1
|
Wang Z, Guo Z, Liu H, Liu T, Liu D, Yu S, Tang H, Zhang H, Mou Q, Zhang B, Cao J, Schroyen M, Hou S, Zhou Z. A high-quality assembly revealing the PMEL gene for the unique plumage phenotype in Liancheng ducks. Gigascience 2025; 14:giae114. [PMID: 39804725 PMCID: PMC11727711 DOI: 10.1093/gigascience/giae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/05/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Plumage coloration is a distinctive trait in ducks, and the Liancheng duck, characterized by its white plumage and black beak and webbed feet, serves as an excellent subject for such studies. However, academic comprehension of the genetic mechanisms underlying duck plumage coloration remains limited. To this end, the Liancheng duck genome (GCA_039998735.1) was hereby de novo assembled using HiFi reads, and F2 segregating populations were generated from Liancheng and Pekin ducks. The aim was to identify the genetic mechanism of white plumage in Liancheng ducks. RESULTS In this study, 1.29 Gb Liancheng duck genome was de novo assembled, involving a contig N50 of 12.17 Mb and a scaffold N50 of 83.98 Mb. Beyond the epistatic effect of the MITF gene, genome-wide association study analysis pinpointed a 0.8-Mb genomic region encompassing the PMEL gene. This gene encoded a protein specific to pigment cells and was essential for the formation of fibrillar sheets within melanosomes, the organelles responsible for pigmentation. Additionally, linkage disequilibrium analysis revealed 2 candidate single-nucleotide polymorphisms (Chr33: 5,303,994A>G; 5,303,997A>G) that might alter PMEL transcription, potentially influencing plumage coloration in Liancheng ducks. CONCLUSIONS Our study has assembled a high-quality genome for the Liancheng duck and has presented compelling evidence that the white plumage characteristic of this breed is attributable to the PMEL gene. Overall, these findings offer significant insights and direction for future studies and breeding programs aimed at understanding and manipulating avian plumage coloration.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux 5030, Belgium
| | - Zhanbao Guo
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongfei Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tong Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dapeng Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Simeng Yu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hehe Tang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - He Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiming Mou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junting Cao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux 5030, Belgium
| | - Shuisheng Hou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhengkui Zhou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Rong S, Yu X, Wiggs JL. Genetic Basis of Pigment Dispersion Syndrome and Pigmentary Glaucoma: An Update and Functional Insights. Genes (Basel) 2024; 15:142. [PMID: 38397132 PMCID: PMC10887877 DOI: 10.3390/genes15020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Pigment Dispersion Syndrome (PDS) and Pigmentary Glaucoma (PG) comprise a spectrum of ocular disorders characterized by iris pigment dispersion and trabecular meshwork changes, resulting in increased intraocular pressure and potential glaucomatous optic neuropathy. This review summarizes recent progress in PDS/PG genetics including rare pathogenic protein coding alterations (PMEL) and susceptibility loci identified from genome-wide association studies (GSAP and GRM5/TYR). Areas for future research are also identified, especially the development of efficient model systems. While substantial strides have been made in understanding the genetics of PDS/PG, our review identifies key gaps and outlines the future directions necessary for further advancing this important field of ocular genetics.
Collapse
Affiliation(s)
- Shisong Rong
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Mass General Brigham, Harvard Medical School, Boston, MA 02114, USA;
| | - Xinting Yu
- Department of Medicine, Brigham and Women’s Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02115, USA;
| | - Janey L. Wiggs
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Mass General Brigham, Harvard Medical School, Boston, MA 02114, USA;
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
3
|
Hodges ED, Chrystal PW, Footz T, Doucette LP, Noel NCL, Li Z, Walter MA, Allison WT. Disrupting the Repeat Domain of Premelanosome Protein (PMEL) Produces Dysamyloidosis and Dystrophic Ocular Pigment Reflective of Pigmentary Glaucoma. Int J Mol Sci 2023; 24:14423. [PMID: 37833870 PMCID: PMC10572516 DOI: 10.3390/ijms241914423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
Pigmentary glaucoma has recently been associated with missense mutations in PMEL that are dominantly inherited and enriched in the protein's fascinating repeat domain. PMEL pathobiology is intriguing because PMEL forms functional amyloid in healthy eyes, and this PMEL amyloid acts to scaffold melanin deposition. This is an informative contradistinction to prominent neurodegenerative diseases where amyloid formation is neurotoxic and mutations cause a toxic gain of function called "amyloidosis". Preclinical animal models have failed to model this PMEL "dysamyloidosis" pathomechanism and instead cause recessively inherited ocular pigment defects via PMEL loss of function; they have not addressed the consequences of disrupting PMEL's repetitive region. Here, we use CRISPR to engineer a small in-frame mutation in the zebrafish homolog of PMEL that is predicted to subtly disrupt the protein's repetitive region. Homozygous mutant larvae displayed pigmentation phenotypes and altered eye morphogenesis similar to presumptive null larvae. Heterozygous mutants had disrupted eye morphogenesis and disrupted pigment deposition in their retinal melanosomes. The deficits in the pigment deposition of these young adult fish were not accompanied by any detectable glaucomatous changes in intraocular pressure or retinal morphology. Overall, the data provide important in vivo validation that subtle PMEL mutations can cause a dominantly inherited pigment pathology that aligns with the inheritance of pigmentary glaucoma patient pedigrees. These in vivo observations help to resolve controversy regarding the necessity of PMEL's repeat domain in pigmentation. The data foster an ongoing interest in an antithetical dysamyloidosis mechanism that, akin to the amyloidosis of devastating dementias, manifests as a slow progressive neurodegenerative disease.
Collapse
Affiliation(s)
- Elizabeth D. Hodges
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (E.D.H.); (P.W.C.)
- Faculty of Science, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Paul W. Chrystal
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (E.D.H.); (P.W.C.)
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Tim Footz
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2R3, Canada (M.A.W.)
| | - Lance P. Doucette
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (E.D.H.); (P.W.C.)
| | - Nicole C. L. Noel
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (E.D.H.); (P.W.C.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2R3, Canada (M.A.W.)
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Zixuan Li
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (E.D.H.); (P.W.C.)
| | - Michael A. Walter
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2R3, Canada (M.A.W.)
| | - W. Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (E.D.H.); (P.W.C.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2R3, Canada (M.A.W.)
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada
| |
Collapse
|
4
|
Surguchov A, Emamzadeh FN, Titova M, Surguchev AA. Controversial Properties of Amyloidogenic Proteins and Peptides: New Data in the COVID Era. Biomedicines 2023; 11:1215. [PMID: 37189833 PMCID: PMC10136278 DOI: 10.3390/biomedicines11041215] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
For a long time, studies of amyloidogenic proteins and peptides (amyloidogenic PPs) have been focused basically on their harmful properties and association with diseases. A vast amount of research has investigated the structure of pathogenic amyloids forming fibrous deposits within or around cells and the mechanisms of their detrimental actions. Much less has been known about the physiologic functions and beneficial properties of amyloidogenic PPs. At the same time, amyloidogenic PPs have various useful properties. For example, they may render neurons resistant to viral infection and propagation and stimulate autophagy. We discuss here some of amyloidogenic PPs' detrimental and beneficial properties using as examples beta-amyloid (β-amyloid), implicated in the pathogenesis of Alzheimer's disease (AD), and α-synuclein-one of the hallmarks of Parkinson's disease (PD). Recently amyloidogenic PPs' antiviral and antimicrobial properties have attracted attention because of the COVID-19 pandemic and the growing threat of other viral and bacterial-induced diseases. Importantly, several COVID-19 viral proteins, e.g., spike, nucleocapsid, and envelope proteins, may become amyloidogenic after infection and combine their harmful action with the effect of endogenous APPs. A central area of current investigations is the study of the structural properties of amyloidogenic PPs, defining their beneficial and harmful properties, and identifying triggers that transform physiologically important amyloidogenic PPs into vicious substances. These directions are of paramount importance during the current SARS-CoV-2 global health crisis.
Collapse
Affiliation(s)
- Andrei Surguchov
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Fatemeh N. Emamzadeh
- Analytical Development Department, Iovance Biotherapeutics, Inc., Tampa, FL 33612, USA
| | - Mariya Titova
- The College of Liberal Arts & Sciences, Kansas University, Lawrence, KS 66045, USA
| | - Alexei A. Surguchev
- Department of Surgery, Section of Otolaryngology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Heo S, Cho S, Dinh PTN, Park J, Jin DH, Cha J, Kim YK, Koh YJ, Lee SH, Lee JH. A genome-wide association study for eumelanin pigmentation in chicken plumage using a computer vision approach. Anim Genet 2023; 54:355-362. [PMID: 36855963 DOI: 10.1111/age.13303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/28/2022] [Accepted: 01/26/2023] [Indexed: 03/02/2023]
Abstract
Chicken plumage colouration is an important trait related to productivity in poultry industry. Therefore, the genetic basis for pigmentation in chicken plumage is an area of great interest. However, the colour trait is generally regarded as a qualitative trait and representing colour variations is difficult. In this study, we developed a method to quantify and classify colour using an F2 population crossed from two pure lines: White Leghorn and the Korean indigenous breed Yeonsan Ogye. Using red, green, and blue values in the cropped body region, we identified significant genomic regions on chromosomes 33:3 160 480-7 447 197 and Z:78 748 287-79 173 793. Furthermore, we identified two potential candidate genes (PMEL and MTAP) that might have significant effects on melanin-based plumage pigmentation. Our study presents a new phenotyping method using a computer vision approach and provides new insights into the genetic basis of melanin-based feather colouration in chickens.
Collapse
Affiliation(s)
- Seonyeong Heo
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, South Korea
| | - Sunghyun Cho
- Research and Development Center, Insilicogen Inc., Yongin, South Korea
| | | | - Jongho Park
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, South Korea
| | - Dae-Hyeok Jin
- Animal Genetic Resources Research Center, National Institute of Animal Science, Rural Development Administration, Hamyang, South Korea
| | - Jihye Cha
- Animal Genome & Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
| | - Young-Kuk Kim
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, South Korea.,Department of Computer Science & Engineering, Chungnam National University, Daejeon, South Korea
| | - Yeong Jun Koh
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, South Korea.,Department of Computer Science & Engineering, Chungnam National University, Daejeon, South Korea
| | - Seung Hwan Lee
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, South Korea.,Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Jun Heon Lee
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, South Korea.,Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
6
|
Wang C, Xu J, Kocher TD, Li M, Wang D. CRISPR knockouts of pmela and pmelb engineered a golden tilapia by regulating relative pigment cell abundance. J Hered 2022; 113:398-413. [PMID: 35385582 DOI: 10.1093/jhered/esac018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Premelanosome protein (pmel) is a key gene for melanogenesis. Mutations in this gene are responsible for white plumage in chicken, but its role in pigmentation of fish remains to be demonstrated. In this study we found that most fishes have two pmel genes arising from the teleost-specific whole genome duplication. Both pmela and pmelb were expressed at high levels in the eyes and skin of Nile tilapia. We mutated both genes in tilapia using CRISPR/Cas9. Homozygous mutation of pmela resulted in yellowish body color with weak vertical bars and a hypo-pigmented retinal pigment epithelium (RPE) due to significantly reduced number and size of melanophores. In contrast, we observed an increased number and size of xanthophores in mutants compared to wild-type fish. Homozygous mutation of pmelb resulted in a similar, but milder phenotype than pmela-/- mutants. Double mutation of pmela and pmelb resulted in loss of additional melanophores compared to the pmela-/- mutants, and also an increase in the number and size of xanthophores, producing a golden body color. The RPE pigmentation of pmela-/-;pmelb-/- was similar to pmela-/- mutants, with much less pigmentation than pmelb-/- mutants and wild-type fish. Taken together, our results indicate that, while both pmel genes are important for the formation of body color in tilapia, pmela plays a more important role than pmelb. To our knowledge, this is the first report on mutation of pmelb or both pmela;pmelb in fish. Studies on these mutants suggest new strategies for breeding golden tilapia, and also provide a new model for studies of pmel function in vertebrates.
Collapse
Affiliation(s)
- Chenxu Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Jia Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland College Park, Maryland, USA
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Hassan MN, Nabi F, Khan AN, Hussain M, Siddiqui WA, Uversky VN, Khan RH. The amyloid state of proteins: A boon or bane? Int J Biol Macromol 2022; 200:593-617. [PMID: 35074333 DOI: 10.1016/j.ijbiomac.2022.01.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/05/2022]
Abstract
Proteins and their aggregation is significant field of research due to their association with various conformational maladies including well-known neurodegenerative diseases like Alzheimer's (AD), Parkinson's (PD), and Huntington's (HD) diseases. Amyloids despite being given negative role for decades are also believed to play a functional role in bacteria to humans. In this review, we discuss both facets of amyloid. We have shed light on AD, which is one of the most common age-related neurodegenerative disease caused by accumulation of Aβ fibrils as extracellular senile plagues. We also discuss PD caused by the aggregation and deposition of α-synuclein in form of Lewy bodies and neurites. Other amyloid-associated diseases such as HD and amyotrophic lateral sclerosis (ALS) are also discussed. We have also reviewed functional amyloids that have various biological roles in both prokaryotes and eukaryotes that includes formation of biofilm and cell attachment in bacteria to hormone storage in humans, We discuss in detail the role of Curli fibrils' in biofilm formation, chaplins in cell attachment to peptide hormones, and Pre-Melansomal Protein (PMEL) roles. The disease-related and functional amyloids are compared with regard to their structural integrity, variation in regulation, and speed of forming aggregates and elucidate how amyloids have turned from foe to friend.
Collapse
Affiliation(s)
- Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Asra Nasir Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Murtaza Hussain
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Waseem A Siddiqui
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Vladimir N Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, 10 Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy 11 of Sciences", Pushchino, Moscow Region 142290, Russia; Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College 13 of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
8
|
Le L, Sirés-Campos J, Raposo G, Delevoye C, Marks MS. Melanosome Biogenesis in the Pigmentation of Mammalian Skin. Integr Comp Biol 2021; 61:1517-1545. [PMID: 34021746 PMCID: PMC8516112 DOI: 10.1093/icb/icab078] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Melanins, the main pigments of the skin and hair in mammals, are synthesized within membrane-bound organelles of melanocytes called melanosomes. Melanosome structure and function are determined by a cohort of resident transmembrane proteins, many of which are expressed only in pigment cells and localize specifically to melanosomes. Defects in the genes that encode melanosome-specific proteins or components of the machinery required for their transport in and out of melanosomes underlie various forms of ocular or oculocutaneous albinism, characterized by hypopigmentation of the hair, skin, and eyes and by visual impairment. We review major components of melanosomes, including the enzymes that catalyze steps in melanin synthesis from tyrosine precursors, solute transporters that allow these enzymes to function, and structural proteins that underlie melanosome shape and melanin deposition. We then review the molecular mechanisms by which these components are biosynthetically delivered to newly forming melanosomes-many of which are shared by other cell types that generate cell type-specific lysosome-related organelles. We also highlight unanswered questions that need to be addressed by future investigation.
Collapse
Affiliation(s)
- Linh Le
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Sirés-Campos
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Michael S Marks
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Hua G, Chen J, Wang J, Li J, Deng X. Genetic basis of chicken plumage color in artificial population of complex epistasis. Anim Genet 2021; 52:656-666. [PMID: 34224160 DOI: 10.1111/age.13094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/18/2022]
Abstract
Chicken plumage color, the genetic basis of which is often affected by epistasis, has long interested scientists. In the current study, a population of complex epistasis was constructed by crossing dominant White Leghorn chickens with recessive white feather chickens. Through a genome-wide association study, we identified single nucleotide polymorphisms and genes significantly associated with white and colored plumage in hens at different developmental stages. Interestingly, white plumage in adulthood was associated with the recessive white feather gene (TYR), whereas white feathers at birth stage were associated with the dominant white feather gene (PMEL), indicating age-related roles for these genes. TYR was shown to exert an epistatic effect on PMEL in adult hens. Additionally, TYR had an epistatic effect on barred plumage, while barred plumage had an epistatic effect on black plumage. TYR had no epistatic effect on the yellow plumage. We confirmed that the barred plumage gene is CDKN2A, as reported in previous studies. Golgb1 and REEP3, which play important roles in the Golgi network and affect the formation of feather pigments, are important candidate genes for yellow plumage. The candidate genes for black plumage are CAMKK1 and IFT22. Further research is warranted to elucidate the molecular mechanisms underlying these traits.
Collapse
Affiliation(s)
- Guoying Hua
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Jianfei Chen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Jiankui Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Xuemei Deng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
10
|
Functional Domains and Evolutionary History of the PMEL and GPNMB Family Proteins. Molecules 2021; 26:molecules26123529. [PMID: 34207849 PMCID: PMC8273697 DOI: 10.3390/molecules26123529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
The ancient paralogs premelanosome protein (PMEL) and glycoprotein nonmetastatic melanoma protein B (GPNMB) have independently emerged as intriguing disease loci in recent years. Both proteins possess common functional domains and variants that cause a shared spectrum of overlapping phenotypes and disease associations: melanin-based pigmentation, cancer, neurodegenerative disease and glaucoma. Surprisingly, these proteins have yet to be shown to physically or genetically interact within the same cellular pathway. This juxtaposition inspired us to compare and contrast this family across a breadth of species to better understand the divergent evolutionary trajectories of two related, but distinct, genes. In this study, we investigated the evolutionary history of PMEL and GPNMB in clade-representative species and identified TMEM130 as the most ancient paralog of the family. By curating the functional domains in each paralog, we identified many commonalities dating back to the emergence of the gene family in basal metazoans. PMEL and GPNMB have gained functional domains since their divergence from TMEM130, including the core amyloid fragment (CAF) that is critical for the amyloid potential of PMEL. Additionally, the PMEL gene has acquired the enigmatic repeat domain (RPT), composed of a variable number of imperfect tandem repeats; this domain acts in an accessory role to control amyloid formation. Our analyses revealed the vast variability in sequence, length and repeat number in homologous RPT domains between craniates, even within the same taxonomic class. We hope that these analyses inspire further investigation into a gene family that is remarkable from the evolutionary, pathological and cell biology perspectives.
Collapse
|
11
|
Identification of critical amino acid residues in the regulatory N-terminal domain of PMEL. Sci Rep 2021; 11:7730. [PMID: 33833328 PMCID: PMC8032716 DOI: 10.1038/s41598-021-87259-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/26/2021] [Indexed: 01/22/2023] Open
Abstract
The pigment cell-specific protein PMEL forms a functional amyloid matrix in melanosomes onto which the pigment melanin is deposited. The amyloid core consists of a short proteolytic fragment, which we have termed the core-amyloid fragment (CAF) and perhaps additional parts of the protein, such as the PKD domain. A highly O-glycosylated repeat (RPT) domain also derived from PMEL proteolysis associates with the amyloid and is necessary to establish the sheet-like morphology of the assemblies. Excluded from the aggregate is the regulatory N-terminus, which nevertheless must be linked in cis to the CAF in order to drive amyloid formation. The domain is then likely cleaved away immediately before, during, or immediately after the incorporation of a new CAF subunit into the nascent amyloid. We had previously identified a 21 amino acid long region, which mediates the regulatory activity of the N-terminus towards the CAF. However, many mutations in the respective segment caused misfolding and/or blocked PMEL export from the endoplasmic reticulum, leaving their phenotype hard to interpret. Here, we employ a saturating mutagenesis approach targeting the motif at single amino acid resolution. Our results confirm the critical nature of the PMEL N-terminal region and identify several residues essential for PMEL amyloidogenesis.
Collapse
|
12
|
The Anti-Melanogenesis Effect of 3,4-Dihydroxybenzalacetone through Downregulation of Melanosome Maturation and Transportation in B16F10 and Human Epidermal Melanocytes. Int J Mol Sci 2021; 22:ijms22062823. [PMID: 33802228 PMCID: PMC7999661 DOI: 10.3390/ijms22062823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
The biosynthesis pathway of melanin is a series of oxidative reactions that are catalyzed by melanin-related proteins, including tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). Reagents or materials with antioxidative or free radical-scavenging activities may be candidates for anti-melanogenesis. 3,4-Dihydroxybenzalacetone (DBL) is a polyphenol isolated from fungi, such as Phellinus obliguus (Persoon) Pilat and P. linteus. In this study, we investigated the effects and mechanisms of DBL on antioxidation and melanogenesis in murine melanoma cells (B16F10) and human epidermal melanocytes (HEMs). The results indicated that DBL scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radicals, and exhibited potent reducing power, indicating that it displays strong antioxidative activity. DBL also inhibited the expression of TYR, TRP-1, TRP-2, and microphthalmia-related transcription factor (MITF) in both the cells. In addition, DBL inhibited hyperpigmentation in B16F10 and HEMs by regulating the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA), v-akt murine thymoma viral oncogene homolog (AKT)/glycogen synthase kinase 3 beta (GSK3β), and mitogen-activated protein kinase kinase (MEK)/extracellular regulated protein kinase (ERK) signaling pathways. DBL not only shortened dendritic melanocytes but also inhibited premelanosome protein 17 (PMEL17) expression, slowing down the maturation of melanosome transportation. These results indicated that DBL promotes anti-melanogenesis by inhibiting the transportation of melanosomes. Therefore, DBL is a potent antioxidant and depigmenting agent that may be used in whitening cosmetics.
Collapse
|
13
|
Sheng J, Olrichs NK, Gadella BM, Kaloyanova DV, Helms JB. Regulation of Functional Protein Aggregation by Multiple Factors: Implications for the Amyloidogenic Behavior of the CAP Superfamily Proteins. Int J Mol Sci 2020; 21:E6530. [PMID: 32906672 PMCID: PMC7554809 DOI: 10.3390/ijms21186530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
The idea that amyloid fibrils and other types of protein aggregates are toxic for cells has been challenged by the discovery of a variety of functional aggregates. However, an identification of crucial differences between pathological and functional aggregation remains to be explored. Functional protein aggregation is often reversible by nature in order to respond properly to changing physiological conditions of the cell. In addition, increasing evidence indicates that fast fibril growth is a feature of functional amyloids, providing protection against the long-term existence of potentially toxic oligomeric intermediates. It is becoming clear that functional protein aggregation is a complexly organized process that can be mediated by a multitude of biomolecular factors. In this overview, we discuss the roles of diverse biomolecules, such as lipids/membranes, glycosaminoglycans, nucleic acids and metal ions, in regulating functional protein aggregation. Our studies on the protein GAPR-1 revealed that several of these factors influence the amyloidogenic properties of this protein. These observations suggest that GAPR-1, as well as the cysteine-rich secretory proteins, antigen 5 and pathogenesis-related proteins group 1 (CAP) superfamily of proteins that it belongs to, require the assembly into an amyloid state to exert several of their functions. A better understanding of functional aggregate formation may also help in the prevention and treatment of amyloid-related diseases.
Collapse
Affiliation(s)
| | | | | | | | - J. Bernd Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (J.S.); (N.K.O.); (B.M.G.); (D.V.K.)
| |
Collapse
|
14
|
Bécot A, Volgers C, van Niel G. Transmissible Endosomal Intoxication: A Balance between Exosomes and Lysosomes at the Basis of Intercellular Amyloid Propagation. Biomedicines 2020; 8:biomedicines8080272. [PMID: 32759666 PMCID: PMC7459801 DOI: 10.3390/biomedicines8080272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
In Alzheimer′s disease (AD), endolysosomal dysfunctions are amongst the earliest cellular features to appear. Each organelle of the endolysosomal system, from the multivesicular body (MVB) to the lysosome, contributes to the homeostasis of amyloid precursor protein (APP) cleavage products including β-amyloid (Aβ) peptides. Hence, this review will attempt to disentangle how changes in the endolysosomal system cumulate to the generation of toxic amyloid species and hamper their degradation. We highlight that the formation of MVBs and the generation of amyloid species are closely linked and describe how the molecular machineries acting at MVBs determine the generation and sorting of APP cleavage products towards their degradation or release in association with exosomes. In particular, we will focus on AD-related distortions of the endolysomal system that divert it from its degradative function to favour the release of exosomes and associated amyloid species. We propose here that such an imbalance transposed at the brain scale poses a novel concept of transmissible endosomal intoxication (TEI). This TEI would initiate a self-perpetuating transmission of endosomal dysfunction between cells that would support the propagation of amyloid species in neurodegenerative diseases.
Collapse
|
15
|
Abstract
Horses perform in a variety of disciplines that are visually demanding, and any disease impacting the eye has the potential to threaten vision and thus the utility of the horse. Advances in equine genetics have enabled the understanding of some inherited ocular disorders and ocular manifestations and are enabling cross-species comparisons. Genetic testing for multiple congenital ocular anomalies, congenital stationary night blindness, equine recurrent uveitis, and squamous cell carcinoma can identify horses with or at risk for disease and thus can assist in clinical management and breeding decisions. This article describes the current knowledge of inherited ocular disorders.
Collapse
Affiliation(s)
- Rebecca R Bellone
- Department of Population Health and Reproduction, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
16
|
Zheng X, Zhang B, Zhang Y, Zhong H, Nie R, Li J, Zhang H, Wu C. Transcriptome analysis of feather follicles reveals candidate genes and pathways associated with pheomelanin pigmentation in chickens. Sci Rep 2020; 10:12088. [PMID: 32694523 PMCID: PMC7374586 DOI: 10.1038/s41598-020-68931-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 07/03/2020] [Indexed: 11/20/2022] Open
Abstract
Yellow plumage is common in chickens, especially in breeds such as the Huiyang Bearded chicken, which is indigenous to China. We evaluated plumage colour distribution in F1, F2, and F3 populations of an Huiyang Bearded chicken × White Leghorn chicken cross, the heredity of the yellow plumage trait was distinguished from that of the gold plumage and other known plumage colours. Microscopic analysis of the feather follicles indicated that pheomelanin particles were formed in yellow but not in white feathers. To screen genes related to formation of the pheomelanin particles, we generated transcriptome data from yellow and white feather follicles from 7- and 11-week-old F3 chickens using RNA-seq. We identified 27 differentially expressed genes (DEGs) when comparing the yellow and white feather follicles. These DEGs were enriched in the Gene Ontology classes ‘melanosome’ and ‘melanosome organization’ related to the pigmentation process. Down-regulation of TYRP1, DCT, PMEL, MLANA, and HPGDS, verified using quantitative reverse transcription PCR, may lead to reduced eumelanin and increased pheomelanin synthesis in yellow plumage. Owing to the presence of the Dominant white locus, both white and yellow plumage lack eumelanin, and white feathers showed no pigments. Our results provide an understanding of yellow plumage formation in chickens.
Collapse
Affiliation(s)
- Xiaotong Zheng
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yawen Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Haian Zhong
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ruixue Nie
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Changxin Wu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
17
|
Graham M, Tzika AC, Mitchell SM, Liu X, Leonhardt RM. Repeat domain-associated O-glycans govern PMEL fibrillar sheet architecture. Sci Rep 2019; 9:6101. [PMID: 30988362 PMCID: PMC6465243 DOI: 10.1038/s41598-019-42571-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/06/2019] [Indexed: 12/20/2022] Open
Abstract
PMEL is a pigment cell-specific protein that forms a functional amyloid matrix in melanosomes. The matrix consists of well-separated fibrillar sheets on which the pigment melanin is deposited. Using electron tomography, we demonstrate that this sheet architecture is governed by the PMEL repeat (RPT) domain, which associates with the amyloid as an accessory proteolytic fragment. Thus, the RPT domain is dispensable for amyloid formation as such but shapes the morphology of the matrix, probably in order to maximize the surface area available for pigment adsorption. Although the primary amino acid sequence of the RPT domain differs vastly among various vertebrates, we show that it is a functionally conserved, interchangeable module. RPT domains of all species are predicted to be very highly O-glycosylated, which is likely the common defining feature of this domain. O-glycosylation is indeed essential for RPT domain function and the establishment of the PMEL sheet architecture. Thus, O-glycosylation, not amino acid sequence, appears to be the major factor governing the characteristic PMEL amyloid morphology.
Collapse
Affiliation(s)
- Morven Graham
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Athanasia C Tzika
- Department of Genetics & Evolution, Laboratory of Artificial & Natural Evolution (LANE), Sciences III Building, 1211, Geneva, 4, Switzerland
| | - Susan M Mitchell
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06519, USA
| | - Xinran Liu
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Ralf M Leonhardt
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06519, USA.
| |
Collapse
|
18
|
Lahola-Chomiak AA, Footz T, Nguyen-Phuoc K, Neil GJ, Fan B, Allen KF, Greenfield DS, Parrish RK, Linkroum K, Pasquale LR, Leonhardt RM, Ritch R, Javadiyan S, Craig JE, Allison WT, Lehmann OJ, Walter MA, Wiggs JL. Non-Synonymous variants in premelanosome protein (PMEL) cause ocular pigment dispersion and pigmentary glaucoma. Hum Mol Genet 2019; 28:1298-1311. [PMID: 30561643 PMCID: PMC6452206 DOI: 10.1093/hmg/ddy429] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/04/2018] [Accepted: 12/12/2018] [Indexed: 01/25/2023] Open
Abstract
Pigmentary glaucoma (PG) is a common glaucoma subtype that results from release of pigment from the iris, called pigment dispersion syndrome (PDS), and its deposition throughout the anterior chamber of the eye. Although PG has a substantial heritable component, no causative genes have yet been identified. We used whole exome sequencing of two independent pedigrees to identify two premelanosome protein (PMEL) variants associated with heritable PDS/PG. PMEL encodes a key component of the melanosome, the organelle essential for melanin synthesis, storage and transport. Targeted screening of PMEL in three independent cohorts (n = 394) identified seven additional PDS/PG-associated non-synonymous variants. Five of the nine variants exhibited defective processing of the PMEL protein. In addition, analysis of PDS/PG-associated PMEL variants expressed in HeLa cells revealed structural changes to pseudomelanosomes indicating altered amyloid fibril formation in five of the nine variants. Introduction of 11-base pair deletions to the homologous pmela in zebrafish by the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 method caused profound pigmentation defects and enlarged anterior segments in the eye, further supporting PMEL's role in ocular pigmentation and function. Taken together, these data support a model in which missense PMEL variants represent dominant negative mutations that impair the ability of PMEL to form functional amyloid fibrils. While PMEL mutations have previously been shown to cause pigmentation and ocular defects in animals, this research is the first report of mutations in PMEL causing human disease.
Collapse
Affiliation(s)
| | - Tim Footz
- Department of Medical Genetics, University of Alberta, Edmonton AB, Canada
| | - Kim Nguyen-Phuoc
- Department of Medical Genetics, University of Alberta, Edmonton AB, Canada
| | - Gavin J Neil
- Department of Biological Sciences, University of Alberta, Edmonton AB, Canada
| | - Baojian Fan
- Ocular Genomics Institute and Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Keri F Allen
- Ocular Genomics Institute and Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - David S Greenfield
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Palm Beach Gardens, FL, USA
| | - Richard K Parrish
- Anne Bates Leach Eye Hospital, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kevin Linkroum
- Ocular Genomics Institute and Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Louis R Pasquale
- Ocular Genomics Institute and Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Ralf M Leonhardt
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA
| | - Shari Javadiyan
- Department of Ophthalmology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - W T Allison
- Department of Medical Genetics, University of Alberta, Edmonton AB, Canada
- Department of Biological Sciences, University of Alberta, Edmonton AB, Canada
| | - Ordan J Lehmann
- Department of Medical Genetics, University of Alberta, Edmonton AB, Canada
- Department of Ophthalmology, University of Alberta, Edmonton AB, Canada
| | - Michael A Walter
- Department of Medical Genetics, University of Alberta, Edmonton AB, Canada
| | - Janey L Wiggs
- Ocular Genomics Institute and Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Bissig C, Croisé P, Heiligenstein X, Hurbain I, Lenk GM, Kaufman E, Sannerud R, Annaert W, Meisler MH, Weisman LS, Raposo G, van Niel G. The PIKfyve complex regulates the early melanosome homeostasis required for physiological amyloid formation. J Cell Sci 2019; 132:jcs.229500. [PMID: 30709920 DOI: 10.1242/jcs.229500] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/14/2019] [Indexed: 12/23/2022] Open
Abstract
The metabolism of PI(3,5)P2 is regulated by the PIKfyve, VAC14 and FIG4 complex, mutations in which are associated with hypopigmentation in mice. These pigmentation defects indicate a key, but as yet unexplored, physiological relevance of this complex in the biogenesis of melanosomes. Here, we show that PIKfyve activity regulates formation of amyloid matrix composed of PMEL protein within the early endosomes in melanocytes, called stage I melanosomes. PIKfyve activity controls the membrane remodeling of stage I melanosomes, which regulates PMEL abundance, sorting and processing. PIKfyve activity also affects stage I melanosome kiss-and-run interactions with lysosomes, which are required for PMEL amyloidogenesis and the establishment of melanosome identity. Mechanistically, PIKfyve activity promotes both the formation of membrane tubules from stage I melanosomes and their release by modulating endosomal actin branching. Taken together, our data indicate that PIKfyve activity is a key regulator of the melanosomal import-export machinery that fine tunes the formation of functional amyloid fibrils in melanosomes and the maintenance of melanosome identity.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Christin Bissig
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France
| | - Pauline Croisé
- IPNP, Institute of Psychiatry and Neuroscience of Paris, Hopital Saint-Anne, Université Paris Descartes, INSERM U894, 75014 Paris, France
| | - Xavier Heiligenstein
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France.,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France
| | - Ilse Hurbain
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France.,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France
| | - Guy M Lenk
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | - Emily Kaufman
- Life Science Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Ragna Sannerud
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Neurosciences, 3000 Leuven, Belgium
| | - Wim Annaert
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Neurosciences, 3000 Leuven, Belgium
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | - Lois S Weisman
- Life Science Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Graça Raposo
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France.,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France
| | - Guillaume van Niel
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France .,IPNP, Institute of Psychiatry and Neuroscience of Paris, Hopital Saint-Anne, Université Paris Descartes, INSERM U894, 75014 Paris, France.,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France
| |
Collapse
|
20
|
Nonsense mutation in PMEL is associated with yellowish plumage colour phenotype in Japanese quail. Sci Rep 2018; 8:16732. [PMID: 30425278 PMCID: PMC6233202 DOI: 10.1038/s41598-018-34827-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/12/2018] [Indexed: 11/08/2022] Open
Abstract
The L strain of Japanese quail exhibits a plumage phenotype that is light yellowish in colour. In this study, we identified a nonsense mutation in the premelanosome protein (PMEL) gene showing complete concordance with the yellowish plumage within a pedigree as well as across strains by genetic linkage analysis of an F2 intercross population using approximately 2,000 single nucleotide polymorphisms (SNPs) that were detected by double digest restriction site-associated DNA sequencing (ddRAD-seq). The yellowish plumage was inherited in an autosomal recessive manner, and the causative mutation was located within an 810-kb genomic region of the LGE22C19W28_E50C23 linkage group (LGE22). This region contained the PMEL gene that is required for the normal melanosome morphogenesis and eumelanin deposition. A nonsense mutation that leads to a marked truncation of the deduced protein was found in PMEL of the mutant. The gene expression level of PMEL decreased substantially in the mutant. Genotypes at the site of the nonsense mutation were fully concordant with plumage colour phenotypes in 196 F2 offspring. The nonsense mutation was not found in several quail strains with non-yellowish plumage. Thus, the yellowish plumage may be caused by the reduced eumelanin content in feathers because of the loss of PMEL function.
Collapse
|
21
|
Murphy SC, Evans JM, Tsai KL, Clark LA. Length variations within the Merle retrotransposon of canine PMEL: correlating genotype with phenotype. Mob DNA 2018; 9:26. [PMID: 30123327 PMCID: PMC6091007 DOI: 10.1186/s13100-018-0131-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/27/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The antisense insertion of a canine short interspersed element (SINEC_Cf) in the pigmentation gene PMEL (or SILV) causes a coat pattern phenotype in dogs termed merle. Merle is a semi-dominant trait characterized by patches of full pigmentation on a diluted background. The oligo(dT) tract of the Merle retrotransposon is long and uninterrupted and is prone to dramatic truncation. Phenotypically wild-type individuals carrying shorter oligo(dT) lengths of the Merle allele have been previously described and termed cryptic merles. Two additional coat patterns, dilute merle (uniform, steely-grey coat) and harlequin merle (white background with black patches), also appear in breeds segregating the Merle allele. RESULTS Sequencing of all PMEL exons in a dilute and a harlequin merle reveals that variation exists solely within the oligo(dT) tract of the SINEC_Cf insertion. In fragment analyses from 259 dogs heterozygous for Merle, we observed a spectrum of oligo(dT) lengths spanning 25 to 105 base pairs (bp), with ranges that correspond to the four varieties of the merle phenotype: cryptic (25-55 bp), dilute (66-74 bp), standard (78-86 bp), and harlequin (81-105 bp). Somatic contractions of the oligo(dT) were observed in 43% of standard and 51% of harlequin merle dogs. A small proportion (4.6%) of the study cohort inherited de novo contractions or expansions of the Merle allele that resulted in dilute or harlequin coat patterns, respectively. CONCLUSIONS The phenotypic consequence of the Merle SINE insertion directly depends upon oligo(dT) length. In transcription, we propose that the use of an alternative splice site increases with oligo(dT) length, resulting in insufficient PMEL and a pigment dilution spectrum, from dark grey to complete hypopigmentation. We further propose that during replication, contractions and expansions increase in frequency with oligo(dT) length, causing coat variegation (somatic events in melanocytes) and the spontaneous appearance of varieties of the merle phenotype (germline events).
Collapse
Affiliation(s)
- Sarah C. Murphy
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634 USA
| | - Jacquelyn M. Evans
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634 USA
| | - Kate L. Tsai
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634 USA
| | - Leigh Anne Clark
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634 USA
| |
Collapse
|
22
|
Bergam P, Reisecker JM, Rakvács Z, Kucsma N, Raposo G, Szakacs G, van Niel G. ABCB6 Resides in Melanosomes and Regulates Early Steps of Melanogenesis Required for PMEL Amyloid Matrix Formation. J Mol Biol 2018; 430:3802-3818. [PMID: 29940187 DOI: 10.1016/j.jmb.2018.06.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 01/08/2023]
Abstract
Genetically inheritable pigmentation defects provide a unique opportunity to reveal the function of proteins contributing to melanogenesis. Dyschromatosis universalis hereditaria (DUH) is a rare pigmentary genodermatosis associated with mutations in the ABCB6 gene. Here we use optical and electron microscopy imaging combined with biochemical tools to investigate the localization and function of ABCB6 in pigment cells. We show that ABCB6 localizes to the membrane of early melanosomes and lysosomes of the human melanocytic cell line MNT-1. Depletion of ABCB6 by siRNA impaired PMEL amyloidogenesis in early melanosomes and induced aberrant accumulation of multilamellar aggregates in pigmented melanosomes. PMEL fibril formation and normal maturation of pigmented melanosomes could be restored by the overexpression of wild-type ABCB6 but not by variants containing an inactivating catalytic mutation (K629M) or the G579E DUH mutation. In line with the impairment of PMEL matrix formation in the absence of ABCB6, morphological analysis of the retinal pigment epithelium of ABCB6 knockout mice revealed a significant decrease of melanosome numbers. Our study extends the localization of ABCB6 to melanosomes, suggesting a potential link between the function of ABCB6 and the etiology of DUH to amyloid formation in pigment cells.
Collapse
Affiliation(s)
- Ptissam Bergam
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'Ulm, 75231 Paris, France; Centre National de la Recherche Scientifique, UMR144, Paris F-75248, France; Cell and Tissue Imaging Core Facility PICT-IBiSA, Institut Curie, Paris, France
| | | | - Zsófia Rakvács
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest 1117, Hungary
| | - Nóra Kucsma
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest 1117, Hungary
| | - Graça Raposo
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'Ulm, 75231 Paris, France; Centre National de la Recherche Scientifique, UMR144, Paris F-75248, France; Cell and Tissue Imaging Core Facility PICT-IBiSA, Institut Curie, Paris, France
| | - Gergely Szakacs
- Institute of Cancer Research, Medical University Vienna, Vienna, Austria; Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest 1117, Hungary.
| | - Guillaume van Niel
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'Ulm, 75231 Paris, France; Centre National de la Recherche Scientifique, UMR144, Paris F-75248, France; Cell and Tissue Imaging Core Facility PICT-IBiSA, Institut Curie, Paris, France; Center for Psychiatry and Neuroscience, Hopital Saint-Anne, Université Descartes, INSERM U894, Paris, France.
| |
Collapse
|
23
|
Molecular Genetics of Pigment Dispersion Syndrome and Pigmentary Glaucoma: New Insights into Mechanisms. J Ophthalmol 2018; 2018:5926906. [PMID: 29780638 PMCID: PMC5892222 DOI: 10.1155/2018/5926906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/22/2018] [Indexed: 12/20/2022] Open
Abstract
We explore the ideas and advances surrounding the genetic basis of pigment dispersion syndrome (PDS) and pigmentary glaucoma (PG). As PG is the leading cause of nontraumatic blindness in young adults and current tailored interventions have proven ineffective, a better understanding of the underlying causes of PDS, PG, and their relationship is essential. Despite PDS being a subclinical disease, a large proportion of patients progress to PG with associated vision loss. Decades of research have supported a genetic component both for PDS and conversion to PG. We review the body of evidence supporting a genetic basis in humans and animal models and reevaluate classical mechanisms of PDS/PG considering this new evidence.
Collapse
|
24
|
Periole X, Huber T, Bonito-Oliva A, Aberg KC, van der Wel PCA, Sakmar TP, Marrink SJ. Energetics Underlying Twist Polymorphisms in Amyloid Fibrils. J Phys Chem B 2018; 122:1081-1091. [PMID: 29254334 PMCID: PMC5857390 DOI: 10.1021/acs.jpcb.7b10233] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Amyloid fibrils are highly ordered protein aggregates associated with more than 40 human diseases. The exact conditions under which the fibrils are grown determine many types of reported fibril polymorphism, including different twist patterns. Twist-based polymorphs display unique mechanical properties in vitro, and the relevance of twist polymorphism in amyloid diseases has been suggested. We present transmission electron microscopy images of Aβ42-derived (amyloid β) fibrils, which are associated with Alzheimer's disease, demonstrating the presence of twist variability even within a single long fibril. To better understand the molecular underpinnings of twist polymorphism, we present a structural and thermodynamics analysis of molecular dynamics simulations of the twisting of β-sheet protofilaments of a well-characterized cross-β model: the GNNQQNY peptide from the yeast prion Sup35. The results show that a protofilament model of GNNQQNY is able to adopt twist angles from -11° on the left-hand side to +8° on the right-hand side in response to various external conditions, keeping an unchanged peptide structure. The potential of mean force (PMF) of this cross-β structure upon twisting revealed that only ∼2kBT per peptide are needed to stabilize a straight conformation with respect to the left-handed free-energy minimum. The PMF also shows that the canonical structural core of β-sheets, i.e., the hydrogen-bonded backbone β-strands, favors the straight conformation. However, the concerted effects of the side chains contribute to twisting, which provides a rationale to correlate polypeptide sequence, environmental growth conditions and number of protofilaments in a fibril with twist polymorphisms.
Collapse
Affiliation(s)
- Xavier Periole
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen , Groningen 9747 AG, The Netherlands
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University , 1230 York Avenue, New York, New York 10065, United States
| | - Alessandra Bonito-Oliva
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University , 1230 York Avenue, New York, New York 10065, United States
| | - Karina C Aberg
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University , 1230 York Avenue, New York, New York 10065, United States
| | - Patrick C A van der Wel
- Department of Structural Biology and Center for Protein Conformational Diseases, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University , 1230 York Avenue, New York, New York 10065, United States
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet , 141 57 Huddinge, Sweden
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen , Groningen 9747 AG, The Netherlands
| |
Collapse
|
25
|
Allison WT, DuVal MG, Nguyen-Phuoc K, Leighton PLA. Reduced Abundance and Subverted Functions of Proteins in Prion-Like Diseases: Gained Functions Fascinate but Lost Functions Affect Aetiology. Int J Mol Sci 2017; 18:E2223. [PMID: 29064456 PMCID: PMC5666902 DOI: 10.3390/ijms18102223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022] Open
Abstract
Prions have served as pathfinders that reveal many aspects of proteostasis in neurons. The recent realization that several prominent neurodegenerative diseases spread via a prion-like mechanism illuminates new possibilities for diagnostics and therapeutics. Thus, key proteins in Alzheimer Disease and Amyotrophic lateral sclerosis (ALS), including amyloid-β precursor protein, Tau and superoxide dismutase 1 (SOD1), spread to adjacent cells in their misfolded aggregated forms and exhibit template-directed misfolding to induce further misfolding, disruptions to proteostasis and toxicity. Here we invert this comparison to ask what these prion-like diseases can teach us about the broad prion disease class, especially regarding the loss of these key proteins' function(s) as they misfold and aggregate. We also consider whether functional amyloids might reveal a role for subverted protein function in neurodegenerative disease. Our synthesis identifies SOD1 as an exemplar of protein functions being lost during prion-like protein misfolding, because SOD1 is inherently unstable and loses function in its misfolded disease-associated form. This has under-appreciated parallels amongst the canonical prion diseases, wherein the normally folded prion protein, PrPC, is reduced in abundance in fatal familial insomnia patients and during the preclinical phase in animal models, apparently via proteostatic mechanisms. Thus while template-directed misfolding and infectious properties represent gain-of-function that fascinates proteostasis researchers and defines (is required for) the prion(-like) diseases, loss and subversion of the functions attributed to hallmark proteins in neurodegenerative disease needs to be integrated into design towards effective therapeutics. We propose experiments to uniquely test these ideas.
Collapse
Affiliation(s)
- W Ted Allison
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada.
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2M8, Canada.
| | - Michèle G DuVal
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Kim Nguyen-Phuoc
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada.
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2M8, Canada.
| | - Patricia L A Leighton
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada.
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
26
|
Jackson MP, Hewitt EW. Why are Functional Amyloids Non-Toxic in Humans? Biomolecules 2017; 7:biom7040071. [PMID: 28937655 PMCID: PMC5745454 DOI: 10.3390/biom7040071] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 12/26/2022] Open
Abstract
Amyloids were first identified in association with amyloidoses, human diseases in which proteins and peptides misfold into amyloid fibrils. Subsequent studies have identified an array of functional amyloid fibrils that perform physiological roles in humans. Given the potential for the production of toxic species in amyloid assembly reactions, it is remarkable that cells can produce these functional amyloids without suffering any obvious ill effect. Although the precise mechanisms are unclear, there are a number of ways in which amyloid toxicity may be prevented. These include regulating the level of the amyloidogenic peptides and proteins, minimising the production of prefibrillar oligomers in amyloid assembly reactions, sequestrating amyloids within membrane bound organelles, controlling amyloid assembly by other molecules, and disassembling the fibrils under physiological conditions. Crucially, a better understanding of how toxicity is avoided in the production of functional amyloids may provide insights into the prevention of amyloid toxicity in amyloidoses.
Collapse
Affiliation(s)
- Matthew P Jackson
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Eric W Hewitt
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
27
|
Nikitidou E, Khoonsari PE, Shevchenko G, Ingelsson M, Kultima K, Erlandsson A. Increased Release of Apolipoprotein E in Extracellular Vesicles Following Amyloid-β Protofibril Exposure of Neuroglial Co-Cultures. J Alzheimers Dis 2017; 60:305-321. [PMID: 28826183 PMCID: PMC5676865 DOI: 10.3233/jad-170278] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2017] [Indexed: 12/30/2022]
Abstract
Extracellular vesicles (EVs), including exosomes and larger microvesicles, have been implicated to play a role in several conditions, including Alzheimer's disease (AD). Since the EV content mirrors the intracellular environment, it could contribute with important information about ongoing pathological processes and may be a useful source for biomarkers, reflecting the disease progression. The aim of the present study was to analyze the protein content of EVs specifically released from a mixed co-culture of primary astrocytes, neurons, and oligodendrocytes treated with synthetic amyloid-β (Aβ42) protofibrils. The EV isolation was performed by ultracentrifugation and validated by transmission electron microscopy. Mass spectrometry analysis of the EV content revealed a total of 807 unique proteins, of which five displayed altered levels in Aβ42 protofibril exposed cultures. The most prominent protein was apolipoprotein E (apoE), and by western blot analysis we could confirm a threefold increase of apoE in EVs from Aβ42 protofibril exposed cells, compared to unexposed cells. Moreover, immunoprecipitation studies demonstrated that apoE was primarily situated inside the EVs, whereas immunocytochemistry indicated that the EVs most likely derived from the astrocytes and the neurons in the culture. The identified Aβ-induced sorting of apoE into EVs from cultured neuroglial cells suggests a possible role for intercellular transfer of apoE in AD pathology and encourage future studies to fully elucidate the clinical relevance of this event.
Collapse
Affiliation(s)
- Elisabeth Nikitidou
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Payam Emami Khoonsari
- Department of Medical Sciences, Clinical Chemistry, Uppsala University Academic Hospital, Uppsala, Sweden
| | - Ganna Shevchenko
- Department of Chemistry-BMC, AnalyticalChemistry, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Clinical Chemistry, Uppsala University Academic Hospital, Uppsala, Sweden
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Bissig C, Rochin L, van Niel G. PMEL Amyloid Fibril Formation: The Bright Steps of Pigmentation. Int J Mol Sci 2016; 17:ijms17091438. [PMID: 27589732 PMCID: PMC5037717 DOI: 10.3390/ijms17091438] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/12/2016] [Accepted: 08/22/2016] [Indexed: 02/06/2023] Open
Abstract
In pigment cells, melanin synthesis takes place in specialized organelles, called melanosomes. The biogenesis and maturation of melanosomes is initiated by an unpigmented step that takes place prior to the initiation of melanin synthesis and leads to the formation of luminal fibrils deriving from the pigment cell-specific pre-melanosomal protein (PMEL). In the lumen of melanosomes, PMEL fibrils optimize sequestration and condensation of the pigment melanin. Interestingly, PMEL fibrils have been described to adopt a typical amyloid-like structure. In contrast to pathological amyloids often associated with neurodegenerative diseases, PMEL fibrils represent an emergent category of physiological amyloids due to their beneficial cellular functions. The formation of PMEL fibrils within melanosomes is tightly regulated by diverse mechanisms, such as PMEL traffic, cleavage and sorting. These mechanisms revealed increasing analogies between the formation of physiological PMEL fibrils and pathological amyloid fibrils. In this review we summarize the known mechanisms of PMEL fibrillation and discuss how the recent understanding of physiological PMEL amyloid formation may help to shed light on processes involved in pathological amyloid formation.
Collapse
Affiliation(s)
- Christin Bissig
- Institut Curie, Paris Sciences et Lettres Research University, UMR144, Centre de Recherche, 26 rue d'ULM, Paris F-75231, France.
- Centre National de la Recherche Scientifique, UMR144, Paris F-75248, France.
| | - Leila Rochin
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK.
| | - Guillaume van Niel
- Institut Curie, Paris Sciences et Lettres Research University, UMR144, Centre de Recherche, 26 rue d'ULM, Paris F-75231, France.
- Centre National de la Recherche Scientifique, UMR144, Paris F-75248, France.
| |
Collapse
|
29
|
Screening for transmembrane association in divisome proteins using TOXGREEN, a high-throughput variant of the TOXCAT assay. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2573-2583. [PMID: 27453198 DOI: 10.1016/j.bbamem.2016.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 11/21/2022]
Abstract
TOXCAT is a widely used genetic assay to study interactions of transmembrane helices within the inner membrane of the bacterium Escherichia coli. TOXCAT is based on a fusion construct that links a transmembrane domain of interest with a cytoplasmic DNA-binding domain from the Vibrio cholerae ToxR protein. Interaction driven by the transmembrane domain results in dimerization of the ToxR domain, which, in turn, activates the expression of the reporter gene chloramphenicol acetyl transferase (CAT). Quantification of CAT is used as a measure of the ability of the transmembrane domain to self-associate. Because the quantification of CAT is relatively laborious, we developed a high-throughput variant of the assay, TOXGREEN, based on the expression of super-folded GFP and detection of fluorescence directly in unprocessed cell cultures. Careful side-by-side comparison of TOXCAT and TOXGREEN demonstrates that the methods have comparable response, dynamic range, sensitivity and intrinsic variability both in LB and minimal media. The greatly enhanced workflow makes TOXGREEN much more scalable and ideal for screening, since hundreds of constructs can be rapidly assessed in 96 well plates. Even for small scale investigations, TOXGREEN significantly reduces time, labor and cost associated with the procedure. We demonstrate applicability with a large screening for self-association among the transmembrane domains of bitopic proteins of the divisome (FtsL, FtsB, FtsQ, FtsI, FtsN, ZipA and EzrA) belonging to 11 bacterial species. The analysis confirms a previously reported tendency for FtsB to self-associate, and suggests that the transmembrane domains of ZipA, EzrA and FtsN may also possibly oligomerize.
Collapse
|
30
|
van Niel G. Study of Exosomes Shed New Light on Physiology of Amyloidogenesis. Cell Mol Neurobiol 2016; 36:327-42. [PMID: 26983829 PMCID: PMC11482316 DOI: 10.1007/s10571-016-0357-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/27/2016] [Indexed: 12/18/2022]
Abstract
Accumulation of toxic amyloid oligomers, a key feature in the pathogenesis of amyloid-related diseases, results from an imbalance between generation and clearance of amyloidogenic proteins. Cell biology has brought to light the key roles of multivesicular endosomes (MVEs) and their intraluminal vesicles (ILVs), which can be secreted as exosomes, in amyloid generation and clearance. To better understand these roles, we have investigated a relevant physiological model of amyloid formation in pigment cells. These cells have tuned their endosomes to optimize the formation of functional amyloid fibrils from the premelanosome protein (PMEL) and to avoid potential accumulation of toxic species. The functional amyloids derived from PMEL reveal striking analogies with the generation of Aβ peptides. We have recently strengthened these analogies using extracellular vesicles as reporters of the endosomal processes that regulate PMEL melanogenesis. We have shown that in pigmented cells, apolipoprotein E (ApoE) is associated with ILVs and exosomes, and regulates the formation of PMEL amyloid fibrils in endosomes. This process secures the generation of amyloid fibrils by exploiting ILVs as amyloid-nucleating platforms. This physiological model of amyloidogenesis could shed new light on the roles of MVEs and exosomes in conditions with pathological amyloid metabolism, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Guillaume van Niel
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, 75231, Paris, France.
- Centre National de la Recherche Scientifique, UMR144, 75248, Paris, France.
| |
Collapse
|
31
|
Klarquist J, Eby JM, Henning SW, Li M, Wainwright DA, Westerhof W, Luiten RM, Nishimura MI, Le Poole IC. Functional cloning of a gp100-reactive T-cell receptor from vitiligo patient skin. Pigment Cell Melanoma Res 2016; 29:379-84. [PMID: 26824221 DOI: 10.1111/pcmr.12458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/21/2016] [Indexed: 11/27/2022]
Abstract
We isolated gp100-reactive T cells from perilesional skin of a patient with progressive vitiligo with superior reactivity toward melanoma cells compared with tumor-infiltrating lymphocytes 1520, a melanoma-derived T-cell line reactive with the same cognate peptide. After dimer enrichment and limited dilution cloning, amplified cells were subjected to reverse transcription and 5' RACE to identify the variable TCRα and TCRβ subunit sequences. The full-length sequence was cloned into a retroviral vector separating both subunits by a P2A slippage sequence and introduced into Jurkat cells and primary T cells. Cytokine secreted by transduced cells in response to cognate peptide and gp100-expressing targets signifies that we have successfully cloned a gp100-reactive T-cell receptor from actively depigmenting skin.
Collapse
Affiliation(s)
- Jared Klarquist
- Oncology Research Institute, Loyola University Chicago, Maywood, IL, USA
| | - Jonathan M Eby
- Oncology Research Institute, Loyola University Chicago, Maywood, IL, USA
| | - Steven W Henning
- Oncology Research Institute, Loyola University Chicago, Maywood, IL, USA
| | - Mingli Li
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Derek A Wainwright
- Oncology Research Institute, Loyola University Chicago, Maywood, IL, USA
| | - Wiete Westerhof
- Department of Dermatology, Netherlands Institute for Pigment Disorders, University of Amsterdam, AZ Amsterdam Zuidoost, The Netherlands
| | - Rosalie M Luiten
- Department of Dermatology, Netherlands Institute for Pigment Disorders, University of Amsterdam, AZ Amsterdam Zuidoost, The Netherlands
| | - Michael I Nishimura
- Oncology Research Institute, Loyola University Chicago, Maywood, IL, USA.,Department of Surgery, Loyola University Chicago, Maywood, IL, USA
| | - I Caroline Le Poole
- Oncology Research Institute, Loyola University Chicago, Maywood, IL, USA.,Departments of Pathology, Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
32
|
Ho T, Watt B, Spruce LA, Seeholzer SH, Marks MS. The Kringle-like Domain Facilitates Post-endoplasmic Reticulum Changes to Premelanosome Protein (PMEL) Oligomerization and Disulfide Bond Configuration and Promotes Amyloid Formation. J Biol Chem 2015; 291:3595-612. [PMID: 26694611 DOI: 10.1074/jbc.m115.692442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 11/06/2022] Open
Abstract
The formation of functional amyloid must be carefully regulated to prevent the accumulation of potentially toxic products. Premelanosome protein (PMEL) forms non-toxic functional amyloid fibrils that assemble into sheets upon which melanins ultimately are deposited within the melanosomes of pigment cells. PMEL is synthesized in the endoplasmic reticulum but forms amyloid only within post-Golgi melanosome precursors; thus, PMEL must traverse the secretory pathway in a non-amyloid form. Here, we identified two pre-amyloid PMEL intermediates that likely regulate the timing of fibril formation. Analyses by non-reducing SDS-PAGE, size exclusion chromatography, and sedimentation velocity revealed two native high Mr disulfide-bonded species that contain Golgi-modified forms of PMEL. These species correspond to disulfide bond-containing dimeric and monomeric PMEL isoforms that contain no other proteins as judged by two-dimensional PAGE of metabolically labeled/immunoprecipitated PMEL and by mass spectrometry of affinity-purified complexes. Metabolic pulse-chase analyses, small molecule inhibitor treatments, and evaluation of site-directed mutants suggest that the PMEL dimer forms around the time of endoplasmic reticulum exit and is resolved by disulfide bond rearrangement into a monomeric form within the late Golgi or a post-Golgi compartment. Mutagenesis of individual cysteine residues within the non-amyloid cysteine-rich Kringle-like domain stabilizes the disulfide-bonded dimer and impairs fibril formation as determined by electron microscopy. Our data show that the Kringle-like domain facilitates the resolution of disulfide-bonded PMEL dimers and promotes PMEL functional amyloid formation, thereby suggesting that PMEL dimers must be resolved to monomers to generate functional amyloid fibrils.
Collapse
Affiliation(s)
- Tina Ho
- From the Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 and the Cell and Molecular Biology Graduate Group, the Department of Pathology and Laboratory Medicine, and
| | - Brenda Watt
- From the Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 and the Cell and Molecular Biology Graduate Group, the Department of Pathology and Laboratory Medicine, and
| | - Lynn A Spruce
- From the Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 and
| | - Steven H Seeholzer
- From the Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 and
| | - Michael S Marks
- From the Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 and the Cell and Molecular Biology Graduate Group, the Department of Pathology and Laboratory Medicine, and the Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
33
|
van Niel G, Bergam P, Di Cicco A, Hurbain I, Lo Cicero A, Dingli F, Palmulli R, Fort C, Potier MC, Schurgers LJ, Loew D, Levy D, Raposo G. Apolipoprotein E Regulates Amyloid Formation within Endosomes of Pigment Cells. Cell Rep 2015; 13:43-51. [PMID: 26387950 DOI: 10.1016/j.celrep.2015.08.057] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 07/02/2015] [Accepted: 08/20/2015] [Indexed: 01/20/2023] Open
Abstract
Accumulation of toxic amyloid oligomers is a key feature in the pathogenesis of amyloid-related diseases. Formation of mature amyloid fibrils is one defense mechanism to neutralize toxic prefibrillar oligomers. This mechanism is notably influenced by apolipoprotein E variants. Cells that produce mature amyloid fibrils to serve physiological functions must exploit specific mechanisms to avoid potential accumulation of toxic species. Pigment cells have tuned their endosomes to maximize the formation of functional amyloid from the protein PMEL. Here, we show that ApoE is associated with intraluminal vesicles (ILV) within endosomes and remain associated with ILVs when they are secreted as exosomes. ApoE functions in the ESCRT-independent sorting mechanism of PMEL onto ILVs and regulates the endosomal formation of PMEL amyloid fibrils in vitro and in vivo. This process secures the physiological formation of amyloid fibrils by exploiting ILVs as amyloid nucleating platforms.
Collapse
Affiliation(s)
- Guillaume van Niel
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, Paris 75231, France; Centre National de la Recherche Scientifique, UMR144, Paris 75248, France; Cell and Tissue Imaging Core Facility PICT-IBiSA, Institut Curie, Paris 75248, France.
| | - Ptissam Bergam
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, Paris 75231, France; Centre National de la Recherche Scientifique, UMR144, Paris 75248, France; Cell and Tissue Imaging Core Facility PICT-IBiSA, Institut Curie, Paris 75248, France
| | - Aurelie Di Cicco
- Cell and Tissue Imaging Core Facility PICT-IBiSA, Institut Curie, Paris 75248, France; Institut Curie, PSL Research University, UMR168, Centre de Recherche, 26 rue d'ULM, Paris 75231, France; Centre National de la Recherche Scientifique, UMR 168, Paris 75231, France
| | - Ilse Hurbain
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, Paris 75231, France; Centre National de la Recherche Scientifique, UMR144, Paris 75248, France; Cell and Tissue Imaging Core Facility PICT-IBiSA, Institut Curie, Paris 75248, France
| | - Alessandra Lo Cicero
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, Paris 75231, France; Centre National de la Recherche Scientifique, UMR144, Paris 75248, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris 75248, France
| | - Roberta Palmulli
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, Paris 75231, France; Centre National de la Recherche Scientifique, UMR144, Paris 75248, France
| | - Cecile Fort
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, Paris 75231, France; Centre National de la Recherche Scientifique, UMR144, Paris 75248, France
| | - Marie Claude Potier
- Institut du Cerveau et de la Moelle, CNRS UMR7225, INSERM U1127, UPMC Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris 75013, France
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris 75248, France
| | - Daniel Levy
- Cell and Tissue Imaging Core Facility PICT-IBiSA, Institut Curie, Paris 75248, France; Institut Curie, PSL Research University, UMR168, Centre de Recherche, 26 rue d'ULM, Paris 75231, France; Centre National de la Recherche Scientifique, UMR 168, Paris 75231, France
| | - Graça Raposo
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, Paris 75231, France; Centre National de la Recherche Scientifique, UMR144, Paris 75248, France; Cell and Tissue Imaging Core Facility PICT-IBiSA, Institut Curie, Paris 75248, France
| |
Collapse
|
34
|
Reynolds NP, Charnley M, Bongiovanni MN, Hartley PG, Gras SL. Biomimetic Topography and Chemistry Control Cell Attachment to Amyloid Fibrils. Biomacromolecules 2015; 16:1556-65. [DOI: 10.1021/acs.biomac.5b00114] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Nicholas P. Reynolds
- Manufacturing
Flagship, CSIRO, Bayview Avenue, Clayton, Victoria 3169, Australia
| | | | - Marie N. Bongiovanni
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Patrick G. Hartley
- Energy
Flagship, CSIRO, Private Bag 10, Bayview Avenue, Clayton, Victoria 3169, Australia
| | | |
Collapse
|
35
|
Liu-Smith F, Poe C, Farmer PJ, Meyskens FL. Amyloids, melanins and oxidative stress in melanomagenesis. Exp Dermatol 2014; 24:171-4. [PMID: 25271672 DOI: 10.1111/exd.12559] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2014] [Indexed: 12/26/2022]
Abstract
Melanoma has traditionally been viewed as an ultraviolet (UV) radiation-induced malignancy. While UV is a common inducing factor, other endogenous stresses such as metal ion accumulation or the melanin pigment itself may provide alternative pathways to melanoma progression. Eumelanosomes within melanoma often exhibit disrupted membranes and fragmented pigment which may be due to alterations in their amyloid-based striated matrix. The melanosomal amyloid can itself be toxic, especially in combination with reactive oxygen species (ROS) and reactive nitrogen species (RNS) generated by endogenous NADPH oxidase (NOX) and nitric oxide synthase (NOS) enzymes, a toxic mix that may initiate melanomagenesis. Further understanding of the loss of the melanosomal organization, the behaviour of the exposed melanin and the induction of ROS/RNS in melanomas may provide critical insights into this deadly disease.
Collapse
Affiliation(s)
- Feng Liu-Smith
- Department of Epidemiology, University of California School of Medicine, Irvine, CA, USA; Department of Medicine, University of California School of Medicine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California School of Medicine, Irvine, CA, USA
| | | | | | | |
Collapse
|
36
|
Abstract
Human melanocytes are distributed not only in the epidermis and in hair follicles but also in mucosa, cochlea (ear), iris (eye), and mesencephalon (brain) among other tissues. Melanocytes, which are derived from the neural crest, are unique in that they produce eu-/pheo-melanin pigments in unique membrane-bound organelles termed melanosomes, which can be divided into four stages depending on their degree of maturation. Pigmentation production is determined by three distinct elements: enzymes involved in melanin synthesis, proteins required for melanosome structure, and proteins required for their trafficking and distribution. Many genes are involved in regulating pigmentation at various levels, and mutations in many of them cause pigmentary disorders, which can be classified into three types: hyperpigmentation (including melasma), hypopigmentation (including oculocutaneous albinism [OCA]), and mixed hyper-/hypopigmentation (including dyschromatosis symmetrica hereditaria). We briefly review vitiligo as a representative of an acquired hypopigmentation disorder.
Collapse
|
37
|
Falletta P, Bagnato P, Bono M, Monticone M, Schiaffino MV, Bennett DC, Goding CR, Tacchetti C, Valetti C. Melanosome-autonomous regulation of size and number: the OA1 receptor sustains PMEL expression. Pigment Cell Melanoma Res 2014; 27:565-79. [PMID: 24650003 DOI: 10.1111/pcmr.12239] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/17/2014] [Indexed: 12/21/2022]
Abstract
Little is known as to how cells ensure that organelle size and number are coordinated to correctly couple organelle biogenesis to the demands of proliferation or differentiation. OA1 is a melanosome-associated G-protein-coupled receptor involved in melanosome biogenesis during melanocyte differentiation. Cells lacking OA1 contain fewer, but larger, mature melanosomes. Here, we show that OA1 loss of function reduces both the basal expression and the α-melanocyte-stimulating hormone/cAMP-dependent induction of the microphthalmia-associated transcription factor (MITF), the master regulator of melanocyte differentiation. In turn, this leads to a significant reduction in expression of PMEL, a major melanosomal structural protein, but does not affect tyrosinase and melanin levels. In line with its pivotal role in sensing melanosome maturation, OA1 expression rescues melanosome biogenesis, activates MITF expression and thereby coordinates melanosome size and number, providing a quality control mechanism for the organelle in which resides. Thus, resident sensor receptors can activate a transcriptional cascade to specifically promote organelle biogenesis.
Collapse
Affiliation(s)
- Paola Falletta
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Andersson LS, Wilbe M, Viluma A, Cothran G, Ekesten B, Ewart S, Lindgren G. Equine multiple congenital ocular anomalies and silver coat colour result from the pleiotropic effects of mutant PMEL. PLoS One 2013; 8:e75639. [PMID: 24086599 PMCID: PMC3781063 DOI: 10.1371/journal.pone.0075639] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 08/18/2013] [Indexed: 11/19/2022] Open
Abstract
Equine Multiple Congenital Ocular Anomalies (MCOA) syndrome is a heritable eye disorder mainly affecting silver colored horses. Clinically, the disease manifests in two distinct classes depending on the horse genotype. Horses homozygous for the mutant allele present with a wide range of ocular defects, such as iris stromal hypoplasia, abnormal pectinate ligaments, megaloglobus, iridociliary cysts and cataracts. The phenotype of heterozygous horses is less severe and predominantly includes iridociliary cysts, which occasionally extend into the temporal retina. In order to determine the genetic cause of MCOA syndrome we sequenced the entire previously characterized 208 kilobase region on chromosome 6 in ten individuals; five MCOA affected horses from three different breeds, one horse with the intermediate Cyst phenotype and four unaffected controls from two different breeds. This was performed using Illumina TruSeq technology with paired-end reads. Through the systematic exclusion of all polymorphisms barring two SNPs in PMEL, a missense mutation previously reported to be associated with the silver coat colour and a non-conserved intronic SNP, we establish that this gene is responsible for MCOA syndrome. Our finding, together with recent advances that show aberrant protein function due to the coding mutation, suggests that the missense mutation is causative and has pleiotrophic effect, causing both the horse silver coat color and MCOA syndrome.
Collapse
Affiliation(s)
- Lisa S. Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maria Wilbe
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Agnese Viluma
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gus Cothran
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Björn Ekesten
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Susan Ewart
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
39
|
Andersson L. Molecular consequences of animal breeding. Curr Opin Genet Dev 2013; 23:295-301. [PMID: 23601626 DOI: 10.1016/j.gde.2013.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/11/2013] [Accepted: 02/25/2013] [Indexed: 01/02/2023]
Abstract
The phenotypic diversity in domestic animals provides a unique opportunity to study genotype-phenotype relationships. The identification of causal mutations provides an insight into what types of mutations have contributed to phenotypic evolution in domestic animals. Whole genome sequencing has revealed that fixation of null alleles that inactivate genes, which are essential under natural conditions but disadvantageous on the farm, has not been a common mechanism for genetic adaptation in domestic animals. Numerous examples have been revealed where structural changes cause specific phenotypic effects by altering transcriptional regulation. An emerging feature is also the evolution of alleles by the accumulation of several consecutive mutations which affect gene function.
Collapse
Affiliation(s)
- Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-75123 Uppsala, Sweden.
| |
Collapse
|
40
|
Watt B, van Niel G, Raposo G, Marks MS. PMEL: a pigment cell-specific model for functional amyloid formation. Pigment Cell Melanoma Res 2013; 26:300-15. [PMID: 23350640 DOI: 10.1111/pcmr.12067] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/15/2013] [Indexed: 12/15/2022]
Abstract
PMEL is a pigment cell-specific protein responsible for the formation of fibrillar sheets within the pigment organelle, the melanosome. The fibrillar sheets serve as a template upon which melanins polymerize as they are synthesized. The PMEL fibrils are required for optimal pigment cell function, as animals that either lack PMEL expression or express mutant PMEL variants show varying degrees of hypopigmentation and pigment cell inviability. The PMEL fibrils have biophysical properties of amyloid, a protein fold that is frequently associated with neurodegenerative and other diseases. However, PMEL is one of a growing number of non-pathogenic amyloid proteins that contribute to the function of the cell and/or organism that produces them. Understanding how PMEL generates amyloid in a non-pathogenic manner might provide insights into how to avoid toxicity due to pathological amyloid formation. In this review, we summarize and reconcile data concerning the fate of PMEL from its site of synthesis in the endoplasmic reticulum to newly formed melanosomes and the role of distinct PMEL subdomains in trafficking and amyloid fibril formation. We then discuss how its progression through the secretory pathway into the endosomal system might allow for the regulated and non-toxic conversion of PMEL into an ordered amyloid polymer.
Collapse
Affiliation(s)
- Brenda Watt
- Department of Pathology and Laboratory Medicine, Department of Physiology, and Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
41
|
Leonhardt RM, Vigneron N, Hee JS, Graham M, Cresswell P. Critical residues in the PMEL/Pmel17 N-terminus direct the hierarchical assembly of melanosomal fibrils. Mol Biol Cell 2013; 24:964-81. [PMID: 23389629 PMCID: PMC3608505 DOI: 10.1091/mbc.e12-10-0742] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Asp-73, Pro-75, Trp-153, and Trp-160 are essential residues in the PMEL NTR that are required for functional fibril formation. The NTR is necessary in cis to drive the downstream PKD into an amyloid core matrix, which subsequently incorporates and stabilizes the RPT domain–containing, MαC fibril–associated fragment. PMEL (also called Pmel17 or gp100) is a melanocyte/melanoma-specific glycoprotein that plays a critical role in melanosome development by forming a fibrillar amyloid matrix in the organelle for melanin deposition. Although ultimately not a component of mature fibrils, the PMEL N-terminal region (NTR) is essential for their formation. By mutational analysis we establish a high-resolution map of this domain in which sequence elements and functionally critical residues are assigned. We show that the NTR functions in cis to drive the aggregation of the downstream polycystic kidney disease (PKD) domain into a melanosomal core matrix. This is essential to promote in trans the stabilization and terminal proteolytic maturation of the repeat (RPT) domain–containing MαC units, precursors of the second fibrillogenic fragment. We conclude that during melanosome biogenesis the NTR controls the hierarchical assembly of melanosomal fibrils.
Collapse
Affiliation(s)
- Ralf M Leonhardt
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Amyloid fibers and oligomers are associated with a great variety of human diseases including Alzheimer's disease and the prion conditions. Here we attempt to connect recent discoveries on the molecular properties of proteins in the amyloid state with observations about pathological tissues and disease states. We summarize studies of structure and nucleation of amyloid and relate these to observations on amyloid polymorphism, prion strains, coaggregation of pathogenic proteins in tissues, and mechanisms of toxicity and transmissibility. Molecular studies have also led to numerous strategies for biological and chemical interventions against amyloid diseases.
Collapse
Affiliation(s)
- David Eisenberg
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of California, Los Angeles, Los Angeles CA 90095-1570, USA.
| | | |
Collapse
|
43
|
Inactivation of Pmel alters melanosome shape but has only a subtle effect on visible pigmentation. PLoS Genet 2011; 7:e1002285. [PMID: 21949658 PMCID: PMC3174228 DOI: 10.1371/journal.pgen.1002285] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 06/18/2011] [Indexed: 11/19/2022] Open
Abstract
PMEL is an amyloidogenic protein that appears to be exclusively expressed in pigment cells and forms intralumenal fibrils within early stage melanosomes upon which eumelanins deposit in later stages. PMEL is well conserved among vertebrates, and allelic variants in several species are associated with reduced levels of eumelanin in epidermal tissues. However, in most of these cases it is not clear whether the allelic variants reflect gain-of-function or loss-of-function, and no complete PMEL loss-of-function has been reported in a mammal. Here, we have created a mouse line in which the Pmel gene has been inactivated (Pmel−/−). These mice are fully viable, fertile, and display no obvious developmental defects. Melanosomes within Pmel−/− melanocytes are spherical in contrast to the oblong shape present in wild-type animals. This feature was documented in primary cultures of skin-derived melanocytes as well as in retinal pigment epithelium cells and in uveal melanocytes. Inactivation of Pmel has only a mild effect on the coat color phenotype in four different genetic backgrounds, with the clearest effect in mice also carrying the brown/Tyrp1 mutation. This phenotype, which is similar to that observed with the spontaneous silver mutation in mice, strongly suggests that other previously described alleles in vertebrates with more striking effects on pigmentation are dominant-negative mutations. Despite a mild effect on visible pigmentation, inactivation of Pmel led to a substantial reduction in eumelanin content in hair, which demonstrates that PMEL has a critical role for maintaining efficient epidermal pigmentation. Pigmentation has since long constituted a prime model to study how genes act and interact. The PMEL gene encodes a protein exclusively found in the melanosomes of pigment-producing cells. Mutations in PMEL underlie some spectacular color phenotypes in animals including Dominant white color in chickens, Silver in horses, and Merle in dogs, but no spontaneous mutation causing a complete inactivation of this gene has yet been found in mammals. We have now developed a PMEL knockout mouse to further study the function of this protein. We show that mice lacking PMEL have almost normal visible pigmentation. However, loss of PMEL has a dramatic effect on the morphology of the melanosomes in skin, hair, and eye, such that the normally rod-shaped melanosomes in wild-type animals are spherical in the knockout mice. The knockout animals also have a substantial reduction in the content of black pigment in hair. The study establishes that PMEL has a critical role for maintaining normal pigment production.
Collapse
|