1
|
Wang Y, Ping Y, Zhou R, Wang G, Zhang Y, Yang X, Zhao M, Liu D, Kulkarni M, Lamb H, Niu Q, Hardwick JM, Teng X. The Whi2-Psr1-Psr2 complex selectively regulates TORC1 and autophagy under low leucine conditions but not nitrogen depletion. Autophagy 2025:1-17. [PMID: 40103213 DOI: 10.1080/15548627.2025.2481014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025] Open
Abstract
Amino acids and ammonia serve as sources of nitrogen for cell growth and were previously thought to have similar effects on yeast. Consistent with this idea, depletion of either of these two nitrogen sources inhibits the target of rapamycin complex 1 (TORC1), leading to induction of macroautophagy/autophagy and inhibition of cell growth. In this study, we show that Whi2 and the haloacid dehalogenase (HAD)-type phosphatases Psr1 and Psr2 distinguish between these two nitrogen sources in Saccharomyces cerevisiae, as the Whi2-Psr1-Psr2 complex inhibits TORC1 in response to low leucine but not in the absence of nitrogen. In contrast, a parallel pathway controlled by Npr2 and Npr3, components of the Seh1-associated complex inhibiting TORC1 (SEACIT), suppress TORC1 under both low leucine- and nitrogen-depletion conditions. Co-immunoprecipitations with mutants of Whi2, Psr1, Psr2 and fragments of Tor1 support the model that Whi2 recruits Psr1 and Psr2 to TORC1. In accordance, the interaction between Whi2 and Tor1 appears to increase under low leucine but decreases under nitrogen-depletion conditions. Although the targets of Psr1 and Psr2 phosphatases are not known, mutation of their active sites abolishes their inhibitory effects on TORC1. Consistent with the conservation of HAD phosphatases across species, human HAD phosphatases CTDSP1 (CTD small phosphatase 1), CTDSP2, and CTDSPL can functionally replace Psr1 and Psr2 in yeast, restoring TORC1 inhibition and autophagy activation in response to low leucine conditions.
Collapse
Affiliation(s)
- Yitao Wang
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, Jiangsu, China
| | - Yang Ping
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, Jiangsu, China
| | - Rui Zhou
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, Jiangsu, China
| | - Guiqin Wang
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, Jiangsu, China
| | - Yu Zhang
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, Jiangsu, China
| | - Xueyu Yang
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, Jiangsu, China
| | - Mingjun Zhao
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, Jiangsu, China
| | - Dongsheng Liu
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, Jiangsu, China
| | - Madhura Kulkarni
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Heather Lamb
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Qingwei Niu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - J Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xinchen Teng
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Fischbach A, Widlund PO, Hao X, Nyström T. mTOR signaling controls protein aggregation during heat stress and cellular aging in a translation- and Hsf1-independent manner. J Biol Chem 2025; 301:108172. [PMID: 39798875 PMCID: PMC11849620 DOI: 10.1016/j.jbc.2025.108172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/15/2025] Open
Abstract
The mechanistic target of rapamycin (mTOR) signaling pathway appears central to the aging process as genetic or pharmacological inhibition of mTOR extends lifespan in most eukaryotes tested. While the regulation of protein synthesis by mTOR has been studied in great detail, its impact on protein misfolding and aggregation during stress and aging is less explored. In this study, we identified the mTOR signaling pathway and the linked Seh1-associated complex as central nodes of protein aggregation during heat stress and cellular aging, using Saccharomyces cerevisiae as a model organism. Based on a synthetic genetic array screen, we found that reduced mTOR activity, achieved through deletion of TCO89, an mTORC1 subunit, almost completely prevents protein aggregation during heat stress and aging without reducing global translation rates and independently of an Hsf1-dependent stress response. Conversely, increased mTOR activity, achieved through deletion of NPR3, a Seh1-associated complex subunit, exacerbates protein aggregation, but not by overactivating translation. In summary, our work demonstrates that mTOR signaling is a central contributor to age-associated and heat shock-induced protein aggregation, and that this is unlinked to quantitatively discernable effects on translation and Hsf1.
Collapse
Affiliation(s)
- Arthur Fischbach
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden.
| | - Per O Widlund
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Xinxin Hao
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
3
|
Dentel B, Angeles-Perez L, Flores AY, Lei K, Ren C, Sanchez AP, Tsai PT. Neuronal cell type specific roles for Nprl2 in neurodevelopmental disorder-relevant behaviors. Neurobiol Dis 2025; 205:106790. [PMID: 39765274 DOI: 10.1016/j.nbd.2025.106790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Loss of function in the subunits of the GTPase-activating protein (GAP) activity toward Rags-1 (GATOR1) complex, an amino-acid sensitive negative regulator of the mechanistic target of rapamycin complex 1 (mTORC1), is implicated in both genetic familial epilepsies and Neurodevelopmental Disorders (NDDs) (Baldassari et al., 2018). Previous studies have found seizure phenotypes and increased activity resulting from conditional deletion of GATOR1 function from forebrain excitatory neurons (Yuskaitis et al., 2018; Dentel et al., 2022); however, studies focused on understanding mechanisms contributing to NDD-relevant behaviors are lacking, especially studies understanding the contributions of GATOR1's critical GAP catalytic subunit, nitrogen permease regulator like-2 (Nprl2). Given the clinical phenotypes observed in patients with Nprl2 mutations, in this study, we sought to investigate the neuronal cell type contributions of Nprl2 to NDD behaviors. We conditionally deleted Nprl2 broadly in most neurons (Synapsin1cre), in inhibitory neurons only (Vgatcre), and in Purkinje cells within the cerebellum (L7cre). Broad neuronal deletion of Nprl2 resulted in seizures, social and learning deficits, and hyperactivity. In contrast, deleting Nprl2 from inhibitory neurons led to increased motor learning, hyperactive behavior, in addition to social and learning deficits. Lastly, Purkinje cell (PC) loss of Nprl2 also led to learning and social deficits but did not affect locomotor activity. These phenotypes enhance understanding of the spectrum of disease found in human populations with GATOR1 loss of function and highlight the significance of distinct cellular populations to NDD-related behaviors. SIGNIFICANCE STATEMENT: We aim to elucidate the neuronal-specific contributions of nitrogen permease regulator like-2 (Nprl2) to its neurodevelopmental disorder (NDD)-relevant phenotypes. We conditionally deleted Nprl2 broadly in neurons (Syn1cre), in inhibitory neurons (Vgatcre), and in cerebellar Purkinje cells (L7cre). We identify seizures only in the Syn1cre conditional mutant (cKO); hyperactivity, learning difficulties, social deficits, and impulsivity in the Syn1cre and Vgatcre cKOs; and social deficits, and fear learning deficits in L7cre cKOs. To our knowledge, we are the first to describe the behavioral contributions of Nprl2's function across multiple cell types. Our findings highlight both critical roles for Nprl2 in learning and behavior and also distinct contributions of select neuronal populations to these NDD-relevant behaviors.
Collapse
Affiliation(s)
- Brianne Dentel
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Lidiette Angeles-Perez
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Abigail Y Flores
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Katherine Lei
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Chongyu Ren
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Andrea Pineda Sanchez
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Peter T Tsai
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Psychiatry, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Pediatrics, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Neuroscience; O'Donnell Brain Institute, Dallas, TX, United States of America.
| |
Collapse
|
4
|
Muller M, Bélanger J, Hadj-Aissa I, Zhang C, Sephton CF, Dutchak PA. GATOR1 Mutations Impair PI3 Kinase-Dependent Growth Factor Signaling Regulation of mTORC1. Int J Mol Sci 2024; 25:2068. [PMID: 38396745 PMCID: PMC10889792 DOI: 10.3390/ijms25042068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
GATOR1 (GAP Activity TOward Rag 1) is an evolutionarily conserved GTPase-activating protein complex that controls the activity of mTORC1 (mammalian Target Of Rapamycin Complex 1) in response to amino acid availability in cells. Genetic mutations in the GATOR1 subunits, NPRL2 (nitrogen permease regulator-like 2), NPRL3 (nitrogen permease regulator-like 3), and DEPDC5 (DEP domain containing 5), have been associated with epilepsy in humans; however, the specific effects of these mutations on GATOR1 function and mTORC1 regulation are not well understood. Herein, we report that epilepsy-linked mutations in the NPRL2 subunit of GATOR1, NPRL2-L105P, -T110S, and -D214H, increase basal mTORC1 signal transduction in cells. Notably, we show that NPRL2-L105P is a loss-of-function mutation that disrupts protein interactions with NPRL3 and DEPDC5, impairing GATOR1 complex assembly and resulting in high mTORC1 activity even under conditions of amino acid deprivation. Furthermore, our studies reveal that the GATOR1 complex is necessary for the rapid and robust inhibition of mTORC1 in response to growth factor withdrawal or pharmacological inhibition of phosphatidylinositol-3 kinase (PI3K). In the absence of the GATOR1 complex, cells are refractory to PI3K-dependent inhibition of mTORC1, permitting sustained translation and restricting the nuclear localization of TFEB, a transcription factor regulated by mTORC1. Collectively, our results show that epilepsy-linked mutations in NPRL2 can block GATOR1 complex assembly and restrict the appropriate regulation of mTORC1 by canonical PI3K-dependent growth factor signaling in the presence or absence of amino acids.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul A. Dutchak
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, QC G1J 2G3, Canada
| |
Collapse
|
5
|
Metur SP, Klionsky DJ. Nutrient-dependent signaling pathways that control autophagy in yeast. FEBS Lett 2024; 598:32-47. [PMID: 37758520 PMCID: PMC10841420 DOI: 10.1002/1873-3468.14741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Macroautophagy/autophagy is a highly conserved catabolic process vital for cellular stress responses and maintaining equilibrium within the cell. Malfunctioning autophagy has been implicated in the pathogenesis of various diseases, including certain neurodegenerative disorders, diabetes, metabolic diseases, and cancer. Cells face diverse metabolic challenges, such as limitations in nitrogen, carbon, and minerals such as phosphate and iron, necessitating the integration of complex metabolic information. Cells utilize a signal transduction network of sensors, transducers, and effectors to coordinate the execution of the autophagic response, concomitant with the severity of the nutrient-starvation condition. This review presents the current mechanistic understanding of how cells regulate the initiation of autophagy through various nutrient-dependent signaling pathways. Emphasizing findings from studies in yeast, we explore the emerging principles that underlie the nutrient-dependent regulation of autophagy, significantly shaping stress-induced autophagy responses under various metabolic stress conditions.
Collapse
Affiliation(s)
- Shree Padma Metur
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Guarini N, Saliba E, André B. Phosphoregulation of the yeast Pma1 H+-ATPase autoinhibitory domain involves the Ptk1/2 kinases and the Glc7 PP1 phosphatase and is under TORC1 control. PLoS Genet 2024; 20:e1011121. [PMID: 38227612 PMCID: PMC10817110 DOI: 10.1371/journal.pgen.1011121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/26/2024] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
Plasma membrane (PM) H+-ATPases of the P-type family are highly conserved in yeast, other fungi, and plants. Their main role is to establish an H+ gradient driving active transport of small ions and metabolites across the PM and providing the main component of the PM potential. Furthermore, in both yeast and plant cells, conditions have been described under which active H+-ATPases promote activation of TORC1, the rapamycin-sensitive kinase complex controlling cell growth. Fungal and plant PM H+-ATPases are self-inhibited by their respective cytosolic carboxyterminal tails unless this domain is phosphorylated at specific residues. In the yeast H+-ATPase Pma1, neutralization of this autoinhibitory domain depends mostly on phosphorylation of the adjacent Ser911 and Thr912 residues, but the kinase(s) and phosphatase(s) controlling this tandem phosphorylation remain unknown. In this study, we show that S911-T912 phosphorylation in Pma1 is mediated by the largely redundant Ptk1 and Ptk2 kinase paralogs. Dephosphorylation of S911-T912, as occurs under glucose starvation, is dependent on the Glc7 PP1 phosphatase. Furthermore, proper S911-T912 phosphorylation in Pma1 is required for optimal TORC1 activation upon H+ influx coupled amino-acid uptake. We finally show that TORC1 controls S911-T912 phosphorylation in a manner suggesting that activated TORC1 promotes feedback inhibition of Pma1. Our results shed important new light on phosphoregulation of the yeast Pma1 H+-ATPase and on its interconnections with TORC1.
Collapse
Affiliation(s)
- Nadia Guarini
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), Biopark, Gosselies, Belgium
| | - Elie Saliba
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), Biopark, Gosselies, Belgium
| | - Bruno André
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), Biopark, Gosselies, Belgium
| |
Collapse
|
7
|
Ivanova I, Shen K. Structures and Functions of the Human GATOR1 Complex. Subcell Biochem 2024; 104:269-294. [PMID: 38963491 PMCID: PMC11997690 DOI: 10.1007/978-3-031-58843-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Eukaryotic cells coordinate available nutrients with their growth through the mechanistic target of rapamycin complex 1 (mTORC1) pathway, in which numerous evolutionarily conserved protein complexes survey and transmit nutrient inputs toward mTORC1. mTORC1 integrates these inputs and activates downstream anabolic or catabolic programs that are in tune with cellular needs, effectively maintaining metabolic homeostasis. The GAP activity toward Rags-1 (GATOR1) protein complex is a critical negative regulator of the mTORC1 pathway and, in the absence of amino acid inputs, is activated to turn off mTORC1 signaling. GATOR1-mediated inhibition of mTORC1 signaling is tightly regulated by an ensemble of protein complexes that antagonize or promote its activity in response to the cellular nutrient environment. Structural, biochemical, and biophysical studies of the GATOR1 complex and its interactors have advanced our understanding of how it regulates cellular metabolism when amino acids are limited. Here, we review the current research with a focus on GATOR1 structure, its enzymatic mechanism, and the growing group of proteins that regulate its activity. Finally, we discuss the implication of GATOR1 dysregulation in physiology and human diseases.
Collapse
Affiliation(s)
- Ilina Ivanova
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kuang Shen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
8
|
Tidball AM, Luo J, Walker JC, Takla TN, Carvill GL, Parent JM. Genome-wide CRISPRi Screen in Human iNeurons to Identify Novel Focal Cortical Dysplasia Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571474. [PMID: 38168415 PMCID: PMC10760100 DOI: 10.1101/2023.12.13.571474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Focal cortical dysplasia (FCD) is a common cause of focal epilepsy that typically results from brain mosaic mutations in the mTOR cell signaling pathway. To identify new FCD genes, we developed an in vitro CRISPRi screen in human neurons and used FACS enrichment based on the FCD biomarker, phosphorylated S6 ribosomal protein (pS6). Using whole-genome (110,000 gRNAs) and candidate (129 gRNAs) libraries, we discovered 12 new genes that significantly increase pS6 levels. Interestingly, positive hits were enriched for brain-specific genes, highlighting the effectiveness of using human iPSC-derived induced neurons (iNeurons) in our screen. We investigated the signaling pathways of six candidate genes: LRRC4, EIF3A, TSN, HIP1, PIK3R3, and URI1. All six genes increased phosphorylation of S6. However, only two genes, PIK3R3 and HIP1, caused hyperphosphorylation more proximally in the AKT/mTOR/S6 signaling pathway. Importantly, these two genes have recently been found independently to be mutated in resected brain tissue from FCD patients, supporting the predictive validity of our screen. Knocking down each of the other four genes (LRRC4, EIF3A, TSN, and URI1) in iNeurons caused them to become resistant to the loss of growth factor signaling; without growth factor stimulation, pS6 levels were comparable to growth factor stimulated controls. Our data markedly expand the set of genes that are likely to regulate mTOR pathway signaling in neurons and provide additional targets for identifying somatic gene variants that cause FCD.
Collapse
Affiliation(s)
- Andrew M. Tidball
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI
| | - Jinghui Luo
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
| | - J. Clayton Walker
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
| | - Taylor N. Takla
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
| | - Gemma L. Carvill
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jack M. Parent
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI
- VA Ann Arbor Healthcare System, Ann Arbor, MI
| |
Collapse
|
9
|
Cecil JH, Padilla CM, Lipinski AA, Langlais PR, Luo X, Capaldi AP. The Molecular Logic of Gtr1/2 and Pib2 Dependent TORC1 Regulation in Budding Yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570342. [PMID: 38106135 PMCID: PMC10723367 DOI: 10.1101/2023.12.06.570342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The Target of Rapamycin kinase Complex I (TORC1) regulates cell growth and metabolism in eukaryotes. Previous studies have shown that, in Saccharomyces cerevisiae, nitrogen and amino acid signals activate TORC1 via the highly conserved small GTPases, Gtr1/2, and the phosphatidylinositol 3-phosphate binding protein, Pib2. However, it was unclear if/how Gtr1/2 and Pib2 cooperate to control TORC1. Here we report that this dual regulator system pushes TORC1 into three distinct signaling states: (i) a Gtr1/2 on, Pib2 on, rapid growth state in nutrient replete conditions; (ii) a Gtr1/2 off, Pib2 on, adaptive/slow growth state in poor-quality growth medium; and (iii) a Gtr1/2 off, Pib2 off, quiescent state in starvation conditions. We suggest that other signaling pathways work in a similar way, to drive a multi-level response via a single kinase, but the behavior has been overlooked since most studies follow signaling to a single reporter protein.
Collapse
Affiliation(s)
- Jacob H. Cecil
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721
| | - Cristina M. Padilla
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721
| | | | - Paul R. Langlais
- Department of Medicine, University of Arizona, Tucson, AZ, 85721
| | - Xiangxia Luo
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721
| | - Andrew P. Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721
- Bio5 Institute, University of Arizona, Tucson, AZ, 85721
| |
Collapse
|
10
|
Dainelli A, Iacomino M, Rossato S, Bugin S, Traverso M, Severino M, Gustincich S, Capra V, Di Duca M, Zara F, Scala M, Striano P. Refining the electroclinical spectrum of NPRL3-related epilepsy: A novel multiplex family and literature review. Epilepsia Open 2023; 8:1314-1330. [PMID: 37491868 PMCID: PMC10690669 DOI: 10.1002/epi4.12798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
OBJECTIVE NPRL3-related epilepsy (NRE) is an emerging condition set within the wide GATOR-1 spectrum with a particularly heterogeneous and elusive phenotypic expression. Here, we delineated the genotype-phenotype spectrum of NRE, reporting an illustrative familial case and reviewing pertinent literature. METHODS Through exome sequencing (ES), we investigated a 12-year-old girl with recurrent focal motor seizures during sleep, suggestive of sleep-related hypermotor epilepsy (SHE), and a family history of epilepsy in siblings. Variant segregation analysis was performed by Sanger sequencing. All previously published NRE patients were thoroughly reviewed and their electroclinical features were analyzed and compared with the reported subjects. RESULTS In the proband, ES detected the novel NPRL3 frameshift variant (NM_001077350.3): c.151_152del (p.Thr51Glyfs*5). This variant is predicted to cause a loss of function and segregated in one affected brother. The review of 76 patients from 18 publications revealed the predominance of focal-onset seizures (67/74-90%), with mainly frontal and frontotemporal (32/67-47.7%), unspecified (19/67-28%), or temporal (9/67-13%) onset. Epileptic syndromes included familial focal epilepsy with variable foci (FFEVF) (29/74-39%) and SHE (11/74-14.9%). Fifteen patients out of 60 (25%) underwent epilepsy surgery, 11 of whom achieved complete seizure remission (11/15-73%). Focal cortical dysplasia (FCD) type 2A was the most frequent histopathological finding. SIGNIFICANCE We reported an illustrative NPRL3-related epilepsy (NRE) family with incomplete penetrance. This condition consists of a heterogeneous spectrum of clinical and neuroradiological features. Focal-onset motor seizures are predominant, and almost half of the cases fulfill the criteria for SHE or FFEVF. MRI-negative cases are prevalent, but the association with malformations of cortical developments (MCDs) is significant, especially FCD type 2a. The beneficial impact of epilepsy surgery in patients with MCD-related epilepsy further supports the inclusion of brain MRI in the workup of NRE patients.
Collapse
Affiliation(s)
- Alice Dainelli
- Pediatric Neurology and Muscular Diseases UnitIRCCS Istituto Giannina GasliniGenoaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversità Degli Studi di GenovaGenoaItaly
| | | | - Sara Rossato
- U.O.C. Pediatria, Ospedale San BortoloVicenzaItaly
| | | | - Monica Traverso
- Pediatric Neurology and Muscular Diseases UnitIRCCS Istituto Giannina GasliniGenoaItaly
| | | | | | - Valeria Capra
- UOC Genetica MedicaIRCCS Istituto Giannina GasliniGenoaItaly
| | - Marco Di Duca
- UOC Genetica MedicaIRCCS Istituto Giannina GasliniGenoaItaly
| | - Federico Zara
- UOC Genetica MedicaIRCCS Istituto Giannina GasliniGenoaItaly
| | - Marcello Scala
- Pediatric Neurology and Muscular Diseases UnitIRCCS Istituto Giannina GasliniGenoaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversità Degli Studi di GenovaGenoaItaly
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases UnitIRCCS Istituto Giannina GasliniGenoaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversità Degli Studi di GenovaGenoaItaly
| |
Collapse
|
11
|
Liang J, Tang H, Snyder LF, Youngstrom CE, He BZ. Divergence of TORC1-mediated stress response leads to novel acquired stress resistance in a pathogenic yeast. PLoS Pathog 2023; 19:e1011748. [PMID: 37871123 PMCID: PMC10621968 DOI: 10.1371/journal.ppat.1011748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/02/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Acquired stress resistance (ASR) enables organisms to prepare for environmental changes that occur after an initial stressor. However, the genetic basis for ASR and how the underlying network evolved remain poorly understood. In this study, we discovered that a short phosphate starvation induces oxidative stress response (OSR) genes in the pathogenic yeast C. glabrata and protects it against a severe H2O2 stress; the same treatment, however, provides little benefit in the low pathogenic-potential relative, S. cerevisiae. This ASR involves the same transcription factors (TFs) as the OSR, but with different combinatorial logics. We show that Target-of-Rapamycin Complex 1 (TORC1) is differentially inhibited by phosphate starvation in the two species and contributes to the ASR via its proximal effector, Sch9. Therefore, evolution of the phosphate starvation-induced ASR involves the rewiring of TORC1's response to phosphate limitation and the repurposing of TF-target gene networks for the OSR using new regulatory logics.
Collapse
Affiliation(s)
- Jinye Liang
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Hanxi Tang
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Lindsey F. Snyder
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, Iowa, United States of America
| | | | - Bin Z. He
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
12
|
Liang J, Tang H, Snyder LF, Youngstrom CE, He BZ. Divergence of TORC1-mediated Stress Response Leads to Novel Acquired Stress Resistance in a Pathogenic Yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.20.545716. [PMID: 37781605 PMCID: PMC10541095 DOI: 10.1101/2023.06.20.545716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Acquired stress resistance (ASR) enables organisms to prepare for environmental changes that occur after an initial stressor. However, the genetic basis for ASR and how the underlying network evolved remain poorly understood. In this study, we discovered that a short phosphate starvation induces oxidative stress response (OSR) genes in the pathogenic yeast C. glabrata and protects it against a severe H2O2 stress; the same treatment, however, provides little benefit in the low pathogenic-potential relative, S. cerevisiae. This ASR involves the same transcription factors (TFs) as the OSR, but with different combinatorial logics. We show that Target-of-Rapamycin Complex 1 (TORC1) is differentially inhibited by phosphate starvation in the two species and contributes to the ASR via its proximal effector, Sch9. Therefore, evolution of the phosphate starvation-induced ASR involves the rewiring of TORC1's response to phosphate limitation and the repurposing of TF-target gene networks for the OSR using new regulatory logics.
Collapse
Affiliation(s)
- Jinye Liang
- Biology Department, The University of Iowa, Iowa City, IA 52242
| | - Hanxi Tang
- Biology Department, The University of Iowa, Iowa City, IA 52242
| | - Lindsey F. Snyder
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242
| | | | - Bin Z. He
- Biology Department, The University of Iowa, Iowa City, IA 52242
| |
Collapse
|
13
|
Du S, Zeng S, Song L, Ma H, Chen R, Luo J, Wang X, Ma T, Xu X, Sun H, Yi P, Guo J, Huang Y, Liu M, Wang T, Liao WP, Zhang L, Liu JY, Tang B. Functional characterization of novel NPRL3 mutations identified in three families with focal epilepsy. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2152-2166. [PMID: 37071290 DOI: 10.1007/s11427-022-2313-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/01/2023] [Indexed: 04/19/2023]
Abstract
Focal epilepsy accounts for 60% of all forms of epilepsy, but the pathogenic mechanism is not well understood. In this study, three novel mutations in NPRL3 (nitrogen permease regulator-like 3), c.937_945del, c.1514dupC and 6,706-bp genomic DNA (gDNA) deletion, were identified in three families with focal epilepsy by linkage analysis, whole exome sequencing (WES) and Sanger sequencing. NPRL3 protein is a component of the GATOR1 complex, a major inhibitor of mTOR signaling. These mutations led to truncation of the NPRL3 protein and hampered the binding between NPRL3 and DEPDC5, which is another component of the GATOR1 complex. Consequently, the mutant proteins enhanced mTOR signaling in cultured cells, possibly due to impaired inhibition of mTORC1 by GATOR1. Knockdown of nprl3 in Drosophila resulted in epilepsy-like behavior and abnormal synaptic development. Taken together, these findings expand the genotypic spectrum of NPRL3-associated focal epilepsy and provide further insight into how NPRL3 mutations lead to epilepsy.
Collapse
Affiliation(s)
- Shiyue Du
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Sheng Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Li Song
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Hongying Ma
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Rui Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Junyu Luo
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingbin Ma
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xuan Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hao Sun
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ping Yi
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yaling Huang
- Department of Neurology, Union Hospital of HUST, Wuhan, 430022, China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Tao Wang
- Department of Neurology, Union Hospital of HUST, Wuhan, 430022, China
| | - Wei-Ping Liao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510260, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Jing Yu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
| |
Collapse
|
14
|
Yan G, Yang J, Li W, Guo A, Guan J, Liu Y. Genome-wide CRISPR screens identify ILF3 as a mediator of mTORC1-dependent amino acid sensing. Nat Cell Biol 2023; 25:754-764. [PMID: 37037994 DOI: 10.1038/s41556-023-01123-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/06/2023] [Indexed: 04/12/2023]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is an essential hub that integrates nutrient signals and coordinates metabolism to control cell growth. Amino acid signals are detected by sensor proteins and relayed to the GATOR2 and GATOR1 complexes to control mTORC1 activity. Here we perform genome-wide CRISPR/Cas9 screens, coupled with an assay for mTORC1 activity based on fluorescence-activated cell sorting analysis of pS6, to identify potential regulators of mTORC1-dependent amino acid sensing. We then focus on interleukin enhancer binding factor 3 (ILF3), one of the candidate genes from the screen. ILF3 tethers the GATOR complexes to lysosomes to control mTORC1. Adding a lysosome-targeting sequence to the GATOR2 component WDR24 bypasses the requirement for ILF3 to modulate amino-acid-dependent mTORC1 signalling. ILF3 plays an evolutionarily conserved role in human and mouse cells, and in worms to regulate the mTORC1 pathway, control autophagy activity and modulate the ageing process.
Collapse
Affiliation(s)
- Guokai Yan
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jinxin Yang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wen Li
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ao Guo
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jialiang Guan
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
15
|
Reichling S, Doubleday PF, Germade T, Bergmann A, Loewith R, Sauer U, Holbrook-Smith D. Dynamic metabolome profiling uncovers potential TOR signaling genes. eLife 2023; 12:84295. [PMID: 36598488 PMCID: PMC9812406 DOI: 10.7554/elife.84295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/18/2022] [Indexed: 01/05/2023] Open
Abstract
Although the genetic code of the yeast Saccharomyces cerevisiae was sequenced 25 years ago, the characterization of the roles of genes within it is far from complete. The lack of a complete mapping of functions to genes hampers systematic understanding of the biology of the cell. The advent of high-throughput metabolomics offers a unique approach to uncovering gene function with an attractive combination of cost, robustness, and breadth of applicability. Here, we used flow-injection time-of-flight mass spectrometry to dynamically profile the metabolome of 164 loss-of-function mutants in TOR and receptor or receptor-like genes under a time course of rapamycin treatment, generating a dataset with >7000 metabolomics measurements. In order to provide a resource to the broader community, those data are made available for browsing through an interactive data visualization app hosted at https://rapamycin-yeast.ethz.ch. We demonstrate that dynamic metabolite responses to rapamycin are more informative than steady-state responses when recovering known regulators of TOR signaling, as well as identifying new ones. Deletion of a subset of the novel genes causes phenotypes and proteome responses to rapamycin that further implicate them in TOR signaling. We found that one of these genes, CFF1, was connected to the regulation of pyrimidine biosynthesis through URA10. These results demonstrate the efficacy of the approach for flagging novel potential TOR signaling-related genes and highlight the utility of dynamic perturbations when using functional metabolomics to deliver biological insight.
Collapse
Affiliation(s)
- Stella Reichling
- Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | | | - Tomas Germade
- Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | - Ariane Bergmann
- Department of Molecular Biology, University of GenevaGenevaSwitzerland
| | - Robbie Loewith
- Department of Molecular Biology, University of GenevaGenevaSwitzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | | |
Collapse
|
16
|
Wallace RL, Lu E, Luo X, Capaldi AP. Ait1 regulates TORC1 signaling and localization in budding yeast. eLife 2022; 11:68773. [PMID: 36047762 PMCID: PMC9499541 DOI: 10.7554/elife.68773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
The target of rapamycin complex I (TORC1) regulates cell growth and metabolism in eukaryotes. Previous studies have shown that nitrogen and amino acid signals activate TORC1 via the highly conserved small GTPases, Gtr1/2 (RagA/C in humans), and the GTPase activating complex SEAC/GATOR. However, it remains unclear if, and how, other proteins/pathways regulate TORC1 in simple eukaryotes like yeast. Here, we report that the previously unstudied GPCR-like protein, Ait1, binds to TORC1-Gtr1/2 in Saccharomyces cerevisiae and holds TORC1 around the vacuole during log-phase growth. Then, during amino acid starvation, Ait1 inhibits TORC1 via Gtr1/2 using a loop that resembles the RagA/C-binding domain in the human protein SLC38A9. Importantly, Ait1 is only found in the Saccharomycetaceae/codaceae, two closely related families of yeast that have lost the ancient TORC1 regulators Rheb and TSC1/2. Thus, the TORC1 circuit found in the Saccharomycetaceae/codaceae, and likely other simple eukaryotes, has undergone significant rewiring during evolution.
Collapse
Affiliation(s)
- Ryan L Wallace
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Eric Lu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Xiangxia Luo
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Andrew P Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| |
Collapse
|
17
|
Primo C, Navarre C, Chaumont F, André B. Plasma membrane H +-ATPases promote TORC1 activation in plant suspension cells. iScience 2022; 25:104238. [PMID: 35494253 PMCID: PMC9046228 DOI: 10.1016/j.isci.2022.104238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022] Open
Abstract
The TORC1 (Target of Rapamycin Complex 1) kinase complex plays a pivotal role in controlling cell growth in probably all eukaryotic species. The signals and mechanisms regulating TORC1 have been intensely studied in mammals but those of fungi and plants are much less known. We have previously reported that the yeast plasma membrane H+-ATPase Pma1 promotes TORC1 activation when stimulated by cytosolic acidification or nutrient-uptake-coupled H+ influx. Furthermore, a homologous plant H+-ATPase can substitute for yeast Pma1 to promote this H+-elicited TORC1 activation. We here report that TORC1 activity in Nicotiana tabacum BY-2 cells is also strongly influenced by the activity of plasma membrane H+-ATPases. In particular, stimulation of H+-ATPases by fusicoccin activates TORC1, and this response is also observed in cells transferred to a nutrient-free and auxin-free medium. Our results suggest that plant H+-ATPases, known to be regulated by practically all factors controlling cell growth, contribute to TOR signaling. Isolation of a tobacco BY-2 cell line suitable for analyzing TOR signaling Activation of plasma membrane H+-ATPases in BY-2 suspension cells elicits TOR signaling TOR signaling upon H+-ATPase activation also occurs in the absence of nutrients and auxin
Collapse
Affiliation(s)
- Cecilia Primo
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), Biopark, B-6041 Gosselies, Belgium
| | - Catherine Navarre
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, B-1348 Louvain-la-Neuve, Belgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, B-1348 Louvain-la-Neuve, Belgium
| | - Bruno André
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), Biopark, B-6041 Gosselies, Belgium
| |
Collapse
|
18
|
Identification of a modulator of the actin cytoskeleton, mitochondria, nutrient metabolism and lifespan in yeast. Nat Commun 2022; 13:2706. [PMID: 35577788 PMCID: PMC9110415 DOI: 10.1038/s41467-022-30045-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/06/2022] [Indexed: 11/26/2022] Open
Abstract
In yeast, actin cables are F-actin bundles that are essential for cell division through their function as tracks for cargo movement from mother to daughter cell. Actin cables also affect yeast lifespan by promoting transport and inheritance of higher-functioning mitochondria to daughter cells. Here, we report that actin cable stability declines with age. Our genome-wide screen for genes that affect actin cable stability identified the open reading frame YKL075C. Deletion of YKL075C results in increases in actin cable stability and abundance, mitochondrial fitness, and replicative lifespan. Transcriptome analysis revealed a role for YKL075C in regulating branched-chain amino acid (BCAA) metabolism. Consistent with this, modulation of BCAA metabolism or decreasing leucine levels promotes actin cable stability and function in mitochondrial quality control. Our studies support a role for actin stability in yeast lifespan, and demonstrate that this process is controlled by BCAA and a previously uncharacterized ORF YKL075C, which we refer to as actin, aging and nutrient modulator protein 1 (AAN1). Actin cables affect lifespan by supporting movement and inheritance of fitter mitochondria to daughter cells in yeast. Here the authors show that branched-chain amino acid (BCAA) levels affect actin cable stability and a role for YKL075C/AAN1 in control of BCAA metabolism and actin cable stability and function.
Collapse
|
19
|
Tate JJ, Marsikova J, Vachova L, Palkova Z, Cooper TG. Effects of abolishing Whi2 on the proteome and nitrogen catabolite repression-sensitive protein production. G3 (BETHESDA, MD.) 2022; 12:jkab432. [PMID: 35100365 PMCID: PMC9210300 DOI: 10.1093/g3journal/jkab432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
In yeast physiology, a commonly used reference condition for many experiments, including those involving nitrogen catabolite repression (NCR), is growth in synthetic complete (SC) medium. Four SC formulations, SCCSH,1990, SCCSH,1994, SCCSH,2005, and SCME, have been used interchangeably as the nitrogen-rich medium of choice [Cold Spring Harbor Yeast Course Manuals (SCCSH) and a formulation in the methods in enzymology (SCME)]. It has been tacitly presumed that all of these formulations support equivalent responses. However, a recent report concluded that (i) TorC1 activity is downregulated by the lower concentration of primarily leucine in SCME relative to SCCSH. (ii) The Whi2-Psr1/2 complex is responsible for this downregulation. TorC1 is a primary nitrogen-responsive regulator in yeast. Among its downstream targets is control of NCR-sensitive transcription activators Gln3 and Gat1. They in turn control production of catabolic transporters and enzymes needed to scavenge poor nitrogen sources (e.g., Proline) and activate autophagy (ATG14). One of the reporters used in Chen et al. was an NCR-sensitive DAL80-GFP promoter fusion. This intrigued us because we expected minimal if any DAL80 expression in SC medium. Therefore, we investigated the source of the Dal80-GFP production and the proteomes of wild-type and whi2Δ cells cultured in SCCSH and SCME. We found a massive and equivalent reorientation of amino acid biosynthetic proteins in both wild-type and whi2Δ cells even though both media contained high overall concentrations of amino acids. Gcn2 appears to play a significant regulatory role in this reorientation. NCR-sensitive DAL80 expression and overall NCR-sensitive protein production were only marginally affected by the whi2Δ. In contrast, the levels of 58 proteins changed by an absolute value of log2 between 3 and 8 when Whi2 was abolished relative to wild type. Surprisingly, with only two exceptions could those proteins be related in GO analyses, i.e., GO terms associated with carbohydrate metabolism and oxidative stress after shifting a whi2Δ from SCCSH to SCME for 6 h. What was conspicuously missing were proteins related by TorC1- and NCR-associated GO terms.
Collapse
Affiliation(s)
- Jennifer J Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jana Marsikova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| | - Libuse Vachova
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 142 20 Prague, Czech Republic
| | - Zdena Palkova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| | - Terrance G Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
20
|
Segreto R, Bazafkan H, Millinger J, Schenk M, Atanasova L, Doppler M, Büschl C, Boeckstaens M, Soto Diaz S, Schreiner U, Sillo F, Balestrini R, Schuhmacher R, Zeilinger S. The TOR kinase pathway is relevant for nitrogen signaling and antagonism of the mycoparasite Trichoderma atroviride. PLoS One 2022; 16:e0262180. [PMID: 34972198 PMCID: PMC8719763 DOI: 10.1371/journal.pone.0262180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/18/2021] [Indexed: 01/14/2023] Open
Abstract
Trichoderma atroviride (Ascomycota, Sordariomycetes) is a well-known mycoparasite applied for protecting plants against fungal pathogens. Its mycoparasitic activity involves processes shared with plant and human pathogenic fungi such as the production of cell wall degrading enzymes and secondary metabolites and is tightly regulated by environmental cues. In eukaryotes, the conserved Target of Rapamycin (TOR) kinase serves as a central regulator of cellular growth in response to nutrient availability. Here we describe how alteration of the activity of TOR1, the single and essential TOR kinase of T. atroviride, by treatment with chemical TOR inhibitors or by genetic manipulation of selected TOR pathway components affected various cellular functions. Loss of TSC1 and TSC2, that are negative regulators of TOR complex 1 (TORC1) in mammalian cells, resulted in altered nitrogen source-dependent growth of T. atroviride, reduced mycoparasitic overgrowth and, in the case of Δtsc1, a diminished production of numerous secondary metabolites. Deletion of the gene encoding the GTPase RHE2, whose mammalian orthologue activates mTORC1, led to rapamycin hypersensitivity and altered secondary metabolism, but had an only minor effect on vegetative growth and mycoparasitic overgrowth. The latter also applied to mutants missing the npr1-1 gene that encodes a fungus-specific kinase known as TOR target in yeast. Genome-wide transcriptome analysis confirmed TOR1 as a regulatory hub that governs T. atroviride metabolism and processes associated to ribosome biogenesis, gene expression and translation. In addition, mycoparasitism-relevant genes encoding terpenoid and polyketide synthases, peptidases, glycoside hydrolases, small secreted cysteine-rich proteins, and G protein coupled receptors emerged as TOR1 targets. Our results provide the first in-depth insights into TOR signaling in a fungal mycoparasite and emphasize its importance in the regulation of processes that critically contribute to the antagonistic activity of T. atroviride.
Collapse
Affiliation(s)
- Rossana Segreto
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Hoda Bazafkan
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Julia Millinger
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Martina Schenk
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Lea Atanasova
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Maria Doppler
- Department of Agrobiotechnology IFA-Tulln, Center for Analytical Chemistry, University of Natural, Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Christoph Büschl
- Department of Agrobiotechnology IFA-Tulln, Center for Analytical Chemistry, University of Natural, Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Mélanie Boeckstaens
- Département de Biologie Moléculaire, Laboratory of Biology of Membrane Transport, Université Libre de Bruxelles, Gosselies, Belgium
| | - Silvia Soto Diaz
- Département de Biologie Moléculaire, Laboratory of Biology of Membrane Transport, Université Libre de Bruxelles, Gosselies, Belgium
| | - Ulrike Schreiner
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | | | | | - Rainer Schuhmacher
- Department of Agrobiotechnology IFA-Tulln, Center for Analytical Chemistry, University of Natural, Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Susanne Zeilinger
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
21
|
Functional Amino Acids and Autophagy: Diverse Signal Transduction and Application. Int J Mol Sci 2021; 22:ijms222111427. [PMID: 34768858 PMCID: PMC8592284 DOI: 10.3390/ijms222111427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/23/2022] Open
Abstract
Functional amino acids provide great potential for treating autophagy-related diseases by regulating autophagy. The purpose of the autophagy process is to remove unwanted cellular contents and to recycle nutrients, which is controlled by many factors. Disordered autophagy has been reported to be associated with various diseases, such as cancer, neurodegeneration, aging, and obesity. Autophagy cannot be directly controlled and dynamic amino acid levels are sufficient to regulate autophagy. To date, arginine, leucine, glutamine, and methionine are widely reported functional amino acids that regulate autophagy. As a signal relay station, mammalian target of rapamycin complex 1 (mTORC1) turns various amino acid signals into autophagy signaling pathways for functional amino acids. Deficiency or supplementation of functional amino acids can immediately regulate autophagy and is associated with autophagy-related disease. This review summarizes the mechanisms currently involved in autophagy and amino acid sensing, diverse signal transduction among functional amino acids and autophagy, and the therapeutic appeal of amino acids to autophagy-related diseases. We aim to provide a comprehensive overview of the mechanisms of amino acid regulation of autophagy and the role of functional amino acids in clinical autophagy-related diseases and to further convert these mechanisms into feasible therapeutic applications.
Collapse
|
22
|
Loissell-Baltazar YA, Dokudovskaya S. SEA and GATOR 10 Years Later. Cells 2021; 10:cells10102689. [PMID: 34685669 PMCID: PMC8534245 DOI: 10.3390/cells10102689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 12/17/2022] Open
Abstract
The SEA complex was described for the first time in yeast Saccharomyces cerevisiae ten years ago, and its human homologue GATOR complex two years later. During the past decade, many advances on the SEA/GATOR biology in different organisms have been made that allowed its role as an essential upstream regulator of the mTORC1 pathway to be defined. In this review, we describe these advances in relation to the identification of multiple functions of the SEA/GATOR complex in nutrient response and beyond and highlight the consequence of GATOR mutations in cancer and neurodegenerative diseases.
Collapse
|
23
|
Teixeira V, Martins TS, Prinz WA, Costa V. Target of Rapamycin Complex 1 (TORC1), Protein Kinase A (PKA) and Cytosolic pH Regulate a Transcriptional Circuit for Lipid Droplet Formation. Int J Mol Sci 2021; 22:9017. [PMID: 34445723 PMCID: PMC8396576 DOI: 10.3390/ijms22169017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Lipid droplets (LDs) are ubiquitous organelles that fulfill essential roles in response to metabolic cues. The identification of several neutral lipid synthesizing and regulatory protein complexes have propelled significant advance on the mechanisms of LD biogenesis in the endoplasmic reticulum (ER). However, our understanding of signaling networks, especially transcriptional mechanisms, regulating membrane biogenesis is very limited. Here, we show that the nutrient-sensing Target of Rapamycin Complex 1 (TORC1) regulates LD formation at a transcriptional level, by targeting DGA1 expression, in a Sit4-, Mks1-, and Sfp1-dependent manner. We show that cytosolic pH (pHc), co-regulated by the plasma membrane H+-ATPase Pma1 and the vacuolar ATPase (V-ATPase), acts as a second messenger, upstream of protein kinase A (PKA), to adjust the localization and activity of the major transcription factor repressor Opi1, which in turn controls the metabolic switch between phospholipid metabolism and lipid storage. Together, this work delineates hitherto unknown molecular mechanisms that couple nutrient availability and pHc to LD formation through a transcriptional circuit regulated by major signaling transduction pathways.
Collapse
Affiliation(s)
- Vitor Teixeira
- Yeast Signalling Networks, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.S.M.); (V.C.)
- Yeast Signalling Networks, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Telma S. Martins
- Yeast Signalling Networks, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.S.M.); (V.C.)
- Yeast Signalling Networks, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - William A. Prinz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA;
| | - Vítor Costa
- Yeast Signalling Networks, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.S.M.); (V.C.)
- Yeast Signalling Networks, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
24
|
Dai J, Xia H, Yang C, Chen X. Sensing, Uptake and Catabolism of L-Phenylalanine During 2-Phenylethanol Biosynthesis via the Ehrlich Pathway in Saccharomyces cerevisiae. Front Microbiol 2021; 12:601963. [PMID: 33717002 PMCID: PMC7947893 DOI: 10.3389/fmicb.2021.601963] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/29/2021] [Indexed: 01/15/2023] Open
Abstract
2-Phenylethanol (2-PE) is an important flavouring ingredient with a persistent rose-like odour, and it has been widely utilized in food, perfume, beverages, and medicine. Due to the potential existence of toxic byproducts in 2-PE resulting from chemical synthesis, the demand for “natural” 2-PE through biotransformation is increasing. L-Phenylalanine (L-Phe) is used as the precursor for the biosynthesis of 2-PE through the Ehrlich pathway by Saccharomyces cerevisiae. The regulation of L-Phe metabolism in S. cerevisiae is complicated and elaborate. We reviewed current progress on the signal transduction pathways of L-Phe sensing, uptake of extracellular L-Phe and 2-PE synthesis from L-Phe through the Ehrlich pathway. Moreover, the anticipated bottlenecks and future research directions for S. cerevisiae biosynthesis of 2-PE are discussed.
Collapse
Affiliation(s)
- Jun Dai
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China.,ABI Group, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Huili Xia
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Chunlei Yang
- Tobacco Research Institute of Hubei Province, Wuhan, China
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| |
Collapse
|
25
|
Abstract
Sensing and responding to changes in nutrient levels, including those of glucose, lipids, and amino acids, by the body is necessary for survival. Accordingly, perturbations in nutrient sensing are tightly linked with human pathologies, particularly metabolic diseases such as obesity, type 2 diabetes mellitus, and other complications of metabolic syndromes. The conventional view is that amino acids are fundamental elements for protein and peptide synthesis, while recent studies have revealed that amino acids are also important bioactive molecules that play key roles in signaling pathways and metabolic regulation. Different pathways that sense intracellular and extracellular levels of amino acids are integrated and coordinated at the organismal level, and, together, these pathways maintain whole metabolic homeostasis. In this review, we discuss the studies describing how important sensing signals respond to amino acid availability and how these sensing mechanisms modulate metabolic processes, including energy, glucose, and lipid metabolism. We further discuss whether dysregulation of amino acid sensing signals can be targeted to promote metabolic disorders, and discuss how to translate these mechanisms to treat human diseases. This review will help to enhance our overall understanding of the correlation between amino acid sensing and metabolic homeostasis, which have important implications for human health.
Collapse
Affiliation(s)
- Xiaoming Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feifan Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
26
|
Morozumi Y, Shiozaki K. Conserved and Divergent Mechanisms That Control TORC1 in Yeasts and Mammals. Genes (Basel) 2021; 12:genes12010088. [PMID: 33445779 PMCID: PMC7828246 DOI: 10.3390/genes12010088] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/23/2022] Open
Abstract
Target of rapamycin complex 1 (TORC1), a serine/threonine-protein kinase complex highly conserved among eukaryotes, coordinates cellular growth and metabolism with environmental cues, including nutrients and growth factors. Aberrant TORC1 signaling is associated with cancers and various human diseases, and TORC1 also plays a key role in ageing and lifespan, urging current active research on the mechanisms of TORC1 regulation in a variety of model organisms. Identification and characterization of the RAG small GTPases as well as their regulators, many of which are highly conserved from yeast to humans, led to a series of breakthroughs in understanding the molecular bases of TORC1 regulation. Recruitment of mammalian TORC1 (mTORC1) by RAGs to lysosomal membranes is a key step for mTORC1 activation. Interestingly, the RAG GTPases in fission yeast are primarily responsible for attenuation of TORC1 activity on vacuoles, the yeast equivalent of lysosomes. In this review, we summarize our current knowledge about the functions of TORC1 regulators on yeast vacuoles, and illustrate the conserved and divergent mechanisms of TORC1 regulation between yeasts and mammals.
Collapse
Affiliation(s)
- Yuichi Morozumi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan;
- Correspondence: ; Tel.: +81-743-72-5543
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan;
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| |
Collapse
|
27
|
Hijazi I, Knupp J, Chang A. Retrograde signaling mediates an adaptive survival response to endoplasmic reticulum stress in Saccharomyces cerevisiae. J Cell Sci 2020; 133:jcs.241539. [PMID: 32005698 DOI: 10.1242/jcs.241539] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/23/2020] [Indexed: 12/11/2022] Open
Abstract
One major cause of endoplasmic reticulum (ER) stress is homeostatic imbalance between biosynthetic protein folding and protein folding capacity. Cells utilize mechanisms such as the unfolded protein response (UPR) to cope with ER stress. Nevertheless, when ER stress is prolonged or severe, cell death may occur, accompanied by production of mitochondrial reactive oxygen species (ROS). Using a yeast model (Saccharomyces cerevisiae), we describe an innate, adaptive response to ER stress to increase select mitochondrial proteins, O2 consumption and cell survival. The mitochondrial response allows cells to resist additional ER stress. The ER stress-induced mitochondrial response is mediated by activation of retrograde (RTG) signaling to enhance anapleurotic reactions of the tricarboxylic acid cycle. Mitochondrial response to ER stress is accompanied by inactivation of the conserved TORC1 pathway, and activation of Snf1/AMPK, the conserved energy sensor and regulator of metabolism. Our results provide new insight into the role of respiration in cell survival in the face of ER stress, and should help in developing therapeutic strategies to limit cell death in disorders linked to ER stress.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Imadeddin Hijazi
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N University, Ann Arbor, MI 48109, USA
| | - Jeffrey Knupp
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N University, Ann Arbor, MI 48109, USA
| | - Amy Chang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N University, Ann Arbor, MI 48109, USA
| |
Collapse
|
28
|
Mechanisms of Autophagy in Metabolic Stress Response. J Mol Biol 2020; 432:28-52. [DOI: 10.1016/j.jmb.2019.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 01/17/2023]
|
29
|
Dutchak PA, Estill-Terpack SJ, Plec AA, Zhao X, Yang C, Chen J, Ko B, Deberardinis RJ, Yu Y, Tu BP. Loss of a Negative Regulator of mTORC1 Induces Aerobic Glycolysis and Altered Fiber Composition in Skeletal Muscle. Cell Rep 2019; 23:1907-1914. [PMID: 29768191 PMCID: PMC6038807 DOI: 10.1016/j.celrep.2018.04.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/28/2017] [Accepted: 04/13/2018] [Indexed: 01/11/2023] Open
Abstract
The conserved GATOR1 complex consisting of NPRL2-NPRL3-DEPDC5 inhibits mammalian target of rapamycin complex 1 (mTORC1) in response to amino acid insufficiency. Here, we show that loss of NPRL2 and GATOR1 function in skeletal muscle causes constitutive activation of mTORC1 signaling in the fed and fasted states. Muscle fibers of NPRL2 knockout animals are significantly larger and show altered fiber-type composition, with more fast-twitch glycolytic and fewer slow-twitch oxidative fibers. NPRL2 muscle knockout mice also have altered running behavior and enhanced glucose tolerance. Furthermore, loss of NPRL2 induces aerobic glycolysis and suppresses glucose entry into the TCA cycle. Such chronic activation of mTORC1 leads to compensatory increases in anaplerotic pathways to replenish TCA intermediates that are consumed for biosynthetic purposes. These phenotypes reveal a fundamental role for the GATOR1 complex in the homeostatic regulation of mitochondrial functions (biosynthesis versus ATP) to mediate carbohydrate utilization in muscle.
Collapse
Affiliation(s)
- Paul A Dutchak
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada; CERVO Brain Research Centre, 2601 Chemin de la Canardière, Québec, QC, Canada
| | - Sandi J Estill-Terpack
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Abigail A Plec
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaozheng Zhao
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chendong Yang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Chen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bookyung Ko
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J Deberardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
30
|
Wei Y, Bettedi L, Ting CY, Kim K, Zhang Y, Cai J, Lilly MA. The GATOR complex regulates an essential response to meiotic double-stranded breaks in Drosophila. eLife 2019; 8:e42149. [PMID: 31650955 PMCID: PMC6834368 DOI: 10.7554/elife.42149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/13/2019] [Indexed: 01/18/2023] Open
Abstract
The TORC1 regulator GATOR1/SEACIT controls meiotic entry and early meiotic events in yeast. However, how metabolic pathways influence meiotic progression in metazoans remains poorly understood. Here we examine the role of the TORC1 regulators GATOR1 and GATOR2 in the response to meiotic double-stranded breaks (DSB) during Drosophila oogenesis. We find that in mutants of the GATOR2 component mio, meiotic DSBs trigger the constitutive downregulation of TORC1 activity and a permanent arrest in oocyte growth. Conversely, in GATOR1 mutants, high TORC1 activity results in the delayed repair of meiotic DSBs and the hyperactivation of p53. Unexpectedly, we found that GATOR1 inhibits retrotransposon expression in the presence of meiotic DSBs in a pathway that functions in parallel to p53. Thus, our studies have revealed a link between oocyte metabolism, the repair of meiotic DSBs and retrotransposon expression.
Collapse
Affiliation(s)
- Youheng Wei
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
| | - Lucia Bettedi
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Chun-Yuan Ting
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Kuikwon Kim
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Yingbiao Zhang
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Jiadong Cai
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
| | - Mary A Lilly
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
31
|
Brito AS, Soto Diaz S, Van Vooren P, Godard P, Marini AM, Boeckstaens M. Pib2-Dependent Feedback Control of the TORC1 Signaling Network by the Npr1 Kinase. iScience 2019; 20:415-433. [PMID: 31622882 PMCID: PMC6817644 DOI: 10.1016/j.isci.2019.09.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 05/10/2019] [Accepted: 09/13/2019] [Indexed: 01/21/2023] Open
Abstract
To adjust cell growth and metabolism according to environmental conditions, the conserved TORC1 signaling network controls autophagy, protein synthesis, and turnover. Here, we dissected the signals controlling phosphorylation and activity of the TORC1-effector kinase Npr1, involved in tuning the plasma membrane permeability to nitrogen sources. By evaluating a role of pH as a signal, we show that, although a transient cytosolic acidification accompanies nitrogen source entry and is correlated to a rapid TORC1-dependent phosphorylation of Npr1, a pH drop is not a prerequisite for TORC1 activation. We show that the Gtr1/Gtr2 and Pib2 regulators of TORC1 both independently and differently contribute to regulate Npr1 phosphorylation and activity. Finally, our data reveal that Npr1 mediates nitrogen-dependent phosphorylation of Pib2, as well as a Pib2-dependent inhibition of TORC1. This work highlights a feedback control loop likely enabling efficient downregulation and faster re-activation of TORC1 in response to a novel stimulating signal.
Collapse
Affiliation(s)
- Ana Sofia Brito
- Laboratory of Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Silvia Soto Diaz
- Laboratory of Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Pascale Van Vooren
- Laboratory of Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Patrice Godard
- UCB Pharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Anna Maria Marini
- Laboratory of Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Mélanie Boeckstaens
- Laboratory of Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium.
| |
Collapse
|
32
|
Blackwell TK, Sewell AK, Wu Z, Han M. TOR Signaling in Caenorhabditis elegans Development, Metabolism, and Aging. Genetics 2019; 213:329-360. [PMID: 31594908 PMCID: PMC6781902 DOI: 10.1534/genetics.119.302504] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/18/2019] [Indexed: 12/30/2022] Open
Abstract
The Target of Rapamycin (TOR or mTOR) is a serine/threonine kinase that regulates growth, development, and behaviors by modulating protein synthesis, autophagy, and multiple other cellular processes in response to changes in nutrients and other cues. Over recent years, TOR has been studied intensively in mammalian cell culture and genetic systems because of its importance in growth, metabolism, cancer, and aging. Through its advantages for unbiased, and high-throughput, genetic and in vivo studies, Caenorhabditis elegans has made major contributions to our understanding of TOR biology. Genetic analyses in the worm have revealed unexpected aspects of TOR functions and regulation, and have the potential to further expand our understanding of how growth and metabolic regulation influence development. In the aging field, C. elegans has played a leading role in revealing the promise of TOR inhibition as a strategy for extending life span, and identifying mechanisms that function upstream and downstream of TOR to influence aging. Here, we review the state of the TOR field in C. elegans, and focus on what we have learned about its functions in development, metabolism, and aging. We discuss knowledge gaps, including the potential pitfalls in translating findings back and forth across organisms, but also describe how TOR is important for C. elegans biology, and how C. elegans work has developed paradigms of great importance for the broader TOR field.
Collapse
Affiliation(s)
- T Keith Blackwell
- Research Division, Joslin Diabetes Center, Department of Genetics, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts
| | - Aileen K Sewell
- Department of MCDB, University of Colorado at Boulder, and
- Howard Hughes Medical Institute, Boulder, Colorado
| | - Ziyun Wu
- Research Division, Joslin Diabetes Center, Department of Genetics, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts
| | - Min Han
- Department of MCDB, University of Colorado at Boulder, and
- Howard Hughes Medical Institute, Boulder, Colorado
| |
Collapse
|
33
|
A Humanized Yeast Phenomic Model of Deoxycytidine Kinase to Predict Genetic Buffering of Nucleoside Analog Cytotoxicity. Genes (Basel) 2019; 10:genes10100770. [PMID: 31575041 PMCID: PMC6826991 DOI: 10.3390/genes10100770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022] Open
Abstract
Knowledge about synthetic lethality can be applied to enhance the efficacy of anticancer therapies in individual patients harboring genetic alterations in their cancer that specifically render it vulnerable. We investigated the potential for high-resolution phenomic analysis in yeast to predict such genetic vulnerabilities by systematic, comprehensive, and quantitative assessment of drug–gene interaction for gemcitabine and cytarabine, substrates of deoxycytidine kinase that have similar molecular structures yet distinct antitumor efficacy. Human deoxycytidine kinase (dCK) was conditionally expressed in the Saccharomyces cerevisiae genomic library of knockout and knockdown (YKO/KD) strains, to globally and quantitatively characterize differential drug–gene interaction for gemcitabine and cytarabine. Pathway enrichment analysis revealed that autophagy, histone modification, chromatin remodeling, and apoptosis-related processes influence gemcitabine specifically, while drug–gene interaction specific to cytarabine was less enriched in gene ontology. Processes having influence over both drugs were DNA repair and integrity checkpoints and vesicle transport and fusion. Non-gene ontology (GO)-enriched genes were also informative. Yeast phenomic and cancer cell line pharmacogenomics data were integrated to identify yeast–human homologs with correlated differential gene expression and drug efficacy, thus providing a unique resource to predict whether differential gene expression observed in cancer genetic profiles are causal in tumor-specific responses to cytotoxic agents.
Collapse
|
34
|
Ren Y, Ay A, Dobra A, Kahveci T. Characterizing building blocks of resource constrained biological networks. BMC Bioinformatics 2019; 20:318. [PMID: 31216986 PMCID: PMC6584510 DOI: 10.1186/s12859-019-2838-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background Identification of motifs–recurrent and statistically significant patterns–in biological networks is the key to understand the design principles, and to infer governing mechanisms of biological systems. This, however, is a computationally challenging task. This task is further complicated as biological interactions depend on limited resources, i.e., a reaction takes place if the reactant molecule concentrations are above a certain threshold level. This biochemical property implies that network edges can participate in a limited number of motifs simultaneously. Existing motif counting methods ignore this problem. This simplification often leads to inaccurate motif counts (over- or under-estimates), and thus, wrong biological interpretations. Results In this paper, we develop a novel motif counting algorithm, Partially Overlapping MOtif Counting (POMOC), that considers capacity levels for all interactions in counting motifs. Conclusions Our experiments on real and synthetic networks demonstrate that motif count using the POMOC method significantly differs from the existing motif counting approaches, and our method extends to large-scale biological networks in practical time. Our results also show that our method makes it possible to characterize the impact of different stress factors on cell’s organization of network. In this regard, analysis of a S. cerevisiae transcriptional regulatory network using our method shows that oxidative stress is more disruptive to organization and abundance of motifs in this network than mutations of individual genes. Our analysis also suggests that by focusing on the edges that lead to variation in motif counts, our method can be used to find important genes, and to reveal subtle topological and functional differences of the biological networks under different cell states.
Collapse
Affiliation(s)
- Yuanfang Ren
- Computer and Information Science and Engineering, University of Florida, Gainesville, 32611, FL, USA
| | - Ahmet Ay
- Departments of Biology and Mathematics, Colgate University, Hamilton, 13346, NY, USA
| | - Alin Dobra
- Computer and Information Science and Engineering, University of Florida, Gainesville, 32611, FL, USA
| | - Tamer Kahveci
- Computer and Information Science and Engineering, University of Florida, Gainesville, 32611, FL, USA.
| |
Collapse
|
35
|
Ma Y, Moors A, Camougrand N, Dokudovskaya S. The SEACIT complex is involved in the maintenance of vacuole-mitochondria contact sites and controls mitophagy. Cell Mol Life Sci 2019; 76:1623-1640. [PMID: 30673821 PMCID: PMC11105764 DOI: 10.1007/s00018-019-03015-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/17/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022]
Abstract
The major signaling pathway that regulates cell growth and metabolism is under the control of the target of rapamycin complex 1 (TORC1). In Saccharomyces cerevisiae the SEA complex is one of the TORC1 upstream regulators involved in amino acid sensing and autophagy. Here, we performed analysis of the expression, interactions and localization of SEA complex proteins under different conditions, varying parameters such as sugar source, nitrogen availability and growth phase. Our results show that the SEA complex promotes mitochondria degradation either by mitophagy or by general autophagy. In addition, the SEACIT subcomplex is involved in the maintenance of the vacuole-mitochondria contact sites. Thus, the SEA complex appears to be an important link between the TORC1 pathway and regulation of mitochondria quality control.
Collapse
Affiliation(s)
- Yinxing Ma
- CNRS, UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - Alexis Moors
- CNRS, UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - Nadine Camougrand
- CNRS, IBGC, UMR 5095, 1, rue Camille Saint-Saens, 33000, Bordeaux, France
- Université de Bordeaux, IBGC, 1, rue Camille Saint-Saens, 33000, Bordeaux, France
| | - Svetlana Dokudovskaya
- CNRS, UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France.
| |
Collapse
|
36
|
Sullivan A, Wallace RL, Wellington R, Luo X, Capaldi AP. Multilayered regulation of TORC1-body formation in budding yeast. Mol Biol Cell 2019; 30:400-410. [PMID: 30485160 PMCID: PMC6589571 DOI: 10.1091/mbc.e18-05-0297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/08/2018] [Accepted: 11/20/2018] [Indexed: 02/05/2023] Open
Abstract
The target of rapamycin kinase complex 1 (TORC1) regulates cell growth and metabolism in eukaryotes. In Saccharomyces cerevisiae, TORC1 activity is known to be controlled by the conserved GTPases, Gtr1/2, and movement into and out of an inactive agglomerate/body. However, it is unclear whether/how these regulatory steps are coupled. Here we show that active Gtr1/2 is a potent inhibitor of TORC1-body formation, but cells missing Gtr1/2 still form TORC1-bodies in a glucose/nitrogen starvation-dependent manner. We also identify 13 new activators of TORC1-body formation and show that seven of these proteins regulate the Gtr1/2-dependent repression of TORC1-body formation, while the remaining proteins drive the subsequent steps in TORC1 agglomeration. Finally, we show that the conserved phosphatidylinositol-3-phosphate (PI(3)P) binding protein, Pib2, forms a complex with TORC1 and overrides the Gtr1/2-dependent repression of TORC1-body formation during starvation. These data provide a unified, systems-level model of TORC1 regulation in yeast.
Collapse
Affiliation(s)
- Arron Sullivan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206
| | - Ryan L. Wallace
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206
| | - Rachel Wellington
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206
| | - Xiangxia Luo
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206
| | - Andrew P. Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206
| |
Collapse
|
37
|
Teng X, Yau E, Sing C, Hardwick JM. Whi2 signals low leucine availability to halt yeast growth and cell death. FEMS Yeast Res 2018; 18:5083179. [PMID: 30165592 PMCID: PMC6149368 DOI: 10.1093/femsyr/foy095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/26/2018] [Indexed: 12/16/2022] Open
Abstract
Cells are exquisitely tuned to environmental ques. Amino acid availability is rapidly sensed, allowing cells to adjust molecular processes and implement short or long-term metabolic shifts accordingly. How levels of most individual amino acids may be sensed and subsequently signaled to inform cells of their nutrient status is largely unknown. We made the unexpected observation that small changes in the levels of specific amino acids can have a profound effect on yeast cell growth, leading to the identification of yeast Whi2 as a negative regulator of cell growth in low amino acids. Although Whi2 was originally thought to be fungi-specific, Whi2 appears to share a conserved structural domain found in a family of 25 largely uncharacterized human genes encoding the KCTD (potassium channel tetramerization domain) protein family. Insights gained from yeast Whi2 are likely to be revealing about human KCTDs, many of which have been implicated or demonstrated to cause disease when mutated. Here we report new evidence that Whi2 responds to specific amino acids in the medium, particularly low leucine levels. We also discuss the known pathways of amino acid signaling and potential points of regulation by Whi2 in nutrient signaling in yeast and mammals.
Collapse
Affiliation(s)
- Xinchen Teng
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205-2103, USA
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 215123 Suzhou, Jiangsu Province, People's Republic of China
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2103, USA
| | - Eric Yau
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205-2103, USA
| | - Cierra Sing
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205-2103, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205-2103, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2103, USA
| |
Collapse
|
38
|
Chen X, Wang G, Zhang Y, Dayhoff-Brannigan M, Diny NL, Zhao M, He G, Sing CN, Metz KA, Stolp ZD, Aouacheria A, Cheng WC, Hardwick JM, Teng X. Whi2 is a conserved negative regulator of TORC1 in response to low amino acids. PLoS Genet 2018; 14:e1007592. [PMID: 30142151 PMCID: PMC6126876 DOI: 10.1371/journal.pgen.1007592] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 09/06/2018] [Accepted: 07/26/2018] [Indexed: 01/29/2023] Open
Abstract
Yeast WHI2 was originally identified in a genetic screen for regulators of cell cycle arrest and later suggested to function in general stress responses. However, the function of Whi2 is unknown. Whi2 has predicted structure and sequence similarity to human KCTD family proteins, which have been implicated in several cancers and are causally associated with neurological disorders but are largely uncharacterized. The identification of conserved functions between these yeast and human proteins may provide insight into disease mechanisms. We report that yeast WHI2 is a new negative regulator of TORC1 required to suppress TORC1 activity and cell growth specifically in response to low amino acids. In contrast to current opinion, WHI2 is dispensable for TORC1 inhibition in low glucose. The only widely conserved mechanism that actively suppresses both yeast and mammalian TORC1 specifically in response to low amino acids is the conserved SEACIT/GATOR1 complex that inactivates the TORC1-activating RAG-like GTPases. Unexpectedly, Whi2 acts independently and simultaneously with these established GATOR1-like Npr2-Npr3-Iml1 and RAG-like Gtr1-Gtr2 complexes, and also acts independently of the PKA pathway. Instead, Whi2 inhibits TORC1 activity through its binding partners, protein phosphatases Psr1 and Psr2, which were previously thought to only regulate amino acid levels downstream of TORC1. Furthermore, the ability to suppress TORC1 is conserved in the SKP1/BTB/POZ domain-containing, Whi2-like human protein KCTD11 but not other KCTD family members tested.
Collapse
Affiliation(s)
- Xianghui Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Guiqin Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Margaret Dayhoff-Brannigan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Nicola L. Diny
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Mingjun Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ge He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Cierra N. Sing
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Kyle A. Metz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Zachary D. Stolp
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Abdel Aouacheria
- ISEM, Institut des Sciences de l’Evolution de Montpellier, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Wen-Chih Cheng
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - J. Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Xinchen Teng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
39
|
Abstract
Background The protein kinase Target Of Rapamycin (TOR) is a nexus for the regulation of eukaryotic cell growth. TOR assembles into one of two distinct signalling complexes, TOR complex 1 (TORC1) and TORC2 (mTORC1/2 in mammals), with a set of largely non-overlapping protein partners. (m)TORC1 activation occurs in response to a series of stimuli relevant to cell growth, including nutrient availability, growth factor signals and stress, and regulates much of the cell's biosynthetic activity, from proteins to lipids, and recycling through autophagy. mTORC1 regulation is of great therapeutic significance, since in humans many of these signalling complexes, alongside subunits of mTORC1 itself, are implicated in a wide variety of pathophysiologies, including multiple types of cancer, neurological disorders, neurodegenerative diseases and metabolic disorders including diabetes. Methodology Recent years have seen numerous structures determined of (m)TOR, which have provided mechanistic insight into (m)TORC1 activation in particular, however the integration of cellular signals occurs upstream of the kinase and remains incompletely understood. Here we have collected and analysed in detail as many as possible of the molecular and structural studies which have shed light on (m)TORC1 repression, activation and signal integration. Conclusions A molecular understanding of this signal integration pathway is required to understand how (m)TORC1 activation is reconciled with the many diverse and contradictory stimuli affecting cell growth. We discuss the current level of molecular understanding of the upstream components of the (m)TORC1 signalling pathway, recent progress on this key biochemical frontier, and the future studies necessary to establish a mechanistic understanding of this master-switch for eukaryotic cell growth.
Collapse
Affiliation(s)
- Kailash Ramlaul
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| | - Christopher H S Aylett
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
40
|
Ma Y, Vassetzky Y, Dokudovskaya S. mTORC1 pathway in DNA damage response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1293-1311. [PMID: 29936127 DOI: 10.1016/j.bbamcr.2018.06.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/27/2022]
Abstract
Living organisms have evolved various mechanisms to control their metabolism and response to various stresses, allowing them to survive and grow in different environments. In eukaryotes, the highly conserved mechanistic target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of cellular metabolism, proliferation and survival. A growing body of evidence indicates that mTOR signaling is closely related to another cellular protection mechanism, the DNA damage response (DDR). Many factors important for the DDR are also involved in the mTOR pathway. In this review, we discuss how these two pathways communicate to ensure an efficient protection of the cell against metabolic and genotoxic stresses. We also describe how anticancer therapies benefit from simultaneous targeting of the DDR and mTOR pathways.
Collapse
Affiliation(s)
- Yinxing Ma
- CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805 Villejuif, France
| | - Yegor Vassetzky
- CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805 Villejuif, France
| | - Svetlana Dokudovskaya
- CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805 Villejuif, France.
| |
Collapse
|
41
|
High expression of NPRL2 is linked to poor prognosis in patients with prostate cancer. Hum Pathol 2018; 76:141-148. [DOI: 10.1016/j.humpath.2018.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/02/2018] [Accepted: 02/07/2018] [Indexed: 02/05/2023]
|
42
|
Miller D, Brandt N, Gresham D. Systematic identification of factors mediating accelerated mRNA degradation in response to changes in environmental nitrogen. PLoS Genet 2018; 14:e1007406. [PMID: 29782489 PMCID: PMC5983874 DOI: 10.1371/journal.pgen.1007406] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/01/2018] [Accepted: 05/09/2018] [Indexed: 01/20/2023] Open
Abstract
Cellular responses to changing environments frequently involve rapid reprogramming of the transcriptome. Regulated changes in mRNA degradation rates can accelerate reprogramming by clearing or stabilizing extant transcripts. Here, we measured mRNA stability using 4-thiouracil labeling in the budding yeast Saccharomyces cerevisiae during a nitrogen upshift and found that 78 mRNAs are subject to destabilization. These transcripts include Nitrogen Catabolite Repression (NCR) and carbon metabolism mRNAs, suggesting that mRNA destabilization is a mechanism for targeted reprogramming of the transcriptome. To explore the molecular basis of destabilization we implemented a SortSeq approach to screen the pooled deletion collection library for trans factors that mediate rapid GAP1 mRNA repression. We combined low-input multiplexed Barcode sequencing with branched-DNA single-molecule mRNA FISH and Fluorescence-activated cell sorting (BFF) to identify the Lsm1-7p/Pat1p complex and general mRNA decay machinery as important for GAP1 mRNA clearance. We also find that the decapping modulators EDC3 and SCD6, translation factor eIF4G2, and the 5' UTR of GAP1 are factors that mediate rapid repression of GAP1 mRNA, suggesting that translational control may impact the post-transcriptional fate of mRNAs in response to environmental changes.
Collapse
Affiliation(s)
- Darach Miller
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Nathan Brandt
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
43
|
Pesce CG, Zdraljevic S, Peria WJ, Bush A, Repetto MV, Rockwell D, Yu RC, Colman-Lerner A, Brent R. Single-cell profiling screen identifies microtubule-dependent reduction of variability in signaling. Mol Syst Biol 2018; 14:e7390. [PMID: 29618636 PMCID: PMC5884679 DOI: 10.15252/msb.20167390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/25/2018] [Accepted: 02/06/2018] [Indexed: 01/01/2023] Open
Abstract
Populations of isogenic cells often respond coherently to signals, despite differences in protein abundance and cell state. Previously, we uncovered processes in the Saccharomyces cerevisiae pheromone response system (PRS) that reduced cell-to-cell variability in signal strength and cellular response. Here, we screened 1,141 non-essential genes to identify 50 "variability genes". Most had distinct, separable effects on strength and variability of the PRS, defining these quantities as genetically distinct "axes" of system behavior. Three genes affected cytoplasmic microtubule function: BIM1, GIM2, and GIM4 We used genetic and chemical perturbations to show that, without microtubules, PRS output is reduced but variability is unaffected, while, when microtubules are present but their function is perturbed, output is sometimes lowered, but its variability is always high. The increased variability caused by microtubule perturbations required the PRS MAP kinase Fus3 and a process at or upstream of Ste5, the membrane-localized scaffold to which Fus3 must bind to be activated. Visualization of Ste5 localization dynamics demonstrated that perturbing microtubules destabilized Ste5 at the membrane signaling site. The fact that such microtubule perturbations cause aberrant fate and polarity decisions in mammals suggests that microtubule-dependent signal stabilization might also operate throughout metazoans.
Collapse
Affiliation(s)
| | - Stefan Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | | | - Alan Bush
- IFIBYNE-UBA-CONICET and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Victoria Repetto
- IFIBYNE-UBA-CONICET and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | - Alejandro Colman-Lerner
- IFIBYNE-UBA-CONICET and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Roger Brent
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
44
|
Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2018; 82:82/1/e00040-17. [PMID: 29436478 DOI: 10.1128/mmbr.00040-17] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nitrogen is one of the most important essential nutrient sources for biogenic activities. Regulation of nitrogen metabolism in microorganisms is complicated and elaborate. For this review, the yeast Saccharomyces cerevisiae was chosen to demonstrate the regulatory mechanism of nitrogen metabolism because of its relative clear genetic background. Current opinions on the regulation processes of nitrogen metabolism in S. cerevisiae, including nitrogen sensing, transport, and catabolism, are systematically reviewed. Two major upstream signaling pathways, the Ssy1-Ptr3-Ssy5 sensor system and the target of rapamycin pathway, which are responsible for sensing extracellular and intracellular nitrogen, respectively, are discussed. The ubiquitination of nitrogen transporters, which is the most general and efficient means for controlling nitrogen transport, is also summarized. The following metabolic step, nitrogen catabolism, is demonstrated at two levels: the transcriptional regulation process related to GATA transcriptional factors and the translational regulation process related to the general amino acid control pathway. The interplay between nitrogen regulation and carbon regulation is also discussed. As a model system, understanding the meticulous process by which nitrogen metabolism is regulated in S. cerevisiae not only could facilitate research on global regulation mechanisms and yeast metabolic engineering but also could provide important insights and inspiration for future studies of other common microorganisms and higher eukaryotic cells.
Collapse
|
45
|
Chia KH, Fukuda T, Sofyantoro F, Matsuda T, Amai T, Shiozaki K. Ragulator and GATOR1 complexes promote fission yeast growth by attenuating TOR complex 1 through Rag GTPases. eLife 2017; 6:30880. [PMID: 29199950 PMCID: PMC5752196 DOI: 10.7554/elife.30880] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 12/02/2017] [Indexed: 12/18/2022] Open
Abstract
TOR complex 1 (TORC1) is an evolutionarily conserved protein kinase complex that promotes cellular macromolecular synthesis and suppresses autophagy. Amino-acid-induced activation of mammalian TORC1 is initiated by its recruitment to the RagA/B-RagC/D GTPase heterodimer, which is anchored to lysosomal membranes through the Ragulator complex. We have identified in the model organism Schizosaccharomyces pombe a Ragulator-like complex that tethers the Gtr1-Gtr2 Rag heterodimer to the membranes of vacuoles, the lysosome equivalent in yeasts. Unexpectedly, the Ragulator-Rag complex is not required for the vacuolar targeting of TORC1, but the complex plays a crucial role in attenuating TORC1 activity independently of the Tsc1-Tsc2 complex, a known negative regulator of TORC1 signaling. The GATOR1 complex, which functions as Gtr1 GAP, is essential for the TORC1 attenuation by the Ragulator-Rag complex, suggesting that Gtr1GDP-Gtr2 on vacuolar membranes moderates TORC1 signaling for optimal cellular response to nutrients.
Collapse
Affiliation(s)
- Kim Hou Chia
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Tomoyuki Fukuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan.,Department of Cellular Physiology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Fajar Sofyantoro
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan.,Department of Animal Physiology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Takato Matsuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Takamitsu Amai
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Kazuhiro Shiozaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan.,Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
| |
Collapse
|
46
|
Ma Y, Silveri L, LaCava J, Dokudovskaya S. Tumor suppressor NPRL2 induces ROS production and DNA damage response. Sci Rep 2017; 7:15311. [PMID: 29127423 PMCID: PMC5681675 DOI: 10.1038/s41598-017-15497-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023] Open
Abstract
The SEA/GATOR complex is an essential regulator of the mTORC1 pathway. In mammals the GATOR1 complex is composed of the proteins DEPDC5, NPRL2 and NPRL3. GATOR1 serves as an mTORC1 inhibitor and activates the mTORC1-modulating RagA GTPase. However, several GATOR members have mTORC1 independent functions. Here we characterize mammalian cells overexpressing the GATOR1 component NPRL2. We demonstrate that, in the cells with active p53, ectopic expression of NPRL2 induces NOX2-dependent production of reactive oxygen species and DNA damage. Overexpressed NPRL2 accumulates in the nucleus, together with apoptosis-inducing factor (AIF). These events are accompanied by phosphorylation of p53, activation of a DNA-damage response and cell cycle arrest in G1 phase, followed by apoptosis. In the cells negative for active p53, NPRL2 ectopic expression leads to activation of CHK1 or CHK2 kinases and cell cycle arrest in S or G2/M phases. Combined, these results demonstrate a new role for the NPRL2, distinct from its function in mTORC1 regulation.
Collapse
Affiliation(s)
- Yinxing Ma
- CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - Licia Silveri
- CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA.,Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, 10016, USA
| | - Svetlana Dokudovskaya
- CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France.
| |
Collapse
|
47
|
Varlakhanova NV, Mihalevic MJ, Bernstein KA, Ford MGJ. Pib2 and the EGO complex are both required for activation of TORC1. J Cell Sci 2017; 130:3878-3890. [PMID: 28993463 DOI: 10.1242/jcs.207910] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/03/2017] [Indexed: 01/12/2023] Open
Abstract
The TORC1 complex is a key regulator of cell growth and metabolism in Saccharomyces cerevisiae The vacuole-associated EGO complex couples activation of TORC1 to the availability of amino acids, specifically glutamine and leucine. The EGO complex is also essential for reactivation of TORC1 following rapamycin-induced growth arrest and for its distribution on the vacuolar membrane. Pib2, a FYVE-containing phosphatidylinositol 3-phosphate (PI3P)-binding protein, is a newly discovered and poorly characterized activator of TORC1. Here, we show that Pib2 is required for reactivation of TORC1 following rapamycin-induced growth arrest. Pib2 is required for EGO complex-mediated activation of TORC1 by glutamine and leucine as well as for redistribution of Tor1 on the vacuolar membrane. Therefore, Pib2 and the EGO complex cooperate to activate TORC1 and connect phosphoinositide 3-kinase (PI3K) signaling and TORC1 activity.
Collapse
Affiliation(s)
- Natalia V Varlakhanova
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | - Michael J Mihalevic
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | - Marijn G J Ford
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
48
|
Mohler K, Mann R, Kyle A, Reynolds N, Ibba M. Aminoacyl-tRNA quality control is required for efficient activation of the TOR pathway regulator Gln3p. RNA Biol 2017; 15:594-603. [PMID: 28910581 DOI: 10.1080/15476286.2017.1379635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The aminoacylation status of the cellular tRNA pool regulates both general amino acid control (GAAC) and target of rapamycin (TOR) stress response pathways in yeast. Consequently, fidelity of translation at the level of aminoacyl-tRNA synthesis plays a central role in determining accuracy and sensitivity of stress responses. To investigate effects of translational quality control (QC) on cell physiology under stress conditions, phenotypic microarray analyses were used to identify changes in QC deficient cells. Nitrogen source growth assays showed QC deficient yeast grew differently compared to WT. The QC deficient strain was more tolerant to caffeine treatment than wild type through altered interactions with the TOR and GAAC pathways. Increased caffeine tolerance of the QC deficient strain was consistent with the observation that the activity of Gln3p, a transcription factor controlled by the TOR pathway, is decreased in the QC deficient strain compared to WT. GCN4 translation, which is typically repressed in the absence of nutritional stress, was enhanced in the QC deficient strain through TOR inhibition. QC did not impact cell cycle regulation; however, the chronological lifespan of QC deficient yeast strains decreased compared to wild type, likely due to translational errors and alteration of the TOR-associated regulon. These findings support the idea that changes in translational fidelity provide a mechanism of cellular adaptation by modulating TOR activity. This, in turn, supports a central role for aminoacyl-tRNA synthesis QC in the integrated stress response by maintaining the proper aa-tRNA pools necessary to coordinate the GAAC and TOR.
Collapse
Affiliation(s)
- Kyle Mohler
- a Department of Microbiology , The Ohio State University , Columbus , Ohio , USA.,b Center for RNA Biology , The Ohio State University , Columbus , Ohio , USA
| | - Rebecca Mann
- a Department of Microbiology , The Ohio State University , Columbus , Ohio , USA
| | - Amanda Kyle
- a Department of Microbiology , The Ohio State University , Columbus , Ohio , USA
| | - Noah Reynolds
- a Department of Microbiology , The Ohio State University , Columbus , Ohio , USA
| | - Michael Ibba
- a Department of Microbiology , The Ohio State University , Columbus , Ohio , USA.,b Center for RNA Biology , The Ohio State University , Columbus , Ohio , USA
| |
Collapse
|
49
|
Nguyen TP, Frank AR, Jewell JL. Amino acid and small GTPase regulation of mTORC1. CELLULAR LOGISTICS 2017; 7:e1378794. [PMID: 29296509 PMCID: PMC5739091 DOI: 10.1080/21592799.2017.1378794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 11/03/2022]
Abstract
The mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that belongs to the phosphatidylinositol 3-kinase-related kinase (PIKK) family. mTOR is the catalytic subunit of mTOR complex 1 (mTORC1), which integrates multiple environmental signals to control cell growth and metabolism. Nutrients, specifically amino acids, are the most potent stimuli for mTORC1 activation. Multiple studies have focused on how leucine and arginine activate mTORC1 through the Rag GTPases, with mechanistic details slowly emerging. Recently, a Rag GTPase-independent glutamine signaling pathway to mTORC1 has been identified, suggesting that mTORC1 is differentially regulated through distinct pathways by specific amino acids. In this review, we summarize our current understanding of how amino acids modulate mTORC1, and the role of other small GTPases in the regulation of mTORC1 activity.
Collapse
Affiliation(s)
- Thu P Nguyen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Anderson R Frank
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Jenna L Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
50
|
Chen J, Sutter BM, Shi L, Tu BP. GATOR1 regulates nitrogenic cataplerotic reactions of the mitochondrial TCA cycle. Nat Chem Biol 2017; 13:1179-1186. [PMID: 28920930 PMCID: PMC5659745 DOI: 10.1038/nchembio.2478] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022]
Abstract
The GATOR1/SEACIT complex consisting of Iml1-Npr2-Npr3 inhibits Target of Rapamycin Complex 1 (TORC1) in response to amino acid insufficiency. In glucose medium, Saccharomyces cerevisiae mutants lacking the function of this complex grow poorly in the absence of amino acid supplementation, despite hallmarks of increased TORC1 signaling. Such mutants perceive they are amino acid-replete and thus repress metabolic activities that are important for achieving this state. We find that npr2Δ mutants have defective mitochondrial TCA cycle activity and retrograde response. Supplementation of glutamine, and especially aspartate, which are nitrogen-containing forms of TCA cycle intermediates, rescue growth of npr2Δ mutants. These amino acids are then consumed in biosynthetic pathways that require nitrogen to support proliferative metabolism. Our findings reveal that negative regulators of TORC1 such as GATOR1/SEACIT regulate the cataplerotic synthesis of these amino acids from the TCA cycle in tune with the amino acid and nitrogen status of cells.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Benjamin M Sutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lei Shi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|