
Collapse
Affiliation(s)
- R M Graze
- Department of Molecular Genetics and Microbiology, University of Florida, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Vast tracts of noncoding DNA contain elements that regulate gene expression in higher eukaryotes. Describing these regulatory elements and understanding how they evolve represent major challenges for biologists. Advances in the ability to survey genome-scale DNA sequence data are providing unprecedented opportunities to use evolutionary models and computational tools to identify functionally important elements and the mode of selection acting on them in multiple species. This chapter reviews some of the current methods that have been developed and applied on noncoding DNA, what they have shown us, and how they are limited. Results of several recent studies reveal that a significantly larger fraction of noncoding DNA in eukaryotic organisms is likely to be functional than previously believed, implying that the functional annotation of most noncoding DNA in these organisms is largely incomplete. In Drosophila, recent studies have further suggested that a large fraction of noncoding DNA divergence observed between species may be the product of recurrent adaptive substitution. Similar studies in humans have revealed a more complex pattern, with signatures of recurrent positive selection being largely concentrated in conserved noncoding DNA elements. Understanding these patterns and the extent to which they generalize to other organisms awaits the analysis of forthcoming genome-scale polymorphism and divergence data from more species.
Collapse
Affiliation(s)
- Ying Zhen
- Department of Ecology and Evolutionary Biology, The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
31
|
Pespeni MH, Garfield DA, Manier MK, Palumbi SR. Genome-wide polymorphisms show unexpected targets of natural selection. Proc Biol Sci 2011; 279:1412-20. [PMID: 21993504 DOI: 10.1098/rspb.2011.1823] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Natural selection can act on all the expressed genes of an individual, leaving signatures of genetic differentiation or diversity at many loci across the genome. New power to assay these genome-wide effects of selection comes from associating multi-locus patterns of polymorphism with gene expression and function. Here, we performed one of the first genome-wide surveys in a marine species, comparing purple sea urchins, Strongylocentrotus purpuratus, from two distant locations along the species' wide latitudinal range. We examined 9112 polymorphic loci from upstream non-coding and coding regions of genes for signatures of selection with respect to gene function and tissue- and ontogenetic gene expression. We found that genetic differentiation (F(ST)) varied significantly across functional gene classes. The strongest enrichment occurred in the upstream regions of E3 ligase genes, enzymes known to regulate protein abundance during development and environmental stress. We found enrichment for high heterozygosity in genes directly involved in immune response, particularly NALP genes, which mediate pro-inflammatory signals during bacterial infection. We also found higher heterozygosity in immune genes in the southern population, where disease incidence and pathogen diversity are greater. Similar to the major histocompatibility complex in mammals, balancing selection may enhance genetic diversity in the innate immune system genes of this invertebrate. Overall, our results show that how genome-wide polymorphism data coupled with growing databases on gene function and expression can combine to detect otherwise hidden signals of selection in natural populations.
Collapse
Affiliation(s)
- Melissa H Pespeni
- Department of Biology, Hopkins Marine Station, Stanford University, Oceanview Boulevard, Pacific Grove, CA 93950, USA.
| | | | | | | |
Collapse
|
32
|
Wurmser F, Ogereau D, Mary-Huard T, Loriod B, Joly D, Montchamp-Moreau C. Population transcriptomics: insights from Drosophila simulans, Drosophila sechellia and their hybrids. Genetica 2011; 139:465-77. [PMID: 21424276 DOI: 10.1007/s10709-011-9566-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/07/2011] [Indexed: 01/03/2023]
Abstract
Sequence differentiation has been widely studied between populations and species, whereas interest in expression divergence is relatively recent. Using microarrays, we compared four geographically distinct populations of Drosophila simulans and a population of Drosophila sechellia, and interspecific hybrids. We observed few differences between populations, suggesting a slight population structure in D. simulans. This structure was observed in direct population comparisons, as well as in interspecific comparisons (hybrids vs. parents, D. sechellia vs. D. simulans). Expression variance is higher in the French and Zimbabwean populations than in the populations from the ancestral range of D. simulans (Kenya and Seychelles). This suggests a large scale phenomenon of decanalization following the invasion of a new environment. Comparing D. simulans and D. sechellia, we revealed 304 consistently differentially expressed genes, with striking overrepresentation of genes of the cytochrome P450 family, which could be related to their role in detoxification as well as in hormone regulation. We also revealed differences in genes involved in Juvenile hormone and Dopamine differentiation. We finally observed very few differentially expressed genes between hybrids and parental populations, with an overrepresentation of X-linked genes.
Collapse
Affiliation(s)
- François Wurmser
- Laboratoire Evolution, Génomes et Spéciation, CNRS UPR9034 Avenue de la Terrasse, Gif-sur-Yvette F-91198 Cedex, and Univ Paris-Sud, 91405 Orsay, France.
| | | | | | | | | | | |
Collapse
|
33
|
Wissler L, Codoñer FM, Gu J, Reusch TBH, Olsen JL, Procaccini G, Bornberg-Bauer E. Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life. BMC Evol Biol 2011; 11:8. [PMID: 21226908 PMCID: PMC3033329 DOI: 10.1186/1471-2148-11-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 01/12/2011] [Indexed: 01/12/2023] Open
Abstract
Background Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs) of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L.) Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. Results In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica) and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. Conclusions These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence.
Collapse
Affiliation(s)
- Lothar Wissler
- Evolutionary Bioinformatics, Institute for Evolution and Biodiversity, University of Muenster, Huefferstrasse 1, D48149 Muenster, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Dyer KA, White BE, Bray MJ, Piqué DG, Betancourt AJ. Molecular evolution of a Y chromosome to autosome gene duplication in Drosophila. Mol Biol Evol 2010; 28:1293-306. [PMID: 21172827 DOI: 10.1093/molbev/msq334] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In contrast to the rest of the genome, the Y chromosome is restricted to males and lacks recombination. As a result, Y chromosomes are unable to respond efficiently to selection, and newly formed Y chromosomes degenerate until few genes remain. The rapid loss of genes from newly formed Y chromosomes has been well studied, but gene loss from highly degenerate Y chromosomes has only recently received attention. Here, we identify and characterize a Y to autosome duplication of the male fertility gene kl-5 that occurred during the evolution of the testacea group species of Drosophila. The duplication was likely DNA based, as other Y-linked genes remain on the Y chromosome, the locations of introns are conserved, and expression analyses suggest that regulatory elements remain linked. Genetic mapping reveals that the autosomal copy of kl-5 resides on the dot chromosome, a tiny autosome with strongly suppressed recombination. Molecular evolutionary analyses show that autosomal copies of kl-5 have reduced polymorphism and little recombination. Importantly, the rate of protein evolution of kl-5 has increased significantly in lineages where it is on the dot versus Y linked. Further analyses suggest this pattern is a consequence of relaxed purifying selection, rather than adaptive evolution. Thus, although the initial fixation of the kl-5 duplication may have been advantageous, slightly deleterious mutations have accumulated in the dot-linked copies of kl-5 faster than in the Y-linked copies. Because the dot chromosome contains seven times more genes than the Y and is exposed to selection in both males and females, these results suggest that the dot suffers the deleterious effects of genetic linkage to more selective targets compared with the Y chromosome. Thus, a highly degenerate Y chromosome may not be the worst environment in the genome, as is generally thought, but may in fact be protected from the accumulation of deleterious mutations relative to other nonrecombining regions that contain more genes.
Collapse
Affiliation(s)
- Kelly A Dyer
- Department of Genetics, University of Georgia, GA, USA.
| | | | | | | | | |
Collapse
|
35
|
Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 2010; 6:e1000862. [PMID: 20195501 PMCID: PMC2829049 DOI: 10.1371/journal.pgen.1000862] [Citation(s) in RCA: 993] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 01/28/2010] [Indexed: 11/19/2022] Open
Abstract
Next-generation sequencing technology provides novel opportunities for gathering genome-scale sequence data in natural populations, laying the empirical foundation for the evolving field of population genomics. Here we conducted a genome scan of nucleotide diversity and differentiation in natural populations of threespine stickleback (Gasterosteus aculeatus). We used Illumina-sequenced RAD tags to identify and type over 45,000 single nucleotide polymorphisms (SNPs) in each of 100 individuals from two oceanic and three freshwater populations. Overall estimates of genetic diversity and differentiation among populations confirm the biogeographic hypothesis that large panmictic oceanic populations have repeatedly given rise to phenotypically divergent freshwater populations. Genomic regions exhibiting signatures of both balancing and divergent selection were remarkably consistent across multiple, independently derived populations, indicating that replicate parallel phenotypic evolution in stickleback may be occurring through extensive, parallel genetic evolution at a genome-wide scale. Some of these genomic regions co-localize with previously identified QTL for stickleback phenotypic variation identified using laboratory mapping crosses. In addition, we have identified several novel regions showing parallel differentiation across independent populations. Annotation of these regions revealed numerous genes that are candidates for stickleback phenotypic evolution and will form the basis of future genetic analyses in this and other organisms. This study represents the first high-density SNP-based genome scan of genetic diversity and differentiation for populations of threespine stickleback in the wild. These data illustrate the complementary nature of laboratory crosses and population genomic scans by confirming the adaptive significance of previously identified genomic regions, elucidating the particular evolutionary and demographic history of such regions in natural populations, and identifying new genomic regions and candidate genes of evolutionary significance.
Collapse
Affiliation(s)
- Paul A. Hohenlohe
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Susan Bassham
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Paul D. Etter
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Nicholas Stiffler
- Genomics Core Facility, University of Oregon, Eugene, Oregon, United States of America
| | - Eric A. Johnson
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - William A. Cresko
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
36
|
Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 2010. [PMID: 20195501 DOI: 10.1371/journal.pgen.1000862.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Next-generation sequencing technology provides novel opportunities for gathering genome-scale sequence data in natural populations, laying the empirical foundation for the evolving field of population genomics. Here we conducted a genome scan of nucleotide diversity and differentiation in natural populations of threespine stickleback (Gasterosteus aculeatus). We used Illumina-sequenced RAD tags to identify and type over 45,000 single nucleotide polymorphisms (SNPs) in each of 100 individuals from two oceanic and three freshwater populations. Overall estimates of genetic diversity and differentiation among populations confirm the biogeographic hypothesis that large panmictic oceanic populations have repeatedly given rise to phenotypically divergent freshwater populations. Genomic regions exhibiting signatures of both balancing and divergent selection were remarkably consistent across multiple, independently derived populations, indicating that replicate parallel phenotypic evolution in stickleback may be occurring through extensive, parallel genetic evolution at a genome-wide scale. Some of these genomic regions co-localize with previously identified QTL for stickleback phenotypic variation identified using laboratory mapping crosses. In addition, we have identified several novel regions showing parallel differentiation across independent populations. Annotation of these regions revealed numerous genes that are candidates for stickleback phenotypic evolution and will form the basis of future genetic analyses in this and other organisms. This study represents the first high-density SNP-based genome scan of genetic diversity and differentiation for populations of threespine stickleback in the wild. These data illustrate the complementary nature of laboratory crosses and population genomic scans by confirming the adaptive significance of previously identified genomic regions, elucidating the particular evolutionary and demographic history of such regions in natural populations, and identifying new genomic regions and candidate genes of evolutionary significance.
Collapse
|
37
|
Staubach F, Teschke M, Voolstra CR, Wolf JBW, Tautz D. A TEST OF THE NEUTRAL MODEL OF EXPRESSION CHANGE IN NATURAL POPULATIONS OF HOUSE MOUSE SUBSPECIES. Evolution 2010; 64:549-60. [DOI: 10.1111/j.1558-5646.2009.00818.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Jiménez-Gómez JM, Maloof JN. Sequence diversity in three tomato species: SNPs, markers, and molecular evolution. BMC PLANT BIOLOGY 2009; 9:85. [PMID: 19575805 PMCID: PMC3224693 DOI: 10.1186/1471-2229-9-85] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 07/03/2009] [Indexed: 05/22/2023]
Abstract
BACKGROUND Tomato species are of significant agricultural and ecological interest, with cultivated tomato being among the most common vegetable crops grown. Wild tomato species are native to diverse habitats in South America and show great morphological and ecological diversity that has proven useful in breeding programs. However, relatively little is known about nucleotide diversity between tomato species. Until recently limited sequence information was available for tomato, preventing genome-wide evolutionary analyses. Now, an extensive collection of tomato expressed sequence tags (ESTs) is available at the SOL Genomics Network (SGN). This database holds sequences from several species, annotated with quality values, assembled into unigenes, and tested for homology against other genomes. Despite the importance of polymorphism detection for breeding and natural variation studies, such analyses in tomato have mostly been restricted to cultivated accessions. Importantly, previous polymorphisms surveys mostly ignored the linked meta-information, limiting functional and evolutionary analyses. The current data in SGN is thus an under-exploited resource. Here we describe a cross-species analysis taking full-advantage of available information. RESULTS We mined 20,000 interspecific polymorphisms between Solanum lycopersicum and S. habrochaites or S. pennellii and 28,800 intraspecific polymorphisms within S. lycopersicum. Using the available meta-information we classified genes into functional categories and obtained estimations of single nucleotide polymorphisms (SNP) quality, position in the gene, and effect on the encoded proteins, allowing us to perform evolutionary analyses. Finally, we developed a set of more than 10,000 between-species molecular markers optimized by sequence quality and predicted intron position. Experimental validation of 491 of these molecular markers resulted in confirmation of 413 polymorphisms. CONCLUSION We present a new analysis of the extensive tomato EST sequences available that represents the most comprehensive survey of sequence diversity across Solanum species to date. These SNPs, plus thousands of molecular makers designed to detect the polymorphisms are available to the community via a website. Evolutionary analyses on these polymorphism uncovered sets of genes potentially important for the evolution and domestication of tomato; interestingly these sets were enriched for genes involved in response to the environment.
Collapse
Affiliation(s)
- José M Jiménez-Gómez
- Department of Plant Biology, College of Biological Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Julin N Maloof
- Department of Plant Biology, College of Biological Sciences, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
39
|
Normandeau E, Hutchings JA, Fraser DJ, Bernatchez L. Population-specific gene expression responses to hybridization between farm and wild Atlantic salmon. Evol Appl 2009; 2:489-503. [PMID: 25567894 PMCID: PMC3352448 DOI: 10.1111/j.1752-4571.2009.00074.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 04/29/2009] [Indexed: 11/29/2022] Open
Abstract
Because of intrinsic differences in their genetic architectures, wild populations invaded by domesticated individuals could experience population-specific consequences following introgression by genetic material of domesticated origin. Expression levels of 16 000 transcripts were quantified by microarrays in liver tissue from farm, wild, and farm-wild backcross (i.e. F1 farm-wild hybrid × wild; total n = 50) Atlantic salmon (Salmo salar) raised under common environmental conditions. The wild populations and farm strain originated from three North American rivers in eastern Canada (Stewiacke, Tusket, and Saint John rivers, respectively). Analysis of variance revealed 177 transcripts with different expression levels among the five strains compared. Five times more of these transcripts were differentiated between farmed parents and Tusket backcrosses (n = 53) than between Stewiacke backcrosses and their farmed parents (n = 11). Altered biological processes in backcrosses also differed between populations both in number and in the type of processes impacted (metabolism vs immunity). Over-dominant gene expression regulation in backcrosses varied considerably between populations (23% in Stewiacke vs 44% in Tusket). Hence, the consequences of introgression of farm genetic material on gene expression depended on population-specific genetic architectures. These results support the need to evaluate impacts of farm-wild genetic interactions at the population scale.
Collapse
Affiliation(s)
| | | | - Dylan J Fraser
- Department of Biology, Dalhousie University Halifax, Nova Scotia, Canada
| | | |
Collapse
|
40
|
Genetic changes accompanying the evolution of host specialization in Drosophila sechellia. Genetics 2008; 181:721-36. [PMID: 19033155 DOI: 10.1534/genetics.108.093419] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Changes in host specialization contribute to the diversification of phytophagous insects. When shifting to a new host, insects evolve new physiological, morphological, and behavioral adaptations. Our understanding of the genetic changes responsible for these adaptations is limited. For instance, we do not know how often host shifts involve gain-of-function vs. loss-of-function alleles. Recent work suggests that some genes involved in odor recognition are lost in specialists. Here we show that genes involved in detoxification and metabolism, as well as those affecting olfaction, have reduced gene expression in Drosophila sechellia-a specialist on the fruit of Morinda citrifolia. We screened for genes that differ in expression between D. sechellia and its generalist sister species, D. simulans. We also screened for genes that are differentially expressed in D. sechellia when these flies chose their preferred host vs. when they were forced onto other food. D. sechellia increases expression of genes involved with oogenesis and fatty acid metabolism when on its host. The majority of differentially expressed genes, however, appear downregulated in D. sechellia. For several functionally related genes, this decrease in expression is associated with apparent loss-of-function alleles. For example, the D. sechellia allele of Odorant binding protein 56e (Obp56e) harbors a premature stop codon. We show that knockdown of Obp56e activity significantly reduces the avoidance response of D. melanogaster toward M. citrifolia. We argue that apparent loss-of-function alleles like Obp56e potentially contributed to the initial adaptation of D. sechellia to its host. Our results suggest that a subset of genes reduce or lose function as a consequence of host specialization, which may explain why, in general, specialist insects tend to shift to chemically similar hosts.
Collapse
|
41
|
Controlling type-I error of the McDonald-Kreitman test in genomewide scans for selection on noncoding DNA. Genetics 2008; 180:1767-71. [PMID: 18791238 DOI: 10.1534/genetics.108.091850] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Departures from the assumption of homogenously interdigitated neutral and putatively selected sites in the McDonald-Kreitman test can lead to false rejections of the neutral model in the presence of intermediate levels of recombination. This problem is exacerbated by small sample sizes, nonequilibrium demography, recombination rate variation, and in comparisons involving more recently diverged species. I propose that establishing significance levels by coalescent simulation with recombination can improve the fidelity of the test in genomewide scans for selection on noncoding DNA.
Collapse
|
42
|
Lawniczak MKN, Holloway AK, Begun DJ, Jones CD. Genomic analysis of the relationship between gene expression variation and DNA polymorphism in Drosophila simulans. Genome Biol 2008; 9:R125. [PMID: 18700012 PMCID: PMC2575515 DOI: 10.1186/gb-2008-9-8-r125] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/20/2008] [Accepted: 08/12/2008] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Understanding how DNA sequence polymorphism relates to variation in gene expression is essential to connecting genotypic differences with phenotypic differences among individuals. Addressing this question requires linking population genomic data with gene expression variation. RESULTS Using whole genome expression data and recent light shotgun genome sequencing of six Drosophila simulans genotypes, we assessed the relationship between expression variation in males and females and nucleotide polymorphism across thousands of loci. By examining sequence polymorphism in gene features, such as untranslated regions and introns, we find that genes showing greater variation in gene expression between genotypes also have higher levels of sequence polymorphism in many gene features. Accordingly, X-linked genes, which have lower sequence polymorphism levels than autosomal genes, also show less expression variation than autosomal genes. We also find that sex-specifically expressed genes show higher local levels of polymorphism and divergence than both sex-biased and unbiased genes, and that they appear to have simpler regulatory regions. CONCLUSION The gene-feature-based analyses and the X-to-autosome comparisons suggest that sequence polymorphism in cis-acting elements is an important determinant of expression variation. However, this relationship varies among the different categories of sex-biased expression, and trans factors might contribute more to male-specific gene expression than cis effects. Our analysis of sex-specific gene expression also shows that female-specific genes have been overlooked in analyses that only point to male-biased genes as having unusual patterns of evolution and that studies of sexually dimorphic traits need to recognize that the relationship between genetic and expression variation at these traits is different from the genome as a whole.
Collapse
Affiliation(s)
- Mara K N Lawniczak
- Division of Cell and Molecular Biology, Imperial College London, London, SW7 2AZ, UK.
| | | | | | | |
Collapse
|
43
|
Kopp A, Barmina O, Hamilton AM, Higgins L, McIntyre LM, Jones CD. Evolution of gene expression in the Drosophila olfactory system. Mol Biol Evol 2008; 25:1081-92. [PMID: 18296696 DOI: 10.1093/molbev/msn055] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Host plant shifts by phytophagous insects play a key role in insect evolution and plant ecology. Such shifts often involve major behavioral changes as the insects must acquire an attraction and/or lose the repulsion to the new host plant's odor and taste. The evolution of chemotactic behavior may be due, in part, to gene expression changes in the peripheral sensory system. To test this hypothesis, we compared gene expression in the olfactory organs of Drosophila sechellia, a narrow ecological specialist that feeds on the fruit of Morinda citrifolia, with its close relatives Drosophila simulans and Drosophila melanogaster, which feed on a wide variety of decaying plant matter. Using whole-genome microarrays and quantitative polymerase chain reaction, we surveyed the entire repertoire of Drosophila odorant receptors (ORs) and odorant-binding proteins (OBPs) expressed in the antennae. We found that the evolution of OR and OBP expression was accelerated in D. sechellia compared both with the genome average in that species and with the rate of OR and OBP evolution in the other species. However, some of the gene expression changes that correlate with D. sechellia's increased sensitivity to Morinda odorants may predate its divergence from D. simulans. Interspecific divergence of olfactory gene expression cannot be fully explained by changes in the relative abundance of different sensilla as some ORs and OBPs have evolved independently of other genes expressed in the same sensilla. A number of OR and OBP genes are upregulated in D. sechellia compared with its generalist relatives. These genes include Or22a, which likely responds to a key odorant of M. citrifolia, and several genes that are yet to be characterized in detail. Increased expression of these genes in D. sechellia may have contributed to the evolution of its unique chemotactic behavior.
Collapse
Affiliation(s)
- Artyom Kopp
- Section of Evolution and Ecology, University of California, Davis, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Mezey JG, Nuzhdin SV, Ye F, Jones CD. Coordinated evolution of co-expressed gene clusters in the Drosophila transcriptome. BMC Evol Biol 2008; 8:2. [PMID: 18179715 PMCID: PMC2266709 DOI: 10.1186/1471-2148-8-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 01/07/2008] [Indexed: 01/06/2023] Open
Abstract
Background Co-expression of genes that physically cluster together is a common characteristic of eukaryotic transcriptomes. This organization of transcriptomes suggests that coordinated evolution of gene expression for clustered genes may also be common. Clusters where expression evolution of each gene is not independent of their neighbors are important units for understanding transcriptome evolution. Results We used a common microarray platform to measure gene expression in seven closely related species in the Drosophila melanogaster subgroup, accounting for confounding effects of sequence divergence. To summarize the correlation structure among genes in a chromosomal region, we analyzed the fraction of variation along the first principal component of the correlation matrix. We analyzed the correlation for blocks of consecutive genes to assess patterns of correlation that may be manifest at different scales of coordinated expression. We find that expression of physically clustered genes does evolve in a coordinated manner in many locations throughout the genome. Our analysis shows that relatively few of these clusters are near heterochromatin regions and that these clusters tend to be over-dispersed relative to the rest of the genome. This suggests that these clusters are not the byproduct of local gene clustering. We also analyzed the pattern of co-expression among neighboring genes within a single Drosophila species: D. simulans. For the co-expression clusters identified within this species, we find an under-representation of genes displaying a signature of recurrent adaptive amino acid evolution consistent with previous findings. However, clusters displaying co-evolution of expression among species are enriched for adaptively evolving genes. This finding points to a tie between adaptive sequence evolution and evolution of the transcriptome. Conclusion Our results demonstrate that co-evolution of expression in gene clusters is relatively common among species in the D. melanogaster subgroup. We consider the possibility that local regulation of expression in gene clusters may drive the connection between adaptive sequence and coordinated gene expression evolution.
Collapse
Affiliation(s)
- Jason G Mezey
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|