1
|
Ng M, Ma L, Shi J, Jeffery WR. Natural reversal of cavefish heart asymmetry is controlled by Sonic Hedgehog effects on the left-right organizer. Development 2024; 151:dev202611. [PMID: 38940473 PMCID: PMC11273321 DOI: 10.1242/dev.202611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
The direction of left-right visceral asymmetry is conserved in vertebrates. Deviations of the standard asymmetric pattern are rare, and the underlying mechanisms are not understood. Here, we use the teleost Astyanax mexicanus, consisting of surface fish with normal left-oriented heart asymmetry and cavefish with high levels of reversed right-oriented heart asymmetry, to explore natural changes in asymmetry determination. We show that Sonic Hedgehog (Shh) signaling is increased at the posterior midline, Kupffer's vesicle (the teleost left-right organizer) is enlarged and contains longer cilia, and the number of dorsal forerunner cells is increased in cavefish. Furthermore, Shh increase in surface fish embryos induces asymmetric changes resembling the cavefish phenotype. Asymmetric expression of the Nodal antagonist Dand5 is equalized or reversed in cavefish, and Shh increase in surface fish mimics changes in cavefish dand5 asymmetry. Shh decrease reduces the level of right-oriented heart asymmetry in cavefish. Thus, naturally occurring modifications in cavefish heart asymmetry are controlled by the effects of Shh signaling on left-right organizer function.
Collapse
Affiliation(s)
- Mandy Ng
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Li Ma
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Janet Shi
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - William R. Jeffery
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
2
|
Yang D, Jian Z, Tang C, Chen Z, Zhou Z, Zheng L, Peng X. Zebrafish Congenital Heart Disease Models: Opportunities and Challenges. Int J Mol Sci 2024; 25:5943. [PMID: 38892128 PMCID: PMC11172925 DOI: 10.3390/ijms25115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Congenital heart defects (CHDs) are common human birth defects. Genetic mutations potentially cause the exhibition of various pathological phenotypes associated with CHDs, occurring alone or as part of certain syndromes. Zebrafish, a model organism with a strong molecular conservation similar to humans, is commonly used in studies on cardiovascular diseases owing to its advantageous features, such as a similarity to human electrophysiology, transparent embryos and larvae for observation, and suitability for forward and reverse genetics technology, to create various economical and easily controlled zebrafish CHD models. In this review, we outline the pros and cons of zebrafish CHD models created by genetic mutations associated with single defects and syndromes and the underlying pathogenic mechanism of CHDs discovered in these models. The challenges of zebrafish CHD models generated through gene editing are also discussed, since the cardiac phenotypes resulting from a single-candidate pathological gene mutation in zebrafish might not mirror the corresponding human phenotypes. The comprehensive review of these zebrafish CHD models will facilitate the understanding of the pathogenic mechanisms of CHDs and offer new opportunities for their treatments and intervention strategies.
Collapse
|
3
|
Forrest K, Barricella AC, Pohar SA, Hinman AM, Amack JD. Understanding laterality disorders and the left-right organizer: Insights from zebrafish. Front Cell Dev Biol 2022; 10:1035513. [PMID: 36619867 PMCID: PMC9816872 DOI: 10.3389/fcell.2022.1035513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Vital internal organs display a left-right (LR) asymmetric arrangement that is established during embryonic development. Disruption of this LR asymmetry-or laterality-can result in congenital organ malformations. Situs inversus totalis (SIT) is a complete concordant reversal of internal organs that results in a low occurrence of clinical consequences. Situs ambiguous, which gives rise to Heterotaxy syndrome (HTX), is characterized by discordant development and arrangement of organs that is associated with a wide range of birth defects. The leading cause of health problems in HTX patients is a congenital heart malformation. Mutations identified in patients with laterality disorders implicate motile cilia in establishing LR asymmetry. However, the cellular and molecular mechanisms underlying SIT and HTX are not fully understood. In several vertebrates, including mouse, frog and zebrafish, motile cilia located in a "left-right organizer" (LRO) trigger conserved signaling pathways that guide asymmetric organ development. Perturbation of LRO formation and/or function in animal models recapitulates organ malformations observed in SIT and HTX patients. This provides an opportunity to use these models to investigate the embryological origins of laterality disorders. The zebrafish embryo has emerged as an important model for investigating the earliest steps of LRO development. Here, we discuss clinical characteristics of human laterality disorders, and highlight experimental results from zebrafish that provide insights into LRO biology and advance our understanding of human laterality disorders.
Collapse
Affiliation(s)
- Kadeen Forrest
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Alexandria C. Barricella
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Sonny A. Pohar
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Anna Maria Hinman
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY, United States
| |
Collapse
|
4
|
Liang T, Bai J, Zhou W, Lin H, Ma S, Zhu X, Tao Q, Xi Q. HMCES modulates the transcriptional regulation of nodal/activin and BMP signaling in mESCs. Cell Rep 2022; 40:111038. [PMID: 35830803 DOI: 10.1016/j.celrep.2022.111038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/20/2022] [Accepted: 06/11/2022] [Indexed: 12/01/2022] Open
Abstract
Despite the fundamental roles of TGF-β family signaling in cell fate determination in all metazoans, the mechanism by which these signals are spatially and temporally interpreted remains elusive. The cell-context-dependent function of TGF-β signaling largely relies on transcriptional regulation by SMAD proteins. Here, we discover that the DNA repair-related protein, HMCES, contributes to early development by maintaining nodal/activin- or BMP-signaling-regulated transcriptional network. HMCES binds with R-SMAD proteins, co-localizing at active histone marks. However, HMCES chromatin occupancy is independent on nodal/activin or BMP signaling. Mechanistically, HMCES competitively binds chromatin to limit binding by R-SMAD proteins, thereby forcing their dissociation and resulting in repression of their regulatory effects. In Xenopus laevis embryo, hmces KD causes dramatic development defects with abnormal left-right axis asymmetry along with increasing expression of lefty1. These findings reveal HMCES transcriptional regulatory function in the context of TGF-β family signaling.
Collapse
Affiliation(s)
- Tao Liang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianbo Bai
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing 100084, China
| | - Wei Zhou
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hao Lin
- School of Life Sciences, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, China
| | - Shixin Ma
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuechen Zhu
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Qinghua Tao
- School of Life Sciences, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, China
| | - Qiaoran Xi
- School of Life Sciences, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Derrick CJ, Santos-Ledo A, Eley L, Paramita IA, Henderson DJ, Chaudhry B. Sequential action of JNK genes establishes the embryonic left-right axis. Development 2022; 149:274898. [PMID: 35352808 PMCID: PMC9148569 DOI: 10.1242/dev.200136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/09/2022] [Indexed: 12/22/2022]
Abstract
The establishment of the left-right axis is crucial for the placement, morphogenesis and function of internal organs. Left-right specification is proposed to be dependent on cilia-driven fluid flow in the embryonic node. Planar cell polarity (PCP) signalling is crucial for patterning of nodal cilia, yet downstream effectors driving this process remain elusive. We have examined the role of the JNK gene family, a proposed downstream component of PCP signalling, in the development and function of the zebrafish node. We show jnk1 and jnk2 specify length of nodal cilia, generate flow in the node and restrict southpaw to the left lateral plate mesoderm. Moreover, loss of asymmetric southpaw expression does not result in disturbances to asymmetric organ placement, supporting a model in which nodal flow may be dispensable for organ laterality. Later, jnk3 is required to restrict pitx2c expression to the left side and permit correct endodermal organ placement. This work uncovers multiple roles for the JNK gene family acting at different points during left-right axis establishment. It highlights extensive redundancy and indicates JNK activity is distinct from the PCP signalling pathway.
Collapse
Affiliation(s)
- Christopher J Derrick
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Adrian Santos-Ledo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Lorraine Eley
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Isabela Andhika Paramita
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Deborah J Henderson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Bill Chaudhry
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
6
|
Zhang G, Lübke L, Chen F, Beil T, Takamiya M, Diotel N, Strähle U, Rastegar S. Neuron-Radial Glial Cell Communication via BMP/Id1 Signaling Is Key to Long-Term Maintenance of the Regenerative Capacity of the Adult Zebrafish Telencephalon. Cells 2021; 10:cells10102794. [PMID: 34685774 PMCID: PMC8534405 DOI: 10.3390/cells10102794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/17/2023] Open
Abstract
The central nervous system of adult zebrafish displays an extraordinary neurogenic and regenerative capacity. In the zebrafish adult brain, this regenerative capacity relies on neural stem cells (NSCs) and the careful management of the NSC pool. However, the mechanisms controlling NSC pool maintenance are not yet fully understood. Recently, Bone Morphogenetic Proteins (BMPs) and their downstream effector Id1 (Inhibitor of differentiation 1) were suggested to act as key players in NSC maintenance under constitutive and regenerative conditions. Here, we further investigated the role of BMP/Id1 signaling in these processes, using different genetic and pharmacological approaches. Our data show that BMPs are mainly expressed by neurons in the adult telencephalon, while id1 is expressed in NSCs, suggesting a neuron-NSC communication via the BMP/Id1 signaling axis. Furthermore, manipulation of BMP signaling by conditionally inducing or repressing BMP signaling via heat-shock, lead to an increase or a decrease of id1 expression in the NSCs, respectively. Induction of id1 was followed by an increase in the number of quiescent NSCs, while knocking down id1 expression caused an increase in NSC proliferation. In agreement, genetic ablation of id1 function lead to increased proliferation of NSCs, followed by depletion of the stem cell pool with concomitant failure to heal injuries in repeatedly injured mutant telencephala. Moreover, pharmacological inhibition of BMP and Notch signaling suggests that the two signaling systems cooperate and converge onto the transcriptional regulator her4.1. Interestingly, brain injury lead to a depletion of NSCs in animals lacking BMP/Id1 signaling despite an intact Notch pathway. Taken together, our data demonstrate how neurons feedback on NSC proliferation and that BMP1/Id1 signaling acts as a safeguard of the NSC pool under regenerative conditions.
Collapse
Affiliation(s)
- Gaoqun Zhang
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Luisa Lübke
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Fushun Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Tanja Beil
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Nicolas Diotel
- Diabète Athérothrombose Thérapies Réunion Océan Indien, INSERM, UMR 1188, Université de La Réunion, 97400 Saint-Denis de La Réunion, France;
| | - Uwe Strähle
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
- Centre of Organismal Studies, University Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
- Correspondence: (U.S.); (S.R.)
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
- Correspondence: (U.S.); (S.R.)
| |
Collapse
|
7
|
Tessadori F, Tsingos E, Colizzi ES, Kruse F, van den Brink SC, van den Boogaard M, Christoffels VM, Merks RM, Bakkers J. Twisting of the zebrafish heart tube during cardiac looping is a tbx5-dependent and tissue-intrinsic process. eLife 2021; 10:61733. [PMID: 34372968 PMCID: PMC8354640 DOI: 10.7554/elife.61733] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Organ laterality refers to the left-right asymmetry in disposition and conformation of internal organs and is established during embryogenesis. The heart is the first organ to display visible left-right asymmetries through its left-sided positioning and rightward looping. Here, we present a new zebrafish loss-of-function allele for tbx5a, which displays defective rightward cardiac looping morphogenesis. By mapping individual cardiomyocyte behavior during cardiac looping, we establish that ventricular and atrial cardiomyocytes rearrange in distinct directions. As a consequence, the cardiac chambers twist around the atrioventricular canal resulting in torsion of the heart tube, which is compromised in tbx5a mutants. Pharmacological treatment and ex vivo culture establishes that the cardiac twisting depends on intrinsic mechanisms and is independent from cardiac growth. Furthermore, genetic experiments indicate that looping requires proper tissue patterning. We conclude that cardiac looping involves twisting of the chambers around the atrioventricular canal, which requires correct tissue patterning by Tbx5a.
Collapse
Affiliation(s)
- Federico Tessadori
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Erika Tsingos
- Mathematical Institute, Leiden University, Leiden, Netherlands
| | - Enrico Sandro Colizzi
- Mathematical Institute, Leiden University, Leiden, Netherlands.,Origins Center, Leiden University, Leiden, Netherlands
| | - Fabian Kruse
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Malou van den Boogaard
- Amsterdam UMC, University of Amsterdam, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Vincent M Christoffels
- Amsterdam UMC, University of Amsterdam, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Roeland Mh Merks
- Mathematical Institute, Leiden University, Leiden, Netherlands.,Origins Center, Leiden University, Leiden, Netherlands.,Institute of Biology, Leiden University, Leiden, Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands.,Department of Pediatric Cardiology, Division of Pediatrics, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
8
|
Smith KA, Uribe V. Getting to the Heart of Left-Right Asymmetry: Contributions from the Zebrafish Model. J Cardiovasc Dev Dis 2021; 8:64. [PMID: 34199828 PMCID: PMC8230053 DOI: 10.3390/jcdd8060064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/28/2022] Open
Abstract
The heart is laterally asymmetric. Not only is it positioned on the left side of the body but the organ itself is asymmetric. This patterning occurs across scales: at the organism level, through left-right axis patterning; at the organ level, where the heart itself exhibits left-right asymmetry; at the cellular level, where gene expression, deposition of matrix and proteins and cell behaviour are asymmetric; and at the molecular level, with chirality of molecules. Defective left-right patterning has dire consequences on multiple organs; however, mortality and morbidity arising from disrupted laterality is usually attributed to complex cardiac defects, bringing into focus the particulars of left-right patterning of the heart. Laterality defects impact how the heart integrates and connects with neighbouring organs, but the anatomy of the heart is also affected because of its asymmetry. Genetic studies have demonstrated that cardiac asymmetry is influenced by left-right axis patterning and yet the heart also possesses intrinsic laterality, reinforcing the patterning of this organ. These inputs into cardiac patterning are established at the very onset of left-right patterning (formation of the left-right organiser) and continue through propagation of left-right signals across animal axes, asymmetric differentiation of the cardiac fields, lateralised tube formation and asymmetric looping morphogenesis. In this review, we will discuss how left-right asymmetry is established and how that influences subsequent asymmetric development of the early embryonic heart. In keeping with the theme of this issue, we will focus on advancements made through studies using the zebrafish model and describe how its use has contributed considerable knowledge to our understanding of the patterning of the heart.
Collapse
Affiliation(s)
- Kelly A. Smith
- Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia;
| | | |
Collapse
|
9
|
Romano S, Kaufman OH, Marlow FL. Loss of dmrt1 restores zebrafish female fates in the absence of cyp19a1a but not rbpms2a/b. Development 2020; 147:dev.190942. [PMID: 32895289 DOI: 10.1242/dev.190942] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022]
Abstract
Sex determination and differentiation is a complex process regulated by multiple factors, including factors from the germline or surrounding somatic tissue. In zebrafish, sex-determination involves establishment of a bipotential ovary that undergoes sex-specific differentiation and maintenance to form the functional adult gonad. However, the relationships among these factors are not fully understood. Here, we identify potential Rbpms2 targets and apply genetic epistasis experiments to decipher the genetic hierarchy of regulators of sex-specific differentiation. We provide genetic evidence that the crucial female factor rbpms2 is epistatic to the male factor dmrt1 in terms of adult sex. Moreover, the role of Rbpms2 in promoting female fates extends beyond repression of Dmrt1, as Rbpms2 is essential for female differentiation even in the absence of Dmrt1. In contrast, female fates can be restored in mutants lacking both cyp19a1a and dmrt1, and prolonged in bmp15 mutants in the absence of dmrt1. Taken together, this work indicates that cyp19a1a-mediated suppression of dmrt1 establishes a bipotential ovary and initiates female fate acquisition. Then, after female fate specification, Cyp19a1a regulates subsequent oocyte maturation and sustains female fates independently of Dmrt1 repression.
Collapse
Affiliation(s)
- Shannon Romano
- Department of Cell, Developmental and Regenerative Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1020, New York, NY 10029-6574, USA
| | - Odelya H Kaufman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Florence L Marlow
- Department of Cell, Developmental and Regenerative Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1020, New York, NY 10029-6574, USA .,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
10
|
Stefanovic S, Laforest B, Desvignes JP, Lescroart F, Argiro L, Maurel-Zaffran C, Salgado D, Plaindoux E, De Bono C, Pazur K, Théveniau-Ruissy M, Béroud C, Puceat M, Gavalas A, Kelly RG, Zaffran S. Hox-dependent coordination of mouse cardiac progenitor cell patterning and differentiation. eLife 2020; 9:55124. [PMID: 32804075 PMCID: PMC7462617 DOI: 10.7554/elife.55124] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022] Open
Abstract
Perturbation of addition of second heart field (SHF) cardiac progenitor cells to the poles of the heart tube results in congenital heart defects (CHD). The transcriptional programs and upstream regulatory events operating in different subpopulations of the SHF remain unclear. Here, we profile the transcriptome and chromatin accessibility of anterior and posterior SHF sub-populations at genome-wide levels and demonstrate that Hoxb1 negatively regulates differentiation in the posterior SHF. Spatial mis-expression of Hoxb1 in the anterior SHF results in hypoplastic right ventricle. Activation of Hoxb1 in embryonic stem cells arrests cardiac differentiation, whereas Hoxb1-deficient mouse embryos display premature cardiac differentiation. Moreover, ectopic differentiation in the posterior SHF of embryos lacking both Hoxb1 and its paralog Hoxa1 results in atrioventricular septal defects. Our results show that Hoxb1 plays a key role in patterning cardiac progenitor cells that contribute to both cardiac poles and provide new insights into the pathogenesis of CHD.
Collapse
Affiliation(s)
- Sonia Stefanovic
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Brigitte Laforest
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | | | - Fabienne Lescroart
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Laurent Argiro
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | | | - David Salgado
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Elise Plaindoux
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | | | - Kristijan Pazur
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustave Carus of TU Dresden, Helmoholtz Zentrum München, German Center for Diabetes Research (DZD), Dresden, Germany
| | - Magali Théveniau-Ruissy
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France.,Aix Marseille Univ, CNRS UMR7288, IBDM, Marseille, France
| | - Christophe Béroud
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Michel Puceat
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Anthony Gavalas
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustave Carus of TU Dresden, Helmoholtz Zentrum München, German Center for Diabetes Research (DZD), Dresden, Germany
| | - Robert G Kelly
- Aix Marseille Univ, CNRS UMR7288, IBDM, Marseille, France
| | - Stephane Zaffran
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| |
Collapse
|
11
|
Fuentes R, Tajer B, Kobayashi M, Pelliccia JL, Langdon Y, Abrams EW, Mullins MC. The maternal coordinate system: Molecular-genetics of embryonic axis formation and patterning in the zebrafish. Curr Top Dev Biol 2020; 140:341-389. [PMID: 32591080 DOI: 10.1016/bs.ctdb.2020.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Axis specification of the zebrafish embryo begins during oogenesis and relies on proper formation of well-defined cytoplasmic domains within the oocyte. Upon fertilization, maternally-regulated cytoplasmic flow and repositioning of dorsal determinants establish the coordinate system that will build the structure and developmental body plan of the embryo. Failure of specific genes that regulate the embryonic coordinate system leads to catastrophic loss of body structures. Here, we review the genetic principles of axis formation and discuss how maternal factors orchestrate axis patterning during zebrafish early embryogenesis. We focus on the molecular identity and functional contribution of genes controlling critical aspects of oogenesis, egg activation, blastula, and gastrula stages. We examine how polarized cytoplasmic domains form in the oocyte, which set off downstream events such as animal-vegetal polarity and germ line development. After gametes interact and form the zygote, cytoplasmic segregation drives the animal-directed reorganization of maternal determinants through calcium- and cell cycle-dependent signals. We also summarize how maternal genes control dorsoventral, anterior-posterior, mesendodermal, and left-right cell fate specification and how signaling pathways pattern these axes and tissues during early development to instruct the three-dimensional body plan. Advances in reverse genetics and phenotyping approaches in the zebrafish model are revealing positional patterning signatures at the single-cell level, thus enhancing our understanding of genotype-phenotype interactions in axis formation. Our emphasis is on the genetic interrogation of novel and specific maternal regulatory mechanisms of axis specification in the zebrafish.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Jose L Pelliccia
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | | | - Elliott W Abrams
- Department of Biology, Purchase College, State University of New York, Harrison, NY, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
12
|
Lombardo VA, Heise M, Moghtadaei M, Bornhorst D, Männer J, Abdelilah-Seyfried S. Morphogenetic control of zebrafish cardiac looping by Bmp signaling. Development 2019; 146:dev.180091. [PMID: 31628109 DOI: 10.1242/dev.180091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022]
Abstract
Cardiac looping is an essential and highly conserved morphogenetic process that places the different regions of the developing vertebrate heart tube into proximity of their final topographical positions. High-resolution 4D live imaging of mosaically labelled cardiomyocytes reveals distinct cardiomyocyte behaviors that contribute to the deformation of the entire heart tube. Cardiomyocytes acquire a conical cell shape, which is most pronounced at the superior wall of the atrioventricular canal and contributes to S-shaped bending. Torsional deformation close to the outflow tract contributes to a torque-like winding of the entire heart tube between its two poles. Anisotropic growth of cardiomyocytes based on their positions reinforces S-shaping of the heart. During cardiac looping, bone morphogenetic protein pathway signaling is strongest at the future superior wall of the atrioventricular canal. Upon pharmacological or genetic inhibition of bone morphogenetic protein signaling, myocardial cells at the superior wall of the atrioventricular canal maintain cuboidal cell shapes and S-shaped bending is impaired. This description of cellular rearrangements and cardiac looping regulation may also be relevant for understanding the etiology of human congenital heart defects.
Collapse
Affiliation(s)
- Verónica A Lombardo
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional de Rosario, 2000 Rosario, Argentina .,Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - Melina Heise
- Institute of Molecular Biology, Hannover Medical School, D-30625 Hannover, Germany
| | - Motahareh Moghtadaei
- Institute of Molecular Biology, Hannover Medical School, D-30625 Hannover, Germany.,Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | - Dorothee Bornhorst
- Institute of Molecular Biology, Hannover Medical School, D-30625 Hannover, Germany.,Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | - Jörg Männer
- Institute of Anatomy and Embryology, UMG, Göttingen University, D-37075 Göttingen, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Molecular Biology, Hannover Medical School, D-30625 Hannover, Germany .,Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| |
Collapse
|
13
|
Osório L, Wu X, Wang L, Jiang Z, Neideck C, Sheng G, Zhou Z. ISM1 regulates NODAL signaling and asymmetric organ morphogenesis during development. J Cell Biol 2019; 218:2388-2402. [PMID: 31171630 PMCID: PMC6605798 DOI: 10.1083/jcb.201801081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/24/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Isthmin1 (ISM1) was originally identified as a fibroblast group factor expressed in Xenopus laevis embryonic brain, but its biological functions remain unclear. The spatiotemporal distribution of ISM1, with high expression in the anterior primitive streak of the chick embryo and the anterior mesendoderm of the mouse embryo, suggested that ISM1 may regulate signaling by the NODAL subfamily of TGB-β cytokines that control embryo patterning. We report that ISM1 is an inhibitor of NODAL signaling. ISM1 has little effect on TGF-β1, ACTIVIN-A, or BMP4 signaling but specifically inhibits NODAL-induced phosphorylation of SMAD2. In line with this observation, ectopic ISM1 causes defective left-right asymmetry and abnormal heart positioning in chick embryos. Mechanistically, ISM1 interacts with NODAL ligand and type I receptor ACVR1B through its AMOP domain, which compromises the NODAL-ACVR1B interaction and down-regulates phosphorylation of SMAD2. Therefore, we identify ISM1 as an extracellular antagonist of NODAL and reveal a negative regulatory mechanism that provides greater plasticity for the fine-tuning of NODAL signaling.
Collapse
Affiliation(s)
- Liliana Osório
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Shenzhen Institute of Innovation and Research, The University of Hong Kong, Nanshan, Shenzhen, China
| | - Xuewei Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Shenzhen Institute of Innovation and Research, The University of Hong Kong, Nanshan, Shenzhen, China
| | - Linsheng Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Shenzhen Institute of Innovation and Research, The University of Hong Kong, Nanshan, Shenzhen, China
| | - Zhixin Jiang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Shenzhen Institute of Innovation and Research, The University of Hong Kong, Nanshan, Shenzhen, China
| | - Carlos Neideck
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Shenzhen Institute of Innovation and Research, The University of Hong Kong, Nanshan, Shenzhen, China
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.,RIKEN Center for Developmental Biology, Kobe, Japan
| | - Zhongjun Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong .,Shenzhen Institute of Innovation and Research, The University of Hong Kong, Nanshan, Shenzhen, China
| |
Collapse
|
14
|
Abdolmaleky HM, Gower AC, Wong CK, Cox JW, Zhang X, Thiagalingam A, Shafa R, Sivaraman V, Zhou JR, Thiagalingam S. Aberrant transcriptomes and DNA methylomes define pathways that drive pathogenesis and loss of brain laterality/asymmetry in schizophrenia and bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2019; 180:138-149. [PMID: 30468562 PMCID: PMC6386618 DOI: 10.1002/ajmg.b.32691] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/23/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
Although the loss of brain laterality is one of the most consistent modalities in schizophrenia (SCZ) and bipolar disorder (BD), its molecular basis remains elusive. Our limited previous studies indicated that epigenetic modifications are key to the asymmetric transcriptomes of brain hemispheres. We used whole-genome expression microarrays to profile postmortem brain samples from subjects with SCZ, psychotic BD [BD[+]] or non-psychotic BD [BD(-)], or matched controls (10/group) and performed whole-genome DNA methylation (DNAM) profiling of the same samples (3-4/group) to identify pathways associated with SCZ or BD[+] and genes/sites susceptible to epigenetic regulation. qRT-PCR and quantitative DNAM analysis were employed to validate findings in larger sample sets (35/group). Gene Set Enrichment Analysis (GSEA) demonstrated that BMP signaling and astrocyte and cerebral cortex development are significantly (FDR q < 0.25) coordinately upregulated in both SCZ and BD[+], and glutamate signaling and TGFβ signaling are significantly coordinately upregulated in SCZ. GSEA also indicated that collagens are downregulated in right versus left brain of controls, but not in SCZ or BD[+] patients. Ingenuity Pathway Analysis predicted that TGFB2 is an upstream regulator of these genes (p = .0012). While lateralized expression of TGFB2 in controls (p = .017) is associated with a corresponding change in DNAM (p ≤ .023), lateralized expression and DNAM of TGFB2 are absent in SCZ or BD. Loss of brain laterality in SCZ and BD corresponds to aberrant epigenetic regulation of TGFB2 and changes in TGFβ signaling, indicating potential avenues for disease prevention/treatment.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA,Nutrition/Metabolism Laboratory, BIDMC, Harvard Medical School, Boston, MA,Corresponding Authors: Hamid Mostafavi Abdolmaleky () and Sam Thiagalingam ()
| | - Adam Chapin Gower
- Clinical and Translational Science Institute, Boston University School of Medicine, Boston, MA
| | - Chen Khuan Wong
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA,Genetics & Genomics Graduate Program, Boston University School of Medicine, Boston, MA
| | - Jiayi Wu Cox
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA,Bioinformatics Graduate Program, Boston University, Boston, MA
| | - Xiaoling Zhang
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA
| | - Arunthathi Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA
| | | | - Vadivelu Sivaraman
- Critical Care Medicine, Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, BIDMC, Harvard Medical School, Boston, MA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA,Genetics & Genomics Graduate Program, Boston University School of Medicine, Boston, MA,Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA,Corresponding Authors: Hamid Mostafavi Abdolmaleky () and Sam Thiagalingam ()
| |
Collapse
|
15
|
A familial congenital heart disease with a possible multigenic origin involving a mutation in BMPR1A. Sci Rep 2019; 9:2959. [PMID: 30814609 PMCID: PMC6393482 DOI: 10.1038/s41598-019-39648-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
The genetics of many congenital heart diseases (CHDs) can only unsatisfactorily be explained by known chromosomal or Mendelian syndromes. Here, we present sequencing data of a family with a potentially multigenic origin of CHD. Twelve of nineteen family members carry a familial mutation [NM_004329.2:c.1328 G > A (p.R443H)] which encodes a predicted deleterious variant of BMPR1A. This mutation co-segregates with a linkage region on chromosome 1 that associates with the emergence of severe CHDs including Ebstein's anomaly, atrioventricular septal defect, and others. We show that the continuous overexpression of the zebrafish homologous mutation bmpr1aap.R438H within endocardium causes a reduced AV valve area, a downregulation of Wnt/ß-catenin signalling at the AV canal, and growth of additional tissue mass in adult zebrafish hearts. This finding opens the possibility of testing genetic interactions between BMPR1A and other candidate genes within linkage region 1 which may provide a first step towards unravelling more complex genetic patterns in cardiovascular disease aetiology.
Collapse
|
16
|
Abstract
Venous endothelial cells are molecularly and functionally distinct from their arterial counterparts. Although veins are often considered the default endothelial state, genetic manipulations can modulate both acquisition and loss of venous fate, suggesting that venous identity is the result of active transcriptional regulation. However, little is known about this process. Here we show that BMP signalling controls venous identity via the ALK3/BMPR1A receptor and SMAD1/SMAD5. Perturbations to TGF-β and BMP signalling in mice and zebrafish result in aberrant vein formation and loss of expression of the venous-specific gene Ephb4, with no effect on arterial identity. Analysis of a venous endothelium-specific enhancer for Ephb4 shows enriched binding of SMAD1/5 and a requirement for SMAD binding motifs. Further, our results demonstrate that BMP/SMAD-mediated Ephb4 expression requires the venous-enriched BMP type I receptor ALK3/BMPR1A. Together, our analysis demonstrates a requirement for BMP signalling in the establishment of Ephb4 expression and the venous vasculature. The establishment of functional vasculatures requires the specification of newly formed vessels into veins and arteries. Here, Neal et al. use a combination of genetic approaches in mice and zebrafish to show that BMP signalling, via ALK3 and SMAD1/5, is required for venous specification during blood vessel development.
Collapse
|
17
|
Owen RP, White MJ, Severson DT, Braden B, Bailey A, Goldin R, Wang LM, Ruiz-Puig C, Maynard ND, Green A, Piazza P, Buck D, Middleton MR, Ponting CP, Schuster-Böckler B, Lu X. Single cell RNA-seq reveals profound transcriptional similarity between Barrett's oesophagus and oesophageal submucosal glands. Nat Commun 2018; 9:4261. [PMID: 30323168 PMCID: PMC6189174 DOI: 10.1038/s41467-018-06796-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Barrett's oesophagus is a precursor of oesophageal adenocarcinoma. In this common condition, squamous epithelium in the oesophagus is replaced by columnar epithelium in response to acid reflux. Barrett's oesophagus is highly heterogeneous and its relationships to normal tissues are unclear. Here we investigate the cellular complexity of Barrett's oesophagus and the upper gastrointestinal tract using RNA-sequencing of single cells from multiple biopsies from six patients with Barrett's oesophagus and two patients without oesophageal pathology. We find that cell populations in Barrett's oesophagus, marked by LEFTY1 and OLFM4, exhibit a profound transcriptional overlap with oesophageal submucosal gland cells, but not with gastric or duodenal cells. Additionally, SPINK4 and ITLN1 mark cells that precede morphologically identifiable goblet cells in colon and Barrett's oesophagus, potentially aiding the identification of metaplasia. Our findings reveal striking transcriptional relationships between normal tissue populations and cells in a premalignant condition, with implications for clinical practice.
Collapse
Affiliation(s)
- Richard Peter Owen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Michael Joseph White
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - David Tyler Severson
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Barbara Braden
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Adam Bailey
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Robert Goldin
- Centre for Pathology, St Mary's Hospital, Imperial College, London, W2 1NY, UK
| | - Lai Mun Wang
- Department of Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Carlos Ruiz-Puig
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Angie Green
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Paolo Piazza
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Department of Medicine, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - David Buck
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Mark Ross Middleton
- Department of Oncology, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Chris Paul Ponting
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Benjamin Schuster-Böckler
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
18
|
Sun X, Chen J, Zhang Y, Munisha M, Dougan S, Sun Y. Mga Modulates Bmpr1a Activity by Antagonizing Bs69 in Zebrafish. Front Cell Dev Biol 2018; 6:126. [PMID: 30324105 PMCID: PMC6172302 DOI: 10.3389/fcell.2018.00126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
MAX giant associated protein (MGA) is a dual transcriptional factor containing both T-box and bHLHzip DNA binding domains. In vitro studies have shown that MGA functions as a transcriptional repressor or activator to regulate transcription of promotors containing either E-box or T-box binding sites. BS69 (ZMYND11), a multidomain-containing (i.e., PHD, BROMO, PWWP, and MYND) protein, has been shown to selectively recognizes histone variant H3.3 lysine 36 trimethylation (H3.3K36me3), modulates RNA Polymerase II elongation, and functions as RNA splicing regulator. Mutations in MGA or BS69 have been linked to multiple cancers or neural developmental disorders. Here, by TALEN and CRISPR/Cas9-mediated loss of gene function assays, we show that zebrafish Mga and Bs69 are required to maintain proper Bmp signaling during early embryogenesis. We found that Mga protein localized in the cytoplasm modulates Bmpr1a activity by physical association with Zmynd11/Bs69. The Mynd domain of Bs69 specifically binds the kinase domain of Bmpr1a and interferes with its phosphorylation and activation of Smad1/5/8. Mga acts to antagonize Bs69 and facilitate the Bmp signaling pathway by disrupting the Bs69–Bmpr1a association. Functionally, Bmp signaling under control of Mga and Bs69 is required for properly specifying the ventral tailfin cell fate.
Collapse
Affiliation(s)
- Xiaoyun Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ji Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yanyong Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Mumingjiang Munisha
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Scott Dougan
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Yuhua Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
19
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
20
|
Dasgupta S, Vliet SM, Kupsco A, Leet JK, Altomare D, Volz DC. Tris(1,3-dichloro-2-propyl) phosphate disrupts dorsoventral patterning in zebrafish embryos. PeerJ 2017; 5:e4156. [PMID: 29259843 PMCID: PMC5733366 DOI: 10.7717/peerj.4156] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/21/2017] [Indexed: 12/02/2022] Open
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a high-production volume organophosphate flame retardant widely used within the United States. Within zebrafish, initiation of TDCIPP exposure at 0.75 h post-fertilization (hpf) results in genome-wide alterations in methylation during cleavage (2 hpf) as well as epiboly delay or arrest (at higher concentrations) during late-blastula and early-gastrula (4–6 hpf). To determine whether these TDCIPP-induced effects were associated with impacts on the transcriptome, embryos were exposed to vehicle (0.1% DMSO) or 2 µM TDCIPP from 0.75 hpf to 6 hpf, and total RNA was extracted from triplicate embryo pools per treatment and hybridized onto duplicate Affymetrix Zebrafish Gene 1.0 ST Arrays per RNA sample. Based on transcriptome-wide profiling, TDCIPP resulted in a significant impact on biological processes involved in dorsoventral patterning and bone morphogenetic protein (BMP) signaling. Consistent with these responses, TDCIPP exposure also resulted in strongly dorsalized embryos by 24 hpf—a phenotype that mimicked the effects of dorsomorphin, a potent and selective BMP inhibitor. Moreover, the majority of dorsalized embryos were preceded by epiboly arrest at 6 hpf. Our microarray data also revealed that the expression of sizzled (szl)—a gene encoding a secreted Frizzled-related protein that limits BMP signaling—was significantly decreased by nearly 4-fold at 6 hpf. Therefore, we used a splice-blocking morpholino to test the hypothesis that knockdown of szl phenocopies TDCIPP-induced delays in epiboly progression. Interestingly, contrary to our hypothesis, injection of szl MOs did not affect epiboly progression but, similar to chordin (chd) morphants, resulted in mildly ventralized embryos by 24 hpf. Overall, our findings suggest that TDCIPP-induced epiboly delay may not be driven by decreased szl expression, and that TDCIPP-induced dorsalization may—similar to dorsomorphin—be due to interference with BMP signaling during early zebrafish development.
Collapse
Affiliation(s)
- Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, CA, United States of America
| | - Sara M Vliet
- Department of Environmental Sciences, University of California, Riverside, CA, United States of America.,Environmental Toxicology Graduate Program, University of California, Riverside, CA, United States of America
| | - Allison Kupsco
- Department of Environmental Sciences, University of California, Riverside, CA, United States of America
| | - Jessica K Leet
- University of South Carolina, Columbia, SC, United States of America
| | - Diego Altomare
- University of South Carolina, Columbia, SC, United States of America
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA, United States of America
| |
Collapse
|
21
|
Zhang Y, O'Leary MN, Peri S, Wang M, Zha J, Melov S, Kappes DJ, Feng Q, Rhodes J, Amieux PS, Morris DR, Kennedy BK, Wiest DL. Ribosomal Proteins Rpl22 and Rpl22l1 Control Morphogenesis by Regulating Pre-mRNA Splicing. Cell Rep 2017; 18:545-556. [PMID: 28076796 DOI: 10.1016/j.celrep.2016.12.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/15/2016] [Accepted: 12/12/2016] [Indexed: 01/13/2023] Open
Abstract
Most ribosomal proteins (RP) are regarded as essential, static components that contribute only to ribosome biogenesis and protein synthesis. However, emerging evidence suggests that RNA-binding RP are dynamic and can influence cellular processes by performing "extraribosomal," regulatory functions involving binding to select critical target mRNAs. We report here that the RP, Rpl22, and its highly homologous paralog Rpl22-Like1 (Rpl22l1 or Like1) play critical, extraribosomal roles in embryogenesis. Indeed, they antagonistically control morphogenesis through developmentally regulated localization to the nucleus, where they modulate splicing of the pre-mRNA encoding smad2, an essential transcriptional effector of Nodal/TGF-β signaling. During gastrulation, Rpl22 binds to intronic sequences of smad2 pre-mRNA and induces exon 9 skipping in cooperation with hnRNP-A1. This action is opposed by its paralog, Like1, which promotes exon 9 inclusion in the mature transcript. The nuclear roles of these RP in controlling morphogenesis represent a fundamentally different and paradigm-shifting mode of action for RP.
Collapse
Affiliation(s)
- Yong Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | - Suraj Peri
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Minshi Wang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jikun Zha
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Simon Melov
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Dietmar J Kappes
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Qing Feng
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jennifer Rhodes
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Paul S Amieux
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - David R Morris
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
22
|
Claudin5a is required for proper inflation of Kupffer's vesicle lumen and organ laterality. PLoS One 2017; 12:e0182047. [PMID: 28771527 PMCID: PMC5542556 DOI: 10.1371/journal.pone.0182047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/11/2017] [Indexed: 12/18/2022] Open
Abstract
Left-right asymmetric organ development is critical to establish a proper body plan of vertebrates. In zebrafish, the Kupffer’s vesicle (KV) is a fluid-filled sac which controls asymmetric organ development, and a properly inflated KV lumen by means of fluid influx is a prerequisite for the asymmetric signal transmission. However, little is known about the components that support the paracellular tightness between the KV luminal epithelial cells to sustain hydrostatic pressure during KV lumen expansion. Here, we identified that the claudin5a (cldn5a) is highly expressed at the apical surface of KV epithelial cells and tightly seals the KV lumen. Downregulation of cldn5a in zebrafish showed a failure in organ laterality that resulted from malformed KV. In addition, accelerated fluid influx into KV by combined treatment of forskolin and 3-isobutyl-1-methylxanthine failed to expand the partially-formed KV lumen in cldn5a morphants. However, malformed KV lumen and defective heart laterality in cldn5a morphants were significantly rescued by exogenous cldn5a mRNA, suggesting that the tightness between the luminal epithelial cells is important for KV lumen formation. Taken together, these findings suggest that cldn5a is required for KV lumen inflation and left-right asymmetric organ development.
Collapse
|
23
|
Lin CY, Tsai MY, Liu YH, Lu YF, Chen YC, Lai YR, Liao HC, Lien HW, Yang CH, Huang CJ, Hwang SPL. Klf8 regulates left-right asymmetric patterning through modulation of Kupffer's vesicle morphogenesis and spaw expression. J Biomed Sci 2017; 24:45. [PMID: 28716076 PMCID: PMC5513281 DOI: 10.1186/s12929-017-0351-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/07/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although vertebrates are bilaterally symmetric organisms, their internal organs are distributed asymmetrically along a left-right axis. Disruption of left-right axis asymmetric patterning often occurs in human genetic disorders. In zebrafish embryos, Kupffer's vesicle, like the mouse node, breaks symmetry by inducing asymmetric expression of the Nodal-related gene, spaw, in the left lateral plate mesoderm (LPM). Spaw then stimulates transcription of itself and downstream genes, including lft1, lft2, and pitx2, specifically in the left side of the diencephalon, heart and LPM. This developmental step is essential to establish subsequent asymmetric organ positioning. In this study, we evaluated the role of krüppel-like factor 8 (klf8) in regulating left-right asymmetric patterning in zebrafish embryos. METHODS Zebrafish klf8 expression was disrupted by both morpholino antisense oligomer-mediated knockdown and a CRISPR-Cas9 system. Whole-mount in situ hybridization was conducted to evaluate gene expression patterns of Nodal signalling components and the positions of heart and visceral organs. Dorsal forerunner cell number was evaluated in Tg(sox17:gfp) embryos and the length and number of cilia in Kupffer's vesicle were analyzed by immunocytochemistry using an acetylated tubulin antibody. RESULTS Heart jogging, looping and visceral organ positioning were all defective in zebrafish klf8 morphants. At the 18-22 s stages, klf8 morphants showed reduced expression of genes encoding Nodal signalling components (spaw, lft1, lft2, and pitx2) in the left LPM, diencephalon, and heart. Co-injection of klf8 mRNA with klf8 morpholino partially rescued spaw expression. Furthermore, klf8 but not klf8△zf overexpressing embryos showed dysregulated bilateral expression of Nodal signalling components at late somite stages. At the 10s stage, klf8 morphants exhibited reductions in length and number of cilia in Kupffer's vesicle, while at 75% epiboly, fewer dorsal forerunner cells were observed. Interestingly, klf8 mutant embryos, generated by a CRISPR-Cas9 system, showed bilateral spaw expression in the LPM at late somite stages. This observation may be partly attributed to compensatory upregulation of klf12b, because klf12b knockdown reduced the percentage of klf8 mutants exhibiting bilateral spaw expression. CONCLUSIONS Our results demonstrate that zebrafish Klf8 regulates left-right asymmetric patterning by modulating both Kupffer's vesicle morphogenesis and spaw expression in the left LPM.
Collapse
Affiliation(s)
- Che-Yi Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Present address: Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Yuan Tsai
- Graduate Institute of Life Sciences, National Defence Medical Center, National Defence University, Neihu, Taipei, Taiwan.,Present address: Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Hsiu Liu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Fen Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Yi-Chung Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Yun-Ren Lai
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Hsin-Chi Liao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Huang-Wei Lien
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Chang-Jen Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Sheng-Ping L Hwang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan. .,Department of Life Science, National Taiwan University, Taipei, Taiwan. .,Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
24
|
Duboué ER, Halpern ME. Genetic and Transgenic Approaches to Study Zebrafish Brain Asymmetry and Lateralized Behavior. LATERALIZED BRAIN FUNCTIONS 2017. [DOI: 10.1007/978-1-4939-6725-4_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
25
|
Hagen EM, Sicko RJ, Kay DM, Rigler SL, Dimopoulos A, Ahmad S, Doleman MH, Fan R, Romitti PA, Browne ML, Caggana M, Brody LC, Shaw GM, Jelliffe-Pawlowski LL, Mills JL. Copy-number variant analysis of classic heterotaxy highlights the importance of body patterning pathways. Hum Genet 2016; 135:1355-1364. [PMID: 27637763 PMCID: PMC5065782 DOI: 10.1007/s00439-016-1727-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 09/04/2016] [Indexed: 01/08/2023]
Abstract
Classic heterotaxy consists of congenital heart defects with abnormally positioned thoracic and abdominal organs. We aimed to uncover novel, genomic copy-number variants (CNVs) in classic heterotaxy cases. A microarray containing 2.5 million single-nucleotide polymorphisms (SNPs) was used to genotype 69 infants (cases) with classic heterotaxy identified from California live births from 1998 to 2009. CNVs were identified using the PennCNV software. We identified 56 rare CNVs encompassing genes in the NODAL (NIPBL, TBX6), BMP (PPP4C), and WNT (FZD3) signaling pathways, not previously linked to classic heterotaxy. We also identified a CNV involving FGF12, a gene previously noted in a classic heterotaxy case. CNVs involving RBFOX1 and near MIR302F were detected in multiple cases. Our findings illustrate the importance of body patterning pathways for cardiac development and left/right axes determination. FGF12, RBFOX1, and MIR302F could be important in human heterotaxy, because they were noted in multiple cases. Further investigation into genes involved in the NODAL, BMP, and WNT body patterning pathways and into the dosage effects of FGF12, RBFOX1, and MIR302F is warranted.
Collapse
Affiliation(s)
- Erin M Hagen
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6100 Executive Boulevard, Bethesda, MD, 20892, USA
| | - Robert J Sicko
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY, 12201-2002, USA
| | - Denise M Kay
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY, 12201-2002, USA
| | - Shannon L Rigler
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6100 Executive Boulevard, Bethesda, MD, 20892, USA
| | - Aggeliki Dimopoulos
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6100 Executive Boulevard, Bethesda, MD, 20892, USA
| | - Shabbir Ahmad
- California Birth Defects Monitoring Program, California Department of Public Health, 1615 Capitol Avenue, MS 8304, Sacramento, CA, 95899-7420, USA
| | - Margaret H Doleman
- California Birth Defects Monitoring Program, California Department of Public Health, 1615 Capitol Avenue, MS 8304, Sacramento, CA, 95899-7420, USA
| | - Ruzong Fan
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6100 Executive Boulevard, Bethesda, MD, 20892, USA
| | - Paul A Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, 145 N. Riverside Drive, S416 CPHB, Iowa City, IA, 52242, USA
| | - Marilyn L Browne
- Congenital Malformations Registry, New York State Department of Health, Empire State Plaza-Corning Tower, Albany, NY, 12237, USA
- University at Albany School of Public Health, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Michele Caggana
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY, 12201-2002, USA
| | - Lawrence C Brody
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Building 50, 50 South Drive, MSC 8004, Bethesda, MD, 20892, USA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Medical Office Building, 1265 Welch Road Room X159, Stanford, CA, 94305, USA
| | - Laura L Jelliffe-Pawlowski
- Department of Epidemiology and Biostatistics, University of California San Francisco School of Medicine, 550 16th Street, San Francisco, CA, 94158, USA
| | - James L Mills
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6100 Executive Boulevard, Bethesda, MD, 20892, USA.
| |
Collapse
|
26
|
Dranow DB, Hu K, Bird AM, Lawry ST, Adams MT, Sanchez A, Amatruda JF, Draper BW. Bmp15 Is an Oocyte-Produced Signal Required for Maintenance of the Adult Female Sexual Phenotype in Zebrafish. PLoS Genet 2016; 12:e1006323. [PMID: 27642754 PMCID: PMC5028036 DOI: 10.1371/journal.pgen.1006323] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/25/2016] [Indexed: 11/30/2022] Open
Abstract
Although the zebrafish is a major model organism, how they determine sex is not well understood. In domesticated zebrafish, sex determination appears to be polygenic, being influenced by multiple genetic factors that may vary from strain to strain, and additionally can be influenced by environmental factors. However, the requirement of germ cells for female sex determination is well documented: animals that lack germ cells, or oocytes in particular, develop exclusively as males. Recently, it has been determined that oocytes are also required throughout the adult life of the animal to maintain the differentiated female state. How oocytes control sex differentiation and maintenance of the sexual phenotype is unknown. We therefore generated targeted mutations in genes for two oocyte produced signaling molecules, Bmp15 and Gdf9 and here report a novel role for Bmp15 in maintaining adult female sex differentiation in zebrafish. Females deficient in Bmp15 begin development normally but switch sex during the mid- to late- juvenile stage, and become fertile males. Additionally, by generating mutations in the aromatase cyp19a1a, we show that estrogen production is necessary for female development and that the function of Bmp15 in female sex maintenance is likely linked to the regulation of estrogen biosynthesis via promoting the development of estrogen-producing granulosa cells in the oocyte follicle.
Collapse
Affiliation(s)
- Daniel B. Dranow
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Kevin Hu
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - April M. Bird
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - S. Terese Lawry
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Melissa T. Adams
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Angelica Sanchez
- Departments of Pediatrics and Molecular Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - James F. Amatruda
- Departments of Pediatrics and Molecular Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Bruce W. Draper
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
27
|
Abstract
The molecular mechanisms underlying cardiogenesis are of critical biomedical importance due to the high prevalence of cardiac birth defects. Over the past two decades, the zebrafish has served as a powerful model organism for investigating heart development, facilitated by its powerful combination of optical access to the embryonic heart and plentiful opportunities for genetic analysis. Work in zebrafish has identified numerous factors that are required for various aspects of heart formation, including the specification and differentiation of cardiac progenitor cells, the morphogenesis of the heart tube, cardiac chambers, and atrioventricular canal, and the establishment of proper cardiac function. However, our current roster of regulators of cardiogenesis is by no means complete. It is therefore valuable for ongoing studies to continue pursuit of additional genes and pathways that control the size, shape, and function of the zebrafish heart. An extensive arsenal of techniques is available to distinguish whether particular mutations, morpholinos, or small molecules disrupt specific processes during heart development. In this chapter, we provide a guide to the experimental strategies that are especially effective for the characterization of cardiac phenotypes in the zebrafish embryo.
Collapse
Affiliation(s)
- A R Houk
- University of California, San Diego, CA, United States
| | - D Yelon
- University of California, San Diego, CA, United States
| |
Collapse
|
28
|
Wu CC, Kruse F, Vasudevarao MD, Junker JP, Zebrowski DC, Fischer K, Noël ES, Grün D, Berezikov E, Engel FB, van Oudenaarden A, Weidinger G, Bakkers J. Spatially Resolved Genome-wide Transcriptional Profiling Identifies BMP Signaling as Essential Regulator of Zebrafish Cardiomyocyte Regeneration. Dev Cell 2015; 36:36-49. [PMID: 26748692 DOI: 10.1016/j.devcel.2015.12.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 10/14/2015] [Accepted: 11/20/2015] [Indexed: 12/21/2022]
Abstract
In contrast to mammals, zebrafish regenerate heart injuries via proliferation of cardiomyocytes located near the wound border. To identify regulators of cardiomyocyte proliferation, we used spatially resolved RNA sequencing (tomo-seq) and generated a high-resolution genome-wide atlas of gene expression in the regenerating zebrafish heart. Interestingly, we identified two wound border zones with distinct expression profiles, including the re-expression of embryonic cardiac genes and targets of bone morphogenetic protein (BMP) signaling. Endogenous BMP signaling has been reported to be detrimental to mammalian cardiac repair. In contrast, we find that genetic or chemical inhibition of BMP signaling in zebrafish reduces cardiomyocyte dedifferentiation and proliferation, ultimately compromising myocardial regeneration, while bmp2b overexpression is sufficient to enhance it. Our results provide a resource for further studies on the molecular regulation of cardiac regeneration and reveal intriguing differential cellular responses of cardiomyocytes to a conserved signaling pathway in regenerative versus non-regenerative hearts.
Collapse
Affiliation(s)
- Chi-Chung Wu
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Fabian Kruse
- Hubrecht Institute, University Medical Centre Utrecht, Uppsalaan 8, 3584 CT Utrecht, the Netherlands
| | | | - Jan Philipp Junker
- Hubrecht Institute, University Medical Centre Utrecht, Uppsalaan 8, 3584 CT Utrecht, the Netherlands
| | - David C Zebrowski
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstr 8-10, 91054 Erlangen, Germany
| | - Kristin Fischer
- Institute of Clinical Genetics, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Emily S Noël
- Hubrecht Institute, University Medical Centre Utrecht, Uppsalaan 8, 3584 CT Utrecht, the Netherlands
| | - Dominic Grün
- Hubrecht Institute, University Medical Centre Utrecht, Uppsalaan 8, 3584 CT Utrecht, the Netherlands
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; Skolkovo Institute of Science and Technology (Skoltech), Novaya Street 100, Skolkovo, Moscow Region 143025, Russia
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstr 8-10, 91054 Erlangen, Germany
| | - Alexander van Oudenaarden
- Hubrecht Institute, University Medical Centre Utrecht, Uppsalaan 8, 3584 CT Utrecht, the Netherlands
| | - Gilbert Weidinger
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Jeroen Bakkers
- Hubrecht Institute, University Medical Centre Utrecht, Uppsalaan 8, 3584 CT Utrecht, the Netherlands; Medical Physiology, University Medical Centre Utrecht, Yalelaan 50, 3584 CM Utrecht, the Netherlands.
| |
Collapse
|
29
|
Rigler SL, Kay DM, Sicko RJ, Fan R, Liu A, Caggana M, Browne ML, Druschel CM, Romitti PA, Brody LC, Mills JL. Novel copy-number variants in a population-based investigation of classic heterotaxy. Genet Med 2015; 17:348-57. [PMID: 25232849 PMCID: PMC5901701 DOI: 10.1038/gim.2014.112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 07/15/2014] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Heterotaxy is a clinically and genetically heterogeneous disorder. We investigated whether screening cases restricted to a classic phenotype would result in the discovery of novel, potentially causal copy-number variants. METHODS We identified 77 cases of classic heterotaxy from all live births in New York State during 1998-2005. DNA extracted from each infant's newborn dried blood spot was genotyped with a microarray containing 2.5 million single-nucleotide polymorphisms. Copy-number variants were identified with PennCNV and cnvPartition software. Candidates were selected for follow-up if they were absent in unaffected controls, contained 10 or more consecutive probes, and had minimal overlap with variants published in the Database of Genomic Variants. RESULTS We identified 20 rare copy-number variants including a deletion of BMP2, which has been linked to laterality disorders in mice but not previously reported in humans. We also identified a large, terminal deletion of 10q and a microdeletion at 1q23.1 involving the MNDA gene; both are rare variants suspected to be associated with heterotaxy. CONCLUSION Our findings implicate rare copy-number variants in classic heterotaxy and highlight several candidate gene regions for further investigation. We also demonstrate the efficacy of copy-number variant genotyping in blood spots using microarrays.
Collapse
Affiliation(s)
- Shannon L. Rigler
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
- Department of Neonatology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Denise M. Kay
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Robert J. Sicko
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Ruzong Fan
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Aiyi Liu
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Michele Caggana
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Marilyn L. Browne
- Congenital Malformations Registry, New York State Department of Health, Albany, New York, USA
- Department of Epidemiology and Biostatistics, University at Albany School of Public Health, Rensselaer, New York, USA
| | - Charlotte M. Druschel
- Congenital Malformations Registry, New York State Department of Health, Albany, New York, USA
- Department of Epidemiology and Biostatistics, University at Albany School of Public Health, Rensselaer, New York, USA
| | - Paul A. Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - Lawrence C. Brody
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - James L. Mills
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Tessadori F, Noël ES, Rens EG, Magliozzi R, Evers-van Gogh IJA, Guardavaccaro D, Merks RMH, Bakkers J. Nodal signaling range is regulated by proprotein convertase-mediated maturation. Dev Cell 2015; 32:631-9. [PMID: 25684355 DOI: 10.1016/j.devcel.2014.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/29/2014] [Accepted: 12/17/2014] [Indexed: 01/24/2023]
Abstract
Tissue patterning is established by extracellular growth factors or morphogens. Although different theoretical models explaining specific patterns have been proposed, our understanding of tissue pattern establishment in vivo remains limited. In many animal species, left-right patterning is governed by a reaction-diffusion system relying on the different diffusivity of an activator, Nodal, and an inhibitor, Lefty. In a genetic screen, we identified a zebrafish loss-of-function mutant for the proprotein convertase FurinA. Embryological and biochemical experiments demonstrate that cleavage of the Nodal-related Spaw proprotein into a mature form by FurinA is required for Spaw gradient formation and activation of Nodal signaling. We demonstrate that FurinA is required cell-autonomously for the long-range signaling activity of Spaw and no other Nodal-related factors. Combined in silico and in vivo approaches support a model in which FurinA controls the signaling range of Spaw by cleaving its proprotein into a mature, extracellular form, consequently regulating left-right patterning.
Collapse
Affiliation(s)
- Federico Tessadori
- Cardiac Development and Genetics, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CT Utrecht, the Netherlands
| | - Emily S Noël
- Cardiac Development and Genetics, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CT Utrecht, the Netherlands
| | - Elisabeth G Rens
- Life Sciences Group, Centrum Wiskunde and Informatica, 1098 XG Amsterdam, the Netherlands; Mathematical Institute, Leiden University, 2333 CA Leiden, the Netherlands
| | - Roberto Magliozzi
- Cardiac Development and Genetics, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CT Utrecht, the Netherlands
| | - Inkie J A Evers-van Gogh
- Cardiac Development and Genetics, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CT Utrecht, the Netherlands
| | - Daniele Guardavaccaro
- Cardiac Development and Genetics, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CT Utrecht, the Netherlands
| | - Roeland M H Merks
- Life Sciences Group, Centrum Wiskunde and Informatica, 1098 XG Amsterdam, the Netherlands; Mathematical Institute, Leiden University, 2333 CA Leiden, the Netherlands
| | - Jeroen Bakkers
- Cardiac Development and Genetics, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
31
|
Kim JD, Lee HW, Jin SW. Diversity is in my veins: role of bone morphogenetic protein signaling during venous morphogenesis in zebrafish illustrates the heterogeneity within endothelial cells. Arterioscler Thromb Vasc Biol 2014; 34:1838-45. [PMID: 25060789 DOI: 10.1161/atvbaha.114.303219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelial cells are a highly diverse group of cells which display distinct cellular responses to exogenous stimuli. Although the aptly named vascular endothelial growth factor-A signaling pathway is hailed as the most important signaling input for endothelial cells, additional factors also participate in regulating diverse aspects of endothelial behaviors and functions. Given this heterogeneity, these additional factors seem to play a critical role in creating a custom-tailored environment to regulate behaviors and functions of distinct subgroups of endothelial cells. For instance, molecular cues that modulate morphogenesis of arterial vascular beds can be distinct from those that govern morphogenesis of venous vascular beds. Recently, we have found that bone morphogenetic protein signaling selectively promotes angiogenesis from venous vascular beds without eliciting similar responses from arterial vascular beds in zebrafish, indicating that bone morphogenetic protein signaling functions as a context-dependent regulator during vascular morphogenesis. In this review, we will provide an overview of the molecular mechanisms that underlie proangiogenic effects of bone morphogenetic protein signaling on venous vascular beds in the context of endothelial heterogeneity and suggest a more comprehensive picture of the molecular mechanisms of vascular morphogenesis during development.
Collapse
Affiliation(s)
- Jun-Dae Kim
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (J.-D.K., H.W.L., S.-W.J.) and Department of Internal Medicine (J.-D.K., H.W.L., S.-W.J.), Yale University School of Medicine, New Haven, CT; and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea (S.-W.J.)
| | - Heon-Woo Lee
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (J.-D.K., H.W.L., S.-W.J.) and Department of Internal Medicine (J.-D.K., H.W.L., S.-W.J.), Yale University School of Medicine, New Haven, CT; and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea (S.-W.J.)
| | - Suk-Won Jin
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (J.-D.K., H.W.L., S.-W.J.) and Department of Internal Medicine (J.-D.K., H.W.L., S.-W.J.), Yale University School of Medicine, New Haven, CT; and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea (S.-W.J.).
| |
Collapse
|
32
|
Noël ES, Verhoeven M, Lagendijk AK, Tessadori F, Smith K, Choorapoikayil S, den Hertog J, Bakkers J. A Nodal-independent and tissue-intrinsic mechanism controls heart-looping chirality. Nat Commun 2014; 4:2754. [PMID: 24212328 DOI: 10.1038/ncomms3754] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/10/2013] [Indexed: 12/21/2022] Open
Abstract
Breaking left-right symmetry in bilateria is a major event during embryo development that is required for asymmetric organ position, directional organ looping and lateralized organ function in the adult. Asymmetric expression of Nodal-related genes is hypothesized to be the driving force behind regulation of organ laterality. Here we identify a Nodal-independent mechanism that drives asymmetric heart looping in zebrafish embryos. In a unique mutant defective for the Nodal-related southpaw gene, preferential dextral looping in the heart is maintained, whereas gut and brain asymmetries are randomized. As genetic and pharmacological inhibition of Nodal signalling does not abolish heart asymmetry, a yet undiscovered mechanism controls heart chirality. This mechanism is tissue intrinsic, as explanted hearts maintain ex vivo retain chiral looping behaviour and require actin polymerization and myosin II activity. We find that Nodal signalling regulates actin gene expression, supporting a model in which Nodal signalling amplifies this tissue-intrinsic mechanism of heart looping.
Collapse
Affiliation(s)
- Emily S Noël
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584CT Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Smad1 transcription factor integrates BMP2 and Wnt3a signals in migrating cardiac progenitor cells. Proc Natl Acad Sci U S A 2014; 111:7337-42. [PMID: 24808138 DOI: 10.1073/pnas.1321764111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In vertebrate embryos, cardiac progenitor cells (CPCs) undergo long-range migration after emerging from the primitive streak during gastrulation. Together with other mesoderm progenitors, they migrate laterally and then toward the ventral midline, where they form the heart. Signals controlling the migration of different progenitor cell populations during gastrulation are poorly understood. Several pathways are involved in the epithelial-to-mesenchymal transition and ingression of mesoderm cells through the primitive streak, including fibroblast growth factors and wingless-type family members (Wnt). Here we focus on early CPC migration and use live video microscopy in chicken embryos to demonstrate a role for bone morphogenetic protein (BMP)/SMA and MAD related (Smad) signaling. We identify an interaction of BMP and Wnt/glycogen synthase kinase 3 beta (GSK3β) pathways via the differential phosphorylation of Smad1. Increased BMP2 activity altered migration trajectories of prospective cardiac cells and resulted in their lateral displacement and ectopic differentiation, as they failed to reach the ventral midline. Constitutively active BMP receptors or constitutively active Smad1 mimicked this phenotype, suggesting a cell autonomous response. Expression of GSK3β, which promotes the turnover of active Smad1, rescued the BMP-induced migration phenotype. Conversely, expression of GSK3β-resistant Smad1 resulted in aberrant CPC migration trajectories. De-repression of GSK3β by dominant negative Wnt3a restored normal migration patterns in the presence of high BMP activity. The data indicate the convergence of BMP and Wnt pathways on Smad1 during the early migration of prospective cardiac cells. Overall, we reveal molecular mechanisms that contribute to the emerging paradigm of signaling pathway integration in embryo development.
Collapse
|
34
|
Huang S, Xu W, Su B, Luo L. Distinct mechanisms determine organ left-right asymmetry patterning in an uncoupled way. Bioessays 2014; 36:293-304. [PMID: 24464475 DOI: 10.1002/bies.201300128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Disruption of Nodal in the lateral plate mesoderm (LPM) usually leads to left-right (LR) patterning defects in multiple organs. However, whether the LR patterning of organs is always regulated in a coupled way has largely not yet been elucidated. In addition, whether other crucial regulators exist in the LPM that coordinate with Nodal in regulating organ LR patterning is also undetermined. In this paper, after briefly summarizing the common process of LR patterning, the most puzzling question regarding the initiation of asymmetry is considered and the divergent mechanisms underlying the uncoupled LR patterning in different organs are discussed. On the basis of cases in which different organ LR patterning is determined in an uncoupled way via an independent mechanism or at a different time, we propose that there are other critical factors in the LPM that coordinate with Nodal to regulate heart LR asymmetry patterning during early LR patterning.
Collapse
Affiliation(s)
- Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | | | | | | |
Collapse
|
35
|
Park CY, Wong AK, Greene CS, Rowland J, Guan Y, Bongo LA, Burdine RD, Troyanskaya OG. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes. PLoS Comput Biol 2013; 9:e1002957. [PMID: 23516347 PMCID: PMC3597527 DOI: 10.1371/journal.pcbi.1002957] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 01/15/2013] [Indexed: 11/19/2022] Open
Abstract
A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning) that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST) have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT) dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics techniques and will help biologists systematically integrate prior knowledge from diverse systems to direct targeted experiments in their organism of study. Due to technical and ethical challenges many human diseases or biological processes are studied in model organisms. Discoveries in these organisms are then transferred back to human or other model organisms. Traditional methods for transferring novel gene function annotations have relied on finding genes with high sequence similarity believed to share evolutionary ancestry. However, sequence similarity does not guarantee a shared functional role in molecular pathways. In this study, we show that functional genomics can complement traditional sequence similarity measures to improve the transfer of gene annotations between organisms. We coupled our knowledge transfer method with current state-of-the-art machine learning algorithms and predicted gene function for 11,000 biological processes across six organisms. We experimentally validated our prediction of wnt5b's involvement in the determination of left-right heart asymmetry in zebrafish. Our results show that functional knowledge transfer can improve the coverage and accuracy of machine learning methods used for gene function prediction in a diverse set of organisms. Such an approach can be applied to additional organisms, and will be especially beneficial in organisms that have high-throughput genomic data with sparse annotations.
Collapse
Affiliation(s)
- Christopher Y. Park
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
| | - Aaron K. Wong
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
| | - Casey S. Greene
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Jessica Rowland
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lars A. Bongo
- Department of Computer Science, University of Tromsø, Tromsø, Norway
| | - Rebecca D. Burdine
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Olga G. Troyanskaya
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
36
|
Bessodes N, Haillot E, Duboc V, Röttinger E, Lahaye F, Lepage T. Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo. PLoS Genet 2012; 8:e1003121. [PMID: 23271979 PMCID: PMC3521660 DOI: 10.1371/journal.pgen.1003121] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 10/12/2012] [Indexed: 02/01/2023] Open
Abstract
During echinoderm development, expression of nodal on the right side plays a crucial role in positioning of the rudiment on the left side, but the mechanisms that restrict nodal expression to the right side are not known. Here we show that establishment of left-right asymmetry in the sea urchin embryo relies on reciprocal signaling between the ectoderm and a left-right organizer located in the endomesoderm. FGF/ERK and BMP2/4 signaling are required to initiate nodal expression in this organizer, while Delta/Notch signaling is required to suppress formation of this organizer on the left side of the archenteron. Furthermore, we report that the H(+)/K(+)-ATPase is critically required in the Notch signaling pathway upstream of the S3 cleavage of Notch. Our results identify several novel players and key early steps responsible for initiation, restriction, and propagation of left-right asymmetry during embryogenesis of a non-chordate deuterostome and uncover a functional link between the H(+)/K(+)-ATPase and the Notch signaling pathway.
Collapse
Affiliation(s)
- Nathalie Bessodes
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - Emmanuel Haillot
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - Véronique Duboc
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - Eric Röttinger
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - François Lahaye
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - Thierry Lepage
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| |
Collapse
|
37
|
Matsui T, Bessho Y. Left-right asymmetry in zebrafish. Cell Mol Life Sci 2012; 69:3069-77. [PMID: 22527718 PMCID: PMC11115138 DOI: 10.1007/s00018-012-0985-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 03/04/2012] [Accepted: 03/28/2012] [Indexed: 11/28/2022]
Abstract
In vertebrates, internal organs are positioned asymmetrically across the left-right (LR) axis, placing them in a defined area within the body. This LR asymmetric placement is a conserved feature of the vertebrate body plan. Events determining LR asymmetry occur during embryonic development, and are regulated by the coordinated action of genetic mechanisms that are evolutionarily conserved among vertebrates. Recent studies using zebrafish have provided new insights into how the Kupffer's vesicle organizer region is generated, and how it relays LR asymmetry information to the lateral plate mesoderm. In this review, we summarize recent advances in zebrafish and describe our current understanding of the mechanisms underlying these processes.
Collapse
Affiliation(s)
- Takaaki Matsui
- Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Nara, 630-0101, Japan.
| | | |
Collapse
|
38
|
de Pater E, Ciampricotti M, Priller F, Veerkamp J, Strate I, Smith K, Lagendijk AK, Schilling TF, Herzog W, Abdelilah-Seyfried S, Hammerschmidt M, Bakkers J. Bmp signaling exerts opposite effects on cardiac differentiation. Circ Res 2012; 110:578-87. [PMID: 22247485 DOI: 10.1161/circresaha.111.261172] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RATIONALE The importance for Bmp signaling during embryonic stem cell differentiation into myocardial cells has been recognized. The question when and where Bmp signaling in vivo regulates myocardial differentiation has remained largely unanswered. OBJECTIVE To identify when and where Bmp signaling regulates cardiogenic differentiation. METHODS AND RESULTS Here we have observed that in zebrafish embryos, Bmp signaling is active in cardiac progenitor cells prior to their differentiation into cardiomyocytes. Bmp signaling is continuously required during somitogenesis within the anterior lateral plate mesoderm to induce myocardial differentiation. Surprisingly, Bmp signaling is actively repressed in differentiating myocardial cells. We identified the inhibitory Smad6a, which is expressed in the cardiac tissue, to be required to inhibit Bmp signaling and thereby promote expansion of the ventricular myocardium. CONCLUSION Bmp signaling exerts opposing effects on myocardial differentiation in the embryo by promoting as well as inhibiting cardiac growth.
Collapse
Affiliation(s)
- Emma de Pater
- Cardiac development and genetics group, Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|