1
|
Fogg PCM. Gene transfer agents: The ambiguous role of selfless viruses in genetic exchange and bacterial evolution. Mol Microbiol 2025; 123:124-131. [PMID: 38511257 PMCID: PMC11841831 DOI: 10.1111/mmi.15251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Gene transfer agents (GTAs) are genetic elements derived from ancestral bacteriophages that have become domesticated by the host. GTAs are present in diverse prokaryotic organisms, where they can facilitate horizontal gene transfer under certain conditions. Unlike typical bacteriophages, GTAs do not exhibit any preference for the replication or transfer of the genes encoding them; instead, they exhibit a remarkable capacity to package chromosomal, and sometimes extrachromosomal, DNA into virus-like capsids and disseminate it to neighboring cells. Because GTAs resemble defective prophages, identification of novel GTAs is not trivial. The detection of candidates relies on the genetic similarity to known GTAs, which has been fruitful in α-proteobacterial lineages but challenging in more distant bacteria. Here we consider several fundamental questions: What is the true prevalence of GTAs in prokaryote genomes? Given there are high costs for GTA production, what advantage do GTAs provide to the bacterial host to justify their maintenance? How is the bacterial chromosome recognized and processed for inclusion in GTA particles? This article highlights the challenges in comprehensively understanding GTAs' prevalence, function and DNA packaging method. Going forward, broad study of atypical GTAs and use of ecologically relevant conditions are required to uncover their true impact on bacterial chromosome evolution.
Collapse
|
2
|
Craske MW, Wilson JS, Fogg PCM. Gene transfer agents: structural and functional properties of domesticated viruses. Trends Microbiol 2024; 32:1200-1211. [PMID: 38806321 DOI: 10.1016/j.tim.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024]
Abstract
Horizontal exchange of DNA between bacteria and archaea is prevalent and has major potential implications for genome evolution, plasticity, and population fitness. Several transfer mechanisms have been identified, including gene transfer agents (GTAs). GTAs are intricately regulated domesticated viruses that package host DNA into virus-like capsids and transfer this DNA throughout the bacterial community. Several important advances have recently been made in our understanding of these unusual particles. In this review, we highlight some of these findings, primarily for the model GTA produced by Rhodobacter capsulatus but also for newly identified GTA producers. We provide key insights into these important genetic elements, including the differences between GTAs from their ancestral bacteriophages, their regulation and control, and their elusive evolutionary function.
Collapse
Affiliation(s)
| | - Jason S Wilson
- Biology Department, University of York, York YO10 5DD, UK; York Structural Biology Laboratory (YSBL), University of York, York YO10 5DD, UK
| | - Paul C M Fogg
- Biology Department, University of York, York YO10 5DD, UK; York Biomedical Research Institute (YBRI), University of York, York YO10 5NG, UK.
| |
Collapse
|
3
|
Vos M, Buckling A, Kuijper B, Eyre-Walker A, Bontemps C, Leblond P, Dimitriu T. Why do mobile genetic elements transfer DNA of their hosts? Trends Genet 2024; 40:927-938. [PMID: 39304387 DOI: 10.1016/j.tig.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 09/22/2024]
Abstract
The prokaryote world is replete with mobile genetic elements (MGEs) - self-replicating entities that can move within and between their hosts. Many MGEs not only transfer their own DNA to new hosts but also transfer host DNA located elsewhere on the chromosome in the process. This could potentially lead to indirect benefits to the host when the resulting increase in chromosomal variation results in more efficient natural selection. We review the diverse ways in which MGEs promote the transfer of host DNA and explore the benefits and costs to MGEs and hosts. In many cases, MGE-mediated transfer of host DNA might not be selected for because of a sex function, but evidence of MGE domestication suggests that there may be host benefits of MGE-mediated sex.
Collapse
Affiliation(s)
- Michiel Vos
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn Campus, Penryn TR10 9FE, UK; Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK.
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK
| | - Bram Kuijper
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Cyril Bontemps
- Université de Lorraine, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), DynAMic, F-54000 Nancy, France
| | - Pierre Leblond
- Université de Lorraine, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), DynAMic, F-54000 Nancy, France
| | - Tatiana Dimitriu
- Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK; Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| |
Collapse
|
4
|
Xu Y, Liu B, Jiao N, Liu J, Chen F. New evidence supports the prophage origin of RcGTA. Appl Environ Microbiol 2024; 90:e0043424. [PMID: 39189727 PMCID: PMC11409702 DOI: 10.1128/aem.00434-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024] Open
Abstract
Gene transfer agents (GTAs) are phage-like entities that package and transfer random host genome fragments between prokaryotes. RcGTA, produced by Rhodobacter capsulatus, is hypothesized to originate from a prophage ancestor. Most of the evidence supporting this hypothesis came from the finding of RcGTA-like genes in phages. More than 75% of the RcGTA genes have a phage homolog. However, only a few RcGTA homologs have been identified in a (pro)phage genome, leaving the hypothesis that GTAs evolved from prophages through gene loss with only weak evidence. We herein report the discovery of an inducible prophage (vB_MseS-P1) from a Mesorhizobium sediminum strain that contains the largest number (12) of RcGTA homologs found in a phage genome to date. We also identified three putative prophages and two prophage remnants harboring 12-14 RcGTA homologs in a Methylobacterium nodulans strain. The protein remote homology detection also revealed more RcGTA homologs from other phages than we previously thought. Moreover, the head-tail gene architecture of these newly discovered prophage-related elements closely resembles that of RcGTA. Furthermore, vB_MseS-P1 virions have structural proteins similar to RcGTA particles. Close phylogenetic relationships between certain prophage genes and RcGTA-like genes in Alphaproteobacteria further support the shared ancestry between RcGTA and prophages. Our findings provide new relatively direct evidence of the origin of RcGTA from a prophage progenitor.IMPORTANCEGTAs are important genetic elements in certain groups of bacteria and contribute to the genetic diversification, evolution, and ecological adaptation of bacteria. RcGTA, a common type of GTA, is known to package and transfer random fragments of the bacterial genome to recipient cells. However, the origin of RcGTA is still elusive. It has been hypothesized that RcGTA evolved from a prophage ancestor through gene loss. However, the few RcGTA homologs identified in a (pro)phage genome leave the hypothesis lacking direct evidence. This study uncovers the presence of a large number of RcGTA homologs in an inducible prophage and several putative prophages. The similar head-tail gene architecture and structural protein compositions of these newly discovered prophage-related elements and RcGTA further demonstrate an unprecedentedly observed close evolutionary relationship between prophages and RcGTA. Together, our findings provide more direct evidence supporting the origin of RcGTA from prophage.
Collapse
Affiliation(s)
- Yongle Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission Technology, Shandong University, Qingdao, China
| | - Binbin Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Nianzhi Jiao
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission Technology, Shandong University, Qingdao, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission Technology, Shandong University, Qingdao, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Banks EJ, Le TBK. Co-opting bacterial viruses for DNA exchange: structure and regulation of gene transfer agents. Curr Opin Microbiol 2024; 78:102431. [PMID: 38309246 DOI: 10.1016/j.mib.2024.102431] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
Horizontal gene transfer occurs via a range of mechanisms, including transformation, conjugation and bacteriophage transduction. Gene transfer agents (GTAs) are an alternative, less-studied route for interbacterial DNA exchange. Encoded within bacterial or archaeal genomes, GTAs assemble into phage-like particles that selflessly package and transmit host DNA to recipient bacteria. Several unique features distinguish GTAs from canonical phages such as an inability to self-replicate, thus producing non-infectious particles. GTAs are also deeply integrated into the physiology of the host cell and are maintained under tight host-regulatory control. Recent advances in understanding the structure and regulation of GTAs have provided further insights into a DNA transfer mechanism that is proving increasingly widespread across the bacterial tree of life.
Collapse
Affiliation(s)
- Emma J Banks
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK.
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
6
|
Fallon AM, Carroll EM. Virus-like Particles from Wolbachia-Infected Cells May Include a Gene Transfer Agent. INSECTS 2023; 14:516. [PMID: 37367332 DOI: 10.3390/insects14060516] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Wolbachia are obligate intracellular bacteria that occur in insects and filarial worms. Strains that infect insects have genomes that encode mobile genetic elements, including diverse lambda-like prophages called Phage WO. Phage WO packages an approximately 65 kb viral genome that includes a unique eukaryotic association module, or EAM, that encodes unusually large proteins thought to mediate interactions between the bacterium, its virus, and the eukaryotic host cell. The Wolbachia supergroup B strain, wStri from the planthopper Laodelphax striatellus, produces phage-like particles that can be recovered from persistently infected mosquito cells by ultracentrifugation. Illumina sequencing, assembly, and manual curation of DNA from two independent preparations converged on an identical 15,638 bp sequence that encoded packaging, assembly, and structural proteins. The absence of an EAM and regulatory genes defined for Phage WO from the wasp, Nasonia vitripennis, was consistent with the possibility that the 15,638 bp sequence represents an element related to a gene transfer agent (GTA), characterized by a signature head-tail region encoding structural proteins that package host chromosomal DNA. Future investigation of GTA function will be supported by the improved recovery of physical particles, electron microscopic examination of potential diversity among particles, and rigorous examination of DNA content by methods independent of sequence assembly.
Collapse
Affiliation(s)
- Ann M Fallon
- Department of Entomology, University of Minnesota, 1980 Folwell Ave., St. Paul, MN 55108, USA
| | - Elissa M Carroll
- Department of Entomology, University of Minnesota, 1980 Folwell Ave., St. Paul, MN 55108, USA
| |
Collapse
|
7
|
Joglekar P, Ferrell BD, Jarvis T, Haramoto K, Place N, Dums JT, Polson SW, Wommack KE, Fuhrmann JJ. Spontaneously Produced Lysogenic Phages Are an Important Component of the Soybean Bradyrhizobium Mobilome. mBio 2023; 14:e0029523. [PMID: 37017542 PMCID: PMC10127595 DOI: 10.1128/mbio.00295-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 04/06/2023] Open
Abstract
The ability of Bradyrhizobium spp. to nodulate and fix atmospheric nitrogen in soybean root nodules is critical to meeting humanity's nutritional needs. The intricacies of soybean bradyrhizobia-plant interactions have been studied extensively; however, bradyrhizobial ecology as influenced by phages has received somewhat less attention, even though these interactions may significantly impact soybean yield. In batch culture, four soybean bradyrhizobia strains, Bradyrhizobium japonicum S06B (S06B-Bj), B. japonicum S10J (S10J-Bj), Bradyrhizobium diazoefficiens USDA 122 (USDA 122-Bd), and Bradyrhizobium elkanii USDA 76T (USDA 76-Be), spontaneously (without apparent exogenous chemical or physical induction) produced tailed phages throughout the growth cycle; for three strains, phage concentrations exceeded cell numbers by ~3-fold after 48 h of incubation. Phage terminase large-subunit protein phylogeny revealed possible differences in phage packaging and replication mechanisms. Bioinformatic analyses predicted multiple prophage regions within each soybean bradyrhizobia genome, preventing accurate identification of spontaneously produced prophage (SPP) genomes. A DNA sequencing and mapping approach accurately delineated the boundaries of four SPP genomes within three of the soybean bradyrhizobia chromosomes and suggested that the SPPs were capable of transduction. In addition to the phages, S06B-Bj and USDA 76-Be contained three to four times more insertion sequences (IS) and large, conjugable, broad host range plasmids, both of which are known drivers of horizontal gene transfer (HGT) in soybean bradyrhizobia. These factors indicate that SPP along with IS and plasmids participate in HGT, drive bradyrhizobia evolution, and play an outsized role in bradyrhizobia ecology. IMPORTANCE Previous studies have shown that IS and plasmids mediate HGT of symbiotic nodulation (nod) genes in soybean bradyrhizobia; however, these events require close cell-to-cell contact, which could be limited in soil environments. Bacteriophage-assisted gene transduction through spontaneously produced prophages provides a stable means of HGT not limited by the constraints of proximal cell-to-cell contact. These phage-mediated HGT events may shape soybean bradyrhizobia population ecology, with concomitant impacts on soybean agriculture.
Collapse
Affiliation(s)
- Prasanna Joglekar
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Barbra D. Ferrell
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Tessa Jarvis
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Kona Haramoto
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| | - Nicole Place
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| | - Jacob T. Dums
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Shawn W. Polson
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - K. Eric Wommack
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Jeffry J. Fuhrmann
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
8
|
Ramirez P, Leavitt JC, Gill JJ, Mateos M. Preliminary Characterization of Phage-Like Particles from the Male-Killing Mollicute Spiroplasma poulsonii (an Endosymbiont of Drosophila). Curr Microbiol 2022; 80:6. [PMID: 36445499 DOI: 10.1007/s00284-022-03099-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022]
Abstract
Bacteriophages are vastly abundant, diverse, and influential, but with few exceptions (e.g. the Proteobacteria genera Wolbachia and Hamiltonella), the role of phages in heritable bacteria-arthropod interactions, which are ubiquitous and diverse, remains largely unexplored. Despite prior studies documenting phage-like particles in the mollicute Spiroplasma associated with Drosophila flies, genomic sequences of such phage are lacking, and their effects on the Spiroplasma-Drosophila interaction have not been comprehensively characterized. We used a density step gradient to isolate phage-like particles from the male-killing bacterium Spiroplasma poulsonii (strains NSRO and MSRO-Br) harbored by Drosophila melanogaster. Isolated particles were subjected to DNA sequencing, assembly, and annotation. Several lines of evidence suggest that we recovered phage-like particles of similar features (shape, size, DNA content) to those previously reported in Drosophila-associated Spiroplasma strains. We recovered three ~ 19 kb phage-like contigs (two in NSRO and one in MSRO-Br) containing 21-24 open reading frames, a read-alignment pattern consistent with circular permutation, and terminal redundancy (at least in NSRO). Although our results do not allow us to distinguish whether these phage-like contigs represent infective phage-like particles capable of transmitting their DNA to new hosts, their encoding of several typical phage genes suggests that they are at least remnants of functional phage. We also recovered two smaller non-phage-like contigs encoding a known Spiroplasma toxin (Ribosome Inactivating Protein; RIP), and an insertion element, suggesting that they are packaged into particles. Substantial homology of our particle-derived contigs was found in the genome assemblies of members of the Spiroplasma poulsonii clade.
Collapse
Affiliation(s)
- Paulino Ramirez
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, USA.,Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Justin C Leavitt
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Jason J Gill
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Mariana Mateos
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, USA. .,Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
9
|
Gozzi K, Tran NT, Modell JW, Le TBK, Laub MT. Prophage-like gene transfer agents promote Caulobacter crescentus survival and DNA repair during stationary phase. PLoS Biol 2022; 20:e3001790. [PMID: 36327213 PMCID: PMC9632790 DOI: 10.1371/journal.pbio.3001790] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/09/2022] [Indexed: 11/05/2022] Open
Abstract
Gene transfer agents (GTAs) are prophage-like entities found in many bacterial genomes that cannot propagate themselves and instead package approximately 5 to 15 kbp fragments of the host genome that can then be transferred to related recipient cells. Although suggested to facilitate horizontal gene transfer (HGT) in the wild, no clear physiological role for GTAs has been elucidated. Here, we demonstrate that the α-proteobacterium Caulobacter crescentus produces bona fide GTAs. The production of Caulobacter GTAs is tightly regulated by a newly identified transcription factor, RogA, that represses gafYZ, the direct activators of GTA synthesis. Cells lacking rogA or expressing gafYZ produce GTAs harboring approximately 8.3 kbp fragment of the genome that can, after cell lysis, be transferred into recipient cells. Notably, we find that GTAs promote the survival of Caulobacter in stationary phase and following DNA damage by providing recipient cells a template for homologous recombination-based repair. This function may be broadly conserved in other GTA-producing organisms and explain the prevalence of this unusual HGT mechanism.
Collapse
Affiliation(s)
- Kevin Gozzi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ngat T. Tran
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Joshua W. Modell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Tung B. K. Le
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Michael T. Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
10
|
Kogay R, Koppenhöfer S, Beatty JT, Kuhn JH, Lang AS, Zhaxybayeva O. Formal recognition and classification of gene transfer agents as viriforms. Virus Evol 2022; 8:veac100. [PMID: 36381234 PMCID: PMC9662315 DOI: 10.1093/ve/veac100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/10/2022] [Accepted: 10/14/2022] [Indexed: 06/19/2024] Open
Abstract
Morphological and genetic features strongly suggest that gene transfer agents (GTAs) are caudoviricete-derived entities that have evolved in concert with cellular genomes to such a degree that they should not be considered viruses. Indeed, GTA particles resemble caudoviricete virions, but, in contrast to caudoviricetes (or any viruses), GTAs can encapsidate at best only part of their own genomes, are induced solely in small subpopulations of prokaryotic host cells, and are transmitted vertically as part of cellular genomes during replication and division. Therefore, the lifecycles of GTAs are analogous to virus-derived entities found in the parasitoid wasps, which have recently been recognized as non-virus entities and therefore reclassified as viriforms. We evaluated three distinct, independently exapted GTA groups, for which the genetic basis for GTA particle production has been established. Based on the evidence, we outline a classification scheme for these viriforms.
Collapse
Affiliation(s)
- Roman Kogay
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH, USA
| | | | - J Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, 45 Arctic Ave., St. John’s, NL A1C 5S7, Canada
| | - Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH, USA
- Department of Biology, Memorial University of Newfoundland, 45 Arctic Ave., St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
11
|
Buhler KJ, Fernando C, Hill JE, Galloway T, Carriere S, Fenton H, Fauteux D, Jenkins EJ. Combining deep sequencing and conventional molecular approaches reveals broad diversity and distribution of fleas and Bartonella in rodents and shrews from Arctic and Subarctic ecosystems. Parasit Vectors 2022; 15:366. [PMID: 36229832 PMCID: PMC9563109 DOI: 10.1186/s13071-022-05446-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bartonella are intracellular bacteria that are transmitted via animal scratches, bites and hematophagous arthropods. Rodents and their associated fleas play a key role in the maintenance of Bartonella worldwide, with > 22 species identified in rodent hosts. No studies have addressed the occurrence and diversity of Bartonella species and vectors for small mammals in Arctic and Subarctic ecosystems, which are increasingly impacted by invasive species and climate change. METHODS In this study, we characterized the diversity of rodent fleas using conventional PCR targeting the mitochondrial cytochrome c oxidase II gene (COII) and Bartonella species in rodents and shrews (n = 505) from northern Canada using conventional PCR targeting the ITS (intergenic transcribed spacer) region and gltA (citrate synthase) gene. Metagenomic sequencing of a portion of the gltA gene was completed on a subset of 42 rodents and four rodent flea pools. RESULTS Year, total summer precipitation the year prior to sampling, average minimum spring temperature and small mammal species were significant factors in predicting Bartonella positivity. Occurrence based on the ITS region was more than double that of the gltA gene and was 34% (n = 349) in northern red-backed voles, 35% (n = 20) in meadow voles, 37% (n = 68) in deer mice and 31% (n = 59) in shrews. Six species of Bartonella were identified with the ITS region, including B. grahamii, B. elizabethae, B. washoensis, Candidatus B. rudakovii, B. doshiae, B. vinsonii subsp. berkhoffii and subsp. arupensis. In addition, 47% (n = 49/105) of ITS amplicons had < 97% identity to sequences in GenBank, possibly due to a limited reference library or previously unreported species. An additional Bartonella species (B. heixiaziensis) was detected during metagenomic sequencing of the gltA gene in 6/11 rodents that had ITS sequences with < 97% identity in GenBank, highlighting that a limited reference library for the ITS marker likely accounted for low sequence similarity in our specimens. In addition, one flea pool from a northern red-backed vole contained multiple species (B. grahamii and B. heixiaziensis). CONCLUSION Our study calls attention to the usefulness of a combined approach to determine the occurrence and diversity of Bartonella communities in hosts and vectors.
Collapse
Affiliation(s)
- Kayla J Buhler
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| | - Champika Fernando
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Janet E Hill
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Terry Galloway
- Department of Entomology, Faculty of Agricultural and Food Sciences, University of Manitoba, 12 Dafoe Road, Winnipeg, MB, R3T 2N2, Canada
| | - Suzanne Carriere
- Department of Environment and Natural Resources, 5Th Floor Scotiabank Centre, Government of The Northwest Territories, PO Box 1320, Yellowknife, Northwest Territories, X1A 2P9, Canada
| | - Heather Fenton
- Department of Environment and Natural Resources, 5Th Floor Scotiabank Centre, Government of The Northwest Territories, PO Box 1320, Yellowknife, Northwest Territories, X1A 2P9, Canada.,Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Dominique Fauteux
- Centre for Arctic Knowledge and Exploration, Canadian Museum of Nature, 1740, Chemin Pink, Gatineau, QC, J9J 3N7, Canada
| | - Emily J Jenkins
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| |
Collapse
|
12
|
Loss of the Rhodobacter capsulatus Serine Acetyl Transferase Gene, cysE1, Impairs Gene Transfer by Gene Transfer Agents and Biofilm Phenotypes. Appl Environ Microbiol 2022; 88:e0094422. [PMID: 36098534 PMCID: PMC9552610 DOI: 10.1128/aem.00944-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms are widespread in the environment, where they allow bacterial species to survive adverse conditions. Cells in biofilms are densely packed, and this proximity is likely to increase the frequency of horizontal gene transfer. Gene transfer agents (GTAs) are domesticated viruses with the potential to spread any gene between bacteria. GTA production is normally restricted to a small subpopulation of bacteria, and regulation of GTA loci is highly coordinated, but the environmental conditions that favor GTA production are poorly understood. Here, we identified a serine acetyltransferase gene, cysE1, in Rhodobacter capsulatus that is required for optimal receipt of GTA DNA, accumulation of extracellular polysaccharide, and biofilm formation. The cysE1 gene is directly downstream of the core Rhodobacter-like GTA (RcGTA) structural gene cluster and upregulated in an RcGTA overproducer strain, although it is expressed on a separate transcript. The data we present suggest that GTA production and biofilm are coregulated, which could have important implications for the study of rapid bacterial evolution and understanding the full impact of GTAs in the environment. IMPORTANCE Direct exchange of genes between bacteria leads to rapid evolution and is the major factor underlying the spread of antibiotic resistance. Gene transfer agents (GTAs) are an unusual but understudied mechanism for genetic exchange that are capable of transferring any gene from one bacterium to another, and therefore, GTAs are likely to be important factors in genome plasticity in the environment. Despite the potential impact of GTAs, our knowledge of their regulation is incomplete. In this paper, we present evidence that elements of the cysteine biosynthesis pathway are involved in coregulation of various phenotypes required for optimal biofilm formation by Rhodobacter capsulatus and successful infection by the archetypal RcGTA. Establishing the regulatory mechanisms controlling GTA-mediated gene transfer is a key stepping stone to allow a full understanding of their role in the environment and wider impact.
Collapse
|
13
|
Sherlock D, Fogg PCM. The archetypal gene transfer agent RcGTA is regulated via direct interaction with the enigmatic RNA polymerase omega subunit. Cell Rep 2022; 40:111183. [PMID: 35947951 PMCID: PMC9638019 DOI: 10.1016/j.celrep.2022.111183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/06/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
Gene transfer agents (GTAs) are small virus-like particles that indiscriminately package and transfer any DNA present in their host cell, with clear implications for bacterial evolution. The first transcriptional regulator that directly controls GTA expression, GafA, was recently discovered, but its mechanism of action has remained elusive. Here, we demonstrate that GafA controls GTA gene expression via direct interaction with the RNA polymerase omega subunit (Rpo-ω) and also positively autoregulates its own expression by an Rpo-ω-independent mechanism. We show that GafA is a modular protein with distinct DNA and protein binding domains. The functional domains we observe in Rhodobacter GafA also correspond to two-gene operons in Hyphomicrobiales pathogens. These data allow us to produce the most complete regulatory model for a GTA and point toward an atypical mechanism for RNA polymerase recruitment and specific transcriptional activation in the Alphaproteobacteria.
Collapse
Affiliation(s)
- David Sherlock
- Biology Department, University of York, York YO10 5DD, UK
| | - Paul C M Fogg
- Biology Department, University of York, York YO10 5DD, UK; York Biomedical Research Institute (YBRI), University of York, York YO10 5NG, UK.
| |
Collapse
|
14
|
Gutiérrez R, Ram Y, Berman J, Carstens Marques de Sousa K, Nachum-Biala Y, Britzi M, Elad D, Glaser G, Covo S, Harrus S. Adaptive resistance mutations at supra-inhibitory concentrations independent of SOS mutagenesis. Mol Biol Evol 2021; 38:4095-4115. [PMID: 34175952 PMCID: PMC8476149 DOI: 10.1093/molbev/msab196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Emergence of resistant bacteria during antimicrobial treatment is one of the most critical and universal health threats. It is known that several stress-induced mutagenesis and heteroresistance mechanisms can enhance microbial adaptation to antibiotics. Here, we demonstrate that the pathogen Bartonella can undergo stress-induced mutagenesis despite the fact it lacks error-prone polymerases, the rpoS gene and functional UV-induced mutagenesis. We demonstrate that Bartonella acquire de novo single mutations during rifampicin exposure at suprainhibitory concentrations at a much higher rate than expected from spontaneous fluctuations. This is while exhibiting a minimal heteroresistance capacity. The emerged resistant mutants acquired a single rpoB mutation, whereas no other mutations were found in their whole genome. Interestingly, the emergence of resistance in Bartonella occurred only during gradual exposure to the antibiotic, indicating that Bartonella sense and react to the changing environment. Using a mathematical model, we demonstrated that, to reproduce the experimental results, mutation rates should be transiently increased over 1,000-folds, and a larger population size or greater heteroresistance capacity is required. RNA expression analysis suggests that the increased mutation rate is due to downregulation of key DNA repair genes (mutS, mutY, and recA), associated with DNA breaks caused by massive prophage inductions. These results provide new evidence of the hazard of antibiotic overuse in medicine and agriculture.
Collapse
Affiliation(s)
- Ricardo Gutiérrez
- The Koret School of Veterinary Medicine, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.,The Center for Research in Tropical Diseases, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Yoav Ram
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel.,School of Computer Science, Interdisciplinary Center Herzliya, Herzliya, Israel
| | - Judith Berman
- Shmunis School of Biomedicine and Cancer, Faculty of Life Sciences, Tel Aviv University, Tel Aviv University, Ramat Aviv, Israel
| | | | - Yaarit Nachum-Biala
- The Koret School of Veterinary Medicine, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Malka Britzi
- The National Residue Control Laboratory, The Kimron Veterinary Institute, Bet Dagan, Israel
| | - Daniel Elad
- Department of Clinical Bacteriology and Mycology, The Kimron Veterinary Institute, Bet Dagan, Israel
| | - Gad Glaser
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shimon Harrus
- The Koret School of Veterinary Medicine, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
15
|
Obiegala A, Pfeffer M, Kiefer D, Kiefer M, Król N, Silaghi C. Bartonella spp. in Small Mammals and Their Fleas in Differently Structured Habitats From Germany. Front Vet Sci 2021; 7:625641. [PMID: 33537358 PMCID: PMC7848210 DOI: 10.3389/fvets.2020.625641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Most Bartonella spp. are transmitted by fleas and harbored by small mammals which serve as reservoirs. However, little is known about the composition of fleas and their Bartonella spp. from small mammals in Central Europe. Therefore, the aims of this study were to investigate flea communities on small mammals from three differently structured sites (urban, sylvatic, renatured) in Germany as well as the prevalence of Bartonella spp. in small mammals and their parasitizing fleas. In total, 623 small mammals belonging to 10 different species (the majority were Myodes glareolus and Apodemus flavicollis) were available. Fleas were removed from the small mammals' fur, morphologically identified and DNA was extracted. To detect Bartonella spp., two conventional PCRs targeting the gltA gene and the 16S-23S rRNA intergenic spacer were carried out followed by sequencing. Obtained sequences were compared to those in GenBank. In total, 1,156 fleas were collected from 456 small mammals. Altogether, 12 different flea species (the majority were Ctenophthalmus agyrtes, Nosopsyllus fasciatus, and Megabothris turbidus) were detected. At the urban site mostly Leptopsylla segnis and N. fasciatus were collected which may be vectors of zoonotic pathogens to companion animals. The overall prevalence for Bartonella in small mammals was 43.3% and in fleas 49.1%. Five different Bartonella spp. were detected in small mammals namely B. grahamii, B. taylorii, B. doshiae, Bartonella sp. N40 and uncultured Bartonella sp. whereas in fleas four Bartonella spp. were found which were with the exception of B. doshiae identical to the Bartonella species detected in their small mammal hosts. While B. grahamii was the only zoonotic Bartonella sp. most Bartonella strains found in fleas and small mammals belonged to uncultured Bartonella spp. with unknown zoonotic potential. This study showed a high diversity of flea species on small mammals from Germany. Further, high prevalence rates of Bartonella species were detected both in fleas and in their mammalian hosts. Several different Bartonella species with a high genetic variability were discovered. Especially at the urban study sites, this may pose a risk for Bartonella transmission to companion animals and humans.
Collapse
Affiliation(s)
- Anna Obiegala
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Daniel Kiefer
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Nina Król
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Cornelia Silaghi
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute of Infectiology (IMED), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| |
Collapse
|
16
|
Colombet J, Fuster M, Billard H, Sime-Ngando T. Femtoplankton: What's New? Viruses 2020; 12:E881. [PMID: 32806713 PMCID: PMC7472349 DOI: 10.3390/v12080881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 01/01/2023] Open
Abstract
Since the discovery of high abundances of virus-like particles in aquatic environment, emergence of new analytical methods in microscopy and molecular biology has allowed significant advances in the characterization of the femtoplankton, i.e., floating entities filterable on a 0.2 µm pore size filter. The successive evidences in the last decade (2010-2020) of high abundances of biomimetic mineral-organic particles, extracellular vesicles, CPR/DPANN (Candidate phyla radiation/Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota and Nanohaloarchaeota), and very recently of aster-like nanoparticles (ALNs), show that aquatic ecosystems form a huge reservoir of unidentified and overlooked femtoplankton entities. The purpose of this review is to highlight this unsuspected diversity. Herein, we focus on the origin, composition and the ecological potentials of organic femtoplankton entities. Particular emphasis is given to the most recently discovered ALNs. All the entities described are displayed in an evolutionary context along a continuum of complexity, from minerals to cell-like living entities.
Collapse
Affiliation(s)
- Jonathan Colombet
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.F.); (H.B.); (T.S.-N.)
| | | | | | | |
Collapse
|
17
|
Gutiérrez R, Shalit T, Markus B, Yuan C, Nachum-Biala Y, Elad D, Harrus S. Bartonella kosoyi sp. nov. and Bartonella krasnovii sp. nov., two novel species closely related to the zoonotic Bartonella elizabethae, isolated from black rats and wild desert rodent-fleas. Int J Syst Evol Microbiol 2020; 70:1656-1665. [PMID: 32100689 DOI: 10.1099/ijsem.0.003952] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The genus Bartonella (Family: Bartonellaceae; Order: Rhizobiales; Class: Alphaproteobacteria) comprises facultative intracellular Gram-negative, haemotropic, slow-growing, vector-borne bacteria. Wild rodents and their fleas harbor a great diversity of species and strains of the genus Bartonella, including several zoonotic ones. This genetic diversity coupled with a fastidious nature of the organism results in a taxonomic challenge that has led to a massive collection of uncharacterized strains. Here, we report the genomic and phenotypic characterization of two strains, members of the genus Bartonella (namely Tel Aviv and OE 1-1), isolated from Rattus rattus rats and Synosternus cleopatrae fleas, respectively. Scanning electron microscopy revealed rod-shaped bacteria with polar pili, lengths ranging from 1.0 to 2.0 µm and widths ranging from 0.3 to 0.6 µm. OE 1-1 and Tel Aviv strains contained one single chromosome of 2.16 and 2.23 Mbp and one plasmid of 29.0 and 41.5 Kbp, with average DNA G+C contents of 38.16 and 38.47 mol%, respectively. These strains presented an average nucleotide identity (ANI) of 89.9 %. Bartonella elizabethae was found to be the closest phylogenetic relative of both strains (ANI=90.9-93.6 %). The major fatty acids identified in both strains were C18:1ω7c, C18 : 0 and C16 : 0. They differ from B. elizabethae in their C17 : 0 and C15 : 0 compositions. Both strains are strictly capnophilic and their biochemical profiles resembled those of species of the genus Bartonella with validly published names, whereas differences in arylamidase activities partially assisted in their speciation. Genomic and phenotypic differences demonstrate that OE 1-1 and Tel Aviv strains represent novel individual species, closely related to B. elizabethae, for which we propose the names Bartonella kosoyi sp. nov. and Bartonella krasnovii sp. nov.
Collapse
Affiliation(s)
- Ricardo Gutiérrez
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Tali Shalit
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 7610000, Israel
| | - Barak Markus
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 7610000, Israel
| | - Congli Yuan
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, PR China
| | - Yaarit Nachum-Biala
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Daniel Elad
- The Kimron Veterinary Institute, Bet Dagan, 50250, Israel
| | - Shimon Harrus
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| |
Collapse
|
18
|
Krügel M, Pfeffer M, Król N, Imholt C, Baert K, Ulrich RG, Obiegala A. Rats as potential reservoirs for neglected zoonotic Bartonella species in Flanders, Belgium. Parasit Vectors 2020; 13:235. [PMID: 32381113 PMCID: PMC7206682 DOI: 10.1186/s13071-020-04098-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/25/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Bartonella spp. are vector-borne pathogens transmitted to humans via blood-sucking arthropods. Rodents such as the black rat (Rattus rattus) and Norway rat (R. norvegicus) are thought to be the main reservoirs. An infection with rodent-associated Bartonella spp. may cause severe symptoms in humans such as endocarditis and neuroretinitis. The current knowledge of Bartonella prevalence in rats from western Europe is scarce. METHODS Rats and a few other rodent by-catches were trapped in the context of a rodenticide resistance study at different sites in Flanders, Belgium. During dissection, biometric data were collected, and spleen tissues were taken. DNA was extracted from spleen samples and tested for Bartonella spp. by conventional generic polymerase chain reaction (PCR). To determine the Bartonella species, a selected number of amplicons were sequenced and compared with GenBank entries. RESULTS In total, 1123 rodents were trapped. The predominate species was R. norvegicus (99.64%). Other rodents trapped included: two water voles (Arvicola amphibius, 0.18%); one colour rat (R. norvegicus forma domestica, 0.09%); and one muskrat (Ondatra zibethicus, 0.09%). PCR analysis of 1097 rodents resulted in 410 (37.37%, 95% CI: 34.50-40.31%) Bartonella spp. DNA-positive samples. Bartonella tribocorum (94.68%, 95% CI: 88.02-98.25%) was the most frequently detected Bartonella species, followed by B. grahamii (3.19%, 95% CI: 0.66-9.04%) and B. doshiae (1.06%, 95% CI: 0.03-5.79%). An uncultured Bartonella species occurred in one water vole (1.06%, 95% CI: 0.03-5.79%). There was a significantly higher Bartonella prevalence in older rats compared to juveniles and a significant difference in Bartonella prevalence concerning the localisation of trapping sites. In contrast, there was no statistically significant difference in Bartonella prevalence regarding sex, degree of urbanisation and season. CONCLUSIONS Based on the high prevalence found, we conclude that the Norway rat seems to be a key reservoir host for zoonotic B. tribocorum in Belgium.
Collapse
Affiliation(s)
- Maria Krügel
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Nina Król
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Christian Imholt
- Julius Kühn-Institute, Federal Research Institute for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Belgium
| | - Kristof Baert
- Research Institute for Nature and Forest, Brussels, Belgium
| | - Rainer G. Ulrich
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Insel Riems, Germany
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| |
Collapse
|
19
|
Abstract
Prokaryotes commonly undergo genome reduction, particularly in the case of symbiotic bacteria. Genome reductions tend toward the energetically favorable removal of unnecessary, redundant, or nonfunctional genes. However, without mechanisms to compensate for these losses, deleterious mutation and genetic drift might otherwise overwhelm a population. Among the mechanisms employed to counter gene loss and share evolutionary success within a population, gene transfer agents (GTAs) are increasingly becoming recognized as important contributors. Although viral in origin, GTA particles package fragments of their "host" genome for distribution within a population of cells, often in a synchronized manner, rather than selfishly packaging genes necessary for their spread. Microbes as diverse as archaea and alpha-proteobacteria have been known to produce GTA particles, which are capable of transferring selective advantages such as virulence factors and antibiotic resistance. In this review, we discuss the various types of GTAs identified thus far, focusing on a defined set of symbiotic alpha-proteobacteria known to carry them. Drawing attention to the predicted presence of these genes, we discuss their potential within the selective marine and terrestrial environments occupied by mutualistic, parasitic, and endosymbiotic microbes.
Collapse
Affiliation(s)
- Steen Christensen
- Department of Biological Sciences, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Laura R Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, USA. .,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
20
|
Identification of the First Gene Transfer Agent (GTA) Small Terminase in Rhodobacter capsulatus and Its Role in GTA Production and Packaging of DNA. J Virol 2019; 93:JVI.01328-19. [PMID: 31534034 PMCID: PMC6854486 DOI: 10.1128/jvi.01328-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
Genetic exchange mediated by viruses of bacteria (bacteriophages) is the primary driver of rapid bacterial evolution. The priority of viruses is usually to propagate themselves. Most bacteriophages use the small terminase protein to identify their own genome and direct its inclusion into phage capsids. Gene transfer agents (GTAs) are descended from bacteriophages, but they instead package fragments of the entire bacterial genome without preference for their own genes. GTAs do not selectively target specific DNA, and no GTA small terminases are known. Here, we identified the small terminase from the model Rhodobacter capsulatus GTA, which then allowed prediction of analogues in other species. We examined the role of the small terminase in GTA production and propose a structural basis for random DNA packaging.IMPORTANCE Random transfer of any and all genes between bacteria could be influential in the spread of virulence or antimicrobial resistance genes. Discovery of the true prevalence of GTAs in sequenced genomes is hampered by their apparent similarity to bacteriophages. Our data allowed the prediction of small terminases in diverse GTA producer species, and defining the characteristics of a "GTA-type" terminase could be an important step toward novel GTA identification. Importantly, the GTA small terminase shares many features with its phage counterpart. We propose that the GTA terminase complex could become a streamlined model system to answer fundamental questions about double-stranded DNA (dsDNA) packaging by viruses that have not been forthcoming to date.
Collapse
|
21
|
Grüll MP, Mulligan ME, Lang AS. Small extracellular particles with big potential for horizontal gene transfer: membrane vesicles and gene transfer agents. FEMS Microbiol Lett 2019; 365:5067299. [PMID: 30085064 DOI: 10.1093/femsle/fny192] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/04/2018] [Indexed: 12/18/2022] Open
Abstract
Bacteria are known to release different types of particles that serve various purposes such as the processing of metabolites, communication, and the transfer of genetic material. One of the most interesting aspects of the production of such particles is the biogenesis and trafficking of complex particles that can carry DNA, RNA, proteins or toxins into the surrounding environment to aid in bacterial survival or lead to gene transfer. Two important bacterial extracellular complexes are membrane vesicles and gene transfer agents. In this review, we will discuss the production, contents and functions of these two types of particles as related to their abilities to facilitate horizontal gene transfer.
Collapse
Affiliation(s)
| | - M E Mulligan
- Biochemistry, Memorial University of Newfoundland, St John's, NL, Canada
| | | |
Collapse
|
22
|
Québatte M, Dehio C. Bartonella gene transfer agent: Evolution, function, and proposed role in host adaptation. Cell Microbiol 2019; 21:e13068. [PMID: 31231937 PMCID: PMC6899734 DOI: 10.1111/cmi.13068] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/09/2019] [Accepted: 06/13/2019] [Indexed: 01/05/2023]
Abstract
The processes underlying host adaptation by bacterial pathogens remain a fundamental question with relevant clinical, ecological, and evolutionary implications. Zoonotic pathogens of the genus Bartonella constitute an exceptional model to study these aspects. Bartonellae have undergone a spectacular diversification into multiple species resulting from adaptive radiation. Specific adaptations of a complex facultative intracellular lifestyle have enabled the colonisation of distinct mammalian reservoir hosts. This remarkable host adaptability has a multifactorial basis and is thought to be driven by horizontal gene transfer (HGT) and recombination among a limited genus‐specific pan genome. Recent functional and evolutionary studies revealed that the conserved Bartonella gene transfer agent (BaGTA) mediates highly efficient HGT and could thus drive this evolution. Here, we review the recent progress made towards understanding BaGTA evolution, function, and its role in the evolution and pathogenesis of Bartonella spp. We notably discuss how BaGTA could have contributed to genome diversification through recombination of beneficial traits that underlie host adaptability. We further address how BaGTA may counter the accumulation of deleterious mutations in clonal populations (Muller's ratchet), which are expected to occur through the recurrent transmission bottlenecks during the complex infection cycle of these pathogens in their mammalian reservoir hosts and arthropod vectors.
Collapse
|
23
|
Obiegala A, Heuser E, Ryll R, Imholt C, Fürst J, Prautsch LM, Plenge-Bönig A, Ulrich RG, Pfeffer M. Norway and black rats in Europe: potential reservoirs for zoonotic arthropod-borne pathogens? PEST MANAGEMENT SCIENCE 2019; 75:1556-1563. [PMID: 30624020 DOI: 10.1002/ps.5323] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/20/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Norway rats (Rattus norvegicus) and black rats (R. rattus) are known to be cosmopolitan reservoirs for zoonotic agents. Nevertheless, little is known about prevalence and distribution of arthropod-borne pathogens in rats from Europe. Therefore, this survey focused on the detection of arthropod-borne pathogens. Spleen-derived DNA samples were available from 528 Norway rats and 74 black rats collected in several European countries. Further, these samples were processed by polymerase chain reaction for the detection of zoonotic pathogens such as Anaplasma phagocytophilum, Candidatus Neoehrlichia mikurensis (CNM), Babesia spp. and Bartonella spp. eventually followed by sequencing. RESULTS Babesia spp. was not detected. Four Norway rat samples were positive for A. phagocytophilum DNA and two for CNM. In 50 rat samples, Bartonella spp. DNA was detected (8.1%; 95% Confidence interval (CI) 6.2-10.61). Whereas B. tribocorum (n = 45) and B. grahamii (n = 1) were carried exclusively in Norway rats from Central Europe (Belgium, Germany), B. coopersplainsensis (n = 4) was detected only in black rats from southern European countries (Spain, Italy). CONCLUSIONS Pathogenic Bartonella spp. DNA was found in black and Norway rats from Germany, Italy, Spain and Belgium for the first time. Bartonellae were found focally in zoos suggesting Norway rats as a possible reservoir for B. tribocorum and black rats as a reservoir for B. coopersplainsensis in Europe. These findings should raise awareness of pathogenic Bartonella spp. in Norway rats, especially in terms of pest management control in zoos. Norway and black rats seem not to be predominantly involved in the life cycle of the other examined arthropod-borne pathogens in Europe. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Elisa Heuser
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel, Riems, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Insel Riems, Greifswald-Insel Riems, Germany
| | - René Ryll
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel, Riems, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Insel Riems, Greifswald-Insel Riems, Germany
| | - Christian Imholt
- Julius Kühn-Institute, Federal Research Institute for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - Johanna Fürst
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Lisa-Marie Prautsch
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Anita Plenge-Bönig
- Department Hygiene and Infection Medicine, Institute of Hygiene and Environment, Hamburg, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel, Riems, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Insel Riems, Greifswald-Insel Riems, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| |
Collapse
|
24
|
Tamarit D, Neuvonen MM, Engel P, Guy L, Andersson SGE. Origin and Evolution of the Bartonella Gene Transfer Agent. Mol Biol Evol 2019; 35:451-464. [PMID: 29161442 DOI: 10.1093/molbev/msx299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gene transfer agents (GTAs) are domesticated bacteriophages that have evolved into molecular machines for the transfer of bacterial DNA. Despite their widespread nature and their biological implications, the mechanisms and selective forces that drive the emergence of GTAs are still poorly understood. Two GTAs have been identified in the Alphaproteobacteria: the RcGTA, which is widely distributed in a broad range of species; and the BaGTA, which has a restricted host range that includes vector-borne intracellular bacteria of the genus Bartonella. The RcGTA packages chromosomal DNA randomly, whereas the BaGTA particles contain a relatively higher fraction of genes for host interaction factors that are amplified from a nearby phage-derived origin of replication. In this study, we compare the BaGTA genes with homologous bacteriophage genes identified in the genomes of Bartonella species and close relatives. Unlike the BaGTA, the prophage genes are neither present in all species, nor inserted into homologous genomic sites. Phylogenetic inferences and substitution frequency analyses confirm codivergence of the BaGTA with the host genome, as opposed to multiple integration and recombination events in the prophages. Furthermore, the organization of segments flanking the BaGTA differs from that of the prophages by a few rearrangement events, which have abolished the normal coordination between phage genome replication and phage gene expression. Based on the results of our comparative analysis, we propose a model for how a prophage may be transformed into a GTA that transfers amplified bacterial DNA segments.
Collapse
Affiliation(s)
- Daniel Tamarit
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Minna-Maria Neuvonen
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Lionel Guy
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Siv G E Andersson
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Wagner A, Dehio C. Role of distinct type-IV-secretion systems and secreted effector sets in host adaptation by pathogenic Bartonella species. Cell Microbiol 2019; 21:e13004. [PMID: 30644157 PMCID: PMC6519360 DOI: 10.1111/cmi.13004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/17/2018] [Accepted: 01/06/2019] [Indexed: 12/12/2022]
Abstract
The α‐proteobacterial genus Bartonella comprises a large number of facultative intracellular pathogens that share a common lifestyle hallmarked by hemotrophic infection and arthropod transmission. Speciation in the four deep‐branching lineages (L1–L4) occurred by host adaptation facilitating the establishment of long lasting bacteraemia in specific mammalian reservoir host(s). Two distinct type‐IV‐secretion systems (T4SSs) acquired horizontally by different Bartonella lineages mediate essential host interactions during infection and represent key innovations for host adaptation. The Trw‐T4SS confined to the species‐rich L4 mediates host‐specific erythrocyte infection and likely has functionally replaced flagella as ancestral virulence factors implicated in erythrocyte colonisation by bartonellae of the other lineages. The VirB/VirD4‐T4SS translocates Bartonella effector proteins (Bep) into various host cell types to modulate diverse cellular and innate immune functions involved in systemic spreading of bacteria following intradermal inoculation. Independent acquisition of the virB/virD4/bep locus by L1, L3, and L4 was likely driven by arthropod vectors associated with intradermal inoculation of bacteria rather than facilitating direct access to blood. Subsequently, adaptation to colonise specific niches in the new host has shaped the evolution of complex species‐specific Bep repertoires. This diversification of the virulence factor repertoire of Bartonella spp. represents a remarkable example for parallel evolution of host adaptation.
Collapse
Affiliation(s)
- Alexander Wagner
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
26
|
Gutiérrez R, Cohen C, Flatau R, Marcos-Hadad E, Garrido M, Halle S, Nachum-Biala Y, Covo S, Hawlena H, Harrus S. Untangling the knots: Co-infection and diversity ofBartonellafrom wild gerbils and their associated fleas. Mol Ecol 2018; 27:4787-4807. [DOI: 10.1111/mec.14906] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/31/2018] [Accepted: 10/02/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Ricardo Gutiérrez
- Koret School of Veterinary Medicine; The Hebrew University of Jerusalem; Rehovot Israel
| | - Carmit Cohen
- Mitrani Department of Desert Ecology; Jacob Blaustein Institutes for Desert Research; Ben-Gurion University of the Negev; Midreshet Ben-Gurion Israel
| | - Ron Flatau
- Mitrani Department of Desert Ecology; Jacob Blaustein Institutes for Desert Research; Ben-Gurion University of the Negev; Midreshet Ben-Gurion Israel
| | - Evgeniya Marcos-Hadad
- Department of Plant Pathology and Microbiology; Robert H. Smith Faculty of Agriculture; The Hebrew University of Jerusalem; Rehovot Israel
| | - Mario Garrido
- Mitrani Department of Desert Ecology; Jacob Blaustein Institutes for Desert Research; Ben-Gurion University of the Negev; Midreshet Ben-Gurion Israel
| | - Snir Halle
- Mitrani Department of Desert Ecology; Jacob Blaustein Institutes for Desert Research; Ben-Gurion University of the Negev; Midreshet Ben-Gurion Israel
| | - Yaarit Nachum-Biala
- Koret School of Veterinary Medicine; The Hebrew University of Jerusalem; Rehovot Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology; Robert H. Smith Faculty of Agriculture; The Hebrew University of Jerusalem; Rehovot Israel
| | - Hadas Hawlena
- Mitrani Department of Desert Ecology; Jacob Blaustein Institutes for Desert Research; Ben-Gurion University of the Negev; Midreshet Ben-Gurion Israel
| | - Shimon Harrus
- Koret School of Veterinary Medicine; The Hebrew University of Jerusalem; Rehovot Israel
| |
Collapse
|
27
|
Bisch G, Neuvonen MM, Pierce NE, Russell JA, Koga R, Sanders JG, Lukasik P, Andersson SGE. Genome Evolution of Bartonellaceae Symbionts of Ants at the Opposite Ends of the Trophic Scale. Genome Biol Evol 2018; 10:1687-1704. [PMID: 29982531 PMCID: PMC6044324 DOI: 10.1093/gbe/evy126] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 12/17/2022] Open
Abstract
Many insects rely on bacterial symbionts to supply essential amino acids and vitamins that are deficient in their diets, but metabolic comparisons of closely related gut bacteria in insects with different dietary preferences have not been performed. Here, we demonstrate that herbivorous ants of the genus Dolichoderus from the Peruvian Amazon host bacteria of the family Bartonellaceae, known for establishing chronic or pathogenic infections in mammals. We detected these bacteria in all studied Dolichoderus species, and found that they reside in the midgut wall, that is, the same location as many previously described nutritional endosymbionts of insects. The genomic analysis of four divergent strains infecting different Dolichoderus species revealed genes encoding pathways for nitrogen recycling and biosynthesis of several vitamins and all essential amino acids. In contrast, several biosynthetic pathways have been lost, whereas genes for the import and conversion of histidine and arginine to glutamine have been retained in the genome of a closely related gut bacterium of the carnivorous ant Harpegnathos saltator. The broad biosynthetic repertoire in Bartonellaceae of herbivorous ants resembled that of gut bacteria of honeybees that likewise feed on carbohydrate-rich diets. Taken together, the broad distribution of Bartonellaceae across Dolichoderus ants, their small genome sizes, the specific location within hosts, and the broad biosynthetic capability suggest that these bacteria are nutritional symbionts in herbivorous ants. The results highlight the important role of the host nutritional biology for the genomic evolution of the gut microbiota-and conversely, the importance of the microbiota for the nutrition of hosts.
Collapse
Affiliation(s)
- Gaelle Bisch
- Cell and Molecular Biology, Science for Life Laboratory, Department of Molecular Evolution, Uppsala University, Sweden
| | - Minna-Maria Neuvonen
- Cell and Molecular Biology, Science for Life Laboratory, Department of Molecular Evolution, Uppsala University, Sweden
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University
| | | | - Ryuichi Koga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Jon G Sanders
- Department of Organismic and Evolutionary Biology, Harvard University.,Department of Pediatrics, University of California San Diego, La Jolla
| | - Piotr Lukasik
- Department of Biology, Drexel University.,Division of Biological Sciences, University of Montana
| | - Siv G E Andersson
- Cell and Molecular Biology, Science for Life Laboratory, Department of Molecular Evolution, Uppsala University, Sweden
| |
Collapse
|
28
|
Gutiérrez R, Markus B, Carstens Marques de Sousa K, Marcos-Hadad E, Mugasimangalam RC, Nachum-Biala Y, Hawlena H, Covo S, Harrus S. Prophage-Driven Genomic Structural Changes Promote Bartonella Vertical Evolution. Genome Biol Evol 2018; 10:3089-3103. [PMID: 30346520 PMCID: PMC6257571 DOI: 10.1093/gbe/evy236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2018] [Indexed: 12/30/2022] Open
Abstract
Bartonella is a genetically diverse group of vector-borne bacteria. Over 40 species have been characterized to date, mainly from mammalian reservoirs and arthropod vectors. Rodent reservoirs harbor one of the largest Bartonella diversity described to date, and novel species and genetic variants are continuously identified from these hosts. Yet, it is still unknown if this significant genetic diversity stems from adaptation to different niches or from intrinsic high mutation rates. Here, we explored the vertical occurrence of spontaneous genomic alterations in 18 lines derived from two rodent-associated Bartonella elizabethae-like strains, evolved in nonselective agar plates under conditions mimicking their vector- and mammalian-associated temperatures, and the transmission cycles between them (i.e., 26 °C, 37 °C, and alterations between the two), using mutation accumulation experiments. After ∼1,000 generations, evolved genomes revealed few point mutations (average of one-point mutation per line), evidencing conserved single-nucleotide mutation rates. Interestingly, three large structural genomic changes (two large deletions and an inversion) were identified over all lines, associated with prophages and surface adhesin genes. Particularly, a prophage, deleted during constant propagation at 37 °C, was associated with an increased autonomous replication at 26 °C (the flea-associated temperature). Complementary molecular analyses of wild strains, isolated from desert rodents and their fleas, further supported the occurrence of structural genomic variations and prophage-associated deletions in nature. Our findings suggest that structural genomic changes represent an effective intrinsic mechanism to generate diversity in slow-growing bacteria and emphasize the role of prophages as promoters of diversity in nature.
Collapse
Affiliation(s)
- Ricardo Gutiérrez
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Barak Markus
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | | | - Evgeniya Marcos-Hadad
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Yaarit Nachum-Biala
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hadas Hawlena
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shimon Harrus
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
29
|
Redfield RJ, Soucy SM. Evolution of Bacterial Gene Transfer Agents. Front Microbiol 2018; 9:2527. [PMID: 30410473 PMCID: PMC6209664 DOI: 10.3389/fmicb.2018.02527] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/03/2018] [Indexed: 01/30/2023] Open
Abstract
Bacterial gene transfer agents (GTAs) are small virus-like particles that package DNA fragments and inject them into cells. They are encoded by gene clusters resembling defective prophages, with genes for capsid head and tail components. These gene clusters are usually assumed to be maintained by selection for the benefits of GTA-mediated recombination, but this has never been tested. We rigorously examined the potential benefits of GTA-mediated recombination, considering separately transmission of GTA-encoding genes and recombination of all chromosomal genes. In principle GTA genes could be directly maintained if GTA particles spread them to GTA- cells often enough to compensate for the loss of GTA-producing cells. However, careful bookkeeping showed that losses inevitably exceed gains for two reasons. First, cells must lyse to release particles to the environment. Second, GTA genes are not preferentially replicated before DNA is packaged. A simulation model was then used to search for conditions where recombination of chromosomal genes makes GTA+ populations fitter than GTA- populations. Although the model showed that both synergistic epistasis and some modes of regulation could generate fitness benefits large enough to overcome the cost of lysis, these benefits neither allowed GTA+ cells to invade GTA- populations, nor allowed GTA+ populations to resist invasion by GTA- cells. Importantly, the benefits depended on highly improbable assumptions about the efficiencies of GTA production and recombination. Thus, the selective benefits that maintain GTA gene clusters over many millions of years must arise from consequences other than transfer of GTA genes or recombination of chromosomal genes.
Collapse
Affiliation(s)
- Rosemary J Redfield
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Shannon M Soucy
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
30
|
Tomasch J, Wang H, Hall ATK, Patzelt D, Preusse M, Petersen J, Brinkmann H, Bunk B, Bhuju S, Jarek M, Geffers R, Lang AS, Wagner-Döbler I. Packaging of Dinoroseobacter shibae DNA into Gene Transfer Agent Particles Is Not Random. Genome Biol Evol 2018; 10:359-369. [PMID: 29325123 PMCID: PMC5786225 DOI: 10.1093/gbe/evy005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 02/07/2023] Open
Abstract
Gene transfer agents (GTAs) are phage-like particles which contain a fragment of genomic DNA of the bacterial or archaeal producer and deliver this to a recipient cell. GTA gene clusters are present in the genomes of almost all marine Rhodobacteraceae (Roseobacters) and might be important contributors to horizontal gene transfer in the world’s oceans. For all organisms studied so far, no obvious evidence of sequence specificity or other nonrandom process responsible for packaging genomic DNA into GTAs has been found. Here, we show that knock-out of an autoinducer synthase gene of Dinoroseobacter shibae resulted in overproduction and release of functional GTA particles (DsGTA). Next-generation sequencing of the 4.2-kb DNA fragments isolated from DsGTAs revealed that packaging was not random. DNA from low-GC conjugative plasmids but not from high-GC chromids was excluded from packaging. Seven chromosomal regions were strongly overrepresented in DNA isolated from DsGTA. These packaging peaks lacked identifiable conserved sequence motifs that might represent recognition sites for the GTA terminase complex. Low-GC regions of the chromosome, including the origin and terminus of replication, were underrepresented in DNA isolated from DsGTAs. DNA methylation reduced packaging frequency while the level of gene expression had no influence. Chromosomal regions found to be over- and underrepresented in DsGTA-DNA were regularly spaced. We propose that a “headful” type of packaging is initiated at the sites of coverage peaks and, after linearization of the chromosomal DNA, proceeds in both directions from the initiation site. GC-content, DNA-modifications, and chromatin structure might influence at which sides GTA packaging can be initiated.
Collapse
Affiliation(s)
- Jürgen Tomasch
- Group Microbial Communication, Helmholtz-Centre for Infection Research, Braunschweig, Germany.,Department of Molecular Bacteriology, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Hui Wang
- Group Microbial Communication, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - April T K Hall
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada
| | - Diana Patzelt
- Group Microbial Communication, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Matthias Preusse
- Department of Molecular Bacteriology, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Jörn Petersen
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Henner Brinkmann
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sabin Bhuju
- Group Genome Analytics, Helmholtz-Center for Infection Research, Braunschweig, Germany
| | - Michael Jarek
- Group Genome Analytics, Helmholtz-Center for Infection Research, Braunschweig, Germany
| | - Robert Geffers
- Group Genome Analytics, Helmholtz-Center for Infection Research, Braunschweig, Germany
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada
| | - Irene Wagner-Döbler
- Group Microbial Communication, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
31
|
Freiherr von Boeselager R, Pfeifer E, Frunzke J. Cytometry meets next-generation sequencing - RNA-Seq of sorted subpopulations reveals regional replication and iron-triggered prophage induction in Corynebacterium glutamicum. Sci Rep 2018; 8:14856. [PMID: 30291266 PMCID: PMC6173762 DOI: 10.1038/s41598-018-32997-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/19/2018] [Indexed: 12/18/2022] Open
Abstract
Phenotypic diversification is key to microbial adaptation. Currently, advanced technological approaches offer insights into cell-to-cell variation of bacterial populations at a spatiotemporal resolution. However, the underlying molecular causes or consequences often remain obscure. In this study, we developed a workflow combining fluorescence-activated cell sorting and RNA-sequencing, thereby allowing transcriptomic analysis of 106 bacterial cells. As a proof of concept, the workflow was applied to study prophage induction in a subpopulation of Corynebacterium glutamicum. Remarkably, both the phage genes and flanking genomic regions of the CGP3 prophage revealed significantly increased coverage upon prophage induction - a phenomenon that to date has been obscured by bulk approaches. Genome sequencing of prophage-induced populations suggested regional replication at the CGP3 locus in C. glutamicum. Finally, the workflow was applied to unravel iron-triggered prophage induction in early exponential cultures. Here, an up-shift in iron levels resulted in a heterogeneous response of an SOS (PdivS) reporter. RNA-sequencing of the induced subpopulation confirmed induction of the SOS response triggering also activation of the CGP3 prophage. The fraction of CGP3-induced cells was enhanced in a mutant lacking the iron regulator DtxR suffering from enhanced iron uptake. Altogether, these findings demonstrate the potential of the established workflow to gain insights into the phenotypic dynamics of bacterial populations.
Collapse
Affiliation(s)
| | - Eugen Pfeifer
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Julia Frunzke
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
32
|
Tay ST, Kho KL, Lye SF, Ngeow YF. Phylogeny and putative virulence gene analysis of Bartonella bovis. J Vet Med Sci 2018; 80:653-661. [PMID: 29311425 PMCID: PMC5938196 DOI: 10.1292/jvms.17-0448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Bartonella bovis is a small Gram-negative bacterium recognized as an
etiological agent for bacteremia and endocarditis in cattle. As few reports are available
on the taxonomic position of B. bovis and its mechanism of virulence,
this study aims to resolve the phylogeny of B. bovis and investigate
putative virulence genes based on whole genome sequence analysis. Genome-wide comparisons
based on single nucleotide polymorphisms (SNP) and orthologous genes were performed in
this study for phylogenetic inference of 27 Bartonella species. Rapid
Annotation using Subsystem Technology (RAST) analysis was used for annotation of putative
virulence genes. The phylogenetic tree generated from the genome-wide comparison of
orthologous genes exhibited a topology almost similar to that of the tree generated from
SNP-based comparison, indicating a high concordance in the nucleotide and amino acid
sequences of Bartonella spp. The analyses show consistent grouping of
B. bovis in a cluster related to ruminant-associated species, including
Bartonella australis, Bartonella melophagi and
Bartonella schoenbuchensis. RAST analysis revealed genes encoding
flagellar components, in corroboration with the observation of flagella-like structure of
BbUM strain under negative straining. Genes associated with virulence, disease and
defence, prophages, membrane transport, iron acquisition, motility and chemotaxis are
annotated in B. bovis genome. The flagellin (flaA) gene
of B. bovis is closely related to Bartonella
bacilliformis and Bartonella clarridgeiae but distinct from
other Gram-negative bacteria. The absence of type IV secretion systems, the bona
fide pathogenicity factors of bartonellae, in B. bovis
suggests that it may have a different mechanism of pathogenicity.
Collapse
Affiliation(s)
- Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kai Ling Kho
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Siew Fen Lye
- BioEasy Sdn Bhd. Setia Avenue, 33A-3, Jalan Setia Prima S, U13/S, Setia Alam, Seksyen U13, 40170 Shah Alam, Selangor, Malaysia
| | - Yun Fong Ngeow
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor DE, Malaysia
| |
Collapse
|
33
|
Shakya M, Soucy SM, Zhaxybayeva O. Insights into origin and evolution of α-proteobacterial gene transfer agents. Virus Evol 2017; 3:vex036. [PMID: 29250433 PMCID: PMC5721377 DOI: 10.1093/ve/vex036] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several bacterial and archaeal lineages produce nanostructures that morphologically resemble small tailed viruses, but, unlike most viruses, contain apparently random pieces of the host genome. Since these elements can deliver the packaged DNA to other cells, they were dubbed gene transfer agents (GTAs). Because many genes involved in GTA production have viral homologs, it has been hypothesized that the GTA ancestor was a virus. Whether GTAs represent an atypical virus, a defective virus, or a virus co-opted by the prokaryotes for some function, remains to be elucidated. To evaluate these possibilities, we examined the distribution and evolutionary histories of genes that encode a GTA in the α-proteobacterium Rhodobacter capsulatus (RcGTA). We report that although homologs of many individual RcGTA genes are abundant across bacteria and their viruses, RcGTA-like genomes are mainly found in one subclade of α-proteobacteria. When compared with the viral homologs, genes of the RcGTA-like genomes evolve significantly slower, and do not have higher %A+T nucleotides than their host chromosomes. Moreover, they appear to reside in stable regions of the bacterial chromosomes that are generally conserved across taxonomic orders. These findings argue against RcGTA being an atypical or a defective virus. Our phylogenetic analyses suggest that RcGTA ancestor likely originated in the lineage that gave rise to contemporary α-proteobacterial orders Rhizobiales, Rhodobacterales, Caulobacterales, Parvularculales, and Sphingomonadales, and since that time the RcGTA-like element has co-evolved with its host chromosomes. Such evolutionary history is compatible with maintenance of these elements by bacteria due to some selective advantage. As for many other prokaryotic traits, horizontal gene transfer played a substantial role in the evolution of RcGTA-like elements, not only in shaping its genome components within the orders, but also in occasional dissemination of RcGTA-like regions across the orders and even to different bacterial phyla.
Collapse
Affiliation(s)
- Migun Shakya
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| | - Shannon M Soucy
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| | - Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA.,Department of Computer Science, Dartmouth College, 6211 Sudikoff Lab, Hanover, NH 03755, USA
| |
Collapse
|
34
|
Abstract
Since the reclassification of the genus Bartonella in 1993, the number of species has grown from 1 to 45 currently designated members. Likewise, the association of different Bartonella species with human disease continues to grow, as does the range of clinical presentations associated with these bacteria. Among these, blood-culture-negative endocarditis stands out as a common, often undiagnosed, clinical presentation of infection with several different Bartonella species. The limitations of laboratory tests resulting in this underdiagnosis of Bartonella endocarditis are discussed. The varied clinical picture of Bartonella infection and a review of clinical aspects of endocarditis caused by Bartonella are presented. We also summarize the current knowledge of the molecular basis of Bartonella pathogenesis, focusing on surface adhesins in the two Bartonella species that most commonly cause endocarditis, B. henselae and B. quintana. We discuss evidence that surface adhesins are important factors for autoaggregation and biofilm formation by Bartonella species. Finally, we propose that biofilm formation is a critical step in the formation of vegetative masses during Bartonella-mediated endocarditis and represents a potential reservoir for persistence by these bacteria.
Collapse
|
35
|
Lang AS, Westbye AB, Beatty JT. The Distribution, Evolution, and Roles of Gene Transfer Agents in Prokaryotic Genetic Exchange. Annu Rev Virol 2017; 4:87-104. [DOI: 10.1146/annurev-virology-101416-041624] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, A1B 3X9, Canada
| | - Alexander B. Westbye
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - J. Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, V6T 1Z3, Canada
| |
Collapse
|
36
|
Westbye AB, Beatty JT, Lang AS. Guaranteeing a captive audience: coordinated regulation of gene transfer agent (GTA) production and recipient capability by cellular regulators. Curr Opin Microbiol 2017; 38:122-129. [DOI: 10.1016/j.mib.2017.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/24/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
|
37
|
Québatte M, Christen M, Harms A, Körner J, Christen B, Dehio C. Gene Transfer Agent Promotes Evolvability within the Fittest Subpopulation of a Bacterial Pathogen. Cell Syst 2017. [PMID: 28624614 PMCID: PMC5496983 DOI: 10.1016/j.cels.2017.05.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Bartonella gene transfer agent (BaGTA) is an archetypical example for domestication of a phage-derived element to permit high-frequency genetic exchange in bacterial populations. Here we used multiplexed transposon sequencing (TnSeq) and single-cell reporters to globally define the core components and transfer dynamics of BaGTA. Our systems-level analysis has identified inner- and outer-circle components of the BaGTA system, including 55 regulatory components, as well as an additional 74 and 107 components mediating donor transfer and recipient uptake functions. We show that the stringent response signal guanosine-tetraphosphate (ppGpp) restricts BaGTA induction to a subset of fast-growing cells, whereas BaGTA particle uptake depends on a functional Tol-Pal trans-envelope complex that mediates outer-membrane invagination upon cell division. Our findings suggest that Bartonella evolved an efficient strategy to promote genetic exchange within the fittest subpopulation while disfavoring exchange of deleterious genetic information, thereby facilitating genome integrity and rapid host adaptation.
Collapse
Affiliation(s)
- Maxime Québatte
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Matthias Christen
- Institute of Molecular Systems Biology, ETH Zürich, Auguste-Piccard-Hof 1, HPT E71, 8093 Zürich, Switzerland
| | - Alexander Harms
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Jonas Körner
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Beat Christen
- Institute of Molecular Systems Biology, ETH Zürich, Auguste-Piccard-Hof 1, HPT E71, 8093 Zürich, Switzerland.
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
38
|
Association of Bartonella Species with Wild and Synanthropic Rodents in Different Brazilian Biomes. Appl Environ Microbiol 2016; 82:7154-7164. [PMID: 27736785 DOI: 10.1128/aem.02447-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/27/2016] [Indexed: 02/03/2023] Open
Abstract
Bartonella spp. comprise an ecologically successful group of microorganisms that infect erythrocytes and have adapted to different hosts, which include a wide range of mammals, besides humans. Rodents are reservoirs of about two-thirds of Bartonella spp. described to date; and some of them have been implicated as causative agents of human diseases. In our study, we performed molecular and phylogenetic analyses of Bartonella spp. infecting wild rodents from five different Brazilian biomes. In order to characterize the genetic diversity of Bartonella spp., we performed a robust analysis based on three target genes, followed by sequencing, Bayesian inference, and maximum likelihood analysis. Bartonella spp. were detected in 25.6% (117/457) of rodent spleen samples analyzed, and this occurrence varied among different biomes. The diversity analysis of gltA sequences showed the presence of 15 different haplotypes. Analysis of the phylogenetic relationship of gltA sequences performed by Bayesian inference and maximum likelihood showed that the Bartonella species detected in rodents from Brazil was closely related to the phylogenetic group A detected in other cricetid rodents from North America, probably constituting only one species. Last, the Bartonella species genogroup identified in the present study formed a monophyletic group that included Bartonella samples from seven different rodent species distributed in three distinct biomes. In conclusion, our study showed that the occurrence of Bartonella bacteria in rodents is much more frequent and widespread than previously recognized. IMPORTANCE In the present study, we reported the occurrence of Bartonella spp. in some sites in Brazil. The identification and understanding of the distribution of this important group of bacteria may allow the Brazilian authorities to recognize potential regions with the risk of transmission of these pathogens among wild and domestic animals and humans. In addition, our study accessed important gaps in the biology of this group of bacteria in Brazil, such as its low host specificity, high genetic diversity, and relationship with other Bartonella spp. detected in rodents trapped in America. Considering the diversity of newly discovered Bartonella species and the great ecological plasticity of these bacteria, new studies with the aim of revealing the biological aspects unknown until now are needed and must be performed around the world. In this context, the impact of Bartonella spp. associated with rodents in human health should be assessed in future studies.
Collapse
|
39
|
Martin-Alonso A, Houemenou G, Abreu-Yanes E, Valladares B, Feliu C, Foronda P. Bartonellaspp. in Small Mammals, Benin. Vector Borne Zoonotic Dis 2016; 16:229-37. [DOI: 10.1089/vbz.2015.1838] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Aarón Martin-Alonso
- University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Canary Islands, Spain
| | - Gualbert Houemenou
- Unité de Recherche en Zoogéographie, Universite de Liège, Sart Tilman, Belgium
| | - Estefanía Abreu-Yanes
- University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Canary Islands, Spain
| | - Basilio Valladares
- University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Canary Islands, Spain
| | - Carlos Feliu
- Laboratory of Parasitology, University of Barcelona, Barcelona, Cataluña, Spain
| | - Pilar Foronda
- University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Canary Islands, Spain
| |
Collapse
|
40
|
Tamarit D, Ellegaard KM, Wikander J, Olofsson T, Vásquez A, Andersson SGE. Functionally Structured Genomes in Lactobacillus kunkeei Colonizing the Honey Crop and Food Products of Honeybees and Stingless Bees. Genome Biol Evol 2015; 7:1455-73. [PMID: 25953738 PMCID: PMC4494060 DOI: 10.1093/gbe/evv079] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Lactobacillus kunkeei is the most abundant bacterial species in the honey crop and food products of honeybees. The 16 S rRNA genes of strains isolated from different bee species are nearly identical in sequence and therefore inadequate as markers for studies of coevolutionary patterns. Here, we have compared the 1.5 Mb genomes of ten L. kunkeei strains isolated from all recognized Apis species and another two strains from Meliponini species. A gene flux analysis, including previously sequenced Lactobacillus species as outgroups, indicated the influence of reductive evolution. The genome architecture is unique in that vertically inherited core genes are located near the terminus of replication, whereas genes for secreted proteins and putative host-adaptive traits are located near the origin of replication. We suggest that these features have resulted from a genome-wide loss of genes, with integrations of novel genes mostly occurring in regions flanking the origin of replication. The phylogenetic analyses showed that the bacterial topology was incongruent with the host topology, and that strains of the same microcluster have recombined frequently across the host species barriers, arguing against codiversification. Multiple genotypes were recovered in the individual hosts and transfers of mobile elements could be demonstrated for strains isolated from the same host species. Unlike other bacteria with small genomes, short generation times and multiple rRNA operons suggest that L. kunkeei evolves under selection for rapid growth in its natural growth habitat. The results provide an extended framework for reductive genome evolution and functional genome organization in bacteria.
Collapse
Affiliation(s)
- Daniel Tamarit
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Sweden
| | - Kirsten M Ellegaard
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Sweden
| | - Johan Wikander
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Sweden
| | - Tobias Olofsson
- Medical Microbiology, Department of Laboratory Medicine, Lund University, Sweden
| | - Alejandra Vásquez
- Medical Microbiology, Department of Laboratory Medicine, Lund University, Sweden
| | - Siv G E Andersson
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Sweden
| |
Collapse
|
41
|
Gutiérrez R, Krasnov B, Morick D, Gottlieb Y, Khokhlova IS, Harrus S. Bartonella infection in rodents and their flea ectoparasites: an overview. Vector Borne Zoonotic Dis 2015; 15:27-39. [PMID: 25629778 PMCID: PMC4307031 DOI: 10.1089/vbz.2014.1606] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epidemiological studies worldwide have reported a high prevalence and a great diversity of Bartonella species, both in rodents and their flea parasites. The interaction among Bartonella, wild rodents, and fleas reflects a high degree of adaptation among these organisms. Vertical and horizontal efficient Bartonella transmission pathways within flea communities and from fleas to rodents have been documented in competence studies, suggesting that fleas are key players in the transmission of Bartonella to rodents. Exploration of the ecological traits of rodents and their fleas may shed light on the mechanisms used by bartonellae to become established in these organisms. The present review explores the interrelations within the Bartonella-rodent-flea system. The role of the latter two components is emphasized.
Collapse
Affiliation(s)
- Ricardo Gutiérrez
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Israel
| | - Boris Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Danny Morick
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Israel
| | - Yuval Gottlieb
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Israel
| | - Irina S. Khokhlova
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Shimon Harrus
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
42
|
Siamer S, Dehio C. New insights into the role of Bartonella effector proteins in pathogenesis. Curr Opin Microbiol 2014; 23:80-5. [PMID: 25461577 DOI: 10.1016/j.mib.2014.11.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
Abstract
The facultative intracellular bacteria Bartonella spp. share a common infection strategy to invade and colonize mammals in a host-specific manner. Following transmission by blood-sucking arthropods, Bartonella are inoculated in the derma and then spread, via two sequential enigmatic niches, to the blood stream where they cause a long-lasting intra-erythrocytic bacteraemia. The VirB/VirD4 type IV secretion system (VirB/D4 T4SS) is essential for the pathogenicity of most Bartonella species by injecting an arsenal of effector proteins into host cells. These bacterial effector proteins share a modular architecture, comprising domains and/or motifs that confer an array of functions. Here, we review recent advances in understanding the function and evolutionary origin of this fascinating repertoire of host-targeted bacterial effectors.
Collapse
Affiliation(s)
- Sabrina Siamer
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
43
|
Jiyipong T, Jittapalapong S, Morand S, Rolain JM. Bartonella species in small mammals and their potential vectors in Asia. Asian Pac J Trop Biomed 2014. [DOI: 10.12980/apjtb.4.2014c742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
44
|
Zhu Q, Kosoy M, Olival KJ, Dittmar K. Horizontal transfers and gene losses in the phospholipid pathway of bartonella reveal clues about early ecological niches. Genome Biol Evol 2014; 6:2156-69. [PMID: 25106622 PMCID: PMC4159011 DOI: 10.1093/gbe/evu169] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bartonellae are mammalian pathogens vectored by blood-feeding arthropods. Although of increasing medical importance, little is known about their ecological past, and host associations are underexplored. Previous studies suggest an influence of horizontal gene transfers in ecological niche colonization by acquisition of host pathogenicity genes. We here expand these analyses to metabolic pathways of 28 Bartonella genomes, and experimentally explore the distribution of bartonellae in 21 species of blood-feeding arthropods. Across genomes, repeated gene losses and horizontal gains in the phospholipid pathway were found. The evolutionary timing of these patterns suggests functional consequences likely leading to an early intracellular lifestyle for stem bartonellae. Comparative phylogenomic analyses discover three independent lineage-specific reacquisitions of a core metabolic gene—NAD(P)H-dependent glycerol-3-phosphate dehydrogenase (gpsA)—from Gammaproteobacteria and Epsilonproteobacteria. Transferred genes are significantly closely related to invertebrate Arsenophonus-, and Serratia-like endosymbionts, and mammalian Helicobacter-like pathogens, supporting a cellular association with arthropods and mammals at the base of extant Bartonella spp. Our studies suggest that the horizontal reacquisitions had a key impact on bartonellae lineage specific ecological and functional evolution.
Collapse
Affiliation(s)
- Qiyun Zhu
- Department of Biological Sciences, University at Buffalo, State University of New York
| | - Michael Kosoy
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Foothills Research Campus, Fort Collins, Colorado
| | | | - Katharina Dittmar
- Department of Biological Sciences, University at Buffalo, State University of New York Graduate Program of Evolution, Ecology, and Behavior, University at Buffalo, State University of New York
| |
Collapse
|
45
|
Minnick MF, Anderson BE, Lima A, Battisti JM, Lawyer PG, Birtles RJ. Oroya fever and verruga peruana: bartonelloses unique to South America. PLoS Negl Trop Dis 2014; 8:e2919. [PMID: 25032975 PMCID: PMC4102455 DOI: 10.1371/journal.pntd.0002919] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bartonella bacilliformis is the bacterial agent of Carrión's disease and is presumed to be transmitted between humans by phlebotomine sand flies. Carrión's disease is endemic to high-altitude valleys of the South American Andes, and the first reported outbreak (1871) resulted in over 4,000 casualties. Since then, numerous outbreaks have been documented in endemic regions, and over the last two decades, outbreaks have occurred at atypical elevations, strongly suggesting that the area of endemicity is expanding. Approximately 1.7 million South Americans are estimated to be at risk in an area covering roughly 145,000 km2 of Ecuador, Colombia, and Peru. Although disease manifestations vary, two disparate syndromes can occur independently or sequentially. The first, Oroya fever, occurs approximately 60 days following the bite of an infected sand fly, in which infection of nearly all erythrocytes results in an acute hemolytic anemia with attendant symptoms of fever, jaundice, and myalgia. This phase of Carrión's disease often includes secondary infections and is fatal in up to 88% of patients without antimicrobial intervention. The second syndrome, referred to as verruga peruana, describes the endothelial cell-derived, blood-filled tumors that develop on the surface of the skin. Verrugae are rarely fatal, but can bleed and scar the patient. Moreover, these persistently infected humans provide a reservoir for infecting sand flies and thus maintaining B. bacilliformis in nature. Here, we discuss the current state of knowledge regarding this life-threatening, neglected bacterial pathogen and review its host-cell parasitism, molecular pathogenesis, phylogeny, sand fly vectors, diagnostics, and prospects for control.
Collapse
Affiliation(s)
- Michael F. Minnick
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Burt E. Anderson
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Amorce Lima
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - James M. Battisti
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Phillip G. Lawyer
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard J. Birtles
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| |
Collapse
|
46
|
Mærk M, Johansen J, Ertesvåg H, Drabløs F, Valla S. Safety in numbers: multiple occurrences of highly similar homologs among Azotobacter vinelandii carbohydrate metabolism proteins probably confer adaptive benefits. BMC Genomics 2014; 15:192. [PMID: 24625193 PMCID: PMC4022178 DOI: 10.1186/1471-2164-15-192] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 03/05/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene duplication and horizontal gene transfer are common processes in bacterial and archaeal genomes, and are generally assumed to result in either diversification or loss of the redundant gene copies. However, a recent analysis of the genome of the soil bacterium Azotobacter vinelandii DJ revealed an abundance of highly similar homologs among carbohydrate metabolism genes. In many cases these multiple genes did not appear to be the result of recent duplications, or to function only as a means of stimulating expression by increasing gene dosage, as the homologs were located in varying functional genetic contexts. Based on these initial findings we here report in-depth bioinformatic analyses focusing specifically on highly similar intra-genome homologs, or synologs, among carbohydrate metabolism genes, as well as an analysis of the general occurrence of very similar synologs in prokaryotes. RESULTS Approximately 900 bacterial and archaeal genomes were analysed for the occurrence of synologs, both in general and among carbohydrate metabolism genes specifically. This showed that large numbers of highly similar synologs among carbohydrate metabolism genes are very rare in bacterial and archaeal genomes, and that the A. vinelandii DJ genome contains an unusually large amount of such synologs. The majority of these synologs were found to be non-tandemly organized and localized in varying but metabolically relevant genomic contexts. The same observation was made for other genomes harbouring high levels of such synologs. It was also shown that highly similar synologs generally constitute a very small fraction of the protein-coding genes in prokaryotic genomes. The overall synolog fraction of the A. vinelandii DJ genome was well above the data set average, but not nearly as remarkable as the levels observed when only carbohydrate metabolism synologs were considered. CONCLUSIONS Large numbers of highly similar synologs are rare in bacterial and archaeal genomes, both in general and among carbohydrate metabolism genes. However, A. vinelandii and several other soil bacteria harbour large numbers of highly similar carbohydrate metabolism synologs which seem not to result from recent duplication or transfer events. These genes may confer adaptive benefits with respect to certain lifestyles and environmental factors, most likely due to increased regulatory flexibility and/or increased gene dosage.
Collapse
Affiliation(s)
| | | | | | - Finn Drabløs
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway.
| | | |
Collapse
|
47
|
Wolf LA, Cherry NA, Maggi RG, Breitschwerdt EB. In Pursuit of a Stealth Pathogen: Laboratory Diagnosis of Bartonellosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.clinmicnews.2014.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Québatte M, Dick MS, Kaever V, Schmidt A, Dehio C. Dual input control: activation of theBartonella henselae VirB/D4 type IV secretion system by the stringent sigma factor RpoH1 and the BatR/BatS two-component system. Mol Microbiol 2013; 90:756-75. [DOI: 10.1111/mmi.12396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Maxime Québatte
- Focal Area Infection Biology, Biozentrum; University of Basel; Klingelbergstrasse 70 4056 Basel Switzerland
| | - Mathias S. Dick
- Focal Area Infection Biology, Biozentrum; University of Basel; Klingelbergstrasse 70 4056 Basel Switzerland
| | - Volkhard Kaever
- Research Core Unit for Mass Spectrometry - Metabolomics; Institute of Pharmacology; Hannover Medical School; Hannover Germany
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum; University of Basel; Basel Switzerland
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum; University of Basel; Klingelbergstrasse 70 4056 Basel Switzerland
| |
Collapse
|
49
|
Buffet JP, Kosoy M, Vayssier-Taussat M. Natural history of Bartonella-infecting rodents in light of new knowledge on genomics, diversity and evolution. Future Microbiol 2013; 8:1117-28. [DOI: 10.2217/fmb.13.77] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Among the 33 confirmed Bartonella species to date, more than half are hosted by rodent species, and at least five of them have been involved in human illness causing diverse symptoms including fever, myocarditis, endocarditis, lymphadenitis and hepatitis. In almost all countries, wild rodents are infected by extremely diverse Bartonella strains with a high prevalence. In the present paper, in light of new knowledge on rodent-adapted Bartonella species genomics, we bring together knowledge gained in recent years to have an overview of the impact of rodent-adapted Bartonella infection on humans and to determine how diversity of Bartonella helps to understand their mechanisms of adaptation to rodents and the consequences on human health.
Collapse
Affiliation(s)
- Jean-Philippe Buffet
- USC Bipar, Bartonella et Tiques, INRA, Anses, 23 Avenue du Général de Gaulle, 94 700 Maisons-Alfort, France
| | - Michael Kosoy
- Centers for Diseases Control & Prevention, Division of Vector Borne Infections, Fort Collins, CO 80521, USA
| | - Muriel Vayssier-Taussat
- USC Bipar, Bartonella et Tiques, INRA, Anses, 23 Avenue du Général de Gaulle, 94 700 Maisons-Alfort, France
| |
Collapse
|
50
|
Phosphate concentration and the putative sensor kinase protein CckA modulate cell lysis and release of the Rhodobacter capsulatus gene transfer agent. J Bacteriol 2013; 195:5025-40. [PMID: 23995641 DOI: 10.1128/jb.00669-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene transfer agent of Rhodobacter capsulatus (RcGTA) is a bacteriophage-like genetic element with the sole known function of horizontal gene transfer. Homologues of RcGTA genes are present in many members of the alphaproteobacteria and may serve an important role in microbial evolution. Transcription of RcGTA genes is induced as cultures enter the stationary phase; however, little is known about cis-active sequences. In this work, we identify the promoter of the first gene in the RcGTA structural gene cluster. Additionally, gene transduction frequency depends on the growth medium, and the reason for this is not known. We report that millimolar concentrations of phosphate posttranslationally inhibit the lysis-dependent release of RcGTA from cells in both a complex medium and a defined medium. Furthermore, we found that cell lysis requires the genes rcc00555 and rcc00556, which were expressed and studied in Escherichia coli to determine their predicted functions as an endolysin and holin, respectively. Production of RcGTA is regulated by host systems, including a putative histidine kinase, CckA, and we found that CckA is required for maximal expression of rcc00555 and for maturation of RcGTA to yield gene transduction-functional particles.
Collapse
|