1
|
Oyerinde TO, Anadu VE, Olajide TS, Ijomone OK, Okeowo OM, Ijomone OM. Stress-induced neurodegeneration and behavioral alterations in Caenorhabditis elegans: Insights into the evolutionary conservation of stress-related pathways and implications for human health. PROGRESS IN BRAIN RESEARCH 2025; 291:405-425. [PMID: 40222789 DOI: 10.1016/bs.pbr.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Stress is a significant determinant for a range of neurological and psychiatric illnesses, and comprehending its influence on the brain is vital for developing effective interventions. Caenorhabditis elegans (C. elegans), a tiny nematode, has become a potent model system for investigating the impact of stress on neuronal integrity, behavior, and lifespan. This chapter presents a comprehensive summary of the existing understanding of stress-induced neurodegeneration, behavioral abnormalities, and changes in lifespan in C. elegans. We explored the stress response pathways in C. elegans, specifically focusing on the heat shock response and insulin-like signaling (ILS) pathway, targeting how these pathways affect neural integrity and functions. Additionally, this chapter highlighted behavioral modifications such as changes in locomotion, feeding, pharyngeal pumping, defecation, and copulation behaviors that occur in C. elegans following exposure to stressors, and how these findings contribute to our comprehension of stress-related illnesses. Furthermore, the evolutionary preservation of stress responses in both C. elegans and humans, underscoring the significance of C. elegans studies for translational research were highlighted. In conclusion, the possible implications of C. elegans research on human well-being, with a specific emphasis on the discovery of targets for treatment and the creation of innovative approaches to address stress-related conditions are discussed in this chapter.
Collapse
Affiliation(s)
- Toheeb O Oyerinde
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria; Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria.
| | - Victor E Anadu
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria; Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Tobiloba S Olajide
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria
| | - Olayemi K Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria; Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Oritoke M Okeowo
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria; Department of Physiology, Faculty of Basic Medical Sciences, Federal University of Technology, Akure, Nigeria
| | - Omamuyovwi M Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria; Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria; Albeit Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
2
|
Eberhard WG. Genital courtship and female-active roles in mating: sexual selection by mate choice in Caenorhabditis elegans. J Evol Biol 2024; 37:1137-1147. [PMID: 39275891 DOI: 10.1093/jeb/voae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024]
Abstract
A new bridge between studies of sexual selection and the massive literature on Caenorhabditis elegans behaviourand nervous system properties promise to provide important new insights into both fields. This paper shows that mate choice likely occurs in hermaphrodite C. elegans on the basis of stimulation from the male genital spicules, making it possible to apply the toolkit of extensive background knowledge of C. elegans and powerful modern techniques to test in unprecedented detail the leading hypotheses regarding one of the most sweeping trends in all of animal evolution, the especially rapid divergence of genital morphology. The recognition that sexual selection by mate choice may also occur in other contexts in C. elegans suggests additional payoffs from exploring previously unrecognized possibilities that female-active hermaphrodite reproductive behaviours are triggered by male stimulation. These facultative behaviours include attracting males, fleeing from or otherwise resisting males, opening the vulva to allow intromission, guiding sperm migration, avoiding rapid oviposition following copulation that results in sperm loss, expelling recently received sperm, and increasing feeding rates following copulation.
Collapse
Affiliation(s)
- William G Eberhard
- Smithsonian Tropical Research Institute, Ancon, Panama
- Biología, Universidad de Costa Rica, Ciudad Universitaria, Costa Rica
- Louisiana State University, Museum of Natural Sciences, Baton Rouge, LA 70808, USA
| |
Collapse
|
3
|
Brugman KI, Susoy V, Whittaker AJ, Palma W, Nava S, Samuel ADT, Sternberg PW. PEZO-1 and TRP-4 mechanosensors are involved in mating behavior in Caenorhabditis elegans. PNAS NEXUS 2022; 1:pgac213. [PMID: 36712331 PMCID: PMC9802279 DOI: 10.1093/pnasnexus/pgac213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 09/22/2022] [Indexed: 02/01/2023]
Abstract
Male mating in Caenorhabditis elegans is a complex behavior with a strong mechanosensory component. C. elegans has several characterized mechanotransducer proteins, but few have been shown to contribute to mating. Here, we investigated the roles of PEZO-1, a piezo channel, and TRP-4, a mechanotransducing TRPN channel, in male mating behavior. We show that pezo-1 is expressed in several male-specific neurons with known roles in mating. We show that, among other neurons, trp-4 is expressed in the Post-Cloacal sensilla neuron type A (PCA) sensory neuron, which monitors relative sliding between the male and the hermaphrodite and inhibits neurons involved in vulva detection. Mutations in both genes compromise many steps of mating, including initial response to the hermaphrodite, scanning, turning, and vulva detection. We performed pan-neuronal imaging during mating between freely moving mutant males and hermaphrodites. Both pezo-1 and trp-4 mutants showed spurious activation of the sensory neurons involved in vulva detection. In trp-4 mutants, this spurious activation might be caused by PCA failure to inhibit vulva-detecting neurons during scanning. Indeed, we show that without functional TRP-4, PCA fails to detect the relative sliding between the male and hermaphrodite. Cell-specific TRP-4 expression restores PCA's mechanosensory function. Our results demonstrate new roles for both PEZO-1 and TRP-4 mechanotransducers in C. elegans mating behavior.
Collapse
Affiliation(s)
- Katherine I Brugman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Vladislav Susoy
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Allyson J Whittaker
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Wilber Palma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Stephanie Nava
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Aravinthan D T Samuel
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
4
|
Choudhary S, Kashyap SS, Martin RJ, Robertson AP. Advances in our understanding of nematode ion channels as potential anthelmintic targets. Int J Parasitol Drugs Drug Resist 2022; 18:52-86. [PMID: 35149380 PMCID: PMC8841521 DOI: 10.1016/j.ijpddr.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Ion channels are specialized multimeric proteins that underlie cell excitability. These channels integrate with a variety of neuromuscular and biological functions. In nematodes, the physiological behaviors including locomotion, navigation, feeding and reproduction, are regulated by these protein entities. Majority of the antinematodal chemotherapeutics target the ion channels to disrupt essential biological functions. Here, we have summarized current advances in our understanding of nematode ion channel pharmacology. We review cys-loop ligand gated ion channels (LGICs), including nicotinic acetylcholine receptors (nAChRs), acetylcholine-chloride gated ion channels (ACCs), glutamate-gated chloride channels (GluCls), and GABA (γ-aminobutyric acid) receptors, and other ionotropic receptors (transient receptor potential (TRP) channels and potassium ion channels). We have provided an update on the pharmacological properties of these channels from various nematodes. This article catalogs the differences in ion channel composition and resulting pharmacology in the phylum Nematoda. This diversity in ion channel subunit repertoire and pharmacology emphasizes the importance of pursuing species-specific drug target research. In this review, we have provided an overview of recent advances in techniques and functional assays available for screening ion channel properties and their application.
Collapse
Affiliation(s)
- Shivani Choudhary
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Richard J Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
5
|
Bowles SN, Johnson CM. Inferences of glia-mediated control in Caenorhabditis elegans. J Neurosci Res 2021; 99:1191-1206. [PMID: 33559247 PMCID: PMC8005477 DOI: 10.1002/jnr.24803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/22/2022]
Abstract
Astrocytes modulate synaptic transmission; yet, it remains unclear how glia influence complex behaviors. Here, we explore the effects of Caenorhabditis elegans astrocyte-like cephalic glia (CEPglia ) and the glia-specific bHLH transcription factor HLH-17 on mating behavior and the defecation motor program (DMP). In C. elegans, male mating has been explicitly described through the male tail circuit and is characterized by coordination of multiple independent behaviors to ensure that copulation is achieved. Furthermore, the sex-specific male mating circuitry shares similar components with the DMP, which is complex and rhythmic, and requires a fixed sequence of behaviors to be activated periodically. We found that loss of CEPglia reduced persistence in executing mating behaviors and hindered copulation, while males that lacked HLH-17 demonstrated repetitive prodding behavior that increased the time spent in mating but did not hinder copulation. During the DMP, we found that posterior body wall contractions (pBocs) and enteric muscle contractions (EMCs) were differentially affected by loss of HLH-17 or CEPglia in males and hermaphrodites. pBocs and EMCs required HLH-17 activity in both sexes, whereas loss of CEPglia alone did not affect DMP in males. Our data suggest that CEPglia mediate complex behaviors by signaling to the GABAergic DVB neuron, and that HLH-17 activity influences those discrete steps within those behaviors. Collectively, these data provide evidence of glia as a link in cooperative regulation of complex and rhythmic behavior that, in C. elegans links circuitry in the head and the tail.
Collapse
Affiliation(s)
- Stephanie N. Bowles
- Department of Biology, Georgia State University, Atlanta, GA, 30303, United States
| | - Casonya M. Johnson
- Department of Biology, Georgia State University, Atlanta, GA, 30303, United States
- Department of Biology, James Madison University, Harrisonburg, VA, 22807
| |
Collapse
|
6
|
Molina-García L, Lloret-Fernández C, Cook SJ, Kim B, Bonnington RC, Sammut M, O'Shea JM, Gilbert SPR, Elliott DJ, Hall DH, Emmons SW, Barrios A, Poole RJ. Direct glia-to-neuron transdifferentiation gives rise to a pair of male-specific neurons that ensure nimble male mating. eLife 2020; 9:e48361. [PMID: 33138916 PMCID: PMC7609048 DOI: 10.7554/elife.48361] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Sexually dimorphic behaviours require underlying differences in the nervous system between males and females. The extent to which nervous systems are sexually dimorphic and the cellular and molecular mechanisms that regulate these differences are only beginning to be understood. We reveal here a novel mechanism by which male-specific neurons are generated in Caenorhabditis elegans through the direct transdifferentiation of sex-shared glial cells. This glia-to-neuron cell fate switch occurs during male sexual maturation under the cell-autonomous control of the sex-determination pathway. We show that the neurons generated are cholinergic, peptidergic, and ciliated putative proprioceptors which integrate into male-specific circuits for copulation. These neurons ensure coordinated backward movement along the mate's body during mating. One step of the mating sequence regulated by these neurons is an alternative readjustment movement performed when intromission becomes difficult to achieve. Our findings reveal programmed transdifferentiation as a developmental mechanism underlying flexibility in innate behaviour.
Collapse
Affiliation(s)
- Laura Molina-García
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Carla Lloret-Fernández
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Steven J Cook
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineNew YorkUnited States
| | - Byunghyuk Kim
- Department of Genetics, Albert Einstein College of MedicineNew YorkUnited States
| | - Rachel C Bonnington
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Michele Sammut
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Jack M O'Shea
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Sophie PR Gilbert
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - David J Elliott
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - David H Hall
- Department of Genetics, Albert Einstein College of MedicineNew YorkUnited States
| | - Scott W Emmons
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineNew YorkUnited States
- Department of Genetics, Albert Einstein College of MedicineNew YorkUnited States
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Richard J Poole
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| |
Collapse
|
7
|
Nett EM, Sepulveda NB, Petrella LN. Defects in mating behavior and tail morphology are the primary cause of sterility in Caenorhabditis elegans males at high temperature. ACTA ACUST UNITED AC 2019; 222:jeb.208041. [PMID: 31672732 DOI: 10.1242/jeb.208041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Reproduction is a fundamental imperative of all forms of life. For all the advantages sexual reproduction confers, it has a deeply conserved flaw: it is temperature sensitive. As temperatures rise, fertility decreases. Across species, male fertility is particularly sensitive to elevated temperature. Previously, we have shown in the model nematode Caenorhabditis elegans that all males are fertile at 20°C, but almost all males have lost fertility at 27°C. Male fertility is dependent on the production of functional sperm, successful mating and transfer of sperm, and successful fertilization post-mating. To determine how male fertility is impacted by elevated temperature, we analyzed these aspects of male reproduction at 27°C in three wild-type strains of C. elegans: JU1171, LKC34 and N2. We found no effect of elevated temperature on the number of immature non-motile spermatids formed. There was only a weak effect of elevated temperature on sperm activation. In stark contrast, there was a strong effect of elevated temperature on male mating behavior, male tail morphology and sperm transfer such that males very rarely completed mating successfully when exposed to 27°C. Therefore, we propose a model where elevated temperature reduces male fertility as a result of the negative impacts of temperature on the somatic tissues necessary for mating. Loss of successful mating at elevated temperature overrides any effects that temperature may have on the germline or sperm cells.
Collapse
Affiliation(s)
- Emily M Nett
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Nicholas B Sepulveda
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Lisa N Petrella
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
8
|
Lawson H, Vuong E, Miller RM, Kiontke K, Fitch DHA, Portman DS. The Makorin lep-2 and the lncRNA lep-5 regulate lin-28 to schedule sexual maturation of the C. elegans nervous system. eLife 2019; 8:e43660. [PMID: 31264582 PMCID: PMC6606027 DOI: 10.7554/elife.43660] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/10/2019] [Indexed: 12/30/2022] Open
Abstract
Sexual maturation must occur on a controlled developmental schedule. In mammals, Makorin3 (MKRN3) and the miRNA regulators LIN28A/B are key regulators of this process, but how they act is unclear. In C. elegans, sexual maturation of the nervous system includes the functional remodeling of postmitotic neurons and the onset of adult-specific behaviors. Here, we find that the lin-28-let-7 axis (the 'heterochronic pathway') determines the timing of these events. Upstream of lin-28, the Makorin lep-2 and the lncRNA lep-5 regulate maturation cell-autonomously, indicating that distributed clocks, not a central timer, coordinate sexual differentiation of the C. elegans nervous system. Overexpression of human MKRN3 delays aspects of C. elegans sexual maturation, suggesting the conservation of Makorin function. These studies reveal roles for a Makorin and a lncRNA in timing of sexual differentiation; moreover, they demonstrate deep conservation of the lin-28-let-7 system in controlling the functional maturation of the nervous system.
Collapse
Affiliation(s)
- Hannah Lawson
- Department of BiologyUniversity of RochesterRochesterUnited States
| | - Edward Vuong
- Department of Biomedical GeneticsUniversity of RochesterRochesterUnited States
| | - Renee M Miller
- Department of Brain and Cognitive SciencesUniversity of RochesterRochesterUnited States
| | - Karin Kiontke
- Center for Developmental Genetics, Department of BiologyNew York UniversityNew YorkUnited States
| | - David HA Fitch
- Center for Developmental Genetics, Department of BiologyNew York UniversityNew YorkUnited States
| | - Douglas S Portman
- Department of BiologyUniversity of RochesterRochesterUnited States
- Department of Biomedical GeneticsUniversity of RochesterRochesterUnited States
- Department of NeuroscienceUniversity of RochesterRochesterUnited States
- DelMonte Institute for NeuroscienceUniversity of RochesterRochesterUnited States
| |
Collapse
|
9
|
Abstract
The recently determined connectome of the Caenorhabditis elegans adult male, together with the known connectome of the hermaphrodite, opens up the possibility for a comprehensive description of sexual dimorphism in this species and the identification and study of the neural circuits underlying sexual behaviors. The C. elegans nervous system consists of 294 neurons shared by both sexes plus neurons unique to each sex, 8 in the hermaphrodite and 91 in the male. The sex-specific neurons are well integrated within the remainder of the nervous system; in the male, 16% of the input to the shared component comes from male-specific neurons. Although sex-specific neurons are involved primarily, but not exclusively, in controlling sex-unique behavior—egg-laying in the hermaphrodite and copulation in the male—these neurons act together with shared neurons to make navigational choices that optimize reproductive success. Sex differences in general behaviors are underlain by considerable dimorphism within the shared component of the nervous system itself, including dimorphism in synaptic connectivity.
Collapse
Affiliation(s)
- Scott W. Emmons
- Department of Genetics and Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
10
|
Neurexin controls plasticity of a mature, sexually dimorphic neuron. Nature 2018; 553:165-170. [PMID: 29323291 PMCID: PMC5968453 DOI: 10.1038/nature25192] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022]
Abstract
During development and adulthood, brain plasticity is evident at several
levels, from synaptic structure and function to outgrowth of dendrites and
axons. Whether and how sex impinges on neuronal plasticity is poorly understood.
Here we show that the C. elegans sex-shared GABAergic DVB
neuron displays experience-dependent and sexually dimorphic morphologic
plasticity, characterized by the stochastic and dynamic addition of multiple
neurites in adult males. These added neurites enable synaptic rewiring of the
DVB neuron, instructing a functional switch of the neuron and directly modifying
a step of male mating behavior, both of which are altered by experience and
post-synaptic activity manipulations. We show that the outgrowth of DVB neurites
is promoted by presynaptic NRX-1/neurexin and restricted by postsynaptic
NLG-1/neuroligin, providing a novel context in which these two molecules
operate.
Collapse
|
11
|
Barr MM, García LR, Portman DS. Sexual Dimorphism and Sex Differences in Caenorhabditis elegans Neuronal Development and Behavior. Genetics 2018; 208:909-935. [PMID: 29487147 PMCID: PMC5844341 DOI: 10.1534/genetics.117.300294] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
As fundamental features of nearly all animal species, sexual dimorphisms and sex differences have particular relevance for the development and function of the nervous system. The unique advantages of the nematode Caenorhabditis elegans have allowed the neurobiology of sex to be studied at unprecedented scale, linking ultrastructure, molecular genetics, cell biology, development, neural circuit function, and behavior. Sex differences in the C. elegans nervous system encompass prominent anatomical dimorphisms as well as differences in physiology and connectivity. The influence of sex on behavior is just as diverse, with biological sex programming innate sex-specific behaviors and modifying many other aspects of neural circuit function. The study of these differences has provided important insights into mechanisms of neurogenesis, cell fate specification, and differentiation; synaptogenesis and connectivity; principles of circuit function, plasticity, and behavior; social communication; and many other areas of modern neurobiology.
Collapse
Affiliation(s)
- Maureen M Barr
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854-8082
| | - L Rene García
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Douglas S Portman
- Department of Biomedical Genetics, University of Rochester, New York 14642
- Department of Neuroscience, University of Rochester, New York 14642
- Department of Biology, University of Rochester, New York 14642
| |
Collapse
|
12
|
Urushihata T, Wakabayashi T, Osato S, Yamashita T, Matsuura T. Short-term nicotine exposure induces long-lasting modulation of gustatory plasticity in Caenorhabditis elegans. Biochem Biophys Rep 2017; 8:41-47. [PMID: 28955940 PMCID: PMC5613740 DOI: 10.1016/j.bbrep.2016.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 06/23/2016] [Accepted: 08/02/2016] [Indexed: 02/04/2023] Open
Abstract
Nicotine administration induces many effects on animal behavior. In wild-type Caenorhabditis elegans, gustatory plasticity results in reduced chemotaxis toward NaCl of otherwise attractive concentrations after pre-exposure to 100 mM NaCl in the absence of food. However, acute nicotine administration during a 15 min pre-exposure period inhibits gustatory plasticity, whereas chronic nicotine administration during worm development facilitates the plasticity. To investigate the relationship between the duration of nicotine administration and its effects, we exposed worms to nicotine for various periods during development. The modulatory effect of nicotine on gustatory plasticity was gradually switched from inhibition to facilitation with increased duration of nicotine administration. Moreover, inhibition of plasticity was sustained after relatively short-term chronic administration, with effects lasting for 45 h after the removal of nicotine. Similar to the acute inhibitory effect after 15 min nicotine pre-exposure, the inhibitory effect after short-term chronic administration was dependent on the nicotinic acetylcholine receptor subunit genes lev-1 and unc-29, and genes involved in serotonin biosynthesis bas-1 and tph-1. The impaired inhibition in bas-1 and tph-1mutants was recovered by exogenous serotonin, demonstrating that serotonin plays an important role in the long-lasting inhibitory effects of short-term chronic nicotine exposure. We analyzed gustatory plasticity of C. elegans after nicotine administration. Nicotine modulates gustatory plasticity in various ways. Nicotine inhibits gustatory plasticity after short-term chronic administration. The inhibitory effect was long-lasting even after removal of nicotine.
Collapse
Affiliation(s)
- Takuya Urushihata
- Department of Applied Chemistry and Biosciences, Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan.,Division of Bioprocess Engineering, United Graduate School of Agricultural Science, Iwate University, Morioka, Japan
| | - Tokumitsu Wakabayashi
- Department of Applied Chemistry and Biosciences, Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan.,Division of Bioprocess Engineering, United Graduate School of Agricultural Science, Iwate University, Morioka, Japan
| | - Shoichi Osato
- Department of Applied Chemistry and Biosciences, Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan
| | - Tetsuro Yamashita
- Division of Bioprocess Engineering, United Graduate School of Agricultural Science, Iwate University, Morioka, Japan
| | - Tetsuya Matsuura
- Department of Applied Chemistry and Biosciences, Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan.,Division of Bioprocess Engineering, United Graduate School of Agricultural Science, Iwate University, Morioka, Japan
| |
Collapse
|
13
|
Caenorhabditis elegans Male Copulation Circuitry Incorporates Sex-Shared Defecation Components To Promote Intromission and Sperm Transfer. G3-GENES GENOMES GENETICS 2017; 7:647-662. [PMID: 28031243 PMCID: PMC5295609 DOI: 10.1534/g3.116.036756] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sexual dimorphism can be achieved using a variety of mechanisms, including sex-specific circuits and sex-specific function of shared circuits, though how these work together to produce sexually dimorphic behaviors requires further investigation. Here, we explore how components of the sex-shared defecation circuitry are incorporated into the sex-specific male mating circuitry in Caenorhabditis elegans to produce successful copulation. Using behavioral studies, calcium imaging, and genetic manipulation, we show that aspects of the defecation system are coopted by the male copulatory circuitry to facilitate intromission and ejaculation. Similar to hermaphrodites, male defecation is initiated by an intestinal calcium wave, but circuit activity is coordinated differently during mating. In hermaphrodites, the tail neuron DVB promotes expulsion of gut contents through the release of the neurotransmitter GABA onto the anal depressor muscle. However, in the male, both neuron and muscle take on modified functions to promote successful copulation. Males require calcium-dependent activator protein for secretion (CAPS)/unc-31, a dense core vesicle exocytosis activator protein, in the DVB to regulate copulatory spicule insertion, while the anal depressor is remodeled to promote release of sperm into the hermaphrodite. This work shows how sex-shared circuitry is modified in multiple ways to contribute to sex-specific mating.
Collapse
|
14
|
García LR, Portman DS. Neural circuits for sexually dimorphic and sexually divergent behaviors in Caenorhabditis elegans. Curr Opin Neurobiol 2016; 38:46-52. [PMID: 26929998 DOI: 10.1016/j.conb.2016.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/09/2016] [Indexed: 01/07/2023]
Abstract
Increasing interest in sex differences in Caenorhabditis elegans neurobiology is resulting from several advances, including the completion of the male tail connectome and the surprising discovery of two 'new' neurons in the male head. In this species, sex-specific circuits in the hermaphrodite and male control reproductive behaviors such as egg-laying and copulation, respectively. Studies of these systems are revealing interesting similarities and contrasts, particularly in the mechanisms by which nutritional status influences reproductive behaviors. Other studies have highlighted the importance of sexual modulation of shared neurons and circuits in optimizing behavioral strategies. Together, these findings indicate that C. elegans uses intertwined, distributed sex differences in circuit structure and function to implement sex-specific as well as sexually divergent, shared behaviors.
Collapse
Affiliation(s)
- L René García
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Douglas S Portman
- Department of Biomedical Genetics and Center for Neural Development and Disease, University of Rochester, 601 Elmwood Ave., Box 645, Rochester, NY 14642, United States.
| |
Collapse
|
15
|
Expression of nicotinic acetylcholine receptor subunits from parasitic nematodes in Caenorhabditis elegans. Mol Biochem Parasitol 2015; 204:44-50. [PMID: 26747395 DOI: 10.1016/j.molbiopara.2015.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/09/2015] [Accepted: 12/23/2015] [Indexed: 01/18/2023]
Abstract
The levamisole-sensitive nicotinic acetylcholine receptor present at nematode neuromuscular junctions is composed of multiple different subunits, with the exact composition varying between species. We tested the ability of two well-conserved nicotinic receptor subunits, UNC-38 and UNC-29, from Haemonchus contortus and Ascaris suum to rescue the levamisole-resistance and locomotion defects of Caenorhabditis elegans strains with null deletion mutations in the unc-38 and unc-29 genes. The parasite cDNAs were cloned downstream of the relevant C. elegans promoters and introduced into the mutant strains via biolistic transformation. The UNC-38 subunit of H. contortus was able to completely rescue both the locomotion defects and levamisole resistance of the null deletion mutant VC2937 (ok2896), but no C. elegans expressing the A. suum UNC-38 could be detected. The H. contortus UNC-29.1 subunit partially rescued the levamisole resistance of a C. elegans null mutation in unc-29 VC1944 (ok2450), but did cause increased motility in a thrashing assay. In contrast, only a single line of worms containing the A. suum UNC-29 subunit showed a partial rescue of levamisole resistance, with no effect on thrashing.
Collapse
|
16
|
DOP-2 D2-Like Receptor Regulates UNC-7 Innexins to Attenuate Recurrent Sensory Motor Neurons during C. elegans Copulation. J Neurosci 2015; 35:9990-10004. [PMID: 26156999 DOI: 10.1523/jneurosci.0940-15.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Neuromodulation of self-amplifying circuits directs context-dependent behavioral executions. Although recurrent networks are found throughout the Caenorhabditis elegans connectome, few reports describe the mechanisms that regulate reciprocal neural activity during complex behavior. We used C. elegans male copulation to dissect how a goal-oriented motor behavior is regulated by recurrently wired sensory-motor neurons. As the male tail presses against the hermaphrodite's vulva, cholinergic and glutamatergic reciprocal innervations of post cloaca sensilla (PCS) neurons (PCA, PCB, and PCC), hook neurons (HOA, HOB), and their postsynaptic sex muscles execute rhythmic copulatory spicule thrusts. These repetitive spicule movements continue until the male shifts off the vulva or genital penetration is accomplished. However, the signaling mechanism that temporally and spatially restricts repetitive intromission attempts to vulva cues was unclear. Here, we report that confinement of spicule insertion attempts to the vulva is facilitated by D2-like receptor modulation of gap-junctions between PCB and the hook sensillum. We isolated a missense mutation in the UNC-7(L) gap-junction isoform, which perturbs DOP-2 signaling in the PCB neuron and its electrical partner, HOA. The glutamate-gated chloride channel AVR-14 is expressed in HOA. Our analysis of the unc-7 mutant allele indicates that when DOP-2 promotes UNC-7 electrical communication, AVR-14-mediated inhibitory signals pass from HOA to PCB. As a consequence, PCB is less receptive to be stimulated by its recurrent synaptic partner, PCA. Behavioral observations suggest that dopamine neuromodulation of UNC-7 ensures attenuation of recursive intromission attempts when the male disengages or is dislodged from the hermaphrodite genitalia. SIGNIFICANCE STATEMENT Using C. elegans male copulation as a model, we found that the neurotransmitter dopamine stimulates D2-like receptors in two sensory circuits to terminate futile behavioral loops. The D2-like receptors promote inhibitory electrical junction activity between a chemosensory and a mechanosensory circuit. Therefore, both systems are attenuated and the animal ceases the recursive behavior.
Collapse
|
17
|
Jobson MA, Valdez CM, Gardner J, Garcia LR, Jorgensen EM, Beg AA. Spillover transmission is mediated by the excitatory GABA receptor LGC-35 in C. elegans. J Neurosci 2015; 35:2803-16. [PMID: 25673867 PMCID: PMC4323542 DOI: 10.1523/jneurosci.4557-14.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/10/2014] [Accepted: 12/23/2014] [Indexed: 11/21/2022] Open
Abstract
Under most circumstances, GABA activates chloride-selective channels and thereby inhibits neuronal activity. Here, we identify a GABA receptor in the nematode Caenorhabditis elegans that conducts cations and is therefore excitatory. Expression in Xenopus oocytes demonstrates that LGC-35 is a homopentameric cation-selective receptor of the cys-loop family exclusively activated by GABA. Phylogenetic analysis suggests that LGC-35 evolved from GABA-A receptors, but the pore-forming domain contains novel molecular determinants that confer cation selectivity. LGC-35 is expressed in muscles and directly mediates sphincter muscle contraction in the defecation cycle in hermaphrodites, and spicule eversion during mating in the male. In the locomotory circuit, GABA release directly activates chloride channels on the muscle to cause muscle relaxation. However, GABA spillover at these synapses activates LGC-35 on acetylcholine motor neurons, which in turn cause muscles to contract, presumably to drive wave propagation along the body. These studies demonstrate that both direct and indirect excitatory GABA signaling plays important roles in regulating neuronal circuit function and behavior in C. elegans.
Collapse
Affiliation(s)
- Meghan A Jobson
- Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, Utah 84132, Department of Biology, University of Utah, Salt Lake City, Utah 84132
| | - Chris M Valdez
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Jann Gardner
- Department of Biology, University of Utah, Salt Lake City, Utah 84132
| | - L Rene Garcia
- Department of Biology, Texas A&M University, College Station, Texas 77843, Howard Hughes Medical Institute, Texas A&M University, College Station, Texas 77843
| | - Erik M Jorgensen
- Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, Utah 84132, Department of Biology, University of Utah, Salt Lake City, Utah 84132, Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah 84132, and
| | - Asim A Beg
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109,
| |
Collapse
|
18
|
Roussel N, Sprenger J, Tappan SJ, Glaser JR. Robust tracking and quantification of C. elegans body shape and locomotion through coiling, entanglement, and omega bends. WORM 2015; 3:e982437. [PMID: 26435884 DOI: 10.4161/21624054.2014.982437] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/17/2014] [Accepted: 10/27/2014] [Indexed: 01/27/2023]
Abstract
The behavior of the well-characterized nematode, Caenorhabditis elegans (C. elegans), is often used to study the neurologic control of sensory and motor systems in models of health and neurodegenerative disease. To advance the quantification of behaviors to match the progress made in the breakthroughs of genetics, RNA, proteins, and neuronal circuitry, analysis must be able to extract subtle changes in worm locomotion across a population. The analysis of worm crawling motion is complex due to self-overlap, coiling, and entanglement. Using current techniques, the scope of the analysis is typically restricted to worms to their non-occluded, uncoiled state which is incomplete and fundamentally biased. Using a model describing the worm shape and crawling motion, we designed a deformable shape estimation algorithm that is robust to coiling and entanglement. This model-based shape estimation algorithm has been incorporated into a framework where multiple worms can be automatically detected and tracked simultaneously throughout the entire video sequence, thereby increasing throughput as well as data validity. The newly developed algorithms were validated against 10 manually labeled datasets obtained from video sequences comprised of various image resolutions and video frame rates. The data presented demonstrate that tracking methods incorporated in WormLab enable stable and accurate detection of these worms through coiling and entanglement. Such challenging tracking scenarios are common occurrences during normal worm locomotion. The ability for the described approach to provide stable and accurate detection of C. elegans is critical to achieve unbiased locomotory analysis of worm motion.
Collapse
|
19
|
Chen X, René García L. Developmental alterations of the C. elegans male anal depressor morphology and function require sex-specific cell autonomous and cell non-autonomous interactions. Dev Biol 2014; 398:24-43. [PMID: 25498482 DOI: 10.1016/j.ydbio.2014.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/30/2014] [Accepted: 11/11/2014] [Indexed: 11/17/2022]
Abstract
We studied the Caenorhabditis elegans anal depressor development in larval males and hermaphrodites to address how a differentiated cell sex-specifically changes its morphology prior to adulthood. In both sexes, the larval anal depressor muscle is used for defecation behavior. However in the adult males, the muscle's sarcomere is reorganized to facilitate copulation. To address when the changes occur in the anal depressor, we used YFP:actin to monitor, and mutant analysis, laser-ablation and transgenic feminization to perturb the cell's morphological dynamics. In L1 and L2 stage larva, the muscle of both sexes has similar sarcomere morphology, but the hermaphrodite sex-determination system promotes more growth. The male anal depressor begins to change in the L3 stage, first by retracting its muscle arm from the neurons of the defecation circuit. Then the muscle's ventral region develops a slit that demarcates an anterior and posterior domain. This demarcation is not dependent on the anal depressor's intrinsic genetic sex, but is influenced by extrinsic interactions with the developing male sex muscles. However, subsequent changes are dependent on the cell's sex. In the L4 stage, the anterior domain first disassembles the dorsal-ventral sarcomere region and develops filopodia that elongates anteriorly towards the spicule muscles. Later, the posterior domain dissembles the remnants of its sarcomere, but still retains a vestigial attachment to the ventral body wall. Finally, the anterior domain attaches to the sex muscles, and then reassembles an anterior-posteriorly oriented sarcomere. Our work identifies key steps in the dimorphic re-sculpting of the anal depressor that are regulated by genetic sex and by cell-cell signaling.
Collapse
Affiliation(s)
- Xin Chen
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, USA
| | - L René García
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, USA.
| |
Collapse
|
20
|
García LR. Regulation of sensory motor circuits used in C. elegans male intromission behavior. Semin Cell Dev Biol 2014; 33:42-9. [DOI: 10.1016/j.semcdb.2014.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/25/2014] [Accepted: 05/07/2014] [Indexed: 11/15/2022]
|
21
|
Sherlekar AL, Lints R. Nematode Tango Milonguero – The C. elegans male's search for the hermaphrodite vulva. Semin Cell Dev Biol 2014; 33:34-41. [DOI: 10.1016/j.semcdb.2014.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/24/2014] [Accepted: 05/07/2014] [Indexed: 12/31/2022]
|
22
|
LeBoeuf B, Correa P, Jee C, García LR. Caenorhabditis elegans male sensory-motor neurons and dopaminergic support cells couple ejaculation and post-ejaculatory behaviors. eLife 2014; 3. [PMID: 24915976 PMCID: PMC4103683 DOI: 10.7554/elife.02938] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/09/2014] [Indexed: 12/03/2022] Open
Abstract
The circuit structure and function underlying post-coital male behaviors remain poorly understood. Using mutant analysis, laser ablation, optogenetics, and Ca2+ imaging, we observed that following C. elegans male copulation, the duration of post-coital lethargy is coupled to cellular events involved in ejaculation. We show that the SPV and SPD spicule-associated sensory neurons and the spicule socket neuronal support cells function with intromission circuit components, including the cholinergic SPC and PCB and the glutamatergic PCA sensory-motor neurons, to coordinate sex muscle contractions with initiation and continuation of sperm movement. Our observations suggest that the SPV and SPD and their associated dopamine-containing socket cells sense the intrauterine environment through cellular endings exposed at the spicule tips and regulate both sperm release into the hermaphrodite and the recovery from post-coital lethargy. DOI:http://dx.doi.org/10.7554/eLife.02938.001 The nematode worm, C. elegans, is roughly 1 mm long, made up of around 1000 cells and has two sexes: male and hermaphrodite. Hermaphrodite worms produce both eggs and sperm and can self-fertilize to generate around 300 offspring each time. Fertilization by a male, on the other hand, results in three times as many progeny and introduces genetic diversity into the population. However, it also reduces the lifespan of the hermaphrodite. Mating also incurs a cost for males: it requires a lot of energy, which prevents male works from engaging in other activities, such as feeding, and it also increases their risk of predation. In many species, including C. elegans, the frequency with which a male can mate is limited by a period of reduced mating drive and ability that follows each instance of successful mating. However, the molecular and cellular basis of this ‘refractory period’ remains largely unclear. Using a range of techniques, LeBoeuf et al. have now identified the circuits that regulate male mating behavior in C. elegans. When male worms were introduced into a Petri dish containing 15 hermaphrodites, most males initiated mating within about 2 min. The length of the refractory period varied between worms, but averaged roughly 12 min. This consisted of a period of disinterest, in which males did not approach hermaphrodites, followed by a period in which males attempted mating but were slower and less efficient, suggesting that the neural circuits controlling mating behaviors had yet to recover completely. Males with longer refractory periods produced more progeny in their second mating than those with shorter refractory periods, suggesting that the interval also enables males to replenish their sperm levels. Further experiments revealed that a chemical transmitter called dopamine promotes ejaculation and then immediately reduces the worm's activity levels, giving rise to the refractory period. By enforcing a delay between matings, the refractory period may also increase the likelihood that successive matings will be with different hermaphrodites, helping to maximize the number and diversity of offspring. Some aspects of the neural circuitry that controls the refractory period in C. elegans resemble those seen in mammals, suggesting that insights gained from an animal with 1000 cells could also be relevant to more complex species. DOI:http://dx.doi.org/10.7554/eLife.02938.002
Collapse
Affiliation(s)
- Brigitte LeBoeuf
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, College Station, United States
| | - Paola Correa
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, College Station, United States
| | - Changhoon Jee
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, College Station, United States
| | - L René García
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, College Station, United States
| |
Collapse
|
23
|
Guo X, García LR. SIR-2.1 integrates metabolic homeostasis with the reproductive neuromuscular excitability in early aging male Caenorhabditis elegans. eLife 2014; 3:e01730. [PMID: 24755287 PMCID: PMC3989601 DOI: 10.7554/elife.01730] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/16/2014] [Indexed: 01/29/2023] Open
Abstract
The decline of aging C. elegans male's mating behavior is correlated with the increased excitability of the cholinergic circuitry that executes copulation. In this study, we show that the mating circuits' functional durability depends on the metabolic regulator SIR-2.1, a NAD(+)-dependent histone deacetylase. Aging sir-2.1(0) males display accelerated mating behavior decline due to premature hyperexcitability of cholinergic circuits used for intromission and ejaculation. In sir-2.1(0) males, the hypercontraction of the spicule-associated muscles pinch the vas deferens opening, thus blocking sperm release. The hyperexcitability is aggravated by reactive oxygen species (ROS). Our genetic, pharmacological, and behavioral analyses suggest that in sir-2.1(0) and older wild-type males, enhanced catabolic enzymes expression, coupled with the reduced expression of ROS-scavengers contribute to the behavioral decline. However, as a compensatory response to reduce altered catabolism/ROS production, anabolic enzymes expression levels are also increased, resulting in higher gluconeogenesis and lipid synthesis. DOI: http://dx.doi.org/10.7554/eLife.01730.001.
Collapse
Affiliation(s)
- Xiaoyan Guo
- Department of Biology, Texas A&M University, College Station, United States
| | - L René García
- Department of Biology, Texas A&M University, College Station, United States
- Howard Hughes Medical Institute, Texas A&M University, Texas, United States
| |
Collapse
|
24
|
Chatterjee I, Ibanez-Ventoso C, Vijay P, Singaravelu G, Baldi C, Bair J, Ng S, Smolyanskaya A, Driscoll M, Singson A. Dramatic fertility decline in aging C. elegans males is associated with mating execution deficits rather than diminished sperm quality. Exp Gerontol 2013; 48:1156-66. [PMID: 23916839 PMCID: PMC4169024 DOI: 10.1016/j.exger.2013.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/25/2013] [Indexed: 01/03/2023]
Abstract
Although much is known about female reproductive aging, fairly little is known about the causes of male reproductive senescence. We developed a method that facilitates culture maintenance of Caenorhabditis elegans adult males, which enabled us to measure male fertility as populations age, without profound loss of males from the growth plate. We find that the ability of males to sire progeny declines rapidly in the first half of adult lifespan and we examined potential factors that contribute towards reproductive success, including physical vigor, sperm quality, mating apparatus morphology, and mating ability. Of these, we find little evidence of general physical decline in males or changes in sperm number, morphology, or capacity for activation, at time points when reproductive senescence is markedly evident. Rather, it is the loss of efficient mating ability that correlates most strongly with reproductive senescence. Low insulin signaling can extend male ability to sire progeny later in life, although insulin impact on individual facets of mating behavior is complex. Overall, we suggest that combined modest deficits, predominantly affecting the complex mating behavior rather than sperm quality, sum up to block effective C. elegans male reproduction in middle adult life.
Collapse
|
25
|
Liu P, Chen B, Altun ZF, Gross MJ, Shan A, Schuman B, Hall DH, Wang ZW. Six innexins contribute to electrical coupling of C. elegans body-wall muscle. PLoS One 2013; 8:e76877. [PMID: 24130800 PMCID: PMC3793928 DOI: 10.1371/journal.pone.0076877] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/29/2013] [Indexed: 11/23/2022] Open
Abstract
C. elegans body-wall muscle cells are electrically coupled through gap junctions. Previous studies suggest that UNC-9 is an important, but not the only, innexin mediating the electrical coupling. Here we analyzed junctional current (Ij) for mutants of additional innexins to identify the remaining innexin(s) important to the coupling. The results suggest that a total of six innexins contribute to the coupling, including UNC-9, INX-1, INX-10, INX-11, INX-16, and INX-18. The Ij deficiency in each mutant was rescued completely by expressing the corresponding wild-type innexin specifically in muscle, suggesting that the innexins function cell-autonomously. Comparisons of Ij between various single, double, and triple mutants suggest that the six innexins probably form two distinct populations of gap junctions with one population consisting of UNC-9 and INX-18 and the other consisting of the remaining four innexins. Consistent with their roles in muscle electrical coupling, five of the six innexins showed punctate localization at muscle intercellular junctions when expressed as GFP- or epitope-tagged proteins, and muscle expression was detected for four of them when assessed by expressing GFP under the control of innexin promoters. The results may serve as a solid foundation for further explorations of structural and functional properties of gap junctions in C. elegans body-wall muscle.
Collapse
Affiliation(s)
- Ping Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Bojun Chen
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Zeynep F. Altun
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Maegan J. Gross
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Alan Shan
- Undergraduate Summer Research Internship Program, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Benjamin Schuman
- Undergraduate Summer Research Internship Program, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
26
|
Beets I, Temmerman L, Janssen T, Schoofs L. Ancient neuromodulation by vasopressin/oxytocin-related peptides. WORM 2013; 2:e24246. [PMID: 24058873 PMCID: PMC3704447 DOI: 10.4161/worm.24246] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/25/2013] [Accepted: 03/08/2013] [Indexed: 11/19/2022]
Abstract
Neuropeptidergic signaling is widely adopted by animals for the regulation of physiology and behavior in a rapidly changing environment. The vasopressin/oxytocin neuropeptide family originates from an ancestral peptide precursor in the antecedent of protostomian and deuterostomian animals. In vertebrates, vasopressin and oxytocin have both hormonal effects on peripheral target tissues, such as in the regulation of reproduction and water balance, and neuromodulatory actions in the central nervous system controlling social behavior and cognition. The recent identification of vasopressin/oxytocin-related signaling in C. elegans reveals that this peptidergic system is widespread among nematodes. Genetic analysis of the C. elegans nematocin system denotes vasopressin/oxytocin-like peptides as ancient neuromodulators of neuronal circuits involved in reproductive behavior and associative learning, whereas former invertebrate studies focused on conserved peripheral actions of this peptide family. Nematocin provides neuromodulatory input into the gustatory plasticity circuit as well as into distinct male mating circuits to generate a coherent mating behavior. Molecular interactions are comparable to those underlying vasopressin- and oxytocin-mediated effects in the mammalian brain. Understanding how the vasopressin/oxytocin family fine-tunes neuronal circuits for social behavior, learning and memory poses a major challenge. Functional conservation of these effects in nematodes and most likely in other invertebrates enables the development of future models to help answering this question.
Collapse
Affiliation(s)
- Isabel Beets
- Department of Biology; Functional Genomics and Proteomics Group; KU Leuven; Leuven, Belgium
| | | | | | | |
Collapse
|
27
|
Laing R, Kikuchi T, Martinelli A, Tsai IJ, Beech RN, Redman E, Holroyd N, Bartley DJ, Beasley H, Britton C, Curran D, Devaney E, Gilabert A, Hunt M, Jackson F, Johnston SL, Kryukov I, Li K, Morrison AA, Reid AJ, Sargison N, Saunders GI, Wasmuth JD, Wolstenholme A, Berriman M, Gilleard JS, Cotton JA. The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol 2013; 14:R88. [PMID: 23985316 PMCID: PMC4054779 DOI: 10.1186/gb-2013-14-8-r88] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/27/2013] [Accepted: 08/28/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The small ruminant parasite Haemonchus contortus is the most widely used parasitic nematode in drug discovery, vaccine development and anthelmintic resistance research. Its remarkable propensity to develop resistance threatens the viability of the sheep industry in many regions of the world and provides a cautionary example of the effect of mass drug administration to control parasitic nematodes. Its phylogenetic position makes it particularly well placed for comparison with the free-living nematode Caenorhabditis elegans and the most economically important parasites of livestock and humans. RESULTS Here we report the detailed analysis of a draft genome assembly and extensive transcriptomic dataset for H. contortus. This represents the first genome to be published for a strongylid nematode and the most extensive transcriptomic dataset for any parasitic nematode reported to date. We show a general pattern of conservation of genome structure and gene content between H. contortus and C. elegans, but also a dramatic expansion of important parasite gene families. We identify genes involved in parasite-specific pathways such as blood feeding, neurological function, and drug metabolism. In particular, we describe complete gene repertoires for known drug target families, providing the most comprehensive understanding yet of the action of several important anthelmintics. Also, we identify a set of genes enriched in the parasitic stages of the lifecycle and the parasite gut that provide a rich source of vaccine and drug target candidates. CONCLUSIONS The H. contortus genome and transcriptome provide an essential platform for postgenomic research in this and other important strongylid parasites.
Collapse
Affiliation(s)
- Roz Laing
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, Scotland, G61 1QH, UK
| | - Taisei Kikuchi
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Division of Parasitology, Department of Infectious Disease, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692 Japan
| | - Axel Martinelli
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Isheng J Tsai
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Division of Parasitology, Department of Infectious Disease, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692 Japan
| | - Robin N Beech
- Institute of Parasitology, Macdonald Campus, McGill University, 21,111 Lakeshore Road, Ste. Anne de Bellevue, Québec, Canada H9X 3V9
| | - Elizabeth Redman
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Faculty of Veterinary Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Nancy Holroyd
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - David J Bartley
- Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| | - Helen Beasley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Collette Britton
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, Scotland, G61 1QH, UK
| | - David Curran
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Faculty of Veterinary Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Eileen Devaney
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, Scotland, G61 1QH, UK
| | - Aude Gilabert
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Faculty of Veterinary Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Martin Hunt
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Frank Jackson
- Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| | - Stephanie L Johnston
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, Scotland, G61 1QH, UK
| | - Ivan Kryukov
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Faculty of Veterinary Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Keyu Li
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Faculty of Veterinary Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Alison A Morrison
- Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| | - Adam J Reid
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Neil Sargison
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, Scotland, UK
| | - Gary I Saunders
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, Scotland, G61 1QH, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - James D Wasmuth
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Faculty of Veterinary Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Adrian Wolstenholme
- Department of Infectious Diseases and Center for Tropical and Emerging Global Disease, University of Georgia, Athens, Georgia 30602, USA
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Faculty of Veterinary Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - James A Cotton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
28
|
Sherlekar AL, Janssen A, Siehr MS, Koo PK, Caflisch L, Boggess M, Lints R. The C. elegans male exercises directional control during mating through cholinergic regulation of sex-shared command interneurons. PLoS One 2013; 8:e60597. [PMID: 23577128 PMCID: PMC3618225 DOI: 10.1371/journal.pone.0060597] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/28/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Mating behaviors in simple invertebrate model organisms represent tractable paradigms for understanding the neural bases of sex-specific behaviors, decision-making and sensorimotor integration. However, there are few examples where such neural circuits have been defined at high resolution or interrogated. METHODOLOGY/PRINCIPAL FINDINGS Here we exploit the simplicity of the nematode Caenorhabditis elegans to define the neural circuits underlying the male's decision to initiate mating in response to contact with a mate. Mate contact is sensed by male-specific sensilla of the tail, the rays, which subsequently induce and guide a contact-based search of the hermaphrodite's surface for the vulva (the vulva search). Atypically, search locomotion has a backward directional bias so its implementation requires overcoming an intrinsic bias for forward movement, set by activity of the sex-shared locomotory system. Using optogenetics, cell-specific ablation- and mutant behavioral analyses, we show that the male makes this shift by manipulating the activity of command cells within this sex-shared locomotory system. The rays control the command interneurons through the male-specific, decision-making interneuron PVY and its auxiliary cell PVX. Unlike many sex-shared pathways, PVY/PVX regulate the command cells via cholinergic, rather than glutamatergic transmission, a feature that likely contributes to response specificity and coordinates directional movement with other cholinergic-dependent motor behaviors of the mating sequence. PVY/PVX preferentially activate the backward, and not forward, command cells because of a bias in synaptic inputs and the distribution of key cholinergic receptors (encoded by the genes acr-18, acr-16 and unc-29) in favor of the backward command cells. CONCLUSION/SIGNIFICANCE Our interrogation of male neural circuits reveals that a sex-specific response to the opposite sex is conferred by a male-specific pathway that renders subordinate, sex-shared motor programs responsive to mate cues. Circuit modifications of these types may make prominent contributions to natural variations in behavior that ultimately bring about speciation.
Collapse
Affiliation(s)
- Amrita L. Sherlekar
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Abbey Janssen
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Meagan S. Siehr
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Pamela K. Koo
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Laura Caflisch
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - May Boggess
- School of Mathematical and Statistical Sciences,Arizona State University, Tempe, Arizona, United States of America
| | - Robyn Lints
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| |
Collapse
|
29
|
Garrison JL, Macosko EZ, Bernstein S, Pokala N, Albrecht DR, Bargmann CI. Oxytocin/vasopressin-related peptides have an ancient role in reproductive behavior. Science 2012; 338:540-3. [PMID: 23112335 DOI: 10.1126/science.1226201] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Many biological functions are conserved, but the extent to which conservation applies to integrative behaviors is unknown. Vasopressin and oxytocin neuropeptides are strongly implicated in mammalian reproductive and social behaviors, yet rodent loss-of-function mutants have relatively subtle behavioral defects. Here we identify an oxytocin/vasopressin-like signaling system in Caenorhabditis elegans, consisting of a peptide and two receptors that are expressed in sexually dimorphic patterns. Males lacking the peptide or its receptors perform poorly in reproductive behaviors, including mate search, mate recognition, and mating, but other sensorimotor behaviors are intact. Quantitative analysis indicates that mating motor patterns are fragmented and inefficient in mutants, suggesting that oxytocin/vasopressin peptides increase the coherence of mating behaviors. These results indicate that conserved molecules coordinate diverse behavioral motifs in reproductive behavior.
Collapse
Affiliation(s)
- Jennifer L Garrison
- Howard Hughes Medical Institute, Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
30
|
Correa P, LeBoeuf B, García LR. C. elegans dopaminergic D2-like receptors delimit recurrent cholinergic-mediated motor programs during a goal-oriented behavior. PLoS Genet 2012; 8:e1003015. [PMID: 23166505 PMCID: PMC3499252 DOI: 10.1371/journal.pgen.1003015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 08/22/2012] [Indexed: 11/18/2022] Open
Abstract
Caenorhabditis elegans male copulation requires coordinated temporal-spatial execution of different motor outputs. During mating, a cloacal circuit consisting of cholinergic sensory-motor neurons and sex muscles maintains the male's position and executes copulatory spicule thrusts at his mate's vulva. However, distinct signaling mechanisms that delimit these behaviors to their proper context are unclear. We found that dopamine (DA) signaling directs copulatory spicule insertion attempts to the hermaphrodite vulva by dampening spurious stimulus-independent sex muscle contractions. From pharmacology and genetic analyses, DA antagonizes stimulatory ACh signaling via the D2-like receptors, DOP-2 and DOP-3, and Gα(o/i) proteins, GOA-1 and GPA-7. Calcium imaging and optogenetics suggest that heightened DA-expressing ray neuron activities coincide with the cholinergic cloacal ganglia function during spicule insertion attempts. D2-like receptor signaling also attenuates the excitability of additional mating circuits to reduce the duration of mating attempts with unproductive and/or inappropriate partners. This suggests that, during wild-type mating, simultaneous DA-ACh signaling modulates the activity threshold of repetitive motor programs, thus confining the behavior to the proper situational context.
Collapse
Affiliation(s)
- Paola Correa
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Brigitte LeBoeuf
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Howard Hughes Medical Institute, College Station, Texas, United States of America
| | - L. René García
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Howard Hughes Medical Institute, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
31
|
Jarrell TA, Wang Y, Bloniarz AE, Brittin CA, Xu M, Thomson JN, Albertson DG, Hall DH, Emmons SW. The Connectome of a Decision-Making Neural Network. Science 2012; 337:437-44. [PMID: 22837521 DOI: 10.1126/science.1221762] [Citation(s) in RCA: 311] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Travis A Jarrell
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Guo X, Navetta A, Gualberto DG, García LR. Behavioral decay in aging male C. elegans correlates with increased cell excitability. Neurobiol Aging 2012; 33:1483.e5-23. [PMID: 22285759 PMCID: PMC3378242 DOI: 10.1016/j.neurobiolaging.2011.12.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 12/10/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
Abstract
Deteriorative changes in behavioral functions are natural processes that accompany aging. In advanced aged C. elegans nematodes, gross decline in general behaviors, such as locomotion and feeding, is correlated with degeneration of muscle structure and contractile function. In this study, we characterized the age-related changes in C. elegans male mating behavior to determine possible causes that ultimately lead to age-related muscle frailty. Unlike the kinetics of general behavioral decline, we found that mating behavior deteriorates early in adulthood, with no obvious muscle fiber disorganization or sperm dysfunction. Through direct mating behavior observations, Ca(2+) imaging, and pharmacological tests, we found that the muscular components used for mating become more excitable as the males age. Interestingly, manipulating either the expression of acetylcholine receptor (AChR) genes or dietary-mediated ether-a-go-go family K(+) channel function can reduce the muscle excitability of older males and concurrently improve mating behavior, suggesting a correlation between these biological processes.
Collapse
Affiliation(s)
- Xiaoyan Guo
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, USA
| | | | | | | |
Collapse
|
33
|
Cell excitability necessary for male mating behavior in Caenorhabditis elegans is coordinated by interactions between big current and ether-a-go-go family K(+) channels. Genetics 2011; 190:1025-41. [PMID: 22174070 DOI: 10.1534/genetics.111.137455] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Variations in K(+) channel composition allow for differences in cell excitability and, at an organismal level, provide flexibility to behavioral regulation. When the function of a K(+) channel is disrupted, the remaining K(+) channels might incompletely compensate, manifesting as abnormal organismal behavior. In this study, we explored how different K(+) channels interact to regulate the neuromuscular circuitry used by Caenorhabditis elegans males to protract their copulatory spicules from their tail and insert them into the hermaphrodite's vulva during mating. We determined that the big current K(+) channel (BK)/SLO-1 genetically interacts with ether-a-go-go (EAG)/EGL-2 and EAG-related gene/UNC-103 K(+) channels to control spicule protraction. Through rescue experiments, we show that specific slo-1 isoforms affect spicule protraction. Gene expression studies show that slo-1 and egl-2 expression can be upregulated in a calcium/calmodulin-dependent protein kinase II-dependent manner to compensate for the loss of unc-103 and conversely, unc-103 can partially compensate for the loss of SLO-1 function. In conclusion, an interaction between BK and EAG family K(+) channels produces the muscle excitability levels that regulate the timing of spicule protraction and the success of male mating behavior.
Collapse
|
34
|
Siehr MS, Koo PK, Sherlekar AL, Bian X, Bunkers MR, Miller RM, Portman DS, Lints R. Multiple doublesex-related genes specify critical cell fates in a C. elegans male neural circuit. PLoS One 2011; 6:e26811. [PMID: 22069471 PMCID: PMC3206049 DOI: 10.1371/journal.pone.0026811] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 10/04/2011] [Indexed: 11/18/2022] Open
Abstract
Background In most animal species, males and females exhibit differences in behavior and morphology that relate to their respective roles in reproduction. DM (Doublesex/MAB-3) domain transcription factors are phylogenetically conserved regulators of sexual development. They are thought to establish sexual traits by sex-specifically modifying the activity of general developmental programs. However, there are few examples where the details of these interactions are known, particularly in the nervous system. Methodology/Principal Findings In this study, we show that two C. elegans DM domain genes, dmd-3 and mab-23, regulate sensory and muscle cell development in a male neural circuit required for mating. Using genetic approaches, we show that in the circuit sensory neurons, dmd-3 and mab-23 establish the correct pattern of dopaminergic (DA) and cholinergic (ACh) fate. We find that the ETS-domain transcription factor gene ast-1, a non-sex-specific, phylogenetically conserved activator of dopamine biosynthesis gene transcription, is broadly expressed in the circuit sensory neuron population. However, dmd-3 and mab-23 repress its activity in most cells, promoting ACh fate instead. A subset of neurons, preferentially exposed to a TGF-beta ligand, escape this repression because signal transduction pathway activity in these cells blocks dmd-3/mab-23 function, allowing DA fate to be established. Through optogenetic and pharmacological approaches, we show that the sensory and muscle cell characteristics controlled by dmd-3 and mab-23 are crucial for circuit function. Conclusions/Significance In the C. elegans male, DM domain genes dmd-3 and mab-23 regulate expression of cell sub-type characteristics that are critical for mating success. In particular, these factors limit the number of DA neurons in the male nervous system by sex-specifically regulating a phylogenetically conserved dopamine biosynthesis gene transcription factor. Homologous interactions between vertebrate counterparts could regulate sex differences in neuron sub-type populations in the brain.
Collapse
Affiliation(s)
- Meagan S. Siehr
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Pamela K. Koo
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Amrita L. Sherlekar
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Xuelin Bian
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Meredith R. Bunkers
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Renee M. Miller
- Department of Biomedical Genetics, Center for Neural Development and Disease, University of Rochester, Rochester, New York, United States of America
| | - Douglas S. Portman
- Department of Biomedical Genetics, Center for Neural Development and Disease, University of Rochester, Rochester, New York, United States of America
| | - Robyn Lints
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|