1
|
Prentout D, Bykova D, Hoge C, Hooper DM, McDiarmid CS, Wu F, Griffith SC, de Manuel M, Przeworski M. Germline mutation rates and fine-scale recombination parameters in zebra finch. PLoS Genet 2025; 21:e1011661. [PMID: 40233115 PMCID: PMC12047795 DOI: 10.1371/journal.pgen.1011661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 05/02/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025] Open
Abstract
Most of our understanding of the fundamental processes of mutation and recombination stems from a handful of disparate model organisms and pedigree studies of mammals, with little known about other vertebrates. To gain a broader comparative perspective, we focused on the zebra finch (Taeniopygia castanotis), which, like other birds, differs from mammals in its karyotype (which includes many micro-chromosomes), in the mechanism by which recombination is directed to the genome, and in aspects of ontogenesis. We collected genome sequences from three generation pedigrees that provide information about 80 meioses, inferring 202 single-point de novo mutations, 1,088 crossovers, and 275 non-crossovers. On that basis, we estimated a sex-averaged mutation rate of 5.0 × 10-9 per base pair per generation, on par with mammals that have a similar generation time (~2-3 years). Also as in mammals, we found a paternal germline mutation bias at later stages of gametogenesis (of 1.7:1) but no discernible difference between sexes in early development. Examining recombination patterns, we found that the sex-averaged crossover rate on macro-chromosomes is 0.93 cM/Mb, with a pronounced enrichment of crossovers near telomeres. In contrast, non-crossover rates are more uniformly distributed. On micro-chromosomes, sex-averaged crossover rates are substantially higher (3.96 cM/Mb), in accordance with crossover homeostasis, and both crossover and non-crossover events are more uniformly distributed. At a finer scale, recombination events overlap CpG islands more often than expected by chance, as expected in the absence of PRDM9. Estimates of the degree of GC-biased gene conversion (59%), the mean non-crossover conversion tract length (~32 bp), and the non-crossover-to-crossover ratio (5.4:1) are all comparable to those reported in primates and mice. Therefore, properties of germline mutation and recombination resolutions remain similar over large phylogenetic distances.
Collapse
Affiliation(s)
- Djivan Prentout
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Daria Bykova
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Carla Hoge
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Daniel M. Hooper
- Institute for Comparative Genomics and Richard Gilder Graduate School, American Museum of Natural History, New York, New York, United States of America
| | - Callum S. McDiarmid
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Felix Wu
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| | - Simon C. Griffith
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Marc de Manuel
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Molly Przeworski
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| |
Collapse
|
2
|
Vrooman LA, Gieske MC, Lawson C, Cesare J, Zhang S, Bartolomei MS, Garcia BA, Hassold TJ, Hunt PA. Effect of Brief Maternal Exposure to Bisphenol A on the Fetal Female Germline in a Mouse Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:47002. [PMID: 40036665 PMCID: PMC11980919 DOI: 10.1289/ehp15046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Environmental contamination by endocrine-disrupting chemicals (EDCs) has created serious public health, ecological, and regulatory concerns. Prenatal exposures can affect a wide range of developing organ systems and are associated with adverse changes to behavior, metabolism, fertility, and disease risk in the adult. The most serious and puzzling observation for some EDC exposures is the transmission of effects to subsequent unexposed generations (transgenerational effects) in animal models. This requires the induction of epigenetic aberrations to the germline that are not subject to the normal processes of erasure and resetting in subsequent generations. Understanding when and how the germline is vulnerable to environmental contaminants is an essential first step in devising strategies to prevent and reverse their effects. METHODS Fetal mouse oocytes were collected after exposure of the dam to various concentrations of bisphenol A (BPA) or placebo. Meiotic effects were assessed by immunostaining to visualize the synaptonemal complex and recombination sites, as well as whole chromosome fluorescence in situ hybridization probes. Enriched oocyte pools were analyzed by mass spectrometry and RNA sequencing to determine differences in histone posttranslational modifications and gene expression, respectively. RESULTS We found germline effects across a wide range of exposure levels, the severity of which was positively associated with BPA concentration. We identified the onset of meiotic prophase as the vulnerable window of exposure and found surprising exposure-related differences in chromatin. Oocyte analysis by mass spectrometry and immunofluorescence suggested H4K20me2, a histone posttranslational modification involved in DNA damage repair, was particularly affected. Subsequent RNA-seq analysis revealed a relatively small number of differentially expressed genes, but in addition to genes involved in chromatin dynamics, several with important roles in DNA repair/recombination and centromere stability were affected. DISCUSSION Together, our data from a mouse model suggest BPA exposure induced complex molecular differences in the germline that dysregulated chromatin and affected several critical and interrelated meiotic pathways. https://doi.org/10.1289/EHP15046.
Collapse
Affiliation(s)
- Lisa A. Vrooman
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Mary C. Gieske
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Crystal Lawson
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Joseph Cesare
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shuo Zhang
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin A. Garcia
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Terry J. Hassold
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Patricia A. Hunt
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
3
|
Schwarzkopf EJ, Brandt N, Smukowski Heil C. The recombination landscape of introgression in yeast. PLoS Genet 2025; 21:e1011585. [PMID: 39937775 PMCID: PMC11845044 DOI: 10.1371/journal.pgen.1011585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/21/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
Meiotic recombination is an evolutionary force that acts by breaking up genomic linkage, increasing the efficacy of selection. Recombination is initiated with a double-strand break which is resolved via a crossover, which involves the reciprocal exchange of genetic material between homologous chromosomes, or a non-crossover, which results in small tracts of non-reciprocal exchange of genetic material. Crossover and non-crossover rates vary between species, populations, individuals, and across the genome. In recent years, recombination rate has been associated with the distribution of ancestry derived from past interspecific hybridization (introgression) in a variety of species. We explore this interaction of recombination and introgression by sequencing spores and detecting crossovers and non-crossovers from two crosses of the yeast Saccharomyces uvarum. One cross is between strains which each contain introgression from their sister species, S. eubayanus, while the other cross has no introgression present. We find that the recombination landscape is significantly different between S. uvarum crosses, and that some of these differences can be explained by the presence of introgression in one cross. Crossovers are significantly reduced in heterozygous introgression compared to syntenic regions in the cross without introgression. This translates to reduced allele shuffling within introgressed regions, and an overall reduction of shuffling on most chromosomes with introgression compared to the syntenic regions and chromosomes without introgression. Our results suggest that hybridization can significantly influence the recombination landscape, and that the reduction in allele shuffling contributes to the initial purging of introgression in the generations following a hybridization event.
Collapse
Affiliation(s)
- Enrique J. Schwarzkopf
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Nathan Brandt
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Caiti Smukowski Heil
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
4
|
Jovanska L, Lin IC, Yao JS, Chen CL, Liu HC, Li WC, Chuang YC, Chuang CN, Yu ACH, Lin HN, Pong WL, Yu CI, Su CY, Chen YP, Chen RS, Hsueh YP, Yuan HS, Timofejeva L, Wang TF. DNA cytosine methyltransferases differentially regulate genome-wide hypermutation and interhomolog recombination in Trichoderma reesei meiosis. Nucleic Acids Res 2024; 52:9551-9573. [PMID: 39021337 PMCID: PMC11381340 DOI: 10.1093/nar/gkae611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
Trichoderma reesei is an economically important enzyme producer with several unique meiotic features. spo11, the initiator of meiotic double-strand breaks (DSBs) in most sexual eukaryotes, is dispensable for T. reesei meiosis. T. reesei lacks the meiosis-specific recombinase Dmc1. Rad51 and Sae2, the activator of the Mre11 endonuclease complex, promote DSB repair and chromosome synapsis in wild-type and spo11Δ meiosis. DNA methyltransferases (DNMTs) perform multiple tasks in meiosis. Three DNMT genes (rid1, dim2 and dimX) differentially regulate genome-wide cytosine methylation and C:G-to-T:A hypermutations in different chromosomal regions. We have identified two types of DSBs: type I DSBs require spo11 or rid1 for initiation, whereas type II DSBs do not rely on spo11 and rid1 for initiation. rid1 (but not dim2) is essential for Rad51-mediated DSB repair and normal meiosis. rid1 and rad51 exhibit a locus heterogeneity (LH) relationship, in which LH-associated proteins often regulate interconnectivity in protein interaction networks. This LH relationship can be suppressed by deleting dim2 in a haploid rid1Δ (but not rad51Δ) parental strain, indicating that dim2 and rid1 share a redundant function that acts earlier than rad51 during early meiosis. In conclusion, our studies provide the first evidence of the involvement of DNMTs during meiotic initiation and recombination.
Collapse
Affiliation(s)
| | - I-Chen Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Jhong-Syuan Yao
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Ling Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hou-Cheng Liu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wan-Chen Li
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Chien Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Ning Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | - Hsin-Nan Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Li Pong
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chang-I Yu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ching-Yuan Su
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Ping Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ruey-Shyang Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ljudmilla Timofejeva
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Centre of Estonian Rural Research and Knowledge, J. Aamisepa 1, Jõgeva 48309, Estonia
| | - Ting-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
5
|
Abbouche L, Bythell-Douglas R, Deans AJ. FANCM branchpoint translocase: Master of traverse, reverse and adverse DNA repair. DNA Repair (Amst) 2024; 140:103701. [PMID: 38878565 DOI: 10.1016/j.dnarep.2024.103701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024]
Abstract
FANCM is a multifunctional DNA repair enzyme that acts as a sensor and coordinator of replication stress responses, especially interstrand crosslink (ICL) repair mediated by the Fanconi anaemia (FA) pathway. Its specialised ability to bind and remodel branched DNA structures enables diverse genome maintenance activities. Through ATP-powered "branchpoint translocation", FANCM can promote fork reversal, facilitate replication traverse of ICLs, resolve deleterious R-loop structures, and restrain recombination. These remodelling functions also support a role as sensor of perturbed replication, eliciting checkpoint signalling and recruitment of downstream repair factors like the Fanconi anaemia FANCI:FANCD2 complex. Accordingly, FANCM deficiency causes chromosome fragility and cancer susceptibility. Other recent advances link FANCM to roles in gene editing efficiency and meiotic recombination, along with emerging synthetic lethal relationships, and targeting opportunities in ALT-positive cancers. Here we review key properties of FANCM's biochemical activities, with a particular focus on branchpoint translocation as a distinguishing characteristic.
Collapse
Affiliation(s)
- Lara Abbouche
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia.
| |
Collapse
|
6
|
Arter M, Keeney S. Divergence and conservation of the meiotic recombination machinery. Nat Rev Genet 2024; 25:309-325. [PMID: 38036793 DOI: 10.1038/s41576-023-00669-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 12/02/2023]
Abstract
Sexually reproducing eukaryotes use recombination between homologous chromosomes to promote chromosome segregation during meiosis. Meiotic recombination is almost universally conserved in its broad strokes, but specific molecular details often differ considerably between taxa, and the proteins that constitute the recombination machinery show substantial sequence variability. The extent of this variation is becoming increasingly clear because of recent increases in genomic resources and advances in protein structure prediction. We discuss the tension between functional conservation and rapid evolutionary change with a focus on the proteins that are required for the formation and repair of meiotic DNA double-strand breaks. We highlight phylogenetic relationships on different time scales and propose that this remarkable evolutionary plasticity is a fundamental property of meiotic recombination that shapes our understanding of molecular mechanisms in reproductive biology.
Collapse
Affiliation(s)
- Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
7
|
Ou Y, Li H, Li J, Dai X, He J, Wang S, Liu Q, Yang C, Wang J, Zhao R, Yin Z, Shu Y, Liu S. Formation of Different Polyploids Through Disrupting Meiotic Crossover Frequencies Based on cntd1 Knockout in Zebrafish. Mol Biol Evol 2024; 41:msae047. [PMID: 38421617 PMCID: PMC10939445 DOI: 10.1093/molbev/msae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024] Open
Abstract
Polyploidy, a significant catalyst for speciation and evolutionary processes in both plant and animal kingdoms, has been recognized for a long time. However, the exact molecular mechanism that leads to polyploid formation, especially in vertebrates, is not fully understood. Our study aimed to elucidate this phenomenon using the zebrafish model. We successfully achieved an effective knockout of the cyclin N-terminal domain containing 1 (cntd1) using CRISPR/Cas9 technology. This resulted in impaired formation of meiotic crossovers, leading to cell-cycle arrest during meiotic metaphase and triggering apoptosis of spermatocytes in the testes. Despite these defects, the mutant (cntd1-/-) males were still able to produce a limited amount of sperm with normal ploidy and function. Interestingly, in the mutant females, it was the ploidy not the capacity of egg production that was altered. This resulted in the production of haploid, aneuploid, and unreduced gametes. This alteration enabled us to successfully obtain triploid and tetraploid zebrafish from cntd1-/- and cntd1-/-/- females, respectively. Furthermore, the tetraploid-heterozygous zebrafish produced reduced-diploid gametes and yielded all-triploid or all-tetraploid offspring when crossed with wild-type (WT) or tetraploid zebrafish, respectively. Collectively, our findings provide direct evidence supporting the crucial role of meiotic crossover defects in the process of polyploidization. This is particularly evident in the generation of unreduced eggs in fish and, potentially, other vertebrate species.
Collapse
Affiliation(s)
- Yuan Ou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Huilin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Juan Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xiangyan Dai
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jiaxin He
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha 410078, China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Qingfeng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Conghui Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Yuqin Shu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
8
|
Horan TS, Ascenção CFR, Mellor C, Wang M, Smolka MB, Cohen PE. The DNA helicase FANCJ (BRIP1) functions in double strand break repair processing, but not crossover formation during prophase I of meiosis in male mice. PLoS Genet 2024; 20:e1011175. [PMID: 38377115 PMCID: PMC10906868 DOI: 10.1371/journal.pgen.1011175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Meiotic recombination between homologous chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs). Approximately 10% of these DSBs result in crossovers (COs), sites of physical DNA exchange between homologs that are critical to correct chromosome segregation. Virtually all COs are formed by coordinated efforts of the MSH4/MSH5 and MLH1/MLH3 heterodimers, the latter representing the defining marks of CO sites. The regulation of CO number and position is poorly understood, but undoubtedly requires the coordinated action of multiple repair pathways. In a previous report, we found gene-trap disruption of the DNA helicase, FANCJ (BRIP1/BACH1), elicited elevated numbers of MLH1 foci and chiasmata. In somatic cells, FANCJ interacts with numerous DNA repair proteins including MLH1, and we hypothesized that FANCJ functions with MLH1 to regulate the major CO pathway. To further elucidate the meiotic function of FANCJ, we produced three new Fancj mutant mouse lines via CRISPR/Cas9 gene editing: a full-gene deletion, truncation of the N-terminal Helicase domain, and a C-terminal dual-tagged allele. We also generated an antibody against the C-terminus of the mouse FANCJ protein. Surprisingly, none of our Fancj mutants show any change in either MLH1 focus counts during pachynema or total CO number at diakinesis of prophase I. We find evidence that FANCJ and MLH1 do not interact in meiosis; further, FANCJ does not co-localize with MSH4, MLH1, or MLH3 in meiosis. Instead, FANCJ co-localizes with BRCA1 and TOPBP1, forming discrete foci along the chromosome cores beginning in early meiotic prophase I and densely localized to unsynapsed chromosome axes in late zygonema and to the XY chromosomes in early pachynema. Fancj mutants also exhibit a subtle persistence of DSBs in pachynema. Collectively, these data indicate a role for FANCJ in early DSB repair, but they rule out a role for FANCJ in MLH1-mediated CO events.
Collapse
Affiliation(s)
- Tegan S. Horan
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
| | - Carolline F. R. Ascenção
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Christopher Mellor
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Meng Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Marcus B. Smolka
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Paula E. Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
9
|
Dluzewska J, Dziegielewski W, Szymanska-Lejman M, Gazecka M, Henderson IR, Higgins JD, Ziolkowski PA. MSH2 stimulates interfering and inhibits non-interfering crossovers in response to genetic polymorphism. Nat Commun 2023; 14:6716. [PMID: 37872134 PMCID: PMC10593791 DOI: 10.1038/s41467-023-42511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Meiotic crossovers can be formed through the interfering pathway, in which one crossover prevents another from forming nearby, or by an independent non-interfering pathway. In Arabidopsis, local sequence polymorphism between homologs can stimulate interfering crossovers in a MSH2-dependent manner. To understand how MSH2 regulates crossovers formed by the two pathways, we combined Arabidopsis mutants that elevate non-interfering crossovers with msh2 mutants. We demonstrate that MSH2 blocks non-interfering crossovers at polymorphic loci, which is the opposite effect to interfering crossovers. We also observe MSH2-independent crossover inhibition at highly polymorphic sites. We measure recombination along the chromosome arms in lines differing in patterns of heterozygosity and observe a MSH2-dependent crossover increase at the boundaries between heterozygous and homozygous regions. Here, we show that MSH2 is a master regulator of meiotic DSB repair in Arabidopsis, with antagonistic effects on interfering and non-interfering crossovers, which shapes the crossover landscape in relation to interhomolog polymorphism.
Collapse
Affiliation(s)
- Julia Dluzewska
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Wojciech Dziegielewski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Maja Szymanska-Lejman
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Monika Gazecka
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
- Department of Molecular Virology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
10
|
Horan TS, Ascenção CFR, Mellor CA, Wang M, Smolka MB, Cohen PE. The DNA helicase FANCJ (BRIP1) functions in Double Strand Break repair processing, but not crossover formation during Prophase I of meiosis in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561296. [PMID: 37873301 PMCID: PMC10592954 DOI: 10.1101/2023.10.06.561296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
During meiotic prophase I, recombination between homologous parental chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs), each of which must be repaired with absolute fidelity to ensure genome stability of the germline. One outcome of these DSB events is the formation of Crossovers (COs), the sites of physical DNA exchange between homologs that are critical to ensure the correct segregation of parental chromosomes. However, COs account for only a small (~10%) proportion of all DSB repair events; the remaining 90% are repaired as non-crossovers (NCOs), most by synthesis dependent strand annealing. Virtually all COs are formed by coordinated efforts of the MSH4/MSH5 and MLH1/MLH3 heterodimers. The number and positioning of COs is exquisitely controlled via mechanisms that remain poorly understood, but which undoubtedly require the coordinated action of multiple repair pathways downstream of the initiating DSB. In a previous report we found evidence suggesting that the DNA helicase and Fanconi Anemia repair protein, FANCJ (BRIP1/BACH1), functions to regulate meiotic recombination in mouse. A gene-trap disruption of Fancj showed an elevated number of MLH1 foci and COs. FANCJ is known to interact with numerous DNA repair proteins in somatic cell repair contexts, including MLH1, BLM, BRCA1, and TOPBP1, and we hypothesized that FANCJ regulates CO formation through a direct interaction with MLH1 to suppress the major CO pathway. To further elucidate the function of FANCJ in meiosis, we produced three new Fancj mutant mouse lines via CRISPR/Cas9 gene editing: a full-gene deletion, a mutant line lacking the MLH1 interaction site and the N-terminal region of the Helicase domain, and a C-terminal 6xHIS-HA dual-tagged allele of Fancj. We also generated an antibody against the C-terminus of the mouse FANCJ protein. Surprisingly, while Fanconi-like phenotypes are observed within the somatic cell lineages of the full deletion Fancj line, none of the Fancj mutants show any change in either MLH1 focus counts during pachynema or total CO number at diakinesis of prophase I of meiosis. We find evidence that FANCJ and MLH1 do not interact in meiosis; further, FANCJ does not co-localize with MSH4, MLH1, or MLH3 during late prophase I. Instead, FANCJ forms discrete foci along the chromosome cores beginning in early meiotic prophase I, occasionally co-localizing with MSH4, and then becomes densely localized on unsynapsed chromosome axes in late zygonema and to the XY chromosomes in early pachynema. Strikingly, this localization strongly overlaps with BRCA1 and TOPBP1. Fancj mutants also exhibit a subtle persistence of DSBs in pachynema. Collectively, these data suggest a role for FANCJ in early DSB repair events, and possibly in the formation of NCOs, but they rule out a role for FANCJ in MLH1-mediated CO events. Thus, the role of FANCJ in meiotic cells involves different pathways and different interactors to those described in somatic cell lineages.
Collapse
Affiliation(s)
- Tegan S Horan
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
| | - Carolline F R Ascenção
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | | | - Meng Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Marcus B Smolka
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
11
|
Xie D, Gu B, Liu Y, Ye P, Ma Y, Wen T, Song X, Zhao Z. Efficient targeted recombination with CRISPR/Cas9 in hybrids of Caenorhabditis nematodes with suppressed recombination. BMC Biol 2023; 21:203. [PMID: 37775783 PMCID: PMC10542263 DOI: 10.1186/s12915-023-01704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Homology-based recombination (HR) is the cornerstone of genetic mapping. However, a lack of sufficient sequence homology or the presence of a genomic rearrangement prevents HR through crossing, which inhibits genetic mapping in relevant genomic regions. This is particularly true in species hybrids whose genomic sequences are highly divergent along with various genome arrangements, making the mapping of genetic loci, such as hybrid incompatibility (HI) loci, through crossing impractical. We previously mapped tens of HI loci between two nematodes, Caenorhabditis briggsae and C. nigoni, through the repeated backcrossing of GFP-linked C. briggsae fragments into C. nigoni. However, the median introgression size was over 7 Mb, indicating apparent HR suppression and preventing the subsequent cloning of the causative gene underlying a given HI phenotype. Therefore, a robust method that permits recombination independent of sequence homology is desperately desired. RESULTS Here, we report a method of highly efficient targeted recombination (TR) induced by CRISPR/Cas9 with dual guide RNAs (gRNAs), which circumvents the HR suppression in hybrids between the two species. We demonstrated that a single gRNA was able to induce efficient TR between highly homologous sequences only in the F1 hybrids but not in the hybrids that carry a GFP-linked C. briggsae fragment in an otherwise C. nigoni background. We achieved highly efficient TR, regardless of sequence homology or genetic background, when dual gRNAs were used that each specifically targeted one parental chromosome. We further showed that dual gRNAs were able to induce efficient TR within genomic regions that had undergone inversion, in which HR-based recombination was expected to be suppressed, supporting the idea that dual-gRNA-induced TR can be achieved through nonhomology-based end joining between two parental chromosomes. CONCLUSIONS Recombination suppression can be circumvented through CRISPR/Cas9 with dual gRNAs, regardless of sequence homology or the genetic background of the species hybrid. This method is expected to be applicable to other situations in which recombination is suppressed in interspecies or intrapopulation hybrids.
Collapse
Affiliation(s)
- Dongying Xie
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Bida Gu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Yiqing Liu
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Pohao Ye
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Yiming Ma
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Tongshu Wen
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
12
|
Abstract
In meiosis, homologous chromosome synapsis is mediated by a supramolecular protein structure, the synaptonemal complex (SC), that assembles between homologous chromosome axes. The mammalian SC comprises at least eight largely coiled-coil proteins that interact and self-assemble to generate a long, zipper-like structure that holds homologous chromosomes in close proximity and promotes the formation of genetic crossovers and accurate meiotic chromosome segregation. In recent years, numerous mutations in human SC genes have been associated with different types of male and female infertility. Here, we integrate structural information on the human SC with mouse and human genetics to describe the molecular mechanisms by which SC mutations can result in human infertility. We outline certain themes in which different SC proteins are susceptible to different types of disease mutation and how genetic variants with seemingly minor effects on SC proteins may act as dominant-negative mutations in which the heterozygous state is pathogenic.
Collapse
Affiliation(s)
- Ian R Adams
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
13
|
Fan S, Wang Y, Jiang H, Jiang X, Zhou J, Jiao Y, Ye J, Xu Z, Wang Y, Xie X, Zhang H, Li Y, Liu W, Zhang X, Ma H, Shi B, Zhang Y, Zubair M, Shah W, Xu Z, Xu B, Shi Q. A novel recombination protein C12ORF40/REDIC1 is required for meiotic crossover formation. Cell Discov 2023; 9:88. [PMID: 37612290 PMCID: PMC10447524 DOI: 10.1038/s41421-023-00577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/14/2023] [Indexed: 08/25/2023] Open
Abstract
During meiosis, at least one crossover must occur per homologous chromosome pair to ensure normal progression of meiotic division and accurate chromosome segregation. However, the mechanism of crossover formation is not fully understood. Here, we report a novel recombination protein, C12ORF40/REDIC1, essential for meiotic crossover formation in mammals. A homozygous frameshift mutation in C12orf40 (c.232_233insTT, p.Met78Ilefs*2) was identified in two infertile men with meiotic arrest. Spread mouse spermatocyte fluorescence immunostaining showed that REDIC1 forms discrete foci between the paired regions of homologous chromosomes depending on strand invasion and colocalizes with MSH4 and later with MLH1 at the crossover sites. Redic1 knock-in (KI) mice homozygous for mutation c.232_233insTT are infertile in both sexes due to insufficient crossovers and consequent meiotic arrest, which is also observed in our patients. The foci of MSH4 and TEX11, markers of recombination intermediates, are significantly reduced numerically in the spermatocytes of Redic1 KI mice. More importantly, our biochemical results show that the N-terminus of REDIC1 binds branched DNAs present in recombination intermediates, while the identified mutation impairs this interaction. Thus, our findings reveal a crucial role for C12ORF40/REDIC1 in meiotic crossover formation by stabilizing the recombination intermediates, providing prospective molecular targets for the clinical diagnosis and therapy of infertility.
Collapse
Affiliation(s)
- Suixing Fan
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuewen Wang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Hanwei Jiang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaohua Jiang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianteng Zhou
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuying Jiao
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingwei Ye
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Zishuo Xu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yue Wang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuefeng Xie
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Huan Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Li
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Liu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiangjun Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Hui Ma
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Baolu Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanwei Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Muhammad Zubair
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Wasim Shah
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhipeng Xu
- Institute of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| | - Bo Xu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China.
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
14
|
Premkumar T, Paniker L, Kang R, Biot M, Humphrey E, Destain H, Ferranti I, Okulate I, Nguyen H, Kilaru V, Frasca M, Chakraborty P, Cole F. Genetic dissection of crossover mutants defines discrete intermediates in mouse meiosis. Mol Cell 2023; 83:2941-2958.e7. [PMID: 37595556 PMCID: PMC10469168 DOI: 10.1016/j.molcel.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/28/2023] [Accepted: 07/21/2023] [Indexed: 08/20/2023]
Abstract
Crossovers (COs), the exchange of homolog arms, are required for accurate chromosome segregation during meiosis. Studies in yeast have described the single-end invasion (SEI) intermediate: a stabilized 3' end annealed with the homolog as the first detectible CO precursor. SEIs are thought to differentiate into double Holliday junctions (dHJs) that are resolved by MutLgamma (MLH1/MLH3) into COs. Currently, we lack knowledge of early steps of mammalian CO recombination or how intermediates are differentiated in any organism. Using comprehensive analysis of recombination in thirteen different genetic conditions with varying levels of compromised CO resolution, we infer CO precursors include asymmetric SEI-like intermediates and dHJs in mouse. In contrast to yeast, MLH3 is structurally required to differentiate CO precursors into dHJs. We verify conservation of aspects of meiotic recombination and show unique features in mouse, providing mechanistic insight into CO formation.
Collapse
Affiliation(s)
- Tolkappiyan Premkumar
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX, USA
| | - Lakshmi Paniker
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rhea Kang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX, USA
| | - Mathilde Biot
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ericka Humphrey
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Honorine Destain
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Isabella Ferranti
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Iyinyeoluwa Okulate
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Holly Nguyen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vindhya Kilaru
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melissa Frasca
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX, USA
| | - Parijat Chakraborty
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francesca Cole
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX, USA.
| |
Collapse
|
15
|
Tsui V, Lyu R, Novakovic S, Stringer JM, Dunleavy JE, Granger E, Semple T, Leichter A, Martelotto LG, Merriner DJ, Liu R, McNeill L, Zerafa N, Hoffmann ER, O’Bryan MK, Hutt K, Deans AJ, Heierhorst J, McCarthy DJ, Crismani W. Fancm has dual roles in the limiting of meiotic crossovers and germ cell maintenance in mammals. CELL GENOMICS 2023; 3:100349. [PMID: 37601968 PMCID: PMC10435384 DOI: 10.1016/j.xgen.2023.100349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/30/2023] [Accepted: 06/02/2023] [Indexed: 08/22/2023]
Abstract
Meiotic crossovers are required for accurate chromosome segregation and producing new allelic combinations. Meiotic crossover numbers are tightly regulated within a narrow range, despite an excess of initiating DNA double-strand breaks. Here, we reveal the tumor suppressor FANCM as a meiotic anti-crossover factor in mammals. We use unique large-scale crossover analyses with both single-gamete sequencing and pedigree-based bulk-sequencing datasets to identify a genome-wide increase in crossover frequencies in Fancm-deficient mice. Gametogenesis is heavily perturbed in Fancm loss-of-function mice, which is consistent with the reproductive defects reported in humans with biallelic FANCM mutations. A portion of the gametogenesis defects can be attributed to the cGAS-STING pathway after birth. Despite the gametogenesis phenotypes in Fancm mutants, both sexes are capable of producing offspring. We propose that the anti-crossover function and role in gametogenesis of Fancm are separable and will inform diagnostic pathways for human genomic instability disorders.
Collapse
Affiliation(s)
- Vanessa Tsui
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
| | - Ruqian Lyu
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Stevan Novakovic
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jessica M. Stringer
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Jessica E.M. Dunleavy
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Elissah Granger
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Tim Semple
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - Anna Leichter
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - Luciano G. Martelotto
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - D. Jo Merriner
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Ruijie Liu
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Lucy McNeill
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Nadeen Zerafa
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Eva R. Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Moira K. O’Bryan
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Karla Hutt
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Andrew J. Deans
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
- Genome Stability Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jörg Heierhorst
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
- Molecular Genetics Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Davis J. McCarthy
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Wayne Crismani
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
16
|
Bradley RA, Wolff ID, Cohen PE, Gray S. Dynamic regulatory phosphorylation of mouse CDK2 occurs during meiotic prophase I. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550435. [PMID: 37546989 PMCID: PMC10402020 DOI: 10.1101/2023.07.24.550435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
During prophase I of meiosis, DNA double-strand breaks form throughout the genome, with a subset repairing as crossover events, enabling the accurate segregation of homologous chromosomes during the first meiotic division. The mechanism by which DSBs become selected to repair as crossovers is unknown, although the crossover positioning and levels in each cell indicate it is a highly regulated process. One of the proteins that localises to crossover sites is the serine/threonine cyclin-dependent kinase CDK2. Regulation of CDK2 occurs via phosphorylation at tyrosine 15 (Y15) and threonine 160 (T160) inhibiting and activating the kinase, respectively. In this study we use a combination of immunofluorescence staining on spread spermatocytes and fixed testis sections, and STA-PUT gravitational sedimentation to isolate cells at different developmental stages to further investigate the temporal phospho regulation of CDK2 during prophase I. Western blotting reveals differential levels of the two CDK2 isoforms (CDK233kDa and CDK239kDa) throughout prophase I, with inhibitory phosphorylation of CDK2 at Y15 occurring early in prophase I, localising to telomeres and diminishing as cells enter pachynema. Conversely, the activatory phosphorylation on T160 occurs later, specifically the CDK233kDa isoform, and T160 signal is detected in spermatogonia and pachytene spermatocytes, where it co-localises with the Class I crossover protein MLH3. Taken together, our data reveals intricate control of CDK2 both with regards to levels of the two CDK2 isoforms, and differential regulation via inhibitory and activatory phosphorylation.
Collapse
Affiliation(s)
- Rachel A. Bradley
- Department of Biomedical Sciences and Cornell Reproductive Sciences Center (CoRe), Cornell University, Ithaca, NY, 14853, United States of America
| | - Ian D. Wolff
- Department of Biomedical Sciences and Cornell Reproductive Sciences Center (CoRe), Cornell University, Ithaca, NY, 14853, United States of America
| | - Paula E. Cohen
- Department of Biomedical Sciences and Cornell Reproductive Sciences Center (CoRe), Cornell University, Ithaca, NY, 14853, United States of America
| | - Stephen Gray
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| |
Collapse
|
17
|
Rafiei N, Ronceret A. Crossover interference mechanism: New lessons from plants. Front Cell Dev Biol 2023; 11:1156766. [PMID: 37274744 PMCID: PMC10236007 DOI: 10.3389/fcell.2023.1156766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Plants are the source of our understanding of several fundamental biological principles. It is well known that Gregor Mendel discovered the laws of Genetics in peas and that maize was used for the discovery of transposons by Barbara McClintock. Plant models are still useful for the understanding of general key biological concepts. In this article, we will focus on discussing the recent plant studies that have shed new light on the mysterious mechanisms of meiotic crossover (CO) interference, heterochiasmy, obligatory CO, and CO homeostasis. Obligatory CO is necessary for the equilibrated segregation of homologous chromosomes during meiosis. The tight control of the different male and female CO rates (heterochiasmy) enables both the maximization and minimization of genome shuffling. An integrative model can now predict these observed aspects of CO patterning in plants. The mechanism proposed considers the Synaptonemal Complex as a canalizing structure that allows the diffusion of a class I CO limiting factor linearly on synapsed bivalents. The coarsening of this limiting factor along the SC explains the interfering spacing between COs. The model explains the observed coordinated processes between synapsis, CO interference, CO insurance, and CO homeostasis. It also easily explains heterochiasmy just considering the different male and female SC lengths. This mechanism is expected to be conserved in other species.
Collapse
|
18
|
Kudryavtseva N, Ermolaev A, Pivovarov A, Simanovsky S, Odintsov S, Khrustaleva L. The Control of the Crossover Localization in Allium. Int J Mol Sci 2023; 24:ijms24087066. [PMID: 37108228 PMCID: PMC10138942 DOI: 10.3390/ijms24087066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Meiotic crossovers/chiasmata are not randomly distributed and strictly controlled. The mechanisms behind crossover (CO) patterning remain largely unknown. In Allium cepa, as in the vast majority of plants and animals, COs predominantly occur in the distal 2/3 of the chromosome arm, while in Allium fistulosum they are strictly localized in the proximal region. We investigated the factors that may contribute to the pattern of COs in A. cepa, A. fistulosum and their F1 diploid (2n = 2x = 8C + 8F) and F1 triploid (2n = 3x = 16F + 8C) hybrids. The genome structure of F1 hybrids was confirmed using genomic in situ hybridization (GISH). The analysis of bivalents in the pollen mother cells (PMCs) of the F1 triploid hybrid showed a significant shift in the localization of COs to the distal and interstitial regions. In F1 diploid hybrid, the COs localization was predominantly the same as that of the A. cepa parent. We found no differences in the assembly and disassembly of ASY1 and ZYP1 in PMCs between A. cepa and A. fistulosum, while F1 diploid hybrid showed a delay in chromosome pairing and a partial absence of synapsis in paired chromosomes. Immunolabeling of MLH1 (class I COs) and MUS81 (class II COs) proteins showed a significant difference in the class I/II CO ratio between A. fistulosum (50%:50%) and A. cepa (73%:27%). The MLH1:MUS81 ratio at the homeologous synapsis of F1 diploid hybrid (70%:30%) was the most similar to that of the A. cepa parent. F1 triploid hybrid at the A. fistulosum homologous synapsis showed a significant increase in MLH1:MUS81 ratio (60%:40%) compared to the A. fistulosum parent. The results suggest possible genetic control of CO localization. Other factors affecting the distribution of COs are discussed.
Collapse
Affiliation(s)
- Natalia Kudryavtseva
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127550, Russia
| | - Aleksey Ermolaev
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127550, Russia
| | - Anton Pivovarov
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127550, Russia
| | - Sergey Simanovsky
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Prosp., Moscow 119071, Russia
| | - Sergey Odintsov
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127550, Russia
| | - Ludmila Khrustaleva
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127550, Russia
| |
Collapse
|
19
|
Mu N, Li Y, Li S, Shi W, Shen Y, Yang H, Zhang F, Tang D, Du G, You A, Cheng Z. MUS81 is required for atypical recombination intermediate resolution but not crossover designation in rice. THE NEW PHYTOLOGIST 2023; 237:2422-2434. [PMID: 36495065 DOI: 10.1111/nph.18668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The endonuclease methyl methanesulfonate and UV-sensitive protein 81 (MUS81) has been reported to participate in DNA repair during mitosis and meiosis. However, the exact meiotic function of MUS81 in rice remains unclear. Here, we use a combination of physiological, cytological, and genetic approaches to provide evidence that MUS81 functions in atypical recombination intermediate resolution rather than crossover designation in rice. Cytological and genetic analysis revealed that the total chiasma numbers in mus81 mutants were indistinguishable from wild-type. The numbers of HEI10 foci (the sites of interference-sensitive crossovers) in mus81 were also similar to that of wild-type. Moreover, disruption of MUS81 in msh5 or msh4 msh5 background did not further decrease chiasmata frequency, suggesting that rice MUS81 did not function in crossover designation. Mutation of FANCM and ZEP1 could enhance recombination frequency. Unexpectedly, chromosome fragments and bridges were frequently observed in mus81 zep1 and mus81 fancm, illustrating that MUS81 may resolve atypical recombination intermediates. Taken together, our data suggest that MUS81 contributes little to crossover designation but plays a crucial role in the resolution of atypical meiotic intermediates by working together with other anti-crossover factors.
Collapse
Affiliation(s)
- Na Mu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, 225009, Yangzhou, China
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yafei Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sanhe Li
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wenqing Shi
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yi Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Han Yang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Fanfan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Ding Tang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Guijie Du
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Aiqing You
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Zhukuan Cheng
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, 225009, Yangzhou, China
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
20
|
Brieño-Enríquez MA, Faykoo-Martinez M, Goben M, Grenier JK, McGrath A, Prado AM, Sinopoli J, Wagner K, Walsh PT, Lopa SH, Laird DJ, Cohen PE, Wilson MD, Holmes MM, Place NJ. Postnatal oogenesis leads to an exceptionally large ovarian reserve in naked mole-rats. Nat Commun 2023; 14:670. [PMID: 36810851 PMCID: PMC9944903 DOI: 10.1038/s41467-023-36284-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
In the long-lived naked mole-rat (NMR), the entire process of oogenesis occurs postnatally. Germ cell numbers increase significantly in NMRs between postnatal days 5 (P5) and P8, and germs cells positive for proliferation markers (Ki-67, pHH3) are present at least until P90. Using pluripotency markers (SOX2 and OCT4) and the primordial germ cell (PGC) marker BLIMP1, we show that PGCs persist up to P90 alongside germ cells in all stages of female differentiation and undergo mitosis both in vivo and in vitro. We identified VASA+ SOX2+ cells at 6 months and at 3-years in subordinate and reproductively activated females. Reproductive activation was associated with proliferation of VASA+ SOX2+ cells. Collectively, our results suggest that highly desynchronized germ cell development and the maintenance of a small population of PGCs that can expand upon reproductive activation are unique strategies that could help to maintain the NMR's ovarian reserve for its 30-year reproductive lifespan.
Collapse
Affiliation(s)
- Miguel Angel Brieño-Enríquez
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Mariela Faykoo-Martinez
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Mississauga, Mississauga, ON, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Meagan Goben
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer K Grenier
- RNA sequencing core and Center for Reproductive Genomics, College of Veterinary, Cornell University, Ithaca, NY, USA
| | - Ashley McGrath
- Department of Population Medicine & Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Alexandra M Prado
- Department of Population Medicine & Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Jacob Sinopoli
- Department of Population Medicine & Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Kate Wagner
- Department of Population Medicine & Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Patrick T Walsh
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samia H Lopa
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diana J Laird
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Paula E Cohen
- Center for Reproductive Genomics, Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Michael D Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Melissa M Holmes
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Mississauga, Mississauga, ON, Canada
| | - Ned J Place
- Department of Population Medicine & Diagnostic Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
21
|
Huang Y, Roig I. Genetic control of meiosis surveillance mechanisms in mammals. Front Cell Dev Biol 2023; 11:1127440. [PMID: 36910159 PMCID: PMC9996228 DOI: 10.3389/fcell.2023.1127440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Meiosis is a specialized cell division that generates haploid gametes and is critical for successful sexual reproduction. During the extended meiotic prophase I, homologous chromosomes progressively pair, synapse and desynapse. These chromosomal dynamics are tightly integrated with meiotic recombination (MR), during which programmed DNA double-strand breaks (DSBs) are formed and subsequently repaired. Consequently, parental chromosome arms reciprocally exchange, ultimately ensuring accurate homolog segregation and genetic diversity in the offspring. Surveillance mechanisms carefully monitor the MR and homologous chromosome synapsis during meiotic prophase I to avoid producing aberrant chromosomes and defective gametes. Errors in these critical processes would lead to aneuploidy and/or genetic instability. Studies of mutation in mouse models, coupled with advances in genomic technologies, lead us to more clearly understand how meiosis is controlled and how meiotic errors are linked to mammalian infertility. Here, we review the genetic regulations of these major meiotic events in mice and highlight our current understanding of their surveillance mechanisms. Furthermore, we summarize meiotic prophase genes, the mutations that activate the surveillance system leading to meiotic prophase arrest in mouse models, and their corresponding genetic variants identified in human infertile patients. Finally, we discuss their value for the diagnosis of causes of meiosis-based infertility in humans.
Collapse
Affiliation(s)
- Yan Huang
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
22
|
Gong C, Abbas T, Muhammad Z, Zhou J, Khan R, Ma H, Zhang H, Shi Q, Shi B. A Homozygous Loss-of-Function Mutation in MSH5 Abolishes MutSγ Axial Loading and Causes Meiotic Arrest in NOA-Affected Individuals. Int J Mol Sci 2022; 23:6522. [PMID: 35742973 PMCID: PMC9224491 DOI: 10.3390/ijms23126522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Non-obstructive azoospermia (NOA), characterized by spermatogenesis failure and the absence of sperm in ejaculation, is the most severe form of male infertility. However, the etiology and pathology between meiosis-associated monogenic alterations and human NOA remain largely unknown. A homozygous MSH5 mutation (c.1126del) was identified from two idiopathic NOA patients in the consanguineous family. This mutation led to the degradation of MSH5 mRNA and abolished chromosome axial localization of MutSγ in spermatocytes from the affected males. Chromosomal spreading analysis of the patient's meiotic prophase I revealed that the meiosis progression was arrested at a zygotene-like stage with extensive failure of homologous synapsis and DSB repair. Therefore, our study demonstrates that the MSH5 c.1126del could cause meiotic recombination failure and lead to human infertility, improving the genetic diagnosis of NOA clinically. Furthermore, the study of human spermatocytes elucidates the meiosis defects caused by MSH5 variant, and reveals a conserved and indispensable role of MutSγ in human synapsis and meiotic recombination, which have not previously been well-described.
Collapse
Affiliation(s)
- Chenjia Gong
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China; (C.G.) (T.A.); (Z.M.); (J.Z.); (R.K.); (H.M.); (H.Z.)
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei 230027, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Tanveer Abbas
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China; (C.G.) (T.A.); (Z.M.); (J.Z.); (R.K.); (H.M.); (H.Z.)
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei 230027, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zubair Muhammad
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China; (C.G.) (T.A.); (Z.M.); (J.Z.); (R.K.); (H.M.); (H.Z.)
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei 230027, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jianteng Zhou
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China; (C.G.) (T.A.); (Z.M.); (J.Z.); (R.K.); (H.M.); (H.Z.)
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei 230027, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ranjha Khan
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China; (C.G.) (T.A.); (Z.M.); (J.Z.); (R.K.); (H.M.); (H.Z.)
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei 230027, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hui Ma
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China; (C.G.) (T.A.); (Z.M.); (J.Z.); (R.K.); (H.M.); (H.Z.)
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei 230027, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Huan Zhang
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China; (C.G.) (T.A.); (Z.M.); (J.Z.); (R.K.); (H.M.); (H.Z.)
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei 230027, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qinghua Shi
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China; (C.G.) (T.A.); (Z.M.); (J.Z.); (R.K.); (H.M.); (H.Z.)
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei 230027, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Baolu Shi
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China; (C.G.) (T.A.); (Z.M.); (J.Z.); (R.K.); (H.M.); (H.Z.)
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei 230027, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
23
|
Wellard SR, Skinner MW, Zhao X, Shults C, Jordan PW. PLK1 depletion alters homologous recombination and synaptonemal complex disassembly events during mammalian spermatogenesis. Mol Biol Cell 2022; 33:ar37. [PMID: 35274968 PMCID: PMC9282006 DOI: 10.1091/mbc.e21-03-0115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 11/11/2022] Open
Abstract
Homologous recombination (HR) is an essential meiotic process that contributes to the genetic variation of offspring and ensures accurate chromosome segregation. Recombination is facilitated by the formation and repair of programmed DNA double-strand breaks. These DNA breaks are repaired via recombination between maternal and paternal homologous chromosomes and a subset result in the formation of crossovers. HR and crossover formation is facilitated by synapsis of homologous chromosomes by a proteinaceous scaffold structure known as the synaptonemal complex (SC). Recent studies in yeast and worms have indicated that polo-like kinases (PLKs) regulate several events during meiosis, including DNA recombination and SC dynamics. Mammals express four active PLKs (PLK1-4), and our previous work assessing localization and kinase function in mouse spermatocytes suggested that PLK1 coordinates nuclear events during meiotic prophase. Therefore, we conditionally mutated Plk1 in early prophase spermatocytes and assessed stages of HR, crossover formation, and SC processes. Plk1 mutation resulted in increased RPA foci and reduced RAD51/DMC1 foci during zygonema, and an increase of both class I and class II crossover events. Furthermore, the disassembly of SC lateral elements was aberrant. Our results highlight the importance of PLK1 in regulating HR and SC disassembly during spermatogenesis.
Collapse
Affiliation(s)
- Stephen R. Wellard
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Marnie W. Skinner
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Xueqi Zhao
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Chris Shults
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Philip W. Jordan
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
24
|
Xie C, Wang W, Tu C, Meng L, Lu G, Lin G, Lu LY, Tan YQ. OUP accepted manuscript. Hum Reprod Update 2022; 28:763-797. [PMID: 35613017 DOI: 10.1093/humupd/dmac024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/18/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Chunbo Xie
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Weili Wang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaofeng Tu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lanlan Meng
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lin-Yu Lu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue-Qiu Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
25
|
Qu W, Liu C, Xu YT, Xu YM, Luo MC. The formation and repair of DNA double-strand breaks in mammalian meiosis. Asian J Androl 2021; 23:572-579. [PMID: 34708719 PMCID: PMC8577251 DOI: 10.4103/aja202191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Programmed DNA double-strand breaks (DSBs) are necessary for meiosis in mammals. A sufficient number of DSBs ensure the normal pairing/synapsis of homologous chromosomes. Abnormal DSB repair undermines meiosis, leading to sterility in mammals. The DSBs that initiate recombination are repaired as crossovers and noncrossovers, and crossovers are required for correct chromosome separation. Thus, the placement, timing, and frequency of crossover formation must be tightly controlled. Importantly, mutations in many genes related to the formation and repair of DSB result in infertility in humans. These mutations cause nonobstructive azoospermia in men, premature ovarian insufficiency and ovarian dysgenesis in women. Here, we have illustrated the formation and repair of DSB in mammals, summarized major factors influencing the formation of DSB and the theories of crossover regulation.
Collapse
Affiliation(s)
- Wei Qu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Cong Liu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Ya-Ting Xu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Yu-Min Xu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Meng-Cheng Luo
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
26
|
Ahuja JS, Harvey CS, Wheeler DL, Lichten M. Repeated strand invasion and extensive branch migration are hallmarks of meiotic recombination. Mol Cell 2021; 81:4258-4270.e4. [PMID: 34453891 PMCID: PMC8541907 DOI: 10.1016/j.molcel.2021.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022]
Abstract
Currently favored models for meiotic recombination posit that both noncrossover and crossover recombination are initiated by DNA double-strand breaks but form by different mechanisms: noncrossovers by synthesis-dependent strand annealing and crossovers by formation and resolution of double Holliday junctions centered around the break. This dual mechanism hypothesis predicts different hybrid DNA patterns in noncrossover and crossover recombinants. We show that these predictions are not upheld, by mapping with unprecedented resolution parental strand contributions to recombinants at a model locus. Instead, break repair in both noncrossovers and crossovers involves synthesis-dependent strand annealing, often with multiple rounds of strand invasion. Crossover-specific double Holliday junction formation occurs via processes involving branch migration as an integral feature, one that can be separated from repair of the break itself. These findings reveal meiotic recombination to be a highly dynamic process and prompt a new view of the relationship between crossover and noncrossover recombination.
Collapse
Affiliation(s)
- Jasvinder S Ahuja
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Catherine S Harvey
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - David L Wheeler
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Peterson AL, Payseur BA. Sex-specific variation in the genome-wide recombination rate. Genetics 2021; 217:1-11. [PMID: 33683358 DOI: 10.1093/genetics/iyaa019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/19/2020] [Indexed: 01/13/2023] Open
Abstract
In most species that reproduce sexually, successful gametogenesis requires recombination during meiosis. The number and placement of crossovers (COs) vary among individuals, with females and males often presenting the most striking contrasts. Despite the recognition that the sexes recombine at different rates (heterochiasmy), existing data fail to answer the question of whether patterns of genetic variation in recombination rate are similar in the two sexes. To fill this gap, we measured the genome-wide recombination rate in both sexes from a panel of wild-derived inbred strains from multiple subspecies of house mice (Mus musculus) and from a few additional species of Mus. To directly compare recombination rates in females and males from the same genetic backgrounds, we applied established methods based on immunolocalization of recombination proteins to inbred strains. Our results reveal discordant patterns of genetic variation in the two sexes. Whereas male genome-wide recombination rates vary substantially among strains, female recombination rates measured in the same strains are more static. The direction of heterochiasmy varies within two subspecies, Mus musculus molossinus and Mus musculus musculus. The direction of sex differences in the length of the synaptonemal complex and CO positions is consistent across strains and does not track sex differences in genome-wide recombination rate. In males, contrasts between strains with high recombination rate and strains with low recombination rate suggest more recombination is associated with stronger CO interference and more double-strand breaks. The sex-specific patterns of genetic variation we report underscore the importance of incorporating sex differences into recombination research.
Collapse
Affiliation(s)
- April L Peterson
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI 53706, USA
| |
Collapse
|
28
|
Pazhayam NM, Turcotte CA, Sekelsky J. Meiotic Crossover Patterning. Front Cell Dev Biol 2021; 9:681123. [PMID: 34368131 PMCID: PMC8344875 DOI: 10.3389/fcell.2021.681123] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/28/2021] [Indexed: 12/02/2022] Open
Abstract
Proper number and placement of meiotic crossovers is vital to chromosome segregation, with failures in normal crossover distribution often resulting in aneuploidy and infertility. Meiotic crossovers are formed via homologous repair of programmed double-strand breaks (DSBs). Although DSBs occur throughout the genome, crossover placement is intricately patterned, as observed first in early genetic studies by Muller and Sturtevant. Three types of patterning events have been identified. Interference, first described by Sturtevant in 1915, is a phenomenon in which crossovers on the same chromosome do not occur near one another. Assurance, initially identified by Owen in 1949, describes the phenomenon in which a minimum of one crossover is formed per chromosome pair. Suppression, first observed by Beadle in 1932, dictates that crossovers do not occur in regions surrounding the centromere and telomeres. The mechanisms behind crossover patterning remain largely unknown, and key players appear to act at all scales, from the DNA level to inter-chromosome interactions. There is also considerable overlap between the known players that drive each patterning phenomenon. In this review we discuss the history of studies of crossover patterning, developments in methods used in the field, and our current understanding of the interplay between patterning phenomena.
Collapse
Affiliation(s)
- Nila M. Pazhayam
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Carolyn A. Turcotte
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
29
|
Gray S, Santiago ER, Chappie JS, Cohen PE. Cyclin N-Terminal Domain-Containing-1 Coordinates Meiotic Crossover Formation with Cell-Cycle Progression in a Cyclin-Independent Manner. Cell Rep 2021; 32:107858. [PMID: 32640224 PMCID: PMC7341696 DOI: 10.1016/j.celrep.2020.107858] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/14/2020] [Accepted: 06/12/2020] [Indexed: 01/01/2023] Open
Abstract
During mammalian meiotic prophase I, programmed DNA double-strand breaks are repaired by non-crossover or crossover events, the latter predominantly occurring via the class I crossover pathway and requiring the cyclin N-terminal domain-containing 1(CNTD1) protein. Using an epitope-tagged Cntd1 allele, we detect a short isoform of CNTD1 in vivo that lacks a predicted N-terminal cyclin domain and does not bind cyclin-dependent kinases. Instead, we find that the short-form CNTD1 variant associates with components of the replication factor C (RFC) machinery to facilitate crossover formation, and with the E2 ubiquitin conjugating enzyme, CDC34, to regulate ubiquitylation and subsequent degradation of the WEE1 kinase, thereby modulating cell-cycle progression. We propose that these interactions facilitate a role for CNTD1 as a stop-go regulator during prophase I, ensuring accurate and complete crossover formation before allowing metaphase progression and the first meiotic division. CNTD1 associates with sites of crossing over in meiosis, co-localizing with MutLγ In the testis, CNTD1 does not interact with CDKs or with known crossover regulators CNTD1 regulates crossing over via interactions with the replication factor C complex CNTD1 regulates cell-cycle progression via interactions with the SCF complex
Collapse
Affiliation(s)
- Stephen Gray
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, USA.
| | - Emerson R Santiago
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Paula E Cohen
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
30
|
Pannafino G, Alani E. Coordinated and Independent Roles for MLH Subunits in DNA Repair. Cells 2021; 10:cells10040948. [PMID: 33923939 PMCID: PMC8074049 DOI: 10.3390/cells10040948] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/05/2023] Open
Abstract
The MutL family of DNA mismatch repair proteins (MMR) acts to maintain genomic integrity in somatic and meiotic cells. In baker’s yeast, the MutL homolog (MLH) MMR proteins form three heterodimeric complexes, MLH1-PMS1, MLH1-MLH2, and MLH1-MLH3. The recent discovery of human PMS2 (homolog of baker’s yeast PMS1) and MLH3 acting independently of human MLH1 in the repair of somatic double-strand breaks questions the assumption that MLH1 is an obligate subunit for MLH function. Here we provide a summary of the canonical roles for MLH factors in DNA genomic maintenance and in meiotic crossover. We then present the phenotypes of cells lacking specific MLH subunits, particularly in meiotic recombination, and based on this analysis, propose a model for an independent early role for MLH3 in meiosis to promote the accurate segregation of homologous chromosomes in the meiosis I division.
Collapse
|
31
|
Wang S, Shang Y, Liu Y, Zhai B, Yang X, Zhang L. Crossover patterns under meiotic chromosome program. Asian J Androl 2021; 23:562-571. [PMID: 33533735 PMCID: PMC8577264 DOI: 10.4103/aja.aja_86_20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Repairing DNA double-strand breaks (DSBs) with homologous chromosomes as templates is the hallmark of meiosis. The critical outcome of meiotic homologous recombination is crossovers, which ensure faithful chromosome segregation and promote genetic diversity of progenies. Crossover patterns are tightly controlled and exhibit three characteristics: obligatory crossover, crossover interference, and crossover homeostasis. Aberrant crossover patterns are the leading cause of infertility, miscarriage, and congenital disease. Crossover recombination occurs in the context of meiotic chromosomes, and it is tightly integrated with and regulated by meiotic chromosome structure both locally and globally. Meiotic chromosomes are organized in a loop-axis architecture. Diverse evidence shows that chromosome axis length determines crossover frequency. Interestingly, short chromosomes show different crossover patterns compared to long chromosomes. A high frequency of human embryos are aneuploid, primarily derived from female meiosis errors. Dramatically increased aneuploidy in older women is the well-known “maternal age effect.” However, a high frequency of aneuploidy also occurs in young women, derived from crossover maturation inefficiency in human females. In addition, frequency of human aneuploidy also shows other age-dependent alterations. Here, current advances in the understanding of these issues are reviewed, regulation of crossover patterns by meiotic chromosomes are discussed, and issues that remain to be investigated are suggested.
Collapse
Affiliation(s)
- Shunxin Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Yongliang Shang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yanlei Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Binyuan Zhai
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Xiao Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Liangran Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China.,Advanced Medical Research Institute, Shandong University, Jinan 250014, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
32
|
Guo R, Xu Y, Leu NA, Zhang L, Fuchs SY, Ye L, Wang P. The ssDNA-binding protein MEIOB acts as a dosage-sensitive regulator of meiotic recombination. Nucleic Acids Res 2020; 48:12219-12233. [PMID: 33166385 PMCID: PMC7708077 DOI: 10.1093/nar/gkaa1016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Meiotic recombination enables reciprocal exchange of genetic information between parental chromosomes and is essential for fertility. MEIOB, a meiosis-specific ssDNA-binding protein, regulates early meiotic recombination. Here we report that the human infertility-associated missense mutation (N64I) in MEIOB causes protein degradation and reduced crossover formation in mouse testes. Although the MEIOB N64I substitution is associated with human infertility, the point mutant mice are fertile despite meiotic defects. Meiob mutagenesis identifies serine 67 as a critical residue for MEIOB. Biochemically, these two mutations (N64I and S67 deletion) cause self-aggregation of MEIOB and sharply reduced protein half-life. Molecular genetic analyses of both point mutants reveal an important role for MEIOB in crossover formation in late meiotic recombination. Furthermore, we find that the MEIOB protein levels directly correlate with the severity of meiotic defects. Our results demonstrate that MEIOB regulates meiotic recombination in a dosage-dependent manner.
Collapse
Affiliation(s)
- Rui Guo
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yang Xu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - N Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Lei Zhang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Serge Y Fuchs
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Gil-Fernández A, Saunders PA, Martín-Ruiz M, Ribagorda M, López-Jiménez P, Jeffries DL, Parra MT, Viera A, Rufas JS, Perrin N, Veyrunes F, Page J. Meiosis reveals the early steps in the evolution of a neo-XY sex chromosome pair in the African pygmy mouse Mus minutoides. PLoS Genet 2020; 16:e1008959. [PMID: 33180767 PMCID: PMC7685469 DOI: 10.1371/journal.pgen.1008959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/24/2020] [Accepted: 10/06/2020] [Indexed: 01/30/2023] Open
Abstract
Sex chromosomes of eutherian mammals are highly different in size and gene content, and share only a small region of homology (pseudoautosomal region, PAR). They are thought to have evolved through an addition-attrition cycle involving the addition of autosomal segments to sex chromosomes and their subsequent differentiation. The events that drive this process are difficult to investigate because sex chromosomes in almost all mammals are at a very advanced stage of differentiation. Here, we have taken advantage of a recent translocation of an autosome to both sex chromosomes in the African pygmy mouse Mus minutoides, which has restored a large segment of homology (neo-PAR). By studying meiotic sex chromosome behavior and identifying fully sex-linked genetic markers in the neo-PAR, we demonstrate that this region shows unequivocal signs of early sex-differentiation. First, synapsis and resolution of DNA damage intermediates are delayed in the neo-PAR during meiosis. Second, recombination is suppressed or largely reduced in a large portion of the neo-PAR. However, the inactivation process that characterizes sex chromosomes during meiosis does not extend to this region. Finally, the sex chromosomes show a dual mechanism of association at metaphase-I that involves the formation of a chiasma in the neo-PAR and the preservation of an ancestral achiasmate mode of association in the non-homologous segments. We show that the study of meiosis is crucial to apprehend the onset of sex chromosome differentiation, as it introduces structural and functional constrains to sex chromosome evolution. Synapsis and DNA repair dynamics are the first processes affected in the incipient differentiation of X and Y chromosomes, and they may be involved in accelerating their evolution. This provides one of the very first reports of early steps in neo-sex chromosome differentiation in mammals, and for the first time a cellular framework for the addition-attrition model of sex chromosome evolution. Sex chromosomes seem to evolve and differentiate at different rates in different taxa. The reasons for this variability are still debated. It is well established that recombination suppression around the sex-determining region triggers differentiation, and several studies have investigated this process from a genetic point of view. However, the cellular context in which recombination arrest occurs has received little attention so far. In this report, we show that meiosis, the cellular division in which pairing and recombination between chromosomes takes place, can affect the incipient differentiation of X and Y chromosomes. Combining cytogenetic and genomic approaches, we found that in the African pygmy mouse Mus minutoides, which has recently undergone sex chromosome-autosome fusions, synapsis and DNA repair dynamics are disturbed along the newly added region of the sex chromosomes. We argue that these alterations are a by-product of the fusion itself, and cause recombination suppression across a large region of the neo-sex chromosome pair. Therefore, we propose that the meiotic context in which sex or neo-sex chromosomes arise is crucial to understand the very early stages of their differentiation, as it could promote or hinder recombination suppression, and therefore impact the rate at which these chromosomes differentiate.
Collapse
Affiliation(s)
- Ana Gil-Fernández
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paul A. Saunders
- Institut des Sciences de l'Evolution, ISEM UMR 5554 (CNRS/Université Montpellier/IRD/EPHE), Montpellier, France
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Marta Martín-Ruiz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Ribagorda
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo López-Jiménez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniel L. Jeffries
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - María Teresa Parra
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Viera
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Julio S. Rufas
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Frederic Veyrunes
- Institut des Sciences de l'Evolution, ISEM UMR 5554 (CNRS/Université Montpellier/IRD/EPHE), Montpellier, France
| | - Jesús Page
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
34
|
Palmer N, Talib SZA, Singh P, Goh CMF, Liu K, Schimenti JC, Kaldis P. A novel function for CDK2 activity at meiotic crossover sites. PLoS Biol 2020; 18:e3000903. [PMID: 33075054 PMCID: PMC7595640 DOI: 10.1371/journal.pbio.3000903] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/29/2020] [Accepted: 09/14/2020] [Indexed: 12/23/2022] Open
Abstract
Genetic diversity in offspring is induced by meiotic recombination, which is initiated between homologs at >200 sites originating from meiotic double-strand breaks (DSBs). Of this initial pool, only 1-2 DSBs per homolog pair will be designated to form meiotic crossovers (COs), where reciprocal genetic exchange occurs between parental chromosomes. Cyclin-dependent kinase 2 (CDK2) is known to localize to so-called "late recombination nodules" (LRNs) marking incipient CO sites. However, the role of CDK2 kinase activity in the process of CO formation remains uncertain. Here, we describe the phenotype of 2 Cdk2 point mutants with elevated or decreased activity, respectively. Elevated CDK2 activity was associated with increased numbers of LRN-associated proteins, including CDK2 itself and the MutL homolog 1 (MLH1) component of the MutLγ complex, but did not lead to increased numbers of COs. In contrast, reduced CDK2 activity leads to the complete absence of CO formation during meiotic prophase I. Our data suggest an important role for CDK2 in regulating MLH1 focus numbers and that the activity of this kinase is a key regulatory factor in the formation of meiotic COs.
Collapse
Affiliation(s)
- Nathan Palmer
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore, Republic of Singapore
- Department of Biochemistry, National University of Singapore (NUS), Singapore, Republic of Singapore
| | - S. Zakiah A. Talib
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore, Republic of Singapore
| | - Priti Singh
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Christine M. F. Goh
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore, Republic of Singapore
| | - Kui Liu
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
| | - John C. Schimenti
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore, Republic of Singapore
- Department of Biochemistry, National University of Singapore (NUS), Singapore, Republic of Singapore
- Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, Sweden
- * E-mail:
| |
Collapse
|
35
|
del Priore L, Pigozzi MI. MLH1 focus mapping in the guinea fowl (Numida meleagris) give insights into the crossover landscapes in birds. PLoS One 2020; 15:e0240245. [PMID: 33017431 PMCID: PMC7535058 DOI: 10.1371/journal.pone.0240245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/22/2020] [Indexed: 11/21/2022] Open
Abstract
Crossover rates and localization are not homogeneous throughout the genomes. Along the chromosomes of almost all species, domains with high crossover rates alternate with domains where crossover rates are significantly lower than the genome-wide average. The distribution of crossovers along chromosomes constitutes the recombination landscape of a given species and can be analyzed at broadscale using immunostaining of the MLH1 protein, a component of mature recombination nodules found on synaptonemal complexes during pachytene. We scored the MLH1 foci in oocytes of the chicken and the guinea fowl and compared their frequencies in the largest bivalents. The average autosomal number of foci is 62 in the chicken and 44 in the guinea fowl. The lower number in the guinea fowl responds to the occurrence of fewer crossovers in the six largest bivalents, where most MLH1 foci occur within one-fifth of the chromosome length with high polarization towards opposite ends. The skewed distribution of foci in the guinea fowl contrast with the more uniform distribution of numerous foci in the chicken, especially in the four largest bivalents. The crossover distribution observed in the guinea fowl is unusual among Galloanserae and also differs from other, more distantly related birds. We discussed the current evidence showing that the shift towards crossover localization, as observed in the guinea fowl, was not a unique event but also occurred at different moments of bird evolution. A comparative analysis of genome-wide average recombination rates in birds shows variations within narrower limits compared to mammals and the absence of a phylogenetic trend.
Collapse
Affiliation(s)
- Lucía del Priore
- INBIOMED (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Inés Pigozzi
- INBIOMED (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
36
|
Tran TN, Schimenti JC. A segregating human allele of SPO11 modeled in mice disrupts timing and amounts of meiotic recombination, causing oligospermia and a decreased ovarian reserve†. Biol Reprod 2020; 101:347-359. [PMID: 31074776 DOI: 10.1093/biolre/ioz089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 01/27/2023] Open
Abstract
A major challenge in medical genetics is to characterize variants of unknown significance (VUS). Doing so would help delineate underlying causes of disease and the design of customized treatments. Infertility has presented an especially difficult challenge with respect to not only determining if a given patient has a genetic basis, but also to identify the causative genetic factor(s). Though genome sequencing can identify candidate variants, in silico predictions of causation are not always sufficiently reliable so as to be actionable. Thus, experimental validation is crucial. Here, we describe the phenotype of mice containing a non-synonymous (proline-to-threonine at position 306) change in Spo11, corresponding to human SNP rs185545661. SPO11 is a topoisomerase-like protein that is essential for meiosis because it induces DNA double stranded breaks (DSBs) that stimulate pairing and recombination of homologous chromosomes. Although both male and female Spo11P306T/P306T mice were fertile, they had reduced sperm and oocytes, respectively. Spermatocyte chromosomes exhibited synapsis defects (especially between the X and Y chromosomes), elevated apoptotic cells, persistent markers of DSBs, and most importantly, fewer Type 1 crossovers that causes some chromosomes to have none. Spo11P306T/- mice were sterile and made fewer meiotic DSBs than Spo11+/- animals, suggesting that the Spo11P306T allele is a hypomorph and likely is delayed in making sufficient DSBs in a timely fashion. If the consequences are recapitulated in humans, it would predict phenotypes of premature ovarian failure, reduced sperm counts, and possible increased number of aneuploid gametes. These results emphasize the importance of deep phenotyping in order to accurately assess the impact of VUSs in reproduction genes.
Collapse
Affiliation(s)
- Tina N Tran
- Department of Biomedical Sciences and the Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - John C Schimenti
- Department of Biomedical Sciences and the Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
37
|
Xu H, Yang M, Tian R, Wang Y, Liu L, Zhu Z, Yang S, Yuan Q, Niu M, Yao C, Zhi E, Li P, Zhou C, He Z, Li Z, Gao WQ. Derivation and propagation of spermatogonial stem cells from human pluripotent cells. Stem Cell Res Ther 2020; 11:408. [PMID: 32967715 PMCID: PMC7509941 DOI: 10.1186/s13287-020-01896-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES This study is designed to generate and propagate human spermatogonial stem cells (SSCs) derived from human pluripotent stem cells (hPSCs). METHODS hPSCs were differentiated into SSC-like cells (SSCLCs) by a three-step strategy. The biological characteristics of SSCLCs were detected by immunostaining with antibodies against SSC markers. The ability of self-renewal was measured by propagating for a long time and still maintaining SSCs morphological property. The differentiation potential of SSCLCs was determined by the generation of spermatocytes and haploid cells, which were identified by immunostaining and flow cytometry. The transcriptome analysis of SSCLCs was performed by RNA sequencing. The biological function of SSCLCs was assessed by xeno-transplantation into busulfan-treated mouse testes. RESULTS SSCLCs were efficiently generated by a 3-step strategy. The SSCLCs displayed a grape-like morphology and expressed SSC markers. Moreover, SSCLCs could be propagated for approximately 4 months and still maintained their morphological properties. Furthermore, SSCLCs could differentiate into spermatocytes and haploid cells. In addition, SSCLCs displayed a similar gene expression pattern as human GPR125+ spermatogonia derived from human testicular tissues. And more, SSCLCs could survive and home at the base membrane of seminiferous tubules. CONCLUSION SSCLCs were successfully derived from hPSCs and propagated for a long time. The SSCLCs resembled their counterpart human GPR125+ spermatogonia, as evidenced by the grape-like morphology, transcriptome, homing, and functional characteristics. Therefore, hPSC-derived SSCLCs may provide a reliable cell source for studying human SSCs biological properties, disease modeling, and drug toxicity screening.
Collapse
Affiliation(s)
- Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China. .,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| | - Mengbo Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Ruhui Tian
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Yonghui Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Linhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Zijue Zhu
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Shi Yang
- Department of Urology, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
| | - Qingqing Yuan
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Minghui Niu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Chencheng Yao
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Erlei Zhi
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Peng Li
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Chenhao Zhou
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Zuping He
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Zheng Li
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China. .,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
38
|
Bondarieva A, Raveendran K, Telychko V, Rao HBDP, Ravindranathan R, Zorzompokou C, Finsterbusch F, Dereli I, Papanikos F, Tränkner D, Schleiffer A, Fei JF, Klimova A, Ito M, Kulkarni DS, Roeder I, Hunter N, Tóth A. Proline-rich protein PRR19 functions with cyclin-like CNTD1 to promote meiotic crossing over in mouse. Nat Commun 2020; 11:3101. [PMID: 32555348 PMCID: PMC7303132 DOI: 10.1038/s41467-020-16885-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 05/27/2020] [Indexed: 01/05/2023] Open
Abstract
Orderly chromosome segregation is enabled by crossovers between homologous chromosomes in the first meiotic division. Crossovers arise from recombination-mediated repair of programmed DNA double-strand breaks (DSBs). Multiple DSBs initiate recombination, and most are repaired without crossover formation, although one or more generate crossovers on each chromosome. Although the underlying mechanisms are ill-defined, the differentiation and maturation of crossover-specific recombination intermediates requires the cyclin-like CNTD1. Here, we identify PRR19 as a partner of CNTD1. We find that, like CNTD1, PRR19 is required for timely DSB repair and the formation of crossover-specific recombination complexes. PRR19 and CNTD1 co-localise at crossover sites, physically interact, and are interdependent for accumulation, indicating a PRR19-CNTD1 partnership in crossing over. Further, we show that CNTD1 interacts with a cyclin-dependent kinase, CDK2, which also accumulates in crossover-specific recombination complexes. Thus, the PRR19-CNTD1 complex may enable crossover differentiation by regulating CDK2.
Collapse
Affiliation(s)
- Anastasiia Bondarieva
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Kavya Raveendran
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Vladyslav Telychko
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - H B D Prasada Rao
- Howard Hughes Medical Institute, University of California Davis, Davis, CA, USA
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Ramya Ravindranathan
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Chrysoula Zorzompokou
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Friederike Finsterbusch
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Ihsan Dereli
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Frantzeskos Papanikos
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Daniel Tränkner
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna BioCenter (VBC), 1030, Vienna, Austria
- Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Ji-Feng Fei
- Institute for Brain Research and Rehabilitation, South China Normal University, 510631, Guangzhou, China
| | - Anna Klimova
- National Center for Tumor Diseases (NCT), Dresden, Germany
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Masaru Ito
- Howard Hughes Medical Institute, University of California Davis, Davis, CA, USA
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Dhananjaya S Kulkarni
- Howard Hughes Medical Institute, University of California Davis, Davis, CA, USA
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Ingo Roeder
- National Center for Tumor Diseases (NCT), Dresden, Germany
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California Davis, Davis, CA, USA
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, CA, USA
- Department of Molecular & Cellular Biology, University of California Davis, Davis, CA, USA
| | - Attila Tóth
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
39
|
Saccharomyces cerevisiae Mus81-Mms4 prevents accelerated senescence in telomerase-deficient cells. PLoS Genet 2020; 16:e1008816. [PMID: 32469862 PMCID: PMC7286520 DOI: 10.1371/journal.pgen.1008816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/10/2020] [Accepted: 04/30/2020] [Indexed: 01/31/2023] Open
Abstract
Alternative lengthening of telomeres (ALT) in human cells is a conserved process that is often activated in telomerase-deficient human cancers. This process exploits components of the recombination machinery to extend telomere ends, thus allowing for increased proliferative potential. Human MUS81 (Mus81 in Saccharomyces cerevisiae) is the catalytic subunit of structure-selective endonucleases involved in recombination and has been implicated in the ALT mechanism. However, it is unclear whether MUS81 activity at the telomere is specific to ALT cells or if it is required for more general aspects of telomere stability. In this study, we use S. cerevisiae to evaluate the contribution of the conserved Mus81-Mms4 endonuclease in telomerase-deficient yeast cells that maintain their telomeres by mechanisms akin to human ALT. Similar to human cells, we find that yeast Mus81 readily localizes to telomeres and its activity is important for viability after initial loss of telomerase. Interestingly, our analysis reveals that yeast Mus81 is not required for the survival of cells undergoing recombination-mediated telomere lengthening, i.e. for ALT itself. Rather we infer from genetic analysis that Mus81-Mms4 facilitates telomere replication during times of telomere instability. Furthermore, combining mus81 mutants with mutants of a yeast telomere replication factor, Rrm3, reveals that the two proteins function in parallel to promote normal growth during times of telomere stress. Combined with previous reports, our data can be interpreted in a consistent model in which both yeast and human MUS81-dependent nucleases participate in the recovery of stalled replication forks within telomeric DNA. Furthermore, this process becomes crucial under conditions of additional replication stress, such as telomere replication in telomerase-deficient cells. Cancer cell divisions require active chromosome lengthening through extension of their highly repetitive ends, called telomeres. This process is accomplished through two main mechanisms: the activity of an RNA-protein complex, telomerase, or through a telomerase-independent process termed alternative lengthening of telomeres (ALT). Human MUS81, the catalytic subunit of a set of structure-selective endonucleases, was found to be essential in human cells undergoing ALT and proposed to be directly involved in telomere lengthening. Using telomerase-deficient Saccharomyces cerevisiae cells as a model for ALT, we tested the hypothesis that Mus81-Mms4, the budding yeast homolog of human MUS81-dependent nucleases, is essential for telomere lengthening as proposed for human cells. Using genetic and molecular assays we confirm that Mus81-Mms4 is involved in telomere metabolism in yeast. However, to our surprise, we find that Mus81-Mms4 is not directly involved in recombination-based mechanisms of telomere lengthening. Rather it appears that Mus81-Mms4 is involved in resolving replication stress at telomeres, which is augmented in cells undergoing telomere instability. This model is consistent with observations in mammalian cells and suggest that cells undergoing telomere shortening experience replication stress at telomeres.
Collapse
|
40
|
Petrillo C, Barroca V, Ribeiro J, Lailler N, Livera G, Keeney S, Martini E, Jain D. shani mutation in mouse affects splicing of Spata22 and leads to impaired meiotic recombination. Chromosoma 2020; 129:161-179. [PMID: 32388826 DOI: 10.1007/s00412-020-00735-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/14/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023]
Abstract
Recombination is crucial for chromosome pairing and segregation during meiosis. SPATA22, along with its direct binding partner and functional collaborator, MEIOB, is essential for the proper repair of double-strand breaks (DSBs) during meiotic recombination. Here, we describe a novel point-mutated allele (shani) of mouse Spata22 that we isolated in a forward genetic screen. shani mutant mice phenocopy Spata22-null and Meiob-null mice: mutant cells appear to form DSBs and initiate meiotic recombination, but are unable to complete DSB repair, leading to meiotic prophase arrest, apoptosis and sterility. shani mutants show precocious loss of DMC1 foci and improper accumulation of BLM-positive recombination foci, reinforcing the requirement of SPATA22-MEIOB for the proper progression of meiotic recombination events. The shani mutation lies within a Spata22 coding exon and molecular characterization shows that it leads to incorrect splicing of the Spata22 mRNA, ultimately resulting in no detectable SPATA22 protein. We propose that the shani mutation alters an exonic splicing enhancer element (ESE) within the Spata22 transcript. The affected DNA nucleotide is conserved in most tetrapods examined, suggesting that the splicing regulation we describe here may be a conserved feature of Spata22 regulation.
Collapse
Affiliation(s)
- Cynthia Petrillo
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem cells and Radiations, Université de Paris, Université Paris-Saclay, CEA, 92265, Fontenay aux Roses, France
| | - Vilma Barroca
- UMRE008 Genetic Stability Stem cells and Radiations, Université de Paris, Université Paris-Saclay, CEA, Inserm, U1274, 92265, Fontenay-aux-Roses, France
| | - Jonathan Ribeiro
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem cells and Radiations, Université de Paris, Université Paris-Saclay, CEA, 92265, Fontenay aux Roses, France
| | - Nathalie Lailler
- Integrated Genomics Operation, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Gabriel Livera
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem cells and Radiations, Université de Paris, Université Paris-Saclay, CEA, 92265, Fontenay aux Roses, France
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Emmanuelle Martini
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem cells and Radiations, Université de Paris, Université Paris-Saclay, CEA, 92265, Fontenay aux Roses, France.
| | - Devanshi Jain
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
41
|
Reichmann J, Dobie K, Lister LM, Crichton JH, Best D, MacLennan M, Read D, Raymond ES, Hung CC, Boyle S, Shirahige K, Cooke HJ, Herbert M, Adams IR. Tex19.1 inhibits the N-end rule pathway and maintains acetylated SMC3 cohesin and sister chromatid cohesion in oocytes. J Cell Biol 2020; 219:e201702123. [PMID: 32232464 PMCID: PMC7199850 DOI: 10.1083/jcb.201702123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 12/31/2019] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
Age-dependent oocyte aneuploidy, a major cause of Down syndrome, is associated with declining sister chromatid cohesion in postnatal oocytes. Here we show that cohesion in postnatal mouse oocytes is regulated by Tex19.1. We show Tex19.1-/- oocytes have defects maintaining chiasmata, missegregate their chromosomes during meiosis, and transmit aneuploidies to the next generation. Furthermore, we show that mouse Tex19.1 inhibits N-end rule protein degradation mediated by its interacting partner UBR2, and that Ubr2 itself has a previously undescribed role in negatively regulating the acetylated SMC3 subpopulation of cohesin in mitotic somatic cells. Lastly, we show that acetylated SMC3 is associated with meiotic chromosome axes in mouse oocytes, and that this population of cohesin is specifically depleted in the absence of Tex19.1. These findings indicate that Tex19.1 regulates UBR protein activity to maintain acetylated SMC3 and sister chromatid cohesion in postnatal oocytes and prevent aneuploidy from arising in the female germline.
Collapse
Affiliation(s)
- Judith Reichmann
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Karen Dobie
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Lisa M. Lister
- Institute for Genetic Medicine, Newcastle University, Biomedicine West Wing, Centre for Life, Newcastle upon Tyne, UK
| | - James H. Crichton
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Diana Best
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Marie MacLennan
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - David Read
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Eleanor S. Raymond
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Chao-Chun Hung
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Shelagh Boyle
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Katsuhiko Shirahige
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Howard J. Cooke
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Mary Herbert
- Institute for Genetic Medicine, Newcastle University, Biomedicine West Wing, Centre for Life, Newcastle upon Tyne, UK
- Newcastle Fertility Centre, Biomedicine West Wing, Centre for Life, Newcastle upon Tyne, UK
| | - Ian R. Adams
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| |
Collapse
|
42
|
Jiang Y, Zhang HY, Lin Z, Zhu YZ, Yu C, Sha QQ, Tong MH, Shen L, Fan HY. CXXC finger protein 1-mediated histone H3 lysine-4 trimethylation is essential for proper meiotic crossover formation in mice. Development 2020; 147:dev183764. [PMID: 32094118 DOI: 10.1242/dev.183764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
The most significant feature of meiosis is the recombination process during prophase I. CXXC finger protein 1 (CXXC1) binds to CpG islands and mediates the deposition of H3K4me3 by the SETD1 complex. CXXC1 is also predicted to recruit H3K4me3-marked regions to the chromosome axis for the generation of double-strand breaks (DSBs) in the prophase of meiosis. Therefore, we deleted Cxxc1 before the onset of meiosis with Stra8-Cre The conditional knockout mice were completely sterile with spermatogenesis arrested at MII. Knockout of Cxxc1 led to a decrease in the H3K4me3 level from the pachytene to the MII stage and caused transcriptional disorder. Many spermatogenesis pathway genes were expressed early leading to abnormal acrosome formation in arrested MII cells. In meiotic prophase, deletion of Cxxc1 caused delayed DSB repair and improper crossover formation in cells at the pachytene stage, and more than half of the diplotene cells exhibited precocious homologous chromosome segregation in both male and female meiosis. Cxxc1 deletion also led to a significant decrease of H3K4me3 enrichment at DMC1-binding sites, which might compromise DSB generation. Taken together, our results show that CXXC1 is essential for proper meiotic crossover formation in mice and suggest that CXXC1-mediated H3K4me3 plays an essential role in meiotic prophase of spermatogenesis and oogenesis.
Collapse
Affiliation(s)
- Yu Jiang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hui-Ying Zhang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ye-Zhang Zhu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Chao Yu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qian-Qian Sha
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ming-Han Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Shen
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
43
|
Dapper AL, Payseur BA. Molecular evolution of the meiotic recombination pathway in mammals. Evolution 2019; 73:2368-2389. [PMID: 31579931 DOI: 10.1111/evo.13850] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/07/2019] [Indexed: 02/06/2023]
Abstract
Meiotic recombination shapes evolution and helps to ensure proper chromosome segregation in most species that reproduce sexually. Recombination itself evolves, with species showing considerable divergence in the rate of crossing-over. However, the genetic basis of this divergence is poorly understood. Recombination events are produced via a complicated, but increasingly well-described, cellular pathway. We apply a phylogenetic comparative approach to a carefully selected panel of genes involved in the processes leading to crossovers-spanning double-strand break formation, strand invasion, the crossover/non-crossover decision, and resolution-to reconstruct the evolution of the recombination pathway in eutherian mammals and identify components of the pathway likely to contribute to divergence between species. Eleven recombination genes, predominantly involved in the stabilization of homologous pairing and the crossover/non-crossover decision, show evidence of rapid evolution and positive selection across mammals. We highlight TEX11 and associated genes involved in the synaptonemal complex and the early stages of the crossover/non-crossover decision as candidates for the evolution of recombination rate. Evolutionary comparisons to MLH1 count, a surrogate for the number of crossovers, reveal a positive correlation between genome-wide recombination rate and the rate of evolution at TEX11 across the mammalian phylogeny. Our results illustrate the power of viewing the evolution of recombination from a pathway perspective.
Collapse
Affiliation(s)
- Amy L Dapper
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, 53706.,Department of Biological Sciences, Mississippi State University, Mississippi, 39762
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, 53706
| |
Collapse
|
44
|
A first genetic portrait of synaptonemal complex variation. PLoS Genet 2019; 15:e1008337. [PMID: 31449519 PMCID: PMC6730954 DOI: 10.1371/journal.pgen.1008337] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/06/2019] [Accepted: 07/31/2019] [Indexed: 12/30/2022] Open
Abstract
The synaptonemal complex (SC) is a proteinaceous scaffold required for synapsis and recombination between homologous chromosomes during meiosis. Although the SC has been linked to differences in genome-wide crossover rates, the genetic basis of standing variation in SC structure remains unknown. To investigate the possibility that recombination evolves through changes to the SC, we characterized the genetic architecture of SC divergence on two evolutionary timescales. Applying a novel digital image analysis technique to spermatocyte spreads, we measured total SC length in 9,532 spermatocytes from recombinant offspring of wild-derived mouse strains with differences in this fundamental meiotic trait. Using this large dataset, we identified the first known genomic regions involved in the evolution of SC length. Distinct loci affect total SC length divergence between and within subspecies, with the X chromosome contributing to both. Joint genetic analysis of MLH1 foci—immunofluorescent markers of crossovers—from the same spermatocytes revealed that two of the identified loci also confer differences in the genome-wide recombination rate. Causal mediation analysis suggested that one pleiotropic locus acts early in meiosis to designate crossovers prior to SC assembly, whereas a second locus primarily shapes crossover number through its effect on SC length. One genomic interval shapes the relationship between SC length and recombination rate, likely modulating the strength of crossover interference. Our findings pinpoint SC formation as a key step in the evolution of recombination and demonstrate the power of genetic mapping on standing variation in the context of the recombination pathway. During the first stages of meiosis, the chromosome axes are organized along a protein scaffold in preparation for recombination and their subsequent segregation. This scaffold, known as the synaptonemal complex (SC), is critical for the regular progression of recombination. A complex relationship exists between the organization of the SC, the frequency of recombination, and the likelihood of improper chromosome segregation. In this study, we investigate the genetics of synaptonemal complex variation in the house mouse and connect it with variation in the rate of recombination. We found five loci and several compelling candidate genes responsible for the evolution of synaptonemal complex length within and between mouse subspecies. Several of these loci also affect recombination rate, and our joint analyses of the phenotypes suggest an order by which their effects manifest within the recombination pathway. Our results show that evolution of SC length is crucial to recombination rate divergence. Our work here also demonstrates that genetic analysis of additional meiotic phenotypes can help explain the evolution of recombination, a fundamental evolutionary force.
Collapse
|
45
|
Conservation of the genome-wide recombination rate in white-footed mice. Heredity (Edinb) 2019; 123:442-457. [PMID: 31366913 PMCID: PMC6781155 DOI: 10.1038/s41437-019-0252-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 11/09/2022] Open
Abstract
Despite being linked to the fundamental processes of chromosome segregation and offspring diversification, meiotic recombination rates vary within and between species. Recent years have seen progress in quantifying recombination rate evolution across multiple temporal and genomic scales. Nevertheless, the level of variation in recombination rate within wild populations-a key determinant of evolution in this trait-remains poorly documented on the genomic scale. To address this notable gap, we used immunofluorescent cytology to quantify genome-wide recombination rates in males from a wild population of the white-footed mouse, Peromyscus leucopus. For comparison, we measured recombination rates in a second population of male P. leucopus raised in the laboratory and in male deer mice from the subspecies Peromyscus maniculatus bairdii. Although we found differences between individuals in the genome-wide recombination rate, levels of variation were low-within populations, between populations, and between species. Quantification of synaptonemal complex length and crossover positions along chromosome 1 using a novel automated approach also revealed conservation in broad-scale crossover patterning, including strong crossover interference. We propose stabilizing selection targeting recombination or correlated processes as the explanation for these patterns.
Collapse
|
46
|
Bolcun-Filas E, Handel MA. Meiosis: the chromosomal foundation of reproduction. Biol Reprod 2019; 99:112-126. [PMID: 29385397 DOI: 10.1093/biolre/ioy021] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/23/2018] [Indexed: 12/14/2022] Open
Abstract
Meiosis is the chromosomal foundation of reproduction, with errors in this important process leading to aneuploidy and/or infertility. In this review celebrating the 50th anniversary of the founding of the Society for the Study of Reproduction, the important chromosomal structures and dynamics contributing to genomic integrity across generations are highlighted. Critical unsolved biological problems are identified, and the advances that will lead to their ultimate resolution are predicted.
Collapse
|
47
|
Mutation of the ATPase Domain of MutS Homolog-5 (MSH5) Reveals a Requirement for a Functional MutSγ Complex for All Crossovers in Mammalian Meiosis. G3-GENES GENOMES GENETICS 2019; 9:1839-1850. [PMID: 30944090 PMCID: PMC6553527 DOI: 10.1534/g3.119.400074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During meiosis, induction of DNA double strand breaks (DSB) leads to recombination between homologous chromosomes, resulting in crossovers (CO) and non-crossovers (NCO). In the mouse, only 10% of DSBs resolve as COs, mostly through a class I pathway dependent on MutSγ (MSH4/ MSH5) and MutLγ (MLH1/MLH3), the latter representing the ultimate marker of these CO events. A second Class II CO pathway accounts for only a few COs, but is not thought to involve MutSγ/ MutLγ, and is instead dependent on MUS81-EME1. For class I events, loading of MutLγ is thought to be dependent on MutSγ, however MutSγ loads very early in prophase I at a frequency that far exceeds the final number of class I COs. Moreover, loss of MutSγ in mouse results in apoptosis before CO formation, preventing the analysis of its CO function. We generated a mutation in the ATP binding domain of Msh5 (Msh5GA). While this mutation was not expected to affect MutSγ complex formation, MutSγ foci do not accumulate during prophase I. However, most spermatocytes from Msh5GA/GA mice progress to late pachynema and beyond, considerably further than meiosis in Msh5−/− animals. At pachynema, Msh5GA/GA spermatocytes show persistent DSBs, incomplete homolog pairing, and fail to accumulate MutLγ. Unexpectedly, Msh5GA/GA diakinesis-staged spermatocytes have no chiasmata at all from any CO pathway, indicating that a functional MutSγ complex is critical for all CO events regardless of their mechanism of generation.
Collapse
|
48
|
Toledo M, Sun X, Brieño-Enríquez MA, Raghavan V, Gray S, Pea J, Milano CR, Venkatesh A, Patel L, Borst PL, Alani E, Cohen PE. A mutation in the endonuclease domain of mouse MLH3 reveals novel roles for MutLγ during crossover formation in meiotic prophase I. PLoS Genet 2019; 15:e1008177. [PMID: 31170160 PMCID: PMC6588253 DOI: 10.1371/journal.pgen.1008177] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/21/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
During meiotic prophase I, double-strand breaks (DSBs) initiate homologous recombination leading to non-crossovers (NCOs) and crossovers (COs). In mouse, 10% of DSBs are designated to become COs, primarily through a pathway dependent on the MLH1-MLH3 heterodimer (MutLγ). Mlh3 contains an endonuclease domain that is critical for resolving COs in yeast. We generated a mouse (Mlh3DN/DN) harboring a mutation within this conserved domain that is predicted to generate a protein that is catalytically inert. Mlh3DN/DN males, like fully null Mlh3-/- males, have no spermatozoa and are infertile, yet spermatocytes have grossly normal DSBs and synapsis events in early prophase I. Unlike Mlh3-/- males, mutation of the endonuclease domain within MLH3 permits normal loading and frequency of MutLγ in pachynema. However, key DSB repair factors (RAD51) and mediators of CO pathway choice (BLM helicase) persist into pachynema in Mlh3DN/DN males, indicating a temporal delay in repair events and revealing a mechanism by which alternative DSB repair pathways may be selected. While Mlh3DN/DN spermatocytes retain only 22% of wildtype chiasmata counts, this frequency is greater than observed in Mlh3-/- males (10%), suggesting that the allele may permit partial endonuclease activity, or that other pathways can generate COs from these MutLγ-defined repair intermediates in Mlh3DN/DN males. Double mutant mice homozygous for the Mlh3DN/DN and Mus81-/- mutations show losses in chiasmata close to those observed in Mlh3-/- males, indicating that the MUS81-EME1-regulated crossover pathway can only partially account for the increased residual chiasmata in Mlh3DN/DN spermatocytes. Our data demonstrate that mouse spermatocytes bearing the MLH1-MLH3DN/DN complex display the proper loading of factors essential for CO resolution (MutSγ, CDK2, HEI10, MutLγ). Despite these functions, mice bearing the Mlh3DN/DN allele show defects in the repair of meiotic recombination intermediates and a loss of most chiasmata.
Collapse
Affiliation(s)
- Melissa Toledo
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Xianfei Sun
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Miguel A. Brieño-Enríquez
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Vandana Raghavan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Stephen Gray
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Jeffrey Pea
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Carolyn R. Milano
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Anita Venkatesh
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Lekha Patel
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Peter L. Borst
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Paula E. Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
49
|
Diversity and Determinants of Meiotic Recombination Landscapes. Trends Genet 2019; 35:359-370. [DOI: 10.1016/j.tig.2019.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 11/19/2022]
|
50
|
Shugoshin protects centromere pairing and promotes segregation of nonexchange partner chromosomes in meiosis. Proc Natl Acad Sci U S A 2019; 116:9417-9422. [PMID: 31019073 PMCID: PMC6511000 DOI: 10.1073/pnas.1902526116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Faithful chromosome segregation during meiosis I depends upon the formation of connections between homologous chromosomes. Crossovers between homologs connect the partners, allowing them to attach to the meiotic spindle as a unit, such that they migrate away from one another at anaphase I. Homologous partners also become connected by pairing of their centromeres in meiotic prophase. This centromere pairing can promote proper segregation at anaphase I of partners that have failed to become joined by a crossover. Centromere pairing is mediated by synaptonemal complex (SC) proteins that persist at the centromere when the SC disassembles. Here, using mouse spermatocyte and yeast model systems, we tested the role of shugoshin in promoting meiotic centromere pairing by protecting centromeric synaptonemal components from disassembly. The results show that shugoshin protects the centromeric SC in meiotic prophase and, in anaphase, promotes the proper segregation of partner chromosomes that are not linked by a crossover.
Collapse
|