1
|
Xu W, Liu J, Qi H, Si R, Zhao Z, Tao Z, Bai Y, Hu S, Sun X, Cong Y, Zhang H, Fan D, Xiao L, Wang Y, Li Y, Du Z. A lineage-resolved cartography of microRNA promoter activity in C. elegans empowers multidimensional developmental analysis. Nat Commun 2024; 15:2783. [PMID: 38555276 PMCID: PMC10981687 DOI: 10.1038/s41467-024-47055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
Elucidating the expression of microRNAs in developing single cells is critical for functional discovery. Here, we construct scCAMERA (single-cell cartography of microRNA expression based on reporter assay), utilizing promoter-driven fluorescent reporters in conjunction with imaging and lineage tracing. The cartography delineates the transcriptional activity of 54 conserved microRNAs in lineage-resolved single cells throughout C. elegans embryogenesis. The combinatorial expression of microRNAs partitions cells into fine clusters reflecting their function and anatomy. Notably, the expression of individual microRNAs exhibits high cell specificity and divergence among family members. Guided by cellular expression patterns, we identify developmental functions of specific microRNAs, including miR-1 in pharynx development and physiology, miR-232 in excretory canal morphogenesis by repressing NHR-25/NR5A, and a functional synergy between miR-232 and miR-234 in canal development, demonstrating the broad utility of scCAMERA. Furthermore, integrative analysis reveals that tissue-specific fate determinants activate microRNAs to repress protein production from leaky transcripts associated with alternative, especially neuronal, fates, thereby enhancing the fidelity of developmental fate differentiation. Collectively, our study offers rich opportunities for multidimensional expression-informed analysis of microRNA biology in metazoans.
Collapse
Affiliation(s)
- Weina Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinyi Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huan Qi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ruolin Si
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhiguang Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiju Tao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yuchuan Bai
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Shipeng Hu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xiaohan Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yulin Cong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haoye Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Duchangjiang Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Long Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yangyang Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yongbin Li
- College of Life Sciences, Capital Normal University, Beijing, China.
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Geleta U, Prajapati P, Bachstetter A, Nelson PT, Wang WX. Sex-Biased Expression and Response of microRNAs in Neurological Diseases and Neurotrauma. Int J Mol Sci 2024; 25:2648. [PMID: 38473893 PMCID: PMC10931569 DOI: 10.3390/ijms25052648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Neurological diseases and neurotrauma manifest significant sex differences in prevalence, progression, outcome, and therapeutic responses. Genetic predisposition, sex hormones, inflammation, and environmental exposures are among many physiological and pathological factors that impact the sex disparity in neurological diseases. MicroRNAs (miRNAs) are a powerful class of gene expression regulator that are extensively involved in mediating biological pathways. Emerging evidence demonstrates that miRNAs play a crucial role in the sex dimorphism observed in various human diseases, including neurological diseases. Understanding the sex differences in miRNA expression and response is believed to have important implications for assessing the risk of neurological disease, defining therapeutic intervention strategies, and advancing both basic research and clinical investigations. However, there is limited research exploring the extent to which miRNAs contribute to the sex disparities observed in various neurological diseases. Here, we review the current state of knowledge related to the sexual dimorphism in miRNAs in neurological diseases and neurotrauma research. We also discuss how sex chromosomes may contribute to the miRNA sexual dimorphism phenomenon. We attempt to emphasize the significance of sexual dimorphism in miRNA biology in human diseases and to advocate a gender/sex-balanced science.
Collapse
Affiliation(s)
- Urim Geleta
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
| | - Paresh Prajapati
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
| | - Adam Bachstetter
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Peter T. Nelson
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Wang-Xia Wang
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
3
|
Wang J, Li Y. Current advances in antiviral RNA interference in mammals. FEBS J 2024; 291:208-216. [PMID: 36652199 DOI: 10.1111/febs.16728] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/09/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Mammals have potent innate immune systems that work together to fight against a variety of distinct viruses. In addition to interferon (IFN) response, which has been intensively studied, antiviral RNA interference (RNAi) is gradually being studied. However, previous studies indicated low Dicer activity on double-stranded RNA (dsRNA) substrates in vitro and that IFN response masks or inhibits antiviral RNAi in mammals. Therefore, whether or not the RNAi is functional for antiviral response in mammalian somatic cells is still an ongoing area of research. In this review, we will present the current advances in antiviral RNAi in mammals and focus on three fundamental questions critical to the intense debate about whether RNAi can function as an innate antiviral immunity in mammals.
Collapse
Affiliation(s)
- Jiaxin Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yang Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Pal A, Karanwal S, Chera JS, Batra V, Kumaresan A, Sarwalia P, Datta TK, Kumar R. Circulatory extracellular vesicle derived miR-195-5p promotes cellular apoptosis and suppresses cell proliferation in the buffalo endometrial primary cell culture. Sci Rep 2023; 13:16703. [PMID: 37794118 PMCID: PMC10551009 DOI: 10.1038/s41598-023-43530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
In pregnant animals, communication between the mother and conceptus occurs via extracellular vesicles (EVs) that carry several biomolecules such as nucleic acids (miRNAs, mRNAs), proteins, and lipids. At the time of implantation, the endometrium undergoes several morphological and physiological changes, such as angiogenesis, apoptosis, and cell proliferation regulation at the implantation site, to attain a receptive state. This study was conducted to detect pregnancy-specific miRNAs derived from extracellular vesicles in the systemic circulation of Bubalus bubalis (water buffalo) and to assess their functional significance in the modulation of endometrial primary cells. The extracellular vesicles were isolated from the blood plasma using a precipitation-based method and further characterized by various methods such as Differential light scattering, Nanoparticle tracking assay, Western blot, and transmission electron microscopy. The relative expression of the selected extracellular vesicles associated miRNAs (EV-miRNA) at different intervals (days 15, 19, 25, and 30) post artificial insemination (AI) was analyzed using RT-qPCR, and expression of miR-195-5p was found to be significantly higher (P < 0.01) in pregnant animals on day 19 post AI (implantation window) as compared to day 15 post AI. The elevated expression might indicate the involvement of this miRNA in the maternal-conceptus cross-talk occurring during the implantation period. The KEGG pathway enrichment and Gene Ontology analyses of the miR-195-5p target genes revealed that these were mostly involved in the PI3-Akt, MAPK, cell cycle, ubiquitin-mediated proteolysis, and mTOR signaling pathways, which are related to the regulation of cell proliferation. Transfecting the in vitro cultured cells with miR-195-5p mimic significantly suppressed (P < 0.05) the expression of its target genes such as YWHAQ, CDC27, AKT-3, FGF-7, MAPK8, SGK1, VEGFA, CACAND1, CUL2, MKNK1, and CACAN2D1. Furthermore, the downregulation of the miR-195-5p target genes was positively correlated with a significant increase in the apoptotic rate and a decrease in the proliferation. In conclusion, the current findings provide vital information on the presence of EV miR-195-5p in maternal circulation during the implantation window indicating its important role in the modulation of buffalo endometrium epithelial cells via promoting cell death. Altogether, the milieu of miR-195-5p may serve as a novel and potential molecular factor facilitating the implantation of the early embryo during the establishment of pregnancy in buffaloes. Thus, miR-195-5p may be identified as a unique circulatory EV biomarker related to establishing pregnancy in buffaloes as early as day 19 post-AI.
Collapse
Affiliation(s)
- Ankit Pal
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Seema Karanwal
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Jatinder Singh Chera
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Vipul Batra
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Arumugam Kumaresan
- Theriogenelogy Laboratory, SRS of National Dairy Research Institute, Bengaluru, India
| | - Parul Sarwalia
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Tirtha K Datta
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Rakesh Kumar
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India.
| |
Collapse
|
5
|
Sprenkle NT, Serezani CH, Pua HH. MicroRNAs in Macrophages: Regulators of Activation and Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:359-368. [PMID: 36724439 PMCID: PMC10316964 DOI: 10.4049/jimmunol.2200467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/13/2022] [Indexed: 02/03/2023]
Abstract
Macrophages are sentinels of the innate immune system that maintain tissue homeostasis and contribute to inflammatory responses. Their broad scope of action depends on both functional heterogeneity and plasticity. Small noncoding RNAs called microRNAs (miRNAs) contribute to macrophage function as post-transcriptional inhibitors of target gene networks. Genetic and pharmacologic studies have uncovered genes regulated by miRNAs that control macrophage cellular programming and macrophage-driven pathology. miRNAs control proinflammatory M1-like activation, immunoregulatory M2-like macrophage activation, and emerging macrophage functions in metabolic disease and innate immune memory. Understanding the gene networks regulated by individual miRNAs enhances our understanding of the spectrum of macrophage function at steady state and during responses to injury or pathogen invasion, with the potential to develop miRNA-based therapies. This review aims to consolidate past and current studies investigating the complexity of the miRNA interactome to provide the reader with a mechanistic view of how miRNAs shape macrophage behavior.
Collapse
Affiliation(s)
| | - C Henrique Serezani
- Department of Pathology, Microbiology, and Immunology
- Department of Medicine, Division of Infectious Diseases
- Vanderbilt Center for Immunobiology, Nashville, Tennessee 37232, USA
- Vandebilt Institute of Infection, Immunology and Inflammation; Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Heather H Pua
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, Nashville, Tennessee 37232, USA
- Vandebilt Institute of Infection, Immunology and Inflammation; Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
6
|
Leavy A, Brennan GP, Jimenez-Mateos EM. MicroRNA Profiling Shows a Time-Dependent Regulation within the First 2 Months Post-Birth and after Mild Neonatal Hypoxia in the Hippocampus from Mice. Biomedicines 2022; 10:biomedicines10112740. [PMID: 36359259 PMCID: PMC9687916 DOI: 10.3390/biomedicines10112740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2022] Open
Abstract
Brain development occurs until adulthood, with time-sensitive processes happening during embryo development, childhood, and puberty. During early life and childhood, dynamic changes in the brain are critical for physiological brain maturation, and these changes are tightly regulated by the expression of specific regulatory genetic elements. Early life insults, such as hypoxia, can alter the course of brain maturation, resulting in lifelong neurodevelopmental conditions. MicroRNAs are small non-coding RNAs, which regulate and coordinate gene expression. It is estimated that one single microRNA can regulate the expression of hundreds of protein-coding genes.. Uncovering the miRNome and microRNA-regulated transcriptomes may help to understand the patterns of genes regulating brain maturation, and their contribution to neurodevelopmental pathologies following hypoxia at Postnatal day 7. Here, using a PCR-based platform, we analyzed the microRNA profile postnatally in the hippocampus of control mice at postnatal day 8, 14, and 42 and after hypoxia at postnatal day 7, to elucidate the set of microRNAs which may be key for postnatal hippocampus maturation. We observed that microRNAs can be divided in four groups based on their temporal expression. Further after an early life insult, hypoxia at P7, 15 microRNAs showed a misregulation over time, including Let7a. We speculated that the transcriptional regulator c-myc is a contributor to this process. In conclusion, here, we observed that microRNAs are regulated postnatally in the hippocampus and alteration of their expression after hypoxia at birth may be regulated by the transcriptional regulator c-myc.
Collapse
Affiliation(s)
- Aisling Leavy
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, D02 R590 Dublin, Ireland
| | - Gary P. Brennan
- Conway Institute, School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D04 C7X2 Dublin, Ireland
| | - Eva M. Jimenez-Mateos
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, D02 R590 Dublin, Ireland
- Correspondence:
| |
Collapse
|
7
|
Taraschi A, Cimini C, Colosimo A, Ramal-Sanchez M, Valbonetti L, Bernabò N, Barboni B. An interactive analysis of the mouse oviductal miRNA profiles. Front Cell Dev Biol 2022; 10:1015360. [PMID: 36340025 PMCID: PMC9627480 DOI: 10.3389/fcell.2022.1015360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/06/2022] [Indexed: 11/15/2022] Open
Abstract
MicroRNAs are small non-coding molecules that control several cellular functions and act as negative post-transcriptional regulators of the mRNA. While their implication in several biological functions is already known, an important role as regulators of different physiological and pathological processes in fertilization and embryo development is currently emerging. Indeed, miRNAs have been found in the oviductal fluid packaged within the extracellular vesicles, which might act as natural nanoshuttles by transporting lipids, proteins, RNA molecules and miRNAs from the oviduct to the gametes or embryos. Here, an exhaustive bibliography search was carried out, followed by the construction of a computational model based on the networks theory in an attempt to recreate and elucidate the pathways potentially activated by the oviductal miRNA. The omics data published to date were gathered to create the Oviductal MiRNome, in which the miRNA target genes and their interactions are represented by using stringApp and the Network analyzer from Cytoscape 3.7.2. Then, the hyperlinked nodes were identified to investigate the pathways in which they are involved using the gene ontology enrichment analysis. To study the phenotypical effects after the removal of key genes on the reproductive system and embryo, knockout mouse lines for every protein-coding gene were investigated by using the International Mouse Phenotyping Consortium database. The creation of the Oviductal MiRNome revealed the presence of important genes and their interactions within the network. The functional enrichment analysis revealed that the hyperlinked nodes are involved in fundamental cellular functions, both structural and regulatory/signaling, suggesting their implication in fertilization and early embryo development. This fact was as well evidenced by the effects of the gene deletion in KO mice on the reproductive system and embryo development. The present study highlights the importance of studying the miRNA profiles and their enormous potential as tools to improve the assisted reproductive techniques currently used in human and animal reproduction.
Collapse
Affiliation(s)
- Angela Taraschi
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Istituto Zooprofilattico Sperimentale Dell’Abruzzo e Del Molise “G. Caporale”, Teramo, Italy
| | - Costanza Cimini
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Alessia Colosimo
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Marina Ramal-Sanchez
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Luca Valbonetti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Nicola Bernabò
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
- *Correspondence: Nicola Bernabò,
| | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
8
|
Griffin KN, Walters BW, Li H, Wang H, Biancon G, Tebaldi T, Kaya CB, Kanyo J, Lam TT, Cox AL, Halene S, Chung JJ, Lesch BJ. Widespread association of the Argonaute protein AGO2 with meiotic chromatin suggests a distinct nuclear function in mammalian male reproduction. Genome Res 2022; 32:1655-1668. [PMID: 36109149 PMCID: PMC9528986 DOI: 10.1101/gr.276578.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022]
Abstract
Argonaute 2 (AGO2) is a ubiquitously expressed protein critical for regulation of mRNA translation and vital to animal development. AGO2 protein is found in both cytoplasmic and nuclear compartments, and although its cytoplasmic role is well studied, the biological relevance of nuclear AGO2 is unclear. Here, we address this problem in vivo using spermatogenic cells as a model. We find that AGO2 transiently binds both chromatin and nucleus-specific mRNA transcripts of hundreds of genes required for sperm production during male meiosis in mice, and that germline conditional knockout (cKO) of Ago2 causes depletion of the encoded proteins. Correspondingly, Ago2 cKO males show abnormal sperm head morphology and reduced sperm count, along with reduced postnatal viability of offspring. Together, our data reveal an unexpected nuclear role for AGO2 in enhancing expression of developmentally important genes during mammalian male reproduction.
Collapse
Affiliation(s)
- Kimberly N Griffin
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | - Haixin Li
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Huafeng Wang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Giulia Biancon
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Toma Tebaldi
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Carolyn B Kaya
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Jean Kanyo
- Keck MS & Proteomics Resource, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - TuKiet T Lam
- Keck MS & Proteomics Resource, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Andy L Cox
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Pathology, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Bluma J Lesch
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
9
|
Copeland J, Wilson K, Simoes-Costa M. Micromanaging pattern formation: miRNA regulation of signaling systems in vertebrate development. FEBS J 2022; 289:5166-5175. [PMID: 34310060 DOI: 10.1111/febs.16139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/14/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022]
Abstract
Early embryogenesis requires the establishment of fields of progenitor cells with distinct molecular signatures. A balance of intrinsic and extrinsic cues determines the boundaries of embryonic territories and pushes progenitor cells toward different fates. This process involves multiple layers of regulation, including signaling systems, transcriptional networks, and post-transcriptional control. In recent years, microRNAs (miRNAs) have emerged as undisputed regulators of developmental processes. Here, we discuss how miRNAs regulate pattern formation during vertebrate embryogenesis. We survey how miRNAs modulate the activity of signaling pathways to optimize transcriptional responses in embryonic cells. We also examine how localized RNA interference can generate spatial complexity during early development. Unraveling the complex crosstalk between miRNAs, signaling systems and cell fate decisions will be crucial for our understanding of developmental outcomes and disease.
Collapse
Affiliation(s)
- Jacqueline Copeland
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Kayla Wilson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Marcos Simoes-Costa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
10
|
Aoki S, Inoue Y, Shinozawa A, Tanaka K, Shirasuna K, Iwata H. miR-17-5p in bovine oviductal fluid affects embryo development. Mol Cell Endocrinol 2022; 551:111651. [PMID: 35452772 DOI: 10.1016/j.mce.2022.111651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/03/2022] [Accepted: 04/16/2022] [Indexed: 11/22/2022]
Abstract
This study identified microRNAs (miRNAs) in bovine oviductal fluids (OFs) and examined the effect of miR-17-5p in OFs on embryonic development to the blastocyst stage. Small RNA-seq of extracellular vesicles of OFs revealed 242 miRNAs. Additionally, analyzing expressions of randomly selected OF-miRNAs with RT-qPCR in the culture medium of oviductal epithelial cells indicated that the abundance of miRNAs in OFs increased during the luteal phase. miR-17-5p mimic-treated eight-cell-stage zona pellucida-free embryos showed improved embryonic development to the blastocyst stage. The effect of the miR-17-5p mimic was confirmed using a dual-luciferase assay and immunostaining. In addition, RNA-seq of the miR-17-5p mimic- or control-treated embryos revealed differentially expressed genes (DEGs), suggesting possible pathways that overlapped with the in silico-predicted pathways for miR-17-5p targeting genes. Furthermore, ingenuity pathway analysis of DEG predicted miR-17 to be a significant upstream regulator. Our results suggest that miR-17-5p in OFs regulates embryonic development in bovines.
Collapse
Affiliation(s)
- Sogo Aoki
- Department of Animal Science, Graduate School of Agriculture, Tokyo University of Agriculture, Funako, 1737, Atsugi City, Kanagawa, Japan
| | - Yuki Inoue
- Department of Animal Science, Graduate School of Agriculture, Tokyo University of Agriculture, Funako, 1737, Atsugi City, Kanagawa, Japan
| | - Akihisa Shinozawa
- NODAI Genome Research Center, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Graduate School of Agriculture, Tokyo University of Agriculture, Funako, 1737, Atsugi City, Kanagawa, Japan
| | - Hisataka Iwata
- Department of Animal Science, Graduate School of Agriculture, Tokyo University of Agriculture, Funako, 1737, Atsugi City, Kanagawa, Japan.
| |
Collapse
|
11
|
Gurunathan S, Kang MH, Song H, Kim NH, Kim JH. The role of extracellular vesicles in animal reproduction and diseases. J Anim Sci Biotechnol 2022; 13:62. [PMID: 35681164 PMCID: PMC9185900 DOI: 10.1186/s40104-022-00715-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/05/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are nanosized membrane-enclosed compartments that serve as messengers in cell-to-cell communication, both in normal physiology and in pathological conditions. EVs can transfer functional proteins and genetic information to alter the phenotype and function of recipient cells, which undergo different changes that positively affect their structural and functional integrity. Biological fluids are enriched with several subpopulations of EVs, including exosomes, microvesicles (MVs), and apoptotic bodies carrying several cargoes, such as lipids, proteins, and nucleic acids. EVs associated with the reproductive system are actively involved in the regulation of different physiological events, including gamete maturation, fertilization, and embryo and fetal development. EVs can influence follicle development, oocyte maturation, embryo production, and endometrial-conceptus communication. EVs loaded with cargoes are used to diagnose various diseases, including pregnancy disorders; however, these are dependent on the type of cell of origin and pathological characteristics. EV-derived microRNAs (miRNAs) and proteins in the placenta regulate inflammatory responses and trophoblast invasion through intercellular delivery in the placental microenvironment. This review presents evidence regarding the types of extracellular vesicles, and general aspects of isolation, purification, and characterization of EVs, particularly from various types of embryos. Further, we discuss EVs as mediators and messengers in reproductive biology, the effects of EVs on placentation and pregnancy disorders, the role of EVs in animal reproduction, in the male reproductive system, and mother and embryo cross-communication. In addition, we emphasize the role of microRNAs in embryo implantation and the role of EVs in reproductive and therapeutic medicine. Finally, we discuss the future perspectives of EVs in reproductive biology.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Nam Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
12
|
Müller M, Fäh T, Schaefer M, Hermes V, Luitz J, Stalder P, Arora R, Ngondo RP, Ciaudo C. AGO1 regulates pericentromeric regions in mouse embryonic stem cells. Life Sci Alliance 2022; 5:e202101277. [PMID: 35236760 PMCID: PMC8897595 DOI: 10.26508/lsa.202101277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 01/09/2023] Open
Abstract
Argonaute proteins (AGOs), which play an essential role in cytosolic post-transcriptional gene silencing, have been also reported to function in nuclear processes like transcriptional activation or repression, alternative splicing and, chromatin organization. As most of these studies have been conducted in human cancer cell lines, the relevance of AGOs nuclear functions in the context of mouse early embryonic development remains uninvestigated. Here, we examined a possible role of the AGO1 protein on the distribution of constitutive heterochromatin in mouse embryonic stem cells (mESCs). We observed a specific redistribution of the repressive histone mark H3K9me3 and the heterochromatin protein HP1α, away from pericentromeric regions upon Ago1 depletion. Furthermore, we demonstrated that major satellite transcripts are strongly up-regulated in Ago1_KO mESCs and that their levels are partially restored upon AGO1 rescue. We also observed a similar redistribution of H3K9me3 and HP1α in Drosha_KO mESCs, suggesting a role for microRNAs (miRNAs) in the regulation of heterochromatin distribution in mESCs. Finally, we showed that specific miRNAs with complementarity to major satellites can partially regulate the expression of these transcripts.
Collapse
Affiliation(s)
- Madlen Müller
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zürich, Zürich, Switzerland
| | - Tara Fäh
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Moritz Schaefer
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zürich, Zürich, Switzerland
| | - Victoria Hermes
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Janina Luitz
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Patrick Stalder
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zürich, Zürich, Switzerland
| | - Rajika Arora
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Richard Patryk Ngondo
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Constance Ciaudo
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| |
Collapse
|
13
|
Wang Z, Meng N, Wang Y, Zhou T, Li M, Wang S, Chen S, Zheng H, Kong S, Wang H, Yan W. Ablation of the miR-465 Cluster Causes a Skewed Sex Ratio in Mice. Front Endocrinol (Lausanne) 2022; 13:893854. [PMID: 35677715 PMCID: PMC9167928 DOI: 10.3389/fendo.2022.893854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/11/2022] [Indexed: 01/31/2023] Open
Abstract
The X-linked miR-465 cluster is highly expressed in the testis, sperm, newborn ovary, and blastocysts as well as in 8-16 cell embryos. However, the physiological role of the miR-465 cluster is still largely unknown. This study aims to dissect the role of the miR-465 cluster in murine development. Despite abundant expression in the testis, ablation of the miR-465 miRNA cluster using CRISPR-Cas9 did not cause infertility. Instead, a skewed sex ratio biased toward males (60% males) was observed among miR-465 KO mice. Further analyses revealed that the female conceptuses selectively degenerated as early as embryonic day 8.5 (E8.5). Small RNA deep sequencing, qPCR, and in situ hybridization analyses revealed that the miRNAs encoded by the miR-465 cluster were mainly localized to the extraembryonic tissue/developing placenta. RNA-seq analyses identified altered mRNA transcriptome characterized by the dysregulation of numerous critical placental genes, e.g., Alkbh1, in the KO conceptuses at E7.5. Taken together, this study showed that the miR-465 cluster is required for normal female placental development, and ablation of the miR-465 cluster leads to a skewed sex ratio with more males (~60%) due to selective degeneration and resorption of the female conceptuses.
Collapse
Affiliation(s)
- Zhuqing Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Nan Meng
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine Xiamen University, Xiamen, China
| | - Yue Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Musheng Li
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Shawn Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Sheng Chen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Shuangbo Kong
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine Xiamen University, Xiamen, China
| | - Haibin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine Xiamen University, Xiamen, China
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Wei Yan,
| |
Collapse
|
14
|
Tong Y, Zhang S, Riddle S, Zhang L, Song R, Yue D. Intrauterine Hypoxia and Epigenetic Programming in Lung Development and Disease. Biomedicines 2021; 9:944. [PMID: 34440150 PMCID: PMC8394854 DOI: 10.3390/biomedicines9080944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Clinically, intrauterine hypoxia is the foremost cause of perinatal morbidity and developmental plasticity in the fetus and newborn infant. Under hypoxia, deviations occur in the lung cell epigenome. Epigenetic mechanisms (e.g., DNA methylation, histone modification, and miRNA expression) control phenotypic programming and are associated with physiological responses and the risk of developmental disorders, such as bronchopulmonary dysplasia. This developmental disorder is the most frequent chronic pulmonary complication in preterm labor. The pathogenesis of this disease involves many factors, including aberrant oxygen conditions and mechanical ventilation-mediated lung injury, infection/inflammation, and epigenetic/genetic risk factors. This review is focused on various aspects related to intrauterine hypoxia and epigenetic programming in lung development and disease, summarizes our current knowledge of hypoxia-induced epigenetic programming and discusses potential therapeutic interventions for lung disease.
Collapse
Affiliation(s)
- Yajie Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| | - Shuqing Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Dongmei Yue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| |
Collapse
|
15
|
Xu P, Ma Y, Wu H, Wang YL. Placenta-Derived MicroRNAs in the Pathophysiology of Human Pregnancy. Front Cell Dev Biol 2021; 9:646326. [PMID: 33777951 PMCID: PMC7991791 DOI: 10.3389/fcell.2021.646326] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
In placental mammals, reproductive success, and maternal-fetal health substantially depend on a well-being placenta, the interface between the fetus and the mother. Disorders in placental cells are tightly associated with adverse pregnancy outcomes including preeclampsia (PE), fetal growth restriction, etc. MicroRNAs (miRNAs) represent small non-coding RNAs that regulate post-transcriptional gene expression and are integral to a wide range of healthy or diseased cellular proceedings. Numerous miRNAs have been detected in human placenta and increasing evidence is revealing their important roles in regulating placental cell behaviors. Recent studies indicate that placenta-derived miRNAs can be released to the maternal circulation via encapsulating into the exosomes, and they potentially target various maternal cells to provide a hormone-like means of intercellular communication between the mother and the fetus. These placental exosome miRNAs are attracting more and more attention due to their differential expression in pregnant complications, which may provide novel biomarkers for prediction of the diseases. In this review, we briefly summarize the current knowledge and the perspectives of the placenta-derived miRNAs, especially the exosomal transfer of placental miRNAs and their pathophysiological relevance to PE. The possible exosomal-miRNA-targeted strategies for diagnosis, prognosis or therapy of PE are highlighted.
Collapse
Affiliation(s)
- Peng Xu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yeling Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Argonaute 2 is a key regulator of maternal mRNA degradation in mouse early embryos. Cell Death Discov 2020; 6:133. [PMID: 33298889 PMCID: PMC7691497 DOI: 10.1038/s41420-020-00368-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/06/2020] [Accepted: 11/02/2020] [Indexed: 11/16/2022] Open
Abstract
In mammalian early embryos, the transition from maternal to embryonic control of gene expression requires timely degradation of a subset of maternal mRNAs (MRD). Recently, zygotic genome activation (ZGA)-dependent MRD has been characterized in mouse 2-cell embryo. However, in early embryos, the dynamics of MRD is still poorly understood, and the maternal factor-mediated MRD before and along with ZGA has not been investigated. Argonaute 2 (Ago2) is highly expressed in mouse oocyte and early embryos. In this study, we showed that Ago2-dependent degradation involving RNA interference (RNAi) and RNA activation (RNAa) pathways contributes to the decay of over half of the maternal mRNAs in mouse early embryos. We demonstrated that AGO2 guided by endogenous small interfering RNAs (endosiRNAs), generated from double-stranded RNAs (dsRNAs) formed by maternal mRNAs with their complementary long noncoding RNAs (CMR-lncRNAs), could target maternal mRNAs and cooperate with P-bodies to promote MRD. In addition, we also showed that AGO2 may interact with small activating RNAs (saRNAs) to activate Yap1 and Tead4, triggering ZGA-dependent MRD. Thus, Ago2-dependent degradation is required for timely elimination of subgroups of maternal mRNAs and facilitates the transition between developmental states.
Collapse
|
17
|
Li Q, Shi J, Liu W. The role of Wnt/β-catenin-lin28a/let-7 axis in embryo implantation competency and epithelial-mesenchymal transition (EMT). Cell Commun Signal 2020; 18:108. [PMID: 32650795 PMCID: PMC7353806 DOI: 10.1186/s12964-020-00562-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/23/2020] [Indexed: 12/30/2022] Open
Abstract
Background The pre-implantation embryo in a competent status and post-implantation fully differentiation of the inner cell mass (ICM) and trophectoderm (TE) are prerequisites of successful implantation. Type I embryonic epithelial-mesenchymal transition (EMT) involves in these processes. A high level of the mir-let-7 family was found in the dormant mouse embryo of implantation failure in our previous study. Besides, its natural inhibitor lin28a was found to function in maintained stem cell pluripotency and involved in early embryo nucleolus construction. Until now, few studies got involved in the exact molecular mechanism that affects embryo implantation potential. In this study, the possible function of Wnt/β-catenin-lin28a/let-7 pathway in mouse embryo implantation was studied. Methods ICR mouse, Lin28a/Let-7 g transgenic mice (Lin28a-TG/Let-7 g-TG), and implanting dormant mice models were used for the study. Results Wnt/β-catenin signaling is essential in embryo implantation, which promotes embryo implantation through directly trigger lin28a expression, thus represses the mir-let-7 family. Lin28a and mir-let-7 both participate in implantation via an inverse function. Lin28a and mir-let-7 participate in embryo implantation through embryonic EMT. Conclusions Wnt/β-catenin signaling promotes embryo implantation and accompanying embryonic EMT, which is mediated by directly activate lin28a/let-7 axis. Video abstract
Collapse
Affiliation(s)
- Qian Li
- Department of Obstetrics and Gynaecology, Laboratory Block, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China.,Assisted Reproductive Center, Women & Children's Hospital of Northwest China, 73 Hou zai Road, Xi'an, China
| | - Juanzi Shi
- Assisted Reproductive Center, Women & Children's Hospital of Northwest China, 73 Hou zai Road, Xi'an, China
| | - Weimin Liu
- Department of Obstetrics and Gynaecology, Laboratory Block, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China.
| |
Collapse
|
18
|
Dexheimer PJ, Cochella L. MicroRNAs: From Mechanism to Organism. Front Cell Dev Biol 2020; 8:409. [PMID: 32582699 PMCID: PMC7283388 DOI: 10.3389/fcell.2020.00409] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short, regulatory RNAs that act as post-transcriptional repressors of gene expression in diverse biological contexts. The emergence of small RNA-mediated gene silencing preceded the onset of multicellularity and was followed by a drastic expansion of the miRNA repertoire in conjunction with the evolution of complexity in the plant and animal kingdoms. Along this process, miRNAs became an essential feature of animal development, as no higher metazoan lineage tolerated loss of miRNAs or their associated protein machinery. In fact, ablation of the miRNA biogenesis machinery or the effector silencing factors results in severe embryogenesis defects in every animal studied. In this review, we summarize recent mechanistic insight into miRNA biogenesis and function, while emphasizing features that have enabled multicellular organisms to harness the potential of this broad class of repressors. We first discuss how different mechanisms of regulation of miRNA biogenesis are used, not only to generate spatio-temporal specificity of miRNA production within an animal, but also to achieve the necessary levels and dynamics of expression. We then explore how evolution of the mechanism for small RNA-mediated repression resulted in a diversity of silencing complexes that cause different molecular effects on their targets. Multicellular organisms have taken advantage of this variability in the outcome of miRNA-mediated repression, with differential use in particular cell types or even distinct subcellular compartments. Finally, we present an overview of how the animal miRNA repertoire has evolved and diversified, emphasizing the emergence of miRNA families and the biological implications of miRNA sequence diversification. Overall, focusing on selected animal models and through the lens of evolution, we highlight canonical mechanisms in miRNA biology and their variations, providing updated insight that will ultimately help us understand the contribution of miRNAs to the development and physiology of multicellular organisms.
Collapse
Affiliation(s)
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
19
|
Müller M, Fazi F, Ciaudo C. Argonaute Proteins: From Structure to Function in Development and Pathological Cell Fate Determination. Front Cell Dev Biol 2020; 7:360. [PMID: 32039195 PMCID: PMC6987405 DOI: 10.3389/fcell.2019.00360] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
The highly conserved Argonaute protein family members play a central role in the regulation of gene expression networks, orchestrating the establishment and the maintenance of cell identity throughout the entire life cycle, as well as in several human disorders, including cancers. Four functional Argonaute proteins (AGO1-4), with high structure similarity, have been described in humans and mice. Interestingly, only AGO2 is robustly expressed during human and mouse early development, in contrast to the other AGOs. Consequently, AGO2 is indispensable for early development in vivo and in vitro. Here, we review the roles of Argonaute proteins during early development by focusing on the interplay between specific domains of the protein and their function. Moreover, we report recent works highlighting the importance of AGO posttranslational modifications in cancer.
Collapse
Affiliation(s)
- Madlen Müller
- Swiss Federal Institute of Technology Zurich, Department of Biology, IMHS, Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Sciences Program, University of Zurich, Zurich, Switzerland
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Constance Ciaudo
- Swiss Federal Institute of Technology Zurich, Department of Biology, IMHS, Zurich, Switzerland
| |
Collapse
|
20
|
Salilew-Wondim D, Gebremedhn S, Hoelker M, Tholen E, Hailay T, Tesfaye D. The Role of MicroRNAs in Mammalian Fertility: From Gametogenesis to Embryo Implantation. Int J Mol Sci 2020; 21:ijms21020585. [PMID: 31963271 PMCID: PMC7014195 DOI: 10.3390/ijms21020585] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
The genetic codes inscribed during two key developmental processes, namely gametogenesis and embryogenesis, are believed to determine subsequent development and survival of adult life. Once the embryo is formed, its further development mainly depends on its intrinsic characteristics, maternal environment (the endometrial receptivity), and the embryo–maternal interactions established during each phase of development. These developmental processes are under strict genetic regulation that could be manifested temporally and spatially depending on the physiological and developmental status of the cell. MicroRNAs (miRNAs), one of the small non-coding classes of RNAs, approximately 19–22 nucleotides in length, are one of the candidates for post-transcriptional developmental regulators. These tiny non-coding RNAs are expressed in ovarian tissue, granulosa cells, testis, oocytes, follicular fluid, and embryos and are implicated in diverse biological processes such as cell-to-cell communication. Moreover, accumulated evidences have also highlighted that miRNAs can be released into the extracellular environment through different mechanisms facilitating intercellular communication. Therefore, understanding miRNAs mediated regulatory mechanisms during gametogenesis and embryogenesis provides further insights about the molecular mechanisms underlying oocyte/sperm formation, early embryo development, and implantation. Thus, this review highlights the role of miRNAs in mammalian gametogenesis and embryogenesis and summarizes recent findings about miRNA-mediated post-transcriptional regulatory mechanisms occurring during early mammalian development.
Collapse
Affiliation(s)
- Dessie Salilew-Wondim
- Institute of Animal Sciences, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (D.S.-W.); (M.H.); (E.T.); (T.H.)
| | - Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 1351 Rampart Rd, Fort Collins, CO 80523, USA;
| | - Michael Hoelker
- Institute of Animal Sciences, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (D.S.-W.); (M.H.); (E.T.); (T.H.)
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, 53639 Königswinter, Germany
| | - Ernst Tholen
- Institute of Animal Sciences, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (D.S.-W.); (M.H.); (E.T.); (T.H.)
| | - Tsige Hailay
- Institute of Animal Sciences, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (D.S.-W.); (M.H.); (E.T.); (T.H.)
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 1351 Rampart Rd, Fort Collins, CO 80523, USA;
- Correspondence: ; Tel.: +1-530-564-2806
| |
Collapse
|
21
|
Sala L, Chandrasekhar S, Vidigal JA. AGO unchained: Canonical and non-canonical roles of Argonaute proteins in mammals. Front Biosci (Landmark Ed) 2020; 25:1-42. [PMID: 31585876 DOI: 10.2741/4793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Argonaute (AGO) proteins play key roles in animal physiology by binding to small RNAs and regulating the expression of their targets. In mammals, they do so through two distinct pathways: the miRNA pathway represses genes through a multiprotein complex that promotes both decay and translational repression; the siRNA pathway represses transcripts through direct Ago2-mediated cleavage. Here, we review our current knowledge of mechanistic details and physiological requirements of both these pathways and briefly discuss their implications to human disease.
Collapse
Affiliation(s)
- Laura Sala
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Srividya Chandrasekhar
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Joana A Vidigal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA,
| |
Collapse
|
22
|
The association of AGO1 (rs595961G>A, rs636832A>G) and AGO2 (rs11996715C>A, rs2292779C>G, rs4961280C>A) polymorphisms and risk of recurrent implantation failure. Biosci Rep 2019; 39:221135. [PMID: 31724726 PMCID: PMC6881209 DOI: 10.1042/bsr20190342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 10/12/2019] [Accepted: 11/13/2019] [Indexed: 01/18/2023] Open
Abstract
Recurrent implantation failure (RIF) is a common reproductive clinical condition treated by fertility specialists at in vitro fertilization (IVF) clinics. Several factors affect embryo implantation including the age of the female, the quality of embryos and the sperm, genetics, immunologic factors. Here, we investigated the association of Argonaute 1 (AGO1) and Argonaute 2 (AGO2) polymorphisms and RIF. We collected blood samples from 167 patients with RIF and 211 controls. Genetic polymorphisms were detected by polymerase chain reaction (PCR) – restriction fragment length polymorphism analysis and real-time PCR. We found that the AGO2 rs4961280C>A polymorphism (adjusted odds ratio [AOR] = 1.984; P = 0.023) was significantly associated with RIF. Furthermore, in RIF patients with three or more consecutive implantation failure, the AGO2 rs4961280C>A CA genotype (AOR = 2.133; P = 0.013) and dominant model (AOR = 2.272; P = 0.006) were both significantly associated with prevalence of RIF. An analysis of variance revealed that patients with the AGO2 rs2292779C>G genotypes (CC: 6.52 ± 2.55; CG: 7.46 ± 3.02; GG: 8.42 ± 2.74; P = 0.044) and the dominant model (CC: 6.52 ± 2.55; CG+GG: 7.70 ± 2.97; P = 0.029) exhibited significantly increased white blood cell levels. Furthermore, patients with the AGO1 rs595961G>A dominant model (GG: 36.81 ± 8.69; GA+AA: 31.58 ± 9.17; P = 0.006) and the AGO2 rs4961280C>A recessive model (CC+CA: 35.42 ± 8.77; AA: 22.00 ± 4.24; P = 0.035) exhibited a significantly decreased number of CD4+ helper T cells. Our study showed that AGO1 and AGO2 polymorphisms are associated with the prevalence of RIF. Hence, the results suggest that variations in AGO1 and AGO2 genotypes may be useful clinical biomarkers for the development and prognosis of RIF.
Collapse
|
23
|
Rahmanian S, Murad R, Breschi A, Zeng W, Mackiewicz M, Williams B, Davis CA, Roberts B, Meadows S, Moore D, Trout D, Zaleski C, Dobin A, Sei LH, Drenkow J, Scavelli A, Gingeras TR, Wold BJ, Myers RM, Guigó R, Mortazavi A. Dynamics of microRNA expression during mouse prenatal development. Genome Res 2019; 29:1900-1909. [PMID: 31645363 PMCID: PMC6836743 DOI: 10.1101/gr.248997.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) play a critical role as posttranscriptional regulators of gene expression. The ENCODE Project profiled the expression of miRNAs in an extensive set of organs during a time-course of mouse embryonic development and captured the expression dynamics of 785 miRNAs. We found distinct organ-specific and developmental stage-specific miRNA expression clusters, with an overall pattern of increasing organ-specific expression as embryonic development proceeds. Comparative analysis of conserved miRNAs in mouse and human revealed stronger clustering of expression patterns by organ type rather than by species. An analysis of messenger RNA expression clusters compared with miRNA expression clusters identifies the potential role of specific miRNA expression clusters in suppressing the expression of mRNAs specific to other developmental programs in the organ in which these miRNAs are expressed during embryonic development. Our results provide the most comprehensive time-course of miRNA expression as part of an integrated ENCODE reference data set for mouse embryonic development.
Collapse
Affiliation(s)
- Sorena Rahmanian
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California 92697, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, California 92697, USA
| | - Rabi Murad
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California 92697, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, California 92697, USA
| | - Alessandra Breschi
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Barcelona 08003, Catalonia, Spain
| | - Weihua Zeng
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California 92697, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, California 92697, USA
| | - Mark Mackiewicz
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Brian Williams
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Carrie A Davis
- Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Brian Roberts
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Sarah Meadows
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Dianna Moore
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Diane Trout
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Chris Zaleski
- Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Alex Dobin
- Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Lei-Hoon Sei
- Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Jorg Drenkow
- Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Alex Scavelli
- Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Thomas R Gingeras
- Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Barbara J Wold
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Roderic Guigó
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Barcelona 08003, Catalonia, Spain
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California 92697, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, California 92697, USA
| |
Collapse
|
24
|
Kim YR, Ryu CS, Kim JO, An HJ, Cho SH, Ahn EH, Kim JH, Lee WS, Kim NK. Association study of AGO1 and AGO2 genes polymorphisms with recurrent pregnancy loss. Sci Rep 2019; 9:15591. [PMID: 31666609 PMCID: PMC6821863 DOI: 10.1038/s41598-019-52073-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022] Open
Abstract
An Argonaute (AGO) protein within the RNA-induced silencing complex binds a microRNA, permitting the target mRNA to be silenced. We hypothesized that variations in AGO genes had the possibility including affected the miRNA function and associated with recurrent pregnancy loss (RPL) susceptibility. Especially, we were chosen the AGO1 (rs595961, rs636832) and AGO2 (rs2292779, rs4961280) polymorphisms because of those polymorphisms have already reported in other diseases excluding the RPL. Here, we conducted a case-control study (385 RPL patients and 246 controls) to evaluate the association of four polymorphisms with RPL. We found that the AGO1 rs595961 AA genotype, recessive model (P = 0.039; P = 0.043, respectively), the AGO1 rs636832 GG genotype, and recessive model (P = 0.037; P = 0.016, respectively) were associated with RPL in women who had had four or more consecutive pregnancy losses. The patients with the AGO1 rs636832 GG genotypes had greater platelet counts (P = 0.023), while the patients with the AGO2 rs4961280 CA genotypes had less homocysteine (P = 0.027). Based on these results, we propose that genetic variations with respect to the AGO1 and AGO2 genotypes are associated with risk for RPL, and might serve as useful biomarkers for the prognosis of RPL.
Collapse
Affiliation(s)
- Young Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, 65th Street, Yatap Road, Bundang-gu, Seongnam, 13497, South Korea
| | - Chang Soo Ryu
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, 13488, South Korea
| | - Jung Oh Kim
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, 13488, South Korea
| | - Hui Jeong An
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, 13488, South Korea
| | - Sung Hwan Cho
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, 13488, South Korea
| | - Eun Hee Ahn
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, 65th Street, Yatap Road, Bundang-gu, Seongnam, 13497, South Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, 65th Street, Yatap Road, Bundang-gu, Seongnam, 13497, South Korea
| | - Woo Sik Lee
- Fertility Center of CHA Gangnam Medical Center, CHA University, 566 Nonhyeon-ro, Gangnam-gu, Seoul, 06135, South Korea
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, 13488, South Korea.
| |
Collapse
|
25
|
Chen CY, Yu IS, Pai CH, Lin CY, Lin SR, Chen YT, Lin SW. Embryonic Cul4b is important for epiblast growth and location of primitive streak layer cells. PLoS One 2019; 14:e0219221. [PMID: 31260508 PMCID: PMC6602292 DOI: 10.1371/journal.pone.0219221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 06/19/2019] [Indexed: 11/18/2022] Open
Abstract
Cul4b-null (Cul4bΔ/Y) mice undergo growth arrest and degeneration during the early embryonic stages and die at E9.5. The pathogenic causes of this lethality remain incompletely characterized. However, it has been hypothesized that the loss of Cul4b function in extraembryonic tissues plays a key role. In this study, we investigated possible causes of death for Cul4b-null embryos, particularly in regard to the role of embryonic Cul4b. First, we show that the loss of embryonic Cul4b affects the growth of the inner cell mass in vitro and delays epiblast development during the gastrulation period at E6.5~E7.5 in vivo, as highlighted by the absence of the epiblastic transcription factor Brachyury from E6.5~E7.5. Additionally, at E7.5, strong and laterally expanded expression of Eomes and Fgf8 signaling was detected. Sectioning of these embryos showed disorganized primitive streak layer cells. Second, we observed that Mash2-expressing cells were present in the extraembryonic tissues of Cul4b-deficient embryos at E6.5 but were absent at E7.5. In addition, the loss of Cul4b resulted in decreased expression of cyclin proteins, which are required for the cell cycle transition from G1 to S. Taken together, these observations suggest that the embryonic expression of Cul4b is important for epiblast growth during E6.5~E7.5, and the loss of Cul4b results in either delayed growth of the epiblast or defective localization of primitive streak layer cells. As a result, the signaling activity mediated by the epiblast for subsequent ectoplacental cone development is affected, with the potential to induce growth retardation and lethality in Cul4bΔ/Y embryos.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Hsueh Pai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Yu Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Rung Lin
- Department of Bioscience Technology, College of Science, Chung-Yuan Christian University, Taoyuan, Taiwan
- Center for Nanotechnology and Center for Biomedical Technology, Chung-Yuan Christian University, Taoyuan, Taiwan
| | - You-Tzung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
26
|
Ngondo RP, Cirera-Salinas D, Yu J, Wischnewski H, Bodak M, Vandormael-Pournin S, Geiselmann A, Wettstein R, Luitz J, Cohen-Tannoudji M, Ciaudo C. Argonaute 2 Is Required for Extra-embryonic Endoderm Differentiation of Mouse Embryonic Stem Cells. Stem Cell Reports 2018; 10:461-476. [PMID: 29396181 PMCID: PMC5830960 DOI: 10.1016/j.stemcr.2017.12.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/28/2017] [Accepted: 12/28/2017] [Indexed: 12/14/2022] Open
Abstract
In mouse, although four Argonaute (AGO) proteins with partly overlapping functions in small-RNA pathways exist, only Ago2 deficiency causes embryonic lethality. To investigate the role of AGO2 during mouse early development, we generated Ago2-deficient mouse embryonic stem cells (mESCs) and performed a detailed characterization of their differentiation potential. Ago2 disruption caused a global reduction of microRNAs, which resulted in the misregulation of only a limited number of transcripts. We demonstrated, both in vivo and in vitro, that AGO2 is dispensable for the embryonic germ-layer formation. However, Ago2-deficient mESCs showed a specific defect during conversion into extra-embryonic endoderm cells. We proved that this defect is cell autonomous and can be rescued by both a catalytically active and an inactive Ago2, but not by Ago2 deprived of its RNA binding capacity or by Ago1 overexpression. Overall, our results suggest a role for AGO2 in stem cell differentiation. Ago2 deletion strongly affects microRNA but not mRNA levels in mESCs AGO2 is dispensable for mESC self-renewal and formation of embryonic germ layers AGO2 but not AGO1 is required for GATA6 expression during XEN conversion of mESCs AGO2 is essential for the in vitro expression of extra-embryonic endoderm genes
Collapse
Affiliation(s)
- Richard Patryk Ngondo
- Swiss Federal Institute of Technology Zurich, IMHS, Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Daniel Cirera-Salinas
- Swiss Federal Institute of Technology Zurich, IMHS, Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Jian Yu
- Swiss Federal Institute of Technology Zurich, IMHS, Chair of RNAi and Genome Integrity, Zurich, Switzerland; Life Science Zurich Graduate School, University of Zürich, Zurich, Switzerland
| | - Harry Wischnewski
- Swiss Federal Institute of Technology Zurich, IMHS, Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Maxime Bodak
- Swiss Federal Institute of Technology Zurich, IMHS, Chair of RNAi and Genome Integrity, Zurich, Switzerland; Life Science Zurich Graduate School, University of Zürich, Zurich, Switzerland
| | - Sandrine Vandormael-Pournin
- Institut Pasteur, CNRS, Unité de Génétique Fonctionnelle de la Souris, UMR 3738, Department of Developmental & Stem Cell Biology, 25 rue du docteur Roux, 75015 Paris Cedex, France
| | - Anna Geiselmann
- Institut Pasteur, CNRS, Unité de Génétique Fonctionnelle de la Souris, UMR 3738, Department of Developmental & Stem Cell Biology, 25 rue du docteur Roux, 75015 Paris Cedex, France
| | - Rahel Wettstein
- Swiss Federal Institute of Technology Zurich, IMHS, Chair of RNAi and Genome Integrity, Zurich, Switzerland; Life Science Zurich Graduate School, University of Zürich, Zurich, Switzerland
| | - Janina Luitz
- Swiss Federal Institute of Technology Zurich, IMHS, Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Michel Cohen-Tannoudji
- Institut Pasteur, CNRS, Unité de Génétique Fonctionnelle de la Souris, UMR 3738, Department of Developmental & Stem Cell Biology, 25 rue du docteur Roux, 75015 Paris Cedex, France
| | - Constance Ciaudo
- Swiss Federal Institute of Technology Zurich, IMHS, Chair of RNAi and Genome Integrity, Zurich, Switzerland.
| |
Collapse
|
27
|
Abstract
Failure of embryo implantation is a major limiting factor in early pregnancy and assisted reproduction. Determinants of implantation include the embryo viability, the endometrial receptivity, and embryo-maternal interactions. Multiple molecules are involved in the regulation of implantation, but their specific regulatory mechanisms remain unclear. MicroRNA (miRNA), functioning as the transcriptional regulator of gene expression, has been widely reported to be involved in embryo implantation. Recent studies reveal that miRNAs not only act inside the cells, but also can be released by cells into the extracellular environment through multiple packaging forms, facilitating intercellular communication and providing indicative information associated with physiological and pathological conditions. The discovery of extracellular miRNAs shed new light on implantation studies. MiRNAs provide new mechanisms for embryo-maternal communication. Moreover, they may serve as non-invasive biomarkers for embryo selection and assessment of endometrial receptivity in assisted reproduction, which improves the accuracy of evaluation while reducing the mechanical damage to the tissue. In this review, we discuss the involvement of miRNAs in embryo implantation from several aspects, focusing on the role of extracellular miRNAs and their potential applications in assisted reproductive technologies (ART) to promote fertility efficiency.
Collapse
Affiliation(s)
- Jingjie Liang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 People’s Republic of China
| | - Shaoyu Wang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 People’s Republic of China
| | - Zhengguang Wang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 People’s Republic of China
| |
Collapse
|
28
|
Global analysis of AGO2-bound RNAs reveals that miRNAs induce cleavage of target RNAs with limited complementarity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:1148-1158. [PMID: 29031931 DOI: 10.1016/j.bbagrm.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/11/2017] [Accepted: 10/04/2017] [Indexed: 01/26/2023]
Abstract
Among the four Argonaute family members in mammals, only AGO2 protein retains endonuclease activity and facilitates cleavage of target RNAs base-pairing with highly complementary guide RNAs. Despite the deeply conserved catalytic activity, only a small number of targets have been reported to extensively base pair with cognate miRNAs to be cleaved by AGO2. Here, we analyzed AGO2-bound RNAs by CrossLinking ImmunoPrecipitation (CLIP) of genetically modified cells that express epitope-tagged AGO2 from the native genomic locus. We found that HMGA2 mRNA is cleaved by AGO2 loaded with let-7 and miR-21. In contrast to the generally accepted notion, the base-pairing from the seed region to the cleavage site, rather than perfect or near perfect complementarity, was required for cleavage of the target mRNA in cells. Non-templated addition of nucleotides at the 3' end of the cleaved RNA was observed, further supporting the AGO2-mediated cleavage. Based on the observation that the limited complementarity is the minimum requirement for cleavage, we found that AGO2-mediated cleavage of targets is more common than previously thought. Our result may explain the vital role of endonuclease activity in controlling miRNA-mediated gene regulation.
Collapse
|
29
|
Alberti C, Cochella L. A framework for understanding the roles of miRNAs in animal development. Development 2017; 144:2548-2559. [PMID: 28720652 DOI: 10.1242/dev.146613] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) contribute to the progressive changes in gene expression that occur during development. The combined loss of all miRNAs results in embryonic lethality in all animals analyzed, illustrating the crucial role that miRNAs play collectively. However, although the loss of some individual miRNAs also results in severe developmental defects, the roles of many other miRNAs have been challenging to uncover. This has been mostly attributed to their proposed function as tuners of gene expression or providers of robustness. Here, we present a view of miRNAs in the context of development as a hierarchical and canalized series of gene regulatory networks. In this scheme, only a fraction of embryonic miRNAs act at the top of this hierarchy, with their loss resulting in broad developmental defects, whereas most other miRNAs are expressed with high cellular specificity and play roles at the periphery of development, affecting the terminal features of specialized cells. This view could help to shed new light on our understanding of miRNA function in development, disease and evolution.
Collapse
Affiliation(s)
- Chiara Alberti
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
30
|
Zhang Y, Wang B, Chen X, Li W, Dong P. AGO2 involves the malignant phenotypes and FAK/PI3K/AKT signaling pathway in hypopharyngeal-derived FaDu cells. Oncotarget 2017; 8:54735-54746. [PMID: 28903378 PMCID: PMC5589617 DOI: 10.18632/oncotarget.18047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/03/2017] [Indexed: 12/22/2022] Open
Abstract
Argonaute 2 (AGO2) protein is usually overexpressed in various head and neck squamous cell carcinoma. However, the precise molecular mechanisms of AGO2 in hypopharyngeal cancer have not yet been clearly understood. Here we found the AGO2 expression in hypopharyngeal cancer tissues were generally higher comparing with that of the corresponding adjacent noncancerous epithelium tissues, and these were associated with the more aggressive clinicopathologic features and the poor clinical outcomes. Stable knockdown of AGO2 protein retarded cell proliferation, migration, invasion, arrested cell cycle and induced apoptosis. Meanwhile the knockdown also inhibited the FAK/PI3K/AKT signaling pathway in hypopharyngeal-derived FaDu cells. These findings suggested that AGO2 gene might act as an oncogene which contributed to the tumorigenesis and progression, and has potential values for molecular diagnosis, clinical therapies and prognosis evaluation in hypopharyngeal cancer.
Collapse
Affiliation(s)
- Yanhui Zhang
- Department of Otolaryngology Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baoxin Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai General Hospital, Shanghai, China
| | - Xinwei Chen
- Department of Otolaryngology Head and Neck Surgery, Shanghai General Hospital, Shanghai, China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for The Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Pin Dong
- Department of Otolaryngology Head and Neck Surgery, Shanghai General Hospital, Shanghai, China
| |
Collapse
|
31
|
Abstract
MicroRNAs (miRNAs) are short (~22 nucleotides) single-stranded RNA molecules that primarily function to negatively regulate gene expression at the post-transcriptional level. miRNAs have thus been implicated in the regulation of a wide variety of normal cell functions and pathophysiological conditions. The miRNA machinery consists of a series of protein complexes which act to: (1) cleave the precursor-miRNA hairpin from its primary transcript (i.e. DROSHA and DGCR8); (2) traffic the miRNA hairpin between nucleus and cytoplasm (i.e. XPO5); (3) remove the loop sequence of the hairpin by a second nucleolytic cleavage reaction (i.e. DICER1); (4) facilitate loading of the mature miRNA sequence into an Argonaute protein (typically AGO2) as part of the RNA-Induced Silencing Complex (RISC); (5) guide the loaded RISC complex to complementary, or semi-complementary, target transcripts and (6) facilitate gene silencing via one of several possible mechanisms.
Collapse
|
32
|
Argonaute 2 sustains the gene expression program driving human monocytic differentiation of acute myeloid leukemia cells. Cell Death Dis 2013; 4:e926. [PMID: 24263100 PMCID: PMC3847328 DOI: 10.1038/cddis.2013.452] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/18/2013] [Accepted: 10/21/2013] [Indexed: 12/21/2022]
Abstract
MicroRNAs are key regulators of many biological processes, including cell differentiation. These small RNAs exert their function assembled in the RNA-induced silencing complexes (RISCs), where members of Argonaute (Ago) family of proteins provide a unique platform for target recognition and gene silencing. Here, by using myeloid cell lines and primary blasts, we show that Ago2 has a key role in human monocytic cell fate determination and in LPS-induced inflammatory response of 1,25-dihydroxyvitamin D3 (D3)-treated myeloid cells. The silencing of Ago2 impairs the D3-dependent miR-17-5p/20a/106a, miR-125b and miR-155 downregulation, the accumulation of their translational targets AML1, VDR and C/EBPβ and monocytic cell differentiation. Moreover, we show that Ago2 is recruited on miR-155 host gene promoter and on the upstream region of an overlapping antisense lncRNA, determining their epigenetic silencing, and miR-155 downregulation. These findings highlight Ago2 as a new factor in myeloid cell fate determination in acute myeloid leukemia cells.
Collapse
|
33
|
O'Carroll D, Schaefer A. General principals of miRNA biogenesis and regulation in the brain. Neuropsychopharmacology 2013; 38:39-54. [PMID: 22669168 PMCID: PMC3521995 DOI: 10.1038/npp.2012.87] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/02/2012] [Accepted: 05/02/2012] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that mediate posttranscriptional gene suppression in a sequence-specific manner. The ability of a single miRNA species to target multiple messenger RNAs (mRNAs) makes miRNAs exceptionally important regulators of various cellular functions. The regulatory capacity of miRNAs is increased further by the miRNA ability to suppress gene expression using multiple mechanisms that range from translational inhibition to mRNA degradation. The high miRNA diversity multiplied by the large number of individual miRNA targets generates a vast regulatory RNA network than enables flexible control of mRNA expression. The gene-regulatory capacity and diversity of miRNAs is particularly valuable in the brain, where functional specialization of neurons and persistent flow of information requires constant neuronal adaptation to environmental cues. In this review we will summarize the current knowledge about miRNA biogenesis and miRNA expression regulation with a focus on the role of miRNAs in the mammalian nervous system.
Collapse
Affiliation(s)
- Dónal O'Carroll
- European Molecular Biology Laboratory, Mouse Biology Unit, Monterotondo Scalo, Italy
| | - Anne Schaefer
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
34
|
Vasquez-Rifo A, Jannot G, Armisen J, Labouesse M, Bukhari SIA, Rondeau EL, Miska EA, Simard MJ. Developmental characterization of the microRNA-specific C. elegans Argonautes alg-1 and alg-2. PLoS One 2012; 7:e33750. [PMID: 22448270 PMCID: PMC3309000 DOI: 10.1371/journal.pone.0033750] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/16/2012] [Indexed: 11/24/2022] Open
Abstract
The genes alg-1 and alg-2 (referred to as “alg-1/2”) encode the Argonaute proteins affiliated to the microRNA (miRNA) pathway in C. elegans. Bound to miRNAs they form the effector complex that effects post-transcriptional gene silencing. In order to define biological features important to understand the mode of action of these Argonautes, we characterize aspects of these genes during development. We establish that alg-1/2 display an overlapping spatio-temporal expression profile and shared association to a miRNAs set, but with gene-specific predominant expression in various cells and increased relative association to defined miRNAs. Congruent with their spatio-temporal coincidence and regardless of alg-1/2 drastic post-embryonic differences, only loss of both genes leads to embryonic lethality. Embryos without zygotic alg-1/2 predominantly arrest during the morphogenetic process of elongation with defects in the epidermal-muscle attachment structures. Altogether our results highlight similarities and specificities of the alg-1/2 likely to be explained at different cellular and molecular levels.
Collapse
Affiliation(s)
- Alejandro Vasquez-Rifo
- Laval University Cancer Research Centre, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec, Canada
| | - Guillaume Jannot
- Laval University Cancer Research Centre, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec, Canada
| | - Javier Armisen
- Laval University Cancer Research Centre, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec, Canada
- Wellcome Trust Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Michel Labouesse
- Laval University Cancer Research Centre, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec, Canada
- Development and Stem Cells Program, IGBMC, CNRS (UMR7104), INSERM (U964), Université de Strasbourg, BP10142, Illkirch, France
| | - Syed Irfan Ahmad Bukhari
- Laval University Cancer Research Centre, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec, Canada
| | - Evelyne L. Rondeau
- Laval University Cancer Research Centre, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec, Canada
| | - Eric A. Miska
- Laval University Cancer Research Centre, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec, Canada
- Wellcome Trust Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Martin J. Simard
- Laval University Cancer Research Centre, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec, Canada
- * E-mail:
| |
Collapse
|
35
|
Wang F, Yu J, Yang GH, Wang XS, Zhang JW. Regulation of erythroid differentiation by miR-376a and its targets. Cell Res 2011; 21:1196-209. [PMID: 21556037 DOI: 10.1038/cr.2011.79] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lineage differentiation is a continuous process during which fated progenitor cells execute specific programs to produce mature counterparts. This lineage-restricted pathway can be controlled by particular regulators, which are usually exclusively expressed in certain cell types or at specific differentiation stages. Here we report that miR-376a participates in the regulation of the early stages of human erythropoiesis by targeting cyclin-dependent kinase 2 (CDK2) and Argonaute 2 (Ago2). Among various human leukemia cell lines, miR-376a was only detected in K562 cells which originated from a progenitor common to the erythroid and megakaryotic lineages. Enforced expression of miR-376a or silencing of CDK2 and Ago2 by RNAi inhibits erythroid differentiation of K562 cells. Hematopoietic progenitor cells transduced with miR-376a showed a significant reduction of their erythroid clonogenic capacity. MiR-376a is relatively abundant in erythroid progenitor cells, where it reduces expression of CDK2 and maintains a low level of differentiation due to cell cycle arrest and decreased cell growth. Following erythroid induction, miR-376a is significantly down-regulated and CDK2 is released from miR-376a inhibition, thereby facilitating the escape of progenitor cells from the quiescent state into erythroid differentiation. Moreover, our results establish a functional link between miR-376a and Ago2, a key factor in miRNA biogenesis and silencing pathways with novel roles in human hematopoiesis.
Collapse
Affiliation(s)
- Fang Wang
- Department of Biochemistry and Molecular Biology, National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | | | | | | | | |
Collapse
|
36
|
A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 2010; 465:584-9. [PMID: 20424607 DOI: 10.1038/nature09092] [Citation(s) in RCA: 836] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 04/19/2010] [Indexed: 12/11/2022]
Abstract
The nucleolytic activity of animal Argonaute proteins is deeply conserved, despite its having no obvious role in microRNA-directed gene regulation. In mice, Ago2 (also known as Eif2c2) is uniquely required for viability, and only this family member retains catalytic competence. To investigate the evolutionary pressure to conserve Argonaute enzymatic activity, we engineered a mouse with catalytically inactive Ago2 alleles. Homozygous mutants died shortly after birth with an obvious anaemia. Examination of microRNAs and their potential targets revealed a loss of miR-451, a small RNA important for erythropoiesis. Though this microRNA is processed by Drosha (also known as Rnasen), its maturation does not require Dicer. Instead, the pre-miRNA becomes loaded into Ago and is cleaved by the Ago catalytic centre to generate an intermediate 3' end, which is then further trimmed. Our findings link the conservation of Argonaute catalysis to a conserved mechanism of microRNA biogenesis that is important for vertebrate development.
Collapse
|
37
|
Bossé GD, Simard MJ. A new twist in the microRNA pathway: Not Dicer but Argonaute is required for a microRNA production. Cell Res 2010; 20:735-7. [DOI: 10.1038/cr.2010.83] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
38
|
Zovoilis A, Smorag L, Pantazi A, Engel W. Members of the miR-290 cluster modulate in vitro differentiation of mouse embryonic stem cells. Differentiation 2009; 78:69-78. [PMID: 19628328 DOI: 10.1016/j.diff.2009.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/27/2009] [Accepted: 06/18/2009] [Indexed: 11/15/2022]
Abstract
We report the biological effects of miR-290 cluster via gain-of-function or loss-of-function experiments in mouse embryonic stem cells (ESCs) cultured under differentiation conditions. Under these conditions we found that overexpression of miR-290 cluster in ESCs cannot prevent downregulation of Oct-4, but inhibition results in earlier downregulation of Oct-4 compared with the negative control. In consistence with previous findings that report ectopic expression of Brachyury during gastrulation in Argonaute-2 KO mice due to impaired miRNA function, we show that miR-290 cluster regulates negatively differentiation of ESCs towards mesodermal and germ cell lineage. These results suggest that although incapable to maintain pluripotent state alone, miR-290 cluster inhibits ESC differentiation and it is involved in the pathways controlling mesoderm and primordial germ cell differentiation. Finally, we provide proofs that members of this cluster target Dkk-1 gene, a Wnt pathway inhibitor, and affect this pathway, which can partially explain why miR-290 cluster favours pluripotency against differentiation.
Collapse
Affiliation(s)
- Athanasios Zovoilis
- Institute of Human Genetics, University of Goettingen, Heinrich-Dueker-Weg 12, D-37073 Goettingen, Germany.
| | | | | | | |
Collapse
|
39
|
Yang Y, Xu S, Xia L, Wang J, Wen S, Jin P, Chen D. The bantam microRNA is associated with drosophila fragile X mental retardation protein and regulates the fate of germline stem cells. PLoS Genet 2009; 5:e1000444. [PMID: 19343200 PMCID: PMC2654963 DOI: 10.1371/journal.pgen.1000444] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 03/04/2009] [Indexed: 01/09/2023] Open
Abstract
Fragile X syndrome, a common form of inherited mental retardation, is caused by the loss of fragile X mental retardation protein (FMRP). We have previously demonstrated that dFmr1, the Drosophila ortholog of the fragile X mental retardation 1 gene, plays a role in the proper maintenance of germline stem cells in Drosophila ovary; however, the molecular mechanism behind this remains elusive. In this study, we used an immunoprecipitation assay to reveal that specific microRNAs (miRNAs), particularly the bantam miRNA (bantam), are physically associated with dFmrp in ovary. We show that, like dFmr1, bantam is not only required for repressing primordial germ cell differentiation, it also functions as an extrinsic factor for germline stem cell maintenance. Furthermore, we find that bantam genetically interacts with dFmr1 to regulate the fate of germline stem cells. Collectively, our results support the notion that the FMRP-mediated translation pathway functions through specific miRNAs to control stem cell regulation.
Collapse
Affiliation(s)
- Yingyue Yang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shunliang Xu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Neurology, Second Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Laixin Xia
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jun Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shengmei Wen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (PJ); (DC)
| | - Dahua Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail: (PJ); (DC)
| |
Collapse
|
40
|
Adams BD, Claffey KP, White BA. Argonaute-2 expression is regulated by epidermal growth factor receptor and mitogen-activated protein kinase signaling and correlates with a transformed phenotype in breast cancer cells. Endocrinology 2009; 150:14-23. [PMID: 18787018 PMCID: PMC2630894 DOI: 10.1210/en.2008-0984] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Argonaute (Ago) 2 is the catalytic engine of mammalian RNA interference, but little is known concerning the regulation of Ago2 by cell-signaling pathways. In this study we show that expression of Ago2, but not Ago1, Ago3, or Ago4, is elevated in estrogen receptor (ER) alpha-negative (ERalpha(-)) vs. ERalpha-positive (ERalpha+) breast cancer cell lines, and in ERalpha(-) breast tumors. In MCF-7 cells the low level of Ago2 was found to be dependent upon active ERalpha/estrogen signaling. Interestingly, the high expression of Ago2 in ERalpha(-) cells was severely blunted by inhibition of the epidermal growth factor (EGF) receptor/MAPK signaling pathway, using either a pharmacological MAPK kinase inhibitor, U0126, or a small interfering RNA directed against EGF receptor. Half-life studies using cycloheximide indicated that EGF enhanced, whereas U0126 decreased, Ago2 protein stability. Furthermore, a proteosome inhibitor, MG132, blocked Ago2 protein turnover. The functional consequences of elevated Ago2 levels were examined by stable transfection of ERalpha+ MCF-7 cells with full-length and truncated forms of Ago2. The full-length Ago2 transfectants displayed enhanced proliferation, reduced cell-cell adhesion, and increased migratory ability, as shown by proliferation, homotypic aggregation, and wound healing assays, respectively. Overexpression of full-length Ago2, but not truncated forms of Ago2 or an empty vector control, reduced the levels of E-cadherin, beta-catenin, and beta-actin, as well as enhanced endogenous miR-206 activity. These data indicate that Ago2 is regulated at both the transcriptional and posttranslational level, and also implicate Ago2 and enhanced micro-RNA activity in the tumorigenic progression of breast cancer cell lines.
Collapse
Affiliation(s)
- Brian D Adams
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030-3505, USA
| | | | | |
Collapse
|
41
|
Lykke-Andersen K, Gilchrist MJ, Grabarek JB, Das P, Miska E, Zernicka-Goetz M. Maternal Argonaute 2 is essential for early mouse development at the maternal-zygotic transition. Mol Biol Cell 2008; 19:4383-92. [PMID: 18701707 DOI: 10.1091/mbc.e08-02-0219] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activation of zygotic gene expression in the two-cell mouse embryo is associated with destruction of maternally inherited transcripts, an important process for embryogenesis about which little is understood. We asked whether the Argonaute (Ago)/RNA-induced silencing complex, providing the mRNA "slicer" activity in gene silencing, might contribute to this process. Here we show that Ago2, 3, and 4 transcripts are contributed to the embryo maternally. By systematic knockdown of maternal Ago2, 3, and 4, individually and in combination, we find that only Ago2 is required for development beyond the two-cell stage. Knockdown of Ago2 stabilizes one set of maternal mRNAs and reduces zygotic transcripts of another set of genes. Ago2 is localized in mRNA-degradation P-bodies analogous to those that function in RNAi-like mechanisms in other systems. Profiling the expression of microRNAs throughout preimplantation development identified several candidates that could potentially work with Ago2 to mediate degradation of specific mRNAs. However, their low abundance raises the possibility that other endogenous siRNAs may also participate. Together, our results demonstrate that maternal expression of Ago2 is essential for the earliest stages of mouse embryogenesis and are compatible with the notion that degradation of a proportion of maternal messages involves the RNAi-machinery.
Collapse
Affiliation(s)
- Karin Lykke-Andersen
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, CB2 1NR, United Kingdom
| | | | | | | | | | | |
Collapse
|