1
|
Kim HS, Sanchez ML, Silva J, Schubert HL, Dennis R, Hill CP, Christian JL. Mutations that prevent phosphorylation of the BMP4 prodomain impair proteolytic maturation of homodimers leading to lethality in mice. eLife 2025; 14:RP105018. [PMID: 40439112 PMCID: PMC12122004 DOI: 10.7554/elife.105018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025] Open
Abstract
Bone morphogenetic protein4 (BMP4) plays numerous roles during embryogenesis and can signal either alone as a homodimer, or together with BMP7 as a more active heterodimer. BMPs are generated as inactive precursor proteins that dimerize and are cleaved to generate the bioactive ligand and inactive prodomain fragments. In humans, heterozygous mutations within the prodomain of BMP4 are associated with birth defects. We studied the effect of two of these mutations (p.S91C and p.E93G), which disrupt a conserved FAM20C phosphorylation motif, on ligand activity. We compared the activity of ligands generated from BMP4, BMP4S91C, or BMP4E93G in Xenopus embryos and found that these mutations reduce the activity of BMP4 homodimers but not BMP4/7 heterodimers. We generated Bmp4S91C and Bmp4E93G knock-in mice and found that Bmp4S91C/S91C mice die by E11.5 and display reduced BMP activity in multiple tissues including the heart. Most Bmp4E93G/E93G mice die before weaning and Bmp4-/E93G mutants die prenatally with reduced or absent eyes, heart, and ventral body wall closure defects. Mouse embryonic fibroblasts (MEFs) isolated from Bmp4S91C and Bmp4E93G embryos show accumulation of BMP4 precursor protein, reduced levels of cleaved BMP ligand and reduced BMP activity relative to MEFs from wild type littermates. Because Bmp7 is not expressed in MEFs, the accumulation of unprocessed BMP4 precursor protein in mice carrying these mutations most likely reflects an inability to cleave BMP4 homodimers, leading to reduced levels of ligand and BMP activity in vivo. Our results suggest that phosphorylation of the BMP4 prodomain is required for proteolytic activation of BMP4 homodimers, but not heterodimers.
Collapse
Affiliation(s)
- Hyung-Seok Kim
- Department of Neurobiology, University of UtahSalt Lake CityUnited States
| | - Mary L Sanchez
- Department of Neurobiology, University of UtahSalt Lake CityUnited States
| | - Joshua Silva
- Department of Neurobiology, University of UtahSalt Lake CityUnited States
| | - Heidi L Schubert
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - Rebecca Dennis
- Department of Neurobiology, University of UtahSalt Lake CityUnited States
| | - Christopher P Hill
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - Jan L Christian
- Department of Neurobiology, University of UtahSalt Lake CityUnited States
- Internal Medicine, Division of Hematology and Hematologic Malignancies, University of UtahSalt Lake CityUnited States
| |
Collapse
|
2
|
Kim HS, Sanchez ML, Silva J, Schubert HL, Dennis R, Hill CP, Christian JL. Mutations that prevent phosphorylation of the BMP4 prodomain impair proteolytic maturation of homodimers leading to lethality in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.08.617306. [PMID: 39416136 PMCID: PMC11482978 DOI: 10.1101/2024.10.08.617306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Bone morphogenetic protein4 (BMP4) plays numerous roles during embryogenesis and can signal either alone as a homodimer, or together with BMP7 as a more active heterodimer. BMPs are generated as inactive precursor proteins that dimerize and are cleaved to generate the bioactive ligand and inactive prodomain fragments. In humans, heterozygous mutations within the prodomain of BMP4 are associated with birth defects. We studied the effect of two of these mutations (p.S91C and p.E93G), which disrupt a conserved FAM20C phosphorylation motif, on ligand activity. We compared the activity of ligands generated from BMP4, BMP4S91C or BMP4E93G in Xenopus embryos and found that these mutations reduce the activity of BMP4 homodimers but not BMP4/7 heterodimers. We generated Bmp4 S91C and Bmp4 E93G knock-in mice and found that Bmp4 S91C/S91C mice die by E11.5 and display reduced BMP activity in multiple tissues including the heart. Most Bmp4 E93G/E93G mice die before weaning and Bmp4 -/E93G mutants die prenatally with reduced or absent eyes, heart and ventral body wall closure defects. Mouse embryonic fibroblasts (MEFs) isolated from Bmp4 S91C and Bmp4 E93G embryos show accumulation of BMP4 precursor protein, reduced levels of cleaved BMP ligand and reduced BMP activity relative to MEFs from wild type littermates. Because Bmp7 is not expressed in MEFs, the accumulation of unprocessed BMP4 precursor protein in mice carrying these mutations most likely reflects an inability to cleave BMP4 homodimers, leading to reduced levels of ligand and BMP activity in vivo. Our results suggest that phosphorylation of the BMP4 prodomain is required for proteolytic activation of BMP4 homodimers, but not heterodimers.
Collapse
Affiliation(s)
- Hyung-seok Kim
- Department of Neurobiology, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Mary L. Sanchez
- Department of Neurobiology, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Joshua Silva
- Department of Neurobiology, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Heidi L. Schubert
- Department of Biochemistry, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Rebecca Dennis
- Department of Neurobiology, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Christopher P. Hill
- Department of Biochemistry, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Jan L. Christian
- Department of Neurobiology, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
- Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| |
Collapse
|
3
|
Zhang R, Ren Y, Ju Y, Zhang Y, Zhang Y, Wang Y. FAM20C: A key protein kinase in multiple diseases. Genes Dis 2025; 12:101179. [PMID: 39790934 PMCID: PMC11714710 DOI: 10.1016/j.gendis.2023.101179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/23/2023] [Accepted: 10/31/2023] [Indexed: 01/12/2025] Open
Abstract
Family with sequence similarity 20 C (FAM20C) is a Golgi protein kinase that phosphorylates the serine residue in the S-x-E/pS motif of target proteins. FAM20C phosphorylates most secreted proteins, which play important roles in multiple biological processes, including cancer progression, biomineralization, and lipid homeostasis. Numerous studies have documented the potential contribution of FAM20C to the growth, invasion, and metastasis of glioma, breast cancer, and other cancers, as well as to the mineralization process of teeth and bone. In addition, FAM20C has been found to be associated with the occurrence and development of certain cardiovascular diseases and endocrine metabolism disorders. It raises hopes that understanding the disease-specific mechanisms of FAM20C may hold the key to developing new strategies for these diseases. This review comprehensively covers the existing literature to provide a summary of the structure and biological functions of FAM20C, with a particular focus on its roles in the disease context.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanming Ren
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Ju
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuekang Zhang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Zhang
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
Alamoudi A, Husein D, Ohyama Y, Chen A, Mochida H, Mochida Y. A transgenic mouse line with a 58 kb fragment deletion shows skeletal defects. Sci Rep 2025; 15:4476. [PMID: 39915545 PMCID: PMC11802833 DOI: 10.1038/s41598-025-88559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
Previously, a transgenic mouse line lacking a 58 kb fragment deletion including the upstream and exon1 of Fam20a gene (58 kb deletion mouse) was generated and showed growth retardation. The aim of this study was to characterize the skeletal phenotype of the homozygous 58 kb deletion mouse (58 kb-/-). Our results showed that body size and bone length of the 58 kb-/- mice were smaller than those of wild-type (WT) mice. The microcomputed tomography (µCT) analyses of trabecular and cortical bones in the 58 kb-/- displayed lower bone volume, thinner trabeculae and thinner bone cortex as compared to WT. Histological examination of the 58 kb-/- growth plate demonstrated disorganized chondrocyte zones and extended hypertrophic zone. The qPCR results showed downregulation of several osteoblast differentiation markers in the 58 kb-/- long bone. Immunohistochemical examination demonstrated reduced chondrocyte proliferation, apoptosis and increased collagen X expression in the 58 kb-/- growth plate. Our data showed a lower number of osteoblasts and osteoclasts in the 58 kb-/- as compared to WT. In vitro cell culture study demonstrated the 58 kb-/- showed a lower number of bone marrow stromal cells and osteoprogenitors. The extent of matrix mineralization was impaired in the 58 kb-/- osteoblast cultures. In conclusion, endochondral ossification defects and reduced number of osteoblasts and their precursors led to the bone phenotype in the 58 kb-/-, indicating that the genes deleted in this 58 kb likely play an important role in skeletal development.
Collapse
Affiliation(s)
- Ahmed Alamoudi
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, United States of America
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dina Husein
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, United States of America
| | - Yoshio Ohyama
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, United States of America
- Oral and Maxillofacial Surgery, Shizuoka City Shizuoka Hospital, Shizuoka, Japan
| | - Angela Chen
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, United States of America
| | - Hanna Mochida
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, United States of America
| | - Yoshiyuki Mochida
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, United States of America.
| |
Collapse
|
5
|
Elliott J, Tang PK. Fibroblast growth factor 23 - A review with particular reference to the physiology and pathophysiology of phosphate homeostasis in the cat. Vet J 2025; 309:106271. [PMID: 39608700 DOI: 10.1016/j.tvjl.2024.106271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/08/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Fibroblast growth factor-23 (FGF23) is a phosphaturic hormone, discovery of which has transformed our understanding of mineral regulation in healthy mammals, including the cat. It is produced by osteoblasts and osteocytes and its prime role is to regulate phosphate entry into extracellular fluid (from bone and via the gut) and its excretion via the kidney. It interacts with other hormones (calcitriol and parathyroid hormone), inhibiting their activation and secretion respectively and so impacts on calcium as well as phosphate homeostasis. Physiological factors regulating its secretion are not well understood, although phosphate ion sensing is likely to be important. Calcium and magnesium ions are also involved and unravelling the control points and integration of the system regulating bone turnover and mineral balance whilst preventing soft tissue (non-osseous) mineralisation is a future research goal. Calciprotein particle size and number likely play an important role in this system but precisely how remains to be determined. Elevated serum FGF23 is the earliest indicator of mineral bone disorder associated with chronic kidney disease in human patients and in cats, enabling reference-range serum phosphorus to be maintained despite reduction in glomerular filtration rate which limits phosphate excretion. FGF23 also predicts CKD progression and survival in cats. The many factors influencing its secretion at different stages of CKD, including relative iron deficiency, anaemia and chronic systemic inflammation, hypomagnesaemia and α-klotho deficiency are discussed in this review, where the data available in cats with naturally occurring CKD is presented alongside that from rodent models and human CKD patients.
Collapse
Affiliation(s)
- Jonathan Elliott
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, United Kingdom.
| | - Pak Kan Tang
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, United Kingdom
| |
Collapse
|
6
|
Chen M, Sun D, Yee SP, Yuan Z, Lin L, Cui B, Wang Y, Liu C, Liu P. Mutant Fam20c knock-in mice recapitulate both lethal and non-lethal human Raine Syndrome. BMC Mol Cell Biol 2025; 26:1. [PMID: 39748245 PMCID: PMC11697891 DOI: 10.1186/s12860-024-00526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Inactivation or mutations of FAM20C causes human Raine Syndrome, which manifests as lethal osteosclerosis bone dysplasia or non-lethal hypophosphatemia rickets. However, it is only hypophosphatemia rickets that was reported in the mice with Fam20c deletion or mutations. To further investigate the local and global impacts of Fam20c mutation, we constructed a knock-in allele carrying Fam20c mutation (D446N) found in the non-lethal Raine Syndrome. The Fam20cD446N allele replaced the WT Fam20c by 3.6Kb Col1a1-Cre to get the conditional knock-in mice, and by Hprt-cre to get conventional knock-in mice, respectively. RESULTS The radiology, serum biochemistry and immunohistochemistry indicated that all conditional and most conventional Fam20cD446N knock-in mice displayed hypophosphatemic rickets with the increased Fgf23 and deceased Dmp1 expression, which survived to adulthood. However, a few conventional Fam20cD446N knock-in mice died before weaning with the osteosclerotic X-ray radiography, though micro-CT assay displayed a reduced mineral density and increased porosity in the osteosclerotic tibia. Our results suggested that hypophosphatemia rickets was the predominant phenotype in both conditional and conventional Fam20c deficient mice, while the lethal osteosclerotic phenotype occasionally took place in the conventional Fam20c mutant mice. CONCLUSION This finding also implicated that the osteosclerotic features resulting from Fam20c deficiency could be a semblance on the basis of rickets, which is most likely triggered by the alterations in the systems other than skeleton.
Collapse
Affiliation(s)
- Mengnan Chen
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Dongmei Sun
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Siu-Pok Yee
- Department of Cell Biology, Health Science Center, University of Connecticut, Farmington, 06030, USA
| | - Zhaoyang Yuan
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Li Lin
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Bing Cui
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Yi Wang
- Department of Prosthodontics, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Chao Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China.
| | - Peihong Liu
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
7
|
Piekos KM, Freeman A, Fleming K, Bell C. Dentinogenesis imperfecta in a 6-year-old male neutered Labrador retriever: Case report with atypical clinical presentation and treatment review. Front Vet Sci 2024; 11:1473390. [PMID: 39559541 PMCID: PMC11571753 DOI: 10.3389/fvets.2024.1473390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 11/20/2024] Open
Abstract
This case report details the diagnosis and treatment of dentinogenesis imperfecta in a 6-year-old neutered male Labrador, presenting without concurrent osteogenesis imperfecta. Diagnostic modalities, including radiographs, CT imaging, and histopathological examination, are reviewed in conjunction with the latest literature on canine dentinogenesis imperfecta. This patient presented at a more advanced age than typically reported cases. The clinical history, as provided by referring veterinarians, documented fractured deciduous teeth with delayed exfoliation. By 10 months of age, the patient's permanent dentition exhibited a translucent appearance and structural anomalies. Upon presentation to Eastcott Referrals the patient was experiencing significant oral pain and exhibited generalised coronal wear with yellow/brown intrinsic discolouration. CT imaging revealed that all teeth had endodontic disease and associated apical periodontitis, with varied root canal widths indicating that teeth succumbed to endodontic disease at different time points. The treatment protocol involved staged full-mouth extractions, resulting in the complete resolution of clinical symptoms. This case underscores the importance of early diagnosis and intervention in managing dentinogenesis imperfecta in dogs.
Collapse
Affiliation(s)
- Karolina Maria Piekos
- Department of Dentistry, The Ralph Veterinary Referral Centre, Marlow, United Kingdom
- Department of Dentistry, Oral and Maxillofacial Surgery, Eastcott Veterinary Referrals, Part of Linnaeus Veterinary Limited, Swindon, United Kingdom
| | - Alix Freeman
- Department of Dentistry, Oral and Maxillofacial Surgery, Eastcott Veterinary Referrals, Part of Linnaeus Veterinary Limited, Swindon, United Kingdom
| | - Kathryn Fleming
- Department of Diagnostic Imaging, Anderson Moores Veterinary Specialists, Part of Linnaeus Veterinary Limited, Winchester, United Kingdom
| | - Cynthia Bell
- Specialty Oral Pathology for Animals, LLC., Geneseo, IL, United States
| |
Collapse
|
8
|
Deng L, Huang Y, Zhao F, Chen P, Huang X. Lack of adipocyte FAM20C improves whole body glucose homeostasis. Physiol Rep 2024; 12:e70126. [PMID: 39532808 PMCID: PMC11557440 DOI: 10.14814/phy2.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
FAM20C, a member of the family with sequence similarity 20, is involved in many physiological functions. Obesity, characterized by excessive accumulation of adipose tissue, has attracted more and more attention as a worldwide health problem. Here we generated adipocyte-specific FAM20C knockout mice to investigate the role of FAM20C in adipose tissue expansion and obesity. Our results demonstrate that knockout mice are protected against high fat diet-induced obesity, adiposity, and fatty liver disease. Additionally, knockout mice exhibited improved metabolic phenotypes, including enhanced glucose tolerance and insulin sensitivity compared with control mice. Furthermore, we observed reduced inflammatory infiltration and collagen deposition in the adipose tissues of knockout mice. Taken together, our results indicate that targeting FAM20C in adipocytes may be a promising strategy for the treatment of obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Liping Deng
- Department of EndocrinologyLonggang District Central Hospital of ShenzhenShenzhenGuangdongChina
| | - Yanshan Huang
- Division of Preventive HealthLonggang District Central Hospital of ShenzhenShenzhenGuangdongChina
- Department of NursingSchool of Medicine, Shantou UniversityShantouGuangdongChina
| | - Feifei Zhao
- Department of NursingShenzhen Clinical Medical College, Guangzhou University of Chinese MedicineShenzhenGuangdongChina
| | - Puxin Chen
- Department of EndocrinologyLonggang District Central Hospital of ShenzhenShenzhenGuangdongChina
| | - Xiaohong Huang
- Department of NursingLonggang District Central Hospital of ShenzhenShenzhenGuangdongChina
| |
Collapse
|
9
|
Bains AK, Naba A. Proteomic insights into the extracellular matrix: a focus on proteoforms and their implications in health and disease. Expert Rev Proteomics 2024; 21:463-481. [PMID: 39512072 PMCID: PMC11602344 DOI: 10.1080/14789450.2024.2427136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
INTRODUCTION The extracellular matrix (ECM) is a highly organized and dynamic network of proteins and glycosaminoglycans that provides critical structural, mechanical, and biochemical support to cells. The functions of the ECM are directly influenced by the conformation of the proteins that compose it. ECM proteoforms, which can result from genetic, transcriptional, and/or post-translational modifications, adopt different conformations and, consequently, confer different structural properties and functionalities to the ECM in both physiological and pathological contexts. AREAS COVERED In this review, we discuss how bottom-up proteomics has been applied to identify, map, and quantify post-translational modifications (e.g. additions of chemical groups, proteolytic cleavage, or cross-links) and ECM proteoforms arising from alternative splicing or genetic variants. We further illustrate how proteoform-level information can be leveraged to gain novel insights into ECM protein structure and ECM functions in health and disease. EXPERT OPINION In the Expert opinion section, we discuss remaining challenges and opportunities with an emphasis on the importance of devising experimental and computational methods tailored to account for the unique biochemical properties of ECM proteins with the goal of increasing sequence coverage and, hence, accurate ECM proteoform identification.
Collapse
Affiliation(s)
- Amanpreet Kaur Bains
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Koh NYY, Miszkiewicz JJ, Fac ML, Wee NKY, Sims NA. Preclinical Rodent Models for Human Bone Disease, Including a Focus on Cortical Bone. Endocr Rev 2024; 45:493-520. [PMID: 38315213 PMCID: PMC11244217 DOI: 10.1210/endrev/bnae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/22/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Preclinical models (typically ovariectomized rats and genetically altered mice) have underpinned much of what we know about skeletal biology. They have been pivotal for developing therapies for osteoporosis and monogenic skeletal conditions, including osteogenesis imperfecta, achondroplasia, hypophosphatasia, and craniodysplasias. Further therapeutic advances, particularly to improve cortical strength, require improved understanding and more rigorous use and reporting. We describe here how trabecular and cortical bone structure develop, are maintained, and degenerate with aging in mice, rats, and humans, and how cortical bone structure is changed in some preclinical models of endocrine conditions (eg, postmenopausal osteoporosis, chronic kidney disease, hyperparathyroidism, diabetes). We provide examples of preclinical models used to identify and test current therapies for osteoporosis, and discuss common concerns raised when comparing rodent preclinical models to the human skeleton. We focus especially on cortical bone, because it differs between small and larger mammals in its organizational structure. We discuss mechanisms common to mouse and human controlling cortical bone strength and structure, including recent examples revealing genetic contributors to cortical porosity and osteocyte network configurations during growth, maturity, and aging. We conclude with guidelines for clear reporting on mouse models with a goal for better consistency in the use and interpretation of these models.
Collapse
Affiliation(s)
- Natalie Y Y Koh
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Justyna J Miszkiewicz
- School of Social Science, The University of Queensland, Brisbane, QLD 4072, Australia
- Vertebrate Evolution Development and Ecology, Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Mary Louise Fac
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie K Y Wee
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie A Sims
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
11
|
Gędaj A, Gregorczyk P, Żukowska D, Chorążewska A, Ciura K, Kalka M, Porębska N, Opaliński Ł. Glycosylation of FGF/FGFR: An underrated sweet code regulating cellular signaling programs. Cytokine Growth Factor Rev 2024; 77:39-55. [PMID: 38719671 DOI: 10.1016/j.cytogfr.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 06/22/2024]
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) constitute plasma-membrane localized signaling hubs that transmit signals from the extracellular environment to the cell interior, governing pivotal cellular processes like motility, metabolism, differentiation, division and death. FGF/FGFR signaling is critical for human body development and homeostasis; dysregulation of FGF/FGFR units is observed in numerous developmental diseases and in about 10% of human cancers. Glycosylation is a highly abundant posttranslational modification that is critical for physiological and pathological functions of the cell. Glycosylation is also very common within FGF/FGFR signaling hubs. Vast majority of FGFs (15 out of 22 members) are N-glycosylated and few FGFs are O-glycosylated. Glycosylation is even more abundant within FGFRs; all FGFRs are heavily N-glycosylated in numerous positions within their extracellular domains. A growing number of studies points on the multiple roles of glycosylation in fine-tuning FGF/FGFR signaling. Glycosylation modifies secretion of FGFs, determines their stability and affects interaction with FGFRs and co-receptors. Glycosylation of FGFRs determines their intracellular sorting, constitutes autoinhibitory mechanism within FGFRs and adjusts FGF and co-receptor recognition. Sugar chains attached to FGFs and FGFRs constitute also a form of code that is differentially decrypted by extracellular lectins, galectins, which transform FGF/FGFR signaling at multiple levels. This review focuses on the identified functions of glycosylation within FGFs and FGFRs and discusses their relevance for the cell physiology in health and disease.
Collapse
Affiliation(s)
- Aleksandra Gędaj
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Paulina Gregorczyk
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Dominika Żukowska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Aleksandra Chorążewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Krzysztof Ciura
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Marta Kalka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Natalia Porębska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| |
Collapse
|
12
|
Sriwattanapong K, Theerapanon T, Khamwachirapitak C, Sae-Ear P, Srijunbarl A, Porntaveetus T, Shotelersuk V. Deep dental phenotyping and a novel FAM20A variant in patients with amelogenesis imperfecta type IG. Oral Dis 2024; 30:537-550. [PMID: 36650945 DOI: 10.1111/odi.14510] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To identify etiologic variants and perform deep dental phenotyping in patients with amelogenesis imperfecta (AI). METHODS Three patients of two unrelated families were evaluated. Genetic variants were investigated by exome and Sanger sequencing. An unerupted permanent third molar (AI1) from Patient1 and a deciduous first molar (AI2) from Patient2, along with three tooth-type matched controls for each were characterized. RESULTS All three patients harbored biallelic pathogenic variants in FAM20A, indicating AI1G. Of the four identified variants, one, c.1231C > T p.(Arg411Trp), was novel. Patient1 possessed the largest deletion, 7531 bp, ever identified in FAM20A. In addition to hypoplastic enamel, multiple impacted teeth, intrapulpal calcification, pericoronal radiolucencies, malocclusion, and periodontal infections were found in all three patients, gingival hyperplasia in Patient1 and Patient2, and alveolar bone exostosis in Patient3. Surface roughness was increased in AI1 but decreased in AI2. Decreased enamel mineral density, hardness, and elastic modulus were observed in AI1 enamel and dentin and AI2 dentin, along with decreased phosphorus, increased carbon, and increased calcium/phosphorus and carbon/oxygen ratios. Severely collapsed enamel rods and disorganized dentin-enamel junction were observed. CONCLUSIONS We report a novel FAM20A variant and, for the first time, the defective mineral composition and physical/mechanical properties of AI1G teeth.
Collapse
Affiliation(s)
- Kanokwan Sriwattanapong
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanakorn Theerapanon
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chompak Khamwachirapitak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Pannagorn Sae-Ear
- Oral Biology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Anucharte Srijunbarl
- Dental Materials R&D Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
13
|
Li L, Liu P, Lv X, Yu T, Jin X, Wang R, Xie X, Wang Q, Liu Y, Saiyin W. Ablation of FAM20C caused short root defects via suppressing the BMP signaling pathway in mice. J Orofac Orthop 2023; 84:349-361. [PMID: 35316352 DOI: 10.1007/s00056-022-00386-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/16/2022] [Indexed: 10/18/2022]
Abstract
Short root defects are prone to cause various periodontal diseases and lead to tooth loss in some serious cases. Studies about the mechanisms governing the development of the root are needed for a better understanding of the pathogenesis of short root defects. The protein family with sequence similarity 20 group C (FAM20C) is a Golgi casein kinase that has been well studied in the development of tooth crown formation. However, whether FAM20C plays a role in the development of tooth root is still unknown. Thus, we generated Sox2-Cre;Fam20cfl/fl (cKO) mice, in which Fam20c was ablated in both the dental epithelium and dental mesenchyme, and found that the cKO mice showed severe short root defects mainly by inhibiting the development of dental mesenchyme in the root region. In this investigation, we found morphological changes and differentiation defects, with reduced expression of dentin sialophosphoprotein (DSPP) in odontoblasts of the root region in cKO mice. Furthermore, the proliferation rate of apical papillary cells was reduced in the root of cKO mice. In addition, the levels of bone morphogenetic protein 4 (BMP4) and phospho-Smad1/5/8, and that of Osterix and Krüppel-like factor 4 (KLF4), two downstream target molecules of the BMP signaling pathway, were significantly reduced in the root of cKO mice. These results indicate that FAM20C plays an essential role in the development of the root by regulating the BMP signaling pathway.
Collapse
Affiliation(s)
- Lili Li
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Peihong Liu
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Xuechao Lv
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Tianliang Yu
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Xingai Jin
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Rui Wang
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Xiaohua Xie
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, 150001, Harbin, Heilongjiang, China
| | - Qingshan Wang
- Department of Vascular Surgery, The Heilongjiang Provincial Hospital, 82 Zhongshan Road, Xiangfang, 150036, Harbin, Heilongjiang, China
| | - Yingqun Liu
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Wuliji Saiyin
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China.
| |
Collapse
|
14
|
Liu P, Li J, Tang L, Cong W, Jin H, Zhang H, Cui B, Yang S, Xiao J, Liu C, Saiyin W. Mutations of family with sequence similarity 20-member C gene causing lethal and nonlethal Raine syndrome causes hypophosphatemia rickets. J Cell Physiol 2023; 238:2556-2569. [PMID: 37698039 DOI: 10.1002/jcp.31105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023]
Abstract
Family with sequence similarity 20-member C (FAM20C) is a kinase specific to most of the secreted phosphoproteome. FAM20C has been identified as the causative gene of Raine syndrome, initially characterized by lethal osteosclerosis bone dysplasia. However, since the identification of the cases of nonlethal Raine syndrome characterized by hypophosphatemia rickets, the previous definition of Raine syndrome has become debatable and raised a question about the role of mutations of FAM20C in controversial skeletal manifestation in the two forms of the disease. In this study, we aimed to investigate the influence of FAM20C mutations on skeletogenesis. We developed transgenic mice expressing Fam20c mutations mimicking those associated with human lethal and nonlethal Raine syndrome. The results revealed that transgenic mice expressing the mutant Fam20c found in the lethal (KO;G374R) and nonlethal (KO;D446N) Raine syndrome exhibited osteomalacia without osteosclerotic features. Additionally, both mutants significantly increased the expression of the Fgf23, indicating that Fam20c deficiency in skeletal compartments causes hypophosphatemia rickets. Furthermore, as FAM20C kinase activity catalyzes the phosphorylation of secreted proteomes other than those in the skeletal system, global FAM20C deficiency may trigger alterations in other systems resulting in osteosclerosis secondary to hypophosphatemia rickets. Together, the findings of this study suggest that FAM20C deficiency primarily causes hypophosphatemia rickets or osteomalacia; however, the heterogeneous skeletal manifestation in Raine syndrome was not determined solely by specific mutations of FAM20C. The findings also implicated that rickets or osteomalacia caused by FAM20C deficiency would deteriorate into osteosclerosis by the defects from other systems or environmental impacts.
Collapse
Affiliation(s)
- Peihong Liu
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Laboratory of Longjiang Scholar, The First Affifiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaxuan Li
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linghao Tang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Cong
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Han Jin
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Zhang
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Cui
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yang
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Xiao
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Chao Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Wuliji Saiyin
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Liu L, Yao L, Lu Z, Jiang L, Zhang X, Liu X, Zhang W, Luan X, Zhang S, Xu W, Wang T, Zhang F, Wei X, Da J, Wang J, Zhang J, Li Y, Jin H, Zhang B. Epithelial-specific deletion of FAM20A leads to short root defects. Gene 2023; 884:147731. [PMID: 37625561 DOI: 10.1016/j.gene.2023.147731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Short Root Defects defined by a reduced ratio of root to crown, may culminate in root resorption and subsequent tooth loss, in spite of the absence of apparent symptoms. Such defects present considerable impediments to orthodontic treatment and restoration. Recent identification of Fam20a, an emergent pseudokinase, has been associated with enamel development and tooth eruption, yet its definitive role in root formation and eruption remains ambiguous. In this research, we initially ascertained that the targeted knockout of Fam20a within the epithelium led to truncated tooth roots, irregular breaks in the epithelial root sheath initiation of the WNT signaling pathway, and decreased expression of the cell polarity-related transcription factor Cdc42 in murine models. This was concomitant with the participation of the associated epithelial root sheath developmental pathways BMP2, Gli1, and Nfic. Furthermore, we observed that Fam20a predominantly affects the intraosseous eruption phase of tooth emergence. During this phase, the osteoclast peak around the mandibular first molar in cKO mice is delayed, leading to a slower formation of the eruption pathway, ultimately resulting in delayed tooth eruption in mice. The findings of this study enrich the extant knowledge regarding the role of Fam20a, suggesting its potential regulatory function in tooth root development through the WNT/β-catenin/Cdc42 pathway.
Collapse
Affiliation(s)
- Lixue Liu
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lihong Yao
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zeyu Lu
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lili Jiang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaohan Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinpeng Liu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Wenxuan Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinrui Luan
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shujian Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenxia Xu
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tuo Wang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fangping Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuancheng Wei
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junlong Da
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianqun Wang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiahui Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Han Jin
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
16
|
Xie H, Bastepe I, Zhou W, Ay B, Ceraj Z, Portales-Castillo IA, Liu ES, Burnett-Bowie SAM, Jüppner H, Rhee EP, Bastepe M, Simic P. 1,25-Dihydroxyvitamin D3 regulates furin-mediated FGF23 cleavage. JCI Insight 2023; 8:e168957. [PMID: 37681408 PMCID: PMC10544208 DOI: 10.1172/jci.insight.168957] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/17/2023] [Indexed: 09/09/2023] Open
Abstract
Intact fibroblast growth factor 23 (iFGF23) is a phosphaturic hormone that is cleaved by furin into N-terminal and C-terminal fragments. Several studies have implicated vitamin D in regulating furin in infections. Thus, we investigated the effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2D] and the vitamin D receptor (VDR) on furin-mediated iFGF23 cleavage. Mice lacking VDR (Vdr-/-) had a 25-fold increase in iFGF23 cleavage, with increased furin levels and activity compared with wild-type (WT) littermates. Inhibition of furin activity blocked the increase in iFGF23 cleavage in Vdr-/- animals and in a Vdr-knockdown osteocyte OCY454 cell line. Chromatin immunoprecipitation revealed VDR binding to DNA upstream of the Furin gene, with more transcription in the absence of VDR. In WT mice, furin inhibition reduced iFGF23 cleavage, increased iFGF23, and reduced serum phosphate levels. Similarly, 1,25(OH)2D reduced furin activity, decreased iFGF23 cleavage, and increased total FGF23. In a post hoc analysis of a randomized clinical trial, we found that ergocalciferol treatment, which increased serum 1,25(OH)2D, significantly decreased serum furin activity and iFGF23 cleavage, compared with placebo. Thus, 1,25(OH)2D inhibits iFGF23 cleavage via VDR-mediated suppression of Furin expression, thereby providing a mechanism by which vitamin D can augment phosphaturic iFGF23 levels.
Collapse
Affiliation(s)
- Han Xie
- Nephrology Division and
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Isinsu Bastepe
- Nephrology Division and
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Wen Zhou
- Nephrology Division and
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Birol Ay
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zara Ceraj
- Nephrology Division and
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ignacio A. Portales-Castillo
- Nephrology Division and
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eva S. Liu
- Endocrine Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Harald Jüppner
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eugene P. Rhee
- Nephrology Division and
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Murat Bastepe
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Petra Simic
- Nephrology Division and
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Groppe JC, Lu G, Tandang-Silvas MR, Pathi A, Konda S, Wu J, Le VQ, Culbert AL, Shore EM, Wharton KA, Kaplan FS. Polypeptide Substrate Accessibility Hypothesis: Gain-of-Function R206H Mutation Allosterically Affects Activin Receptor-like Protein Kinase Activity. Biomolecules 2023; 13:1129. [PMID: 37509165 PMCID: PMC10376983 DOI: 10.3390/biom13071129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Although structurally similar to type II counterparts, type I or activin receptor-like kinases (ALKs) are set apart by a metastable helix-loop-helix (HLH) element preceding the protein kinase domain that, according to a longstanding paradigm, serves passive albeit critical roles as an inhibitor-to-substrate-binding switch. A single recurrent mutation in the codon of the penultimate residue, directly adjacent the position of a constitutively activating substitution, causes milder activation of ACVR1/ALK2 leading to sporadic heterotopic bone deposition in patients presenting with fibrodysplasia ossificans progressiva, or FOP. To determine the protein structural-functional basis for the gain of function, R206H mutant, Q207D (aspartate-substituted caALK2) and HLH subdomain-truncated (208 Ntrunc) forms were compared to one another and the wild-type enzyme through in vitro kinase and protein-protein interaction analyses that were complemented by signaling read-out (p-Smad) in primary mouse embryonic fibroblasts and Drosophila S2 cells. Contrary to the paradigm, the HLH subdomain actively suppressed the phosphotransferase activity of the enzyme, even in the absence of FKBP12. Unexpectedly, perturbation of the HLH subdomain elevated kinase activity at a distance, i.e., allosterically, at the ATP-binding and polypeptide-interacting active site cleft. Accessibility to polypeptide substrate (BMP Smad C-terminal tails) due to allosterically altered conformations of type I active sites within heterohexameric cytoplasmic signaling complexes-assembled noncanonically by activin-type II receptors extracellularly-is hypothesized to produce a gain of function of the R206H mutant protein responsible for episodic heterotopic ossification in FOP.
Collapse
Affiliation(s)
- Jay C. Groppe
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Guorong Lu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Mary R. Tandang-Silvas
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Anupama Pathi
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Shruti Konda
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Jingfeng Wu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Viet Q. Le
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Program in Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Andria L. Culbert
- Department of Orthopaedics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Eileen M. Shore
- Department of Orthopaedics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Kristi A. Wharton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Frederick S. Kaplan
- Department of Orthopaedics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Clinkenbeard E. Fibroblast Growth Factor 23 Bone Regulation and Downstream Hormonal Activity. Calcif Tissue Int 2023; 113:4-20. [PMID: 37306735 DOI: 10.1007/s00223-023-01092-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/01/2023] [Indexed: 06/13/2023]
Abstract
Mineral homeostasis of calcium and phosphate levels is one critical component to the maintenance of bone mineral density (BMD) and strength. Diseases that disrupt calcium and phosphate balanced have highlighted not only the role these minerals play in overall bone homeostasis, but also the factors, hormones and downstream transporters, responsible for mineral metabolism. The key phosphaturic hormone elucidated from studying rare heritable disorders of hypophosphatemia is Fibroblast Growth Factor 23 (FGF23). FGF23 is predominantly secreted from bone cells in an effort to maintain phosphate balance by directly controlling renal reabsorption and indirectly affecting intestinal uptake of this mineral. Multiple factors have been shown to enhance bone mRNA expression; however, FGF23 can also undergo proteolytic cleavage to control secretion of the biologically active form of the hormone. The review focuses specifically on the regulation of FGF23 and its secretion from bone as well as its hormonal actions under physiological and disease conditions.
Collapse
Affiliation(s)
- Erica Clinkenbeard
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, 635 Barnhill Drive MS 5023, Indianapolis, IN, 46202, USA.
| |
Collapse
|
19
|
Liu X, Jiang L, Zhang W, Zhang J, Luan X, Zhan Y, Wang T, Da J, Liu L, Zhang S, Guo Y, Zhang K, Wang Z, Miao N, Xie X, Liu P, Li Y, Jin H, Zhang B. Fam20c regulates the calpain proteolysis system through phosphorylating Calpasatatin to maintain cell homeostasis. J Transl Med 2023; 21:417. [PMID: 37370126 DOI: 10.1186/s12967-023-04275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The family with sequence similarity 20-member C (FAM20C) kinase, a Golgi casein kinase, which is responsible for phosphorylating the majority of the extracellular phosphoproteins within S-x-E/pS motifs, and is fundamentally associated with multiple biological processes to maintain cell proliferation, biomineralization, migration, adhesion, and phosphate homeostasis. In dissecting how FAM20C regulates downstream molecules and potential mechanisms, however, there are multiple target molecules of FAM20C, particularly many phenomena remain elusive, such as changes in cell-autonomous behaviors, incompatibility in genotypes and phenotypes, and others. METHODS Here, assay for transposase-accessible chromatin using sequencing (ATAC-seq), RNA sequencing (RNA-seq), proteomics, and phosphoproteomics were performed in Fam20c-dificient osteoblasts and to facilitate an integrated analysis and determine the impact of chromatin accessibility, genomic expression, protein alterations, signaling pathway, and post translational modifcations. RESULTS By combining ATAC-seq and RNA-seq, we identified TCF4 and Wnt signaling pathway as the key regulators in Fam20c-dificient cells. Further, we showed Calpastatin/Calpain proteolysis system as a novel target axis for FAM20C to regulate cell migration and F-actin cytoskeleton by integrated analysis of proteomics and phosphoproteomics. Furthermore, Calpastatin/Calpain proteolysis system could negatively regulate the Wnt signaling pathway. CONCLUSION These observations implied that Fam20c knockout osteoblasts would cause cell homeostatic imbalance, involving changes in multiple signaling pathways in the conduction system.
Collapse
Affiliation(s)
- Xinpeng Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Lili Jiang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pediatric Dentistry, School of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenxuan Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiahui Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Stomatology and Dental Hygiene, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xinrui Luan
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanbo Zhan
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tuo Wang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junlong Da
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lixue Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shujian Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuyao Guo
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Zhiping Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Nan Miao
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaohua Xie
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peihong Liu
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Li
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Han Jin
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Bin Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
20
|
Zhang H, Lu Y, Kramer PR, Benson MD, Cheng YSL, Qin C. Intracranial calcification in Fam20c-deficient mice recapitulates human Raine syndrome. Neurosci Lett 2023; 802:137176. [PMID: 36914045 PMCID: PMC11795667 DOI: 10.1016/j.neulet.2023.137176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
FAM20C (family with sequence similarity 20-member C) is a protein kinase that phosphorylates secretory proteins, including the proteins that are essential to the formation and mineralization of calcified tissues. FAM20C loss-of-function mutations cause Raine syndrome in humans, characterized by generalized osteosclerosis, distinctive craniofacial dysmorphism, along with extensive intracranial calcification. Our previous studies revealed that inactivation of Fam20c in mice led to hypophosphatemic rickets. In this study, we examined the expression of Fam20c in the mouse brain and investigated brain calcification in Fam20c-deficient mice. Reverse transcription polymerase chain reaction (RT-PCR), Western-blotting and in situ hybridization analyses demonstrated the broad expression of Fam20c in the mouse brain tissue. X-ray and histological analyses showed that the global deletion of Fam20c (mediated by Sox2-cre) resulted in brain calcification in mice after postnatal 3 months and that the calcifications were bilaterally distributed within the brain. There was mild perifocal microgliosis as well as astrogliosis around calcospherites. The calcifications were first observed in the thalamus, and later in the forebrain and hindbrain. Furthermore, brain-specific deletion (mediated by Nestin-cre) of Fam20c in mice also led to cerebral calcification at an older age (postnatal 6 months), but no obvious skeletal or dental defects. Our results suggest that the local loss of FAM20C function in the brain may directly account for intracranial calcification. We propose that FAM20C plays an essential role in maintaining normal brain homeostasis and preventing ectopic brain calcification.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA.
| | - Yongbo Lu
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA
| | - Phillip R Kramer
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA
| | - M Douglas Benson
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA
| | - Yi-Shing L Cheng
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA
| | - Chunlin Qin
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA
| |
Collapse
|
21
|
Sato M, Shah FA. Contributions of Resin Cast Etching to Visualising the Osteocyte Lacuno-Canalicular Network Architecture in Bone Biology and Tissue Engineering. Calcif Tissue Int 2023; 112:525-542. [PMID: 36611094 PMCID: PMC10106349 DOI: 10.1007/s00223-022-01058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023]
Abstract
Recent years have witnessed an evolution of imaging technologies towards sophisticated approaches for visualising cells within their natural environment(s) and for investigating their interactions with other cells, with adjacent anatomical structures, and with implanted biomaterials. Resin cast etching (RCE) is an uncomplicated technique involving sequential acid etching and alkali digestion of resin embedded bone to observe the osteocyte lacuno-canalicular network using scanning electron microscopy. This review summarises the applicability of RCE to bone and the bone-implant interface. Quantitative parameters such as osteocyte size, osteocyte density, and number of canaliculi per osteocyte, and qualitative metrics including osteocyte shape, disturbances in the arrangement of osteocytes and canaliculi, and physical communication between osteocytes and implant surfaces can be investigated. Ageing, osteoporosis, long-term immobilisation, spinal cord injury, osteoarthritis, irradiation, and chronic kidney disease have been shown to impact osteocyte lacuno-canalicular network morphology. In addition to titanium, calcium phosphates, and bioactive glass, observation of direct connectivity between osteocytes and cobalt chromium provides new insights into the osseointegration potential of materials conventionally viewed as non-osseointegrating. Other applications include in vivo and in vitro testing of polymer-based tissue engineering scaffolds and tissue-engineered ossicles, validation of ectopic osteochondral defect models, ex vivo organ culture of whole bones, and observing the effects of gene dysfunction/deletion on the osteocyte lacuno-canalicular network. Without additional contrast staining, any resin embedded specimen (including clinical biopsies) can be used for RCE. The multitude of applications described here attest to the versatility of RCE for routine use within correlative analytical workflows, particularly in biomaterials science.
Collapse
Affiliation(s)
- Mari Sato
- Oral Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
22
|
Wolf M. FGF23 AND ALTERED MINERAL HOMEOSTASIS IN KIDNEY DISEASE AND FOLLOWING INTRAVENOUS IRON. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2023; 133:262-273. [PMID: 37701608 PMCID: PMC10493719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Fibroblast growth factor 23 (FGF23) is an endocrine hormone that stimulates renal phosphate excretion and suppresses circulating concentrations of 1,25-dihydroxyvitamin D (1,25D). These effects of FGF23 are most evident in rare diseases that are characterized by FGF23-mediated hypophosphatemic rickets-osteomalacia. More commonly, elevated FGF23 is a ubiquitous, early consequence of chronic kidney disease (CKD) in which it helps to maintain normal serum phosphate levels but causes secondary hyperparathyroidism by suppressing 1,25D, and directly promotes cardiovascular disease and death. Elevated FGF23 is also a common complication of intravenous administration of ferric carboxymaltose (FCM), which is widely used to treat iron deficiency anemia. Among patients with normal kidney function who receive FCM, the resulting increase in FGF23 and subsequent FGF23-mediated reduction of 1,25D and secondary hyperparathyroidism promote hypophosphatemia that can be symptomatic, severe, and associated with musculoskeletal complications. Ongoing research is needed to design novel therapeutic approaches to mitigate FGF23-related illnesses.
Collapse
|
23
|
Du S, Zhu C, Ren X, Chen X, Cui X, Guan S. Regulation of secretory pathway kinase or kinase-like proteins in human cancers. Front Immunol 2023; 14:942849. [PMID: 36825005 PMCID: PMC9941534 DOI: 10.3389/fimmu.2023.942849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Secretory pathway kinase or kinase-like proteins (SPKKPs) are effective in the lumen of the endoplasmic reticulum (ER), Golgi apparatus (GA), and extracellular space. These proteins are involved in secretory signaling pathways and are distinctive from typical protein kinases. Various reports have shown that SPKKPs regulate the tumorigenesis and progression of human cancer via the phosphorylation of various substrates, which is essential in physiological and pathological processes. Emerging evidence has revealed that the expression of SPKKPs in human cancers is regulated by multiple factors. This review summarizes the current understanding of the contribution of SPKKPs in tumorigenesis and the progression of immunity. With the epidemic trend of immunotherapy, targeting SPKKPs may be a novel approach to anticancer therapy. This study briefly discusses the recent advances regarding SPKKPs.
Collapse
Affiliation(s)
- Shaonan Du
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiaolin Ren
- Department of Neurosurgery, Shenyang Red Cross Hospital, Shenyang, China
| | - Xin Chen
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao Cui
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guan
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Koike T, Mikami T, Tamura JI, Kitagawa H. Altered sulfation status of FAM20C-dependent chondroitin sulfate is associated with osteosclerotic bone dysplasia. Nat Commun 2022; 13:7952. [PMID: 36572689 PMCID: PMC9792594 DOI: 10.1038/s41467-022-35687-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/19/2022] [Indexed: 12/27/2022] Open
Abstract
Raine syndrome, a lethal osteosclerotic bone dysplasia in humans, is caused by loss-of-function mutations in FAM20C; however, Fam20c deficiency in mice does not recapitulate the human disorder, so the underlying pathoetiological mechanisms remain poorly understood. Here we show that FAM20C, in addition to the reported casein kinase activity, also fine-tunes the biosynthesis of chondroitin sulfate (CS) chains to impact bone homeostasis. Specifically, FAM20C with Raine-originated mutations loses the ability to interact with chondroitin 4-O-sulfotransferase-1, and is associated with reduced 4-sulfation/6-sulfation (4S/6S) ratio of CS chains and upregulated biomineralization in human osteosarcoma cells. By contrast, overexpressing chondroitin 6-O-sulfotransferase-1 reduces CS 4S/6S ratio, and induces osteoblast differentiation in vitro and higher bone mineral density in transgenic mice. Meanwhile, a potential xylose kinase activity of FAM20C does not impact CS 4S/6S ratio, and is not associated with Raine syndrome mutations. Our results thus implicate CS 4S/6S ratio imbalances caused by FAM20C mutations as a contributor of Raine syndrome etiology.
Collapse
Affiliation(s)
- Toshiyasu Koike
- grid.411100.50000 0004 0371 6549Laboratory of Biochemistry, Kobe Pharmaceutical University, Higashinada-Ku, Kobe, 658-8558 Japan
| | - Tadahisa Mikami
- grid.411100.50000 0004 0371 6549Laboratory of Biochemistry, Kobe Pharmaceutical University, Higashinada-Ku, Kobe, 658-8558 Japan
| | - Jun-Ichi Tamura
- grid.265107.70000 0001 0663 5064Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, 680-8551 Japan
| | - Hiroshi Kitagawa
- grid.411100.50000 0004 0371 6549Laboratory of Biochemistry, Kobe Pharmaceutical University, Higashinada-Ku, Kobe, 658-8558 Japan
| |
Collapse
|
25
|
Abstract
Inorganic phosphate (Pi) in the mammalian body is balanced by its influx and efflux through the intestines, kidneys, bones, and soft tissues, at which several sodium/Pi co-transporters mediate its active transport. Pi homeostasis is achieved through the complex counter-regulatory feedback balance between fibroblast growth factor 23 (FGF23), 1,25-dihydroxyvitamin D (1,25(OH)2D), and parathyroid hormone. FGF23, which is mainly produced by osteocytes in bone, plays a central role in Pi homeostasis and exerts its effects by binding to the FGF receptor (FGFR) and αKlotho in distant target organs. In the kidneys, the main target, FGF23 promotes the excretion of Pi and suppresses the production of 1,25(OH)2D. Deficient and excess FGF23 result in hyperphosphatemia and hypophosphatemia, respectively. FGF23-related hypophosphatemic rickets/osteomalacia include tumor-induced osteomalacia and various genetic diseases, such as X-linked hypophosphatemic rickets. Coverage by the national health insurance system in Japan for the measurement of FGF23 and the approval of burosumab, an FGF23-neutralizing antibody, have had a significant impact on the diagnosis and treatment of FGF23-related hypophosphatemic rickets/osteomalacia. Some of the molecules responsible for genetic hypophosphatemic rickets/osteomalacia are highly expressed in osteocytes and function as local regulators of FGF23 production. A number of systemic factors also regulate FGF23 levels. Although the mechanisms responsible for Pi sensing in mammals have not yet been elucidated in detail, recent studies have suggested the involvement of FGFR1. The further clarification of the mechanisms by which osteocytes detect Pi levels and regulate FGF23 production will lead to the development of better strategies to treat hyperphosphatemic and hypophosphatemic conditions.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka 594-1101, Japan
| |
Collapse
|
26
|
Pathogenesis of FGF23-Related Hypophosphatemic Diseases Including X-linked Hypophosphatemia. ENDOCRINES 2022. [DOI: 10.3390/endocrines3020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Since phosphate is indispensable for skeletal mineralization, chronic hypophosphatemia causes rickets and osteomalacia. Fibroblast growth factor 23 (FGF23), which is mainly produced by osteocytes in bone, functions as the central regulator of phosphate metabolism by increasing the renal excretion of phosphate and suppressing the production of 1,25-dihydroxyvitamin D. The excessive action of FGF23 results in hypophosphatemic diseases, which include a number of genetic disorders such as X-linked hypophosphatemic rickets (XLH) and tumor-induced osteomalacia (TIO). Phosphate-regulating gene homologous to endopeptidase on the X chromosome (PHEX), dentin matrix protein 1 (DMP1), ectonucleotide pyrophosphatase phosphodiesterase-1, and family with sequence similarity 20c, the inactivating variants of which are responsible for FGF23-related hereditary rickets/osteomalacia, are highly expressed in osteocytes, similar to FGF23, suggesting that they are local negative regulators of FGF23. Autosomal dominant hypophosphatemic rickets (ADHR) is caused by cleavage-resistant variants of FGF23, and iron deficiency increases serum levels of FGF23 and the manifestation of symptoms in ADHR. Enhanced FGF receptor (FGFR) signaling in osteocytes is suggested to be involved in the overproduction of FGF23 in XLH and autosomal recessive hypophosphatemic rickets type 1, which are caused by the inactivation of PHEX and DMP1, respectively. TIO is caused by the overproduction of FGF23 by phosphaturic tumors, which are often positive for FGFR. FGF23-related hypophosphatemia may also be associated with McCune-Albright syndrome, linear sebaceous nevus syndrome, and the intravenous administration of iron. This review summarizes current knowledge on the pathogenesis of FGF23-related hypophosphatemic diseases.
Collapse
|
27
|
FAM20C plays a critical role in the development of mouse vertebra. Spine J 2022; 22:337-348. [PMID: 34343663 DOI: 10.1016/j.spinee.2021.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Family with sequence similarity 20-member C (FAM20C) is a protein kinase that is responsible for the phosphorylation of many secretory proteins; however, its roles in spine or vertebra development have not be studied. PURPOSE The aim of this investigation is to analyze the roles of FAM20C in vertebra development. STUDY DESIGN/SETTING A mouse study of the Fam20c gene using conditional knockout to assess the effects of its inactivation on vertebra development. METHODS By breeding Sox2-Cre mice with Fam20cflox/flox mice, Sox2-Cre;Fam20cflox/flox mice (abbreviated as cKO mice) are created. X-ray radiography, resin-casted scanning electron microscopy, Hematoxylin and Eosin staining, safranin O staining, Goldner's Masson trichrome staining, Von Kossa staining, tartrate-resistant alkaline phosphatase staining, immunohistochemistry staining, Western Immunoblotting and real-time PCR were employed to characterize the vertebrae of cKO mice compared to the normal control mice. RESULTS Inactivation of Fam20c in mice results in remarkable spine deformity, severe morphology and mineralization defects, altered levels of osteoblast differentiation markers, reduction of activity of the Wnt/β-catenin signaling pathway and reduced level of osteoclastogenesis in the vertebrae. CONCLUSIONS FAM20C plays an essential role in vertebral development; it may regulate vertebral formation through the Wnt/β-catenin signaling pathway. CLINICAL SIGNIFICANCE Mutations in the human FAM20C gene are associated with Raine syndrome. The findings of this study provide valuable clues for the clinical management of Raine syndrome regarding spine manifestations in patients.
Collapse
|
28
|
Rush ET, Johnson B, Aradhya S, Beltran D, Bristow SL, Eisenbeis S, Guerra NE, Krolczyk S, Miller N, Morales A, Ramesan P, Sarafrazi S, Truty R, Dahir K. Molecular Diagnoses of X-Linked and Other Genetic Hypophosphatemias: Results From a Sponsored Genetic Testing Program. J Bone Miner Res 2022; 37:202-214. [PMID: 34633109 PMCID: PMC9298723 DOI: 10.1002/jbmr.4454] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 12/20/2022]
Abstract
X-linked hypophosphatemia (XLH), a dominant disorder caused by pathogenic variants in the PHEX gene, affects both sexes of all ages and results in elevated serum fibroblast growth factor 23 (FGF23) and below-normal serum phosphate. In XLH, rickets, osteomalacia, short stature, and lower limb deformity may be present with muscle pain and/or weakness/fatigue, bone pain, joint pain/stiffness, hearing difficulty, enthesopathy, osteoarthritis, and dental abscesses. Invitae and Ultragenyx collaborated to provide a no-charge sponsored testing program using a 13-gene next-generation sequencing panel to confirm clinical XLH or aid diagnosis of suspected XLH/other genetic hypophosphatemia. Individuals aged ≥6 months with clinical XLH or suspected genetic hypophosphatemia were eligible. Of 831 unrelated individuals tested between February 2019 and June 2020 in this cross-sectional study, 519 (62.5%) individuals had a pathogenic or likely pathogenic variant in PHEX (PHEX-positive). Among the 312 PHEX-negative individuals, 38 received molecular diagnoses in other genes, including ALPL, CYP27B1, ENPP1, and FGF23; the remaining 274 did not have a molecular diagnosis. Among 319 patients with a provider-reported clinical diagnosis of XLH, 88.7% (n = 283) had a reportable PHEX variant; 81.5% (n = 260) were PHEX-positive. The most common variant among PHEX-positive individuals was an allele with both the gain of exons 13-15 and c.*231A>G (3'UTR variant) (n = 66/519). Importantly, over 80% of copy number variants would have been missed by traditional microarray analysis. A positive molecular diagnosis in 41 probands (4.9%; 29 PHEX positive, 12 non-PHEX positive) resulted in at least one family member receiving family testing. Additional clinical or family member information resulted in variant(s) of uncertain significance (VUS) reclassification to pathogenic/likely pathogenic (P/LP) in 48 individuals, highlighting the importance of segregation and clinical data. In one of the largest XLH genetic studies to date, 65 novel PHEX variants were identified and a high XLH diagnostic yield demonstrated broad insight into the genetic basis of XLH. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eric T Rush
- Children's Mercy Kansas City, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri - Kansas City School of Medicine, Kansas City, MO, USA.,Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | | | | | | - Norma E Guerra
- Department of Pediatric Nephrology, Hospital General del Centro Médico Nacional «La Raza», Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, Mexico
| | | | | | | | | | | | | | - Kathryn Dahir
- Program for Metabolic Bone Disorders, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| |
Collapse
|
29
|
Yamazaki M, Michigami T. Osteocytes and the pathogenesis of hypophosphatemic rickets. Front Endocrinol (Lausanne) 2022; 13:1005189. [PMID: 36246908 PMCID: PMC9556901 DOI: 10.3389/fendo.2022.1005189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Since phosphorus is a component of hydroxyapatite, its prolonged deprivation affects bone mineralization. Fibroblast growth factor 23 (FGF23) is essential for maintaining phosphate homeostasis and is mainly produced by osteocytes. FGF23 increases the excretion of inorganic phosphate (Pi) and decreases the production of 1,25-dihydroxyvitamin D in the kidneys. Osteocytes are cells of osteoblastic lineage that have undergone terminal differentiation and become embedded in mineralized bone matrix. Osteocytes express FGF23 and other multiple genes responsible for hereditary hypophosphatemic rickets, which include phosphate-regulating gene homologous to endopeptidase on X chromosome (PHEX), dentin matrix protein 1 (DMP1), and family with sequence similarity 20, member C (FAM20C). Since inactivating mutations in PHEX, DMP1, and FAM20C boost the production of FGF23, these molecules might be considered as local negative regulators of FGF23. Mouse studies have suggested that enhanced FGF receptor (FGFR) signaling is involved in the overproduction of FGF23 in PHEX-deficient X-linked hypophosphatemic rickets (XLH) and DMP1-deficient autosomal recessive hypophosphatemic rickets type 1. Since FGFR is involved in the transduction of signals evoked by extracellular Pi, Pi sensing in osteocytes may be abnormal in these diseases. Serum levels of sclerostin, an inhibitor Wnt/β-catenin signaling secreted by osteocytes, are increased in XLH patients, and mouse studies have suggested the potential of inhibiting sclerostin as a new therapeutic option for the disease. The elucidation of complex abnormalities in the osteocytes of FGF23-related hypophosphatemic diseases will provide a more detailed understanding of their pathogenesis and more effective treatments.
Collapse
|
30
|
Zuo H, Yang D, Wan Y. Fam20C Regulates Bone Resorption and Breast Cancer Bone Metastasis through Osteopontin and BMP4. Cancer Res 2021; 81:5242-5254. [PMID: 34433585 DOI: 10.1158/0008-5472.can-20-3328] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/14/2020] [Accepted: 08/23/2021] [Indexed: 11/16/2022]
Abstract
Fam20C is a kinase that generates the majority of secreted phosphoproteins and regulates biomineralization. However, its potential roles in bone resorption and breast cancer bone metastasis are unknown. Here we show that Fam20C in the myeloid lineage suppresses osteoclastogenesis and bone resorption, during which, osteopontin (OPN) is the most abundant phosphoprotein secreted in a Fam20C-dependent manner. OPN phosphorylation by Fam20C decreased OPN secretion, and OPN neutralization reduced Fam20C deficiency-induced osteoclast differentiation and bone metastasis. In contrast, Fam20C in breast cancer cells promoted bone metastasis by facilitating the phosphorylation and secretion of BMP4, which in turn enhanced osteoclastogenesis. Mutation of the BMP4 phosphorylation site elevated BMP4 lysosomal degradation and reduced BMP4 secretion. In breast cancer cells, BMP4 depletion or treatment with a BMP4 signaling inhibitor diminished osteoclast differentiation and bone metastasis and abolished Fam20C-mediated regulation of these processes. Collectively, this study discovers distinct roles for Fam20C in myeloid cells and breast cancer cells and highlights OPN and BMP4 as potential therapeutic targets for breast cancer bone metastasis. SIGNIFICANCE: Osteoclastogenesis and bone metastasis are suppressed by myeloid-derived Fam20C, but enhanced by breast cancer-associated Fam20C, uncovering novel Fam20C functions and new therapeutic strategies via targeting Fam20C substrates OPN and BMP4.
Collapse
Affiliation(s)
- Hao Zuo
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Dengbao Yang
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yihong Wan
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
31
|
Proteolytic processing of secretory pathway kinase Fam20C by site-1 protease promotes biomineralization. Proc Natl Acad Sci U S A 2021; 118:2100133118. [PMID: 34349020 DOI: 10.1073/pnas.2100133118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Family with sequence similarity 20C (Fam20C), the major protein kinase in the secretory pathway, generates the vast majority of the secreted phosphoproteome. However, the regulatory mechanisms of Fam20C transport, secretion, and function remain largely unexplored. Here, we show that Fam20C exists as a type II transmembrane protein within the secretory compartments, with its N-terminal signal peptide-like region serving as a membrane anchor for Golgi retention. The secretion and kinase activity of Fam20C are governed by site-1 protease (S1P), a key regulator of cholesterol homeostasis. We find that only mature Fam20C processed by S1P functions in osteoblast differentiation and mineralization. Together, our findings reveal a unique mechanism for Fam20C secretion and activation via proteolytic regulation, providing a molecular link between biomineralization and lipid metabolism.
Collapse
|
32
|
FAM20C Overview: Classic and Novel Targets, Pathogenic Variants and Raine Syndrome Phenotypes. Int J Mol Sci 2021; 22:ijms22158039. [PMID: 34360805 PMCID: PMC8348777 DOI: 10.3390/ijms22158039] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/24/2022] Open
Abstract
FAM20C is a gene coding for a protein kinase that targets S-X-E/pS motifs on different phosphoproteins belonging to diverse tissues. Pathogenic variants of FAM20C are responsible for Raine syndrome (RS), initially described as a lethal and congenital osteosclerotic dysplasia characterized by generalized atherosclerosis with periosteal bone formation, characteristic facial dysmorphisms and intracerebral calcifications. The aim of this review is to give an overview of targets and variants of FAM20C as well as RS aspects. We performed a wide phenotypic review focusing on clinical aspects and differences between all lethal (LRS) and non-lethal (NLRS) reported cases, besides the FAM20C pathogenic variant description for each. As new targets of FAM20C kinase have been identified, we reviewed FAM20C targets and their functions in bone and other tissues, with emphasis on novel targets not previously considered. We found the classic lethal and milder non-lethal phenotypes. The milder phenotype is defined by a large spectrum ranging from osteonecrosis to osteosclerosis with additional congenital defects or intellectual disability in some cases. We discuss our current understanding of FAM20C deficiency, its mechanism in RS through classic FAM20C targets in bone tissue and its potential biological relevance through novel targets in non-bone tissues.
Collapse
|
33
|
Non-lethal Raine Syndrome Report Lacking Characteristic Clinical Features. J Mol Neurosci 2021; 71:2482-2486. [PMID: 34259997 DOI: 10.1007/s12031-021-01873-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/11/2021] [Indexed: 10/20/2022]
Abstract
Raine syndrome is a rare, often lethal autosomal recessive condition marked by congenital malformations that range in severity. Considering that several case reports of this syndrome describe cases of stillbirth or perinatal death, information about the clinical presentation and development of this condition in mild, non-lethal cases is lacking. With that in mind, in this case report, we describe the clinical, oro-dental, and skeletal findings of a 14-year-old Brazilian patient diagnosed with a mild form of non-lethal Raine syndrome. This patient has very mild facial dysmorphia, not displaying hypoplastic nose, micrognathia, low set ears or depressed nasal bridge, which is uncommon even in other mild, non-lethal cases of RS. Furthermore, this patient has bilateral brain calcifications and a series of oro-dental abnormalities, such as amelogenesis imperfecta and recurrent periodontal abcesses. Sanger sequencing of genomic DNA identified a homozygous missense variant c.1487C > T at exon 9 of FAM20C (NM_020223.4) in the patient. The patient's mother carries the same variant but is heterozygous. This variant predicts a proline to leucine substitution in position 496 (p.P496L, NP_064608.2) previously reported, which allows for the phenotypic comparison between these cases. This way, this case report calls attention to how differently RS can appear, highlighting the importance of new non-lethal Raine syndrome case reports to help further determine the phenotypic spectrum of this condition.
Collapse
|
34
|
From biomineralization to tumorogenesis-the expanding insight of the physiological and pathological roles of Fam20C. Biosci Rep 2021; 41:228577. [PMID: 33942849 PMCID: PMC8493443 DOI: 10.1042/bsr20210040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 01/23/2023] Open
Abstract
Fam20C is a Golgi kinase phosphorylating the majority of the secreted proteins. In this decade, the function of Fam20C has been largely disclosed in the loss-of function models. How the influence of the overexpressed Fam20C on cells or organs, and whether Fam20C was associated with tumorogensis still remain unknown. In the latest article in Bioscience Reports, a group from The Second Affiliated Hospital of Harbin Medical University established a correlation between the elevated Fam20C expression and the poor prognosis of multiple cancers (Biosci. Rep. (2021), 41(1) BSR20201920). In addition, they also proposed the potential mechanisms how the increased Fam20C expression played a detrimental role in tumor progression by suggesting that the up-regulated Fam20C level affected the infiltration of immune cells and the capability of cancer metastasis. To give an overview of the expanding knowledge of Fam20C involved in the physiological and pathological events, we first reviewed the history of Fam20C study in this commentary, then, evaluated the correlation of the elevated Fam20C expression to the prognosis of multiple cancers, and finally, interpreted the perspectives that the Fam20C gain-of-function model was also critical for cancer therapy.
Collapse
|
35
|
Zhang H, Xu Q, Lu Y, Qin C. Effect of high phosphate diet on the formation of dentin in Fam20c-deficient mice. Eur J Oral Sci 2021; 129:e12795. [PMID: 33905141 DOI: 10.1111/eos.12795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 12/28/2022]
Abstract
FAM20C (family with sequence similarity 20-member C), a kinase that phosphorylates secretory proteins, plays essential roles in various biological processes. In humans, mutations in FAM20C gene cause Raine syndrome, an autosomal recessive hereditary disease manifesting a broad spectrum of developmental defects including skeletal and craniofacial deformities. Our previous studies revealed that inactivation of Fam20c in mice led to hypophosphatemic rickets and that high phosphate (hPi) diet significantly improved the development of the skeleton in Fam20c-deficient mice. In this study, we evaluated the effects of hPi diet on the formation of dentin in Fam20c-deficient mice, using plain x-ray radiography, micro-computed tomography (µCT), histology, and immunohistochemistry. Plain x-ray radiography and µCT analyses showed that the hPi diet improved the dentin volume fraction and dentin mineral density of the Fam20c-deficient mice. Histology analyses further demonstrated that the hPi diet dramatically improved the integrity of the mandibular first molars and prevented pulp infection and dental abscesses in Fam20c-deficient mice. Our results support that the hPi diet significantly increased the formation and mineralization of dentin in Fam20c-deficient mice, implying that hypophosphatemia is a significant contributor to the dentin defects in Fam20c-deficient subjects.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Qian Xu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Yongbo Lu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Chunlin Qin
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| |
Collapse
|
36
|
Hue-Beauvais C, Faulconnier Y, Charlier M, Leroux C. Nutritional Regulation of Mammary Gland Development and Milk Synthesis in Animal Models and Dairy Species. Genes (Basel) 2021; 12:genes12040523. [PMID: 33916721 PMCID: PMC8067096 DOI: 10.3390/genes12040523] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
In mammals, milk is essential for the growth, development, and health. Milk quantity and quality are dependent on mammary development, strongly influenced by nutrition. This review provides an overview of the data on nutritional regulations of mammary development and gene expression involved in milk component synthesis. Mammary development is described related to rodents, rabbits, and pigs, common models in mammary biology. Molecular mechanisms of the nutritional regulation of milk synthesis are reported in ruminants regarding the importance of ruminant milk in human health. The effects of dietary quantitative and qualitative alterations are described considering the dietary composition and in regard to the periods of nutritional susceptibly. During lactation, the effects of lipid supplementation and feed restriction or deprivation are discussed regarding gene expression involved in milk biosynthesis, in ruminants. Moreover, nutrigenomic studies underline the role of the mammary structure and the potential influence of microRNAs. Knowledge from three lactating and three dairy livestock species contribute to understanding the variety of phenotypes reported in this review and highlight (1) the importance of critical physiological stages, such as puberty gestation and early lactation and (2) the relative importance of the various nutrients besides the total energetic value and their interaction.
Collapse
Affiliation(s)
- Cathy Hue-Beauvais
- INRAE, AgroParisTech, GABI, University of Paris-Saclay, F-78350 Jouy-en-Josas, France;
- Correspondence:
| | - Yannick Faulconnier
- INRAE, VetAgro Sup, UMR Herbivores, University of Clermont Auvergne, F-63122 Saint-Genès-Champanelle, France; (Y.F.); (C.L.)
| | - Madia Charlier
- INRAE, AgroParisTech, GABI, University of Paris-Saclay, F-78350 Jouy-en-Josas, France;
| | - Christine Leroux
- INRAE, VetAgro Sup, UMR Herbivores, University of Clermont Auvergne, F-63122 Saint-Genès-Champanelle, France; (Y.F.); (C.L.)
| |
Collapse
|
37
|
The ABCs of the atypical Fam20 secretory pathway kinases. J Biol Chem 2021; 296:100267. [PMID: 33759783 PMCID: PMC7948968 DOI: 10.1016/j.jbc.2021.100267] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The study of extracellular phosphorylation was initiated in late 19th century when the secreted milk protein, casein, and egg-yolk protein, phosvitin, were shown to be phosphorylated. However, it took more than a century to identify Fam20C, which phosphorylates both casein and phosvitin under physiological conditions. This kinase, along with its family members Fam20A and Fam20B, defined a new family with altered amino acid sequences highly atypical from the canonical 540 kinases comprising the kinome. Fam20B is a glycan kinase that phosphorylates xylose residues and triggers peptidoglycan biosynthesis, a role conserved from sponges to human. The protein kinase, Fam20C, conserved from nematodes to humans, phosphorylates well over 100 substrates in the secretory pathway with overall functions postulated to encompass endoplasmic reticulum homeostasis, nutrition, cardiac function, coagulation, and biomineralization. The preferred phosphorylation motif of Fam20C is SxE/pS, and structural studies revealed that related member Fam20A allosterically activates Fam20C by forming a heterodimeric/tetrameric complex. Fam20A, a pseudokinase, is observed only in vertebrates. Loss-of-function genetic alterations in the Fam20 family lead to human diseases such as amelogenesis imperfecta, nephrocalcinosis, lethal and nonlethal forms of Raine syndrome with major skeletal defects, and altered phosphate homeostasis. Together, these three members of the Fam20 family modulate a diverse network of secretory pathway components playing crucial roles in health and disease. The overarching theme of this review is to highlight the progress that has been made in the emerging field of extracellular phosphorylation and the key roles secretory pathway kinases play in an ever-expanding number of cellular processes.
Collapse
|
38
|
Jin Y, Huang J, Wang Q, He J, Teng Y, Jiang R, Broxmeyer HE, Guo B. RXR Negatively Regulates Ex Vivo Expansion of Human Cord Blood Hematopoietic Stem and Progenitor Cells. Stem Cell Rev Rep 2021; 17:1456-1464. [PMID: 33527324 DOI: 10.1007/s12015-021-10124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
Ex vivo expansion of human cord blood (CB) hematopoietic stem cells (HSCs) is one approach to overcome limited numbers of HSCs in single CB units. However, there is still no worldwide acceptable HSC ex vivo expansion system. A main reason is that we still have very limited knowldege regarding mechanisms underlying maintenance and expansion of CB HSCs. Here we report that retinoid X receptor (RXR) activity is of significance for CB HSC ex vivo expansion. RXR antagonist HX531 significantly promoted ex vivo expansion of CB HSCs and progenitor cells (HPCs). RXR agonist Bexarotene notably suppressed ex vivo expansion of CB HSCs. Activation of RXR by Bexarotene significantly blocked expansion of phenotypic HSCs and HPCs and expressed increased functional HPCs as assessed by colony formation induced by UM171 and SR1. In vivo transplantation experiments in immune-deficient mice demonstrated that HX531 expanded CB HSCs possess long-term reconstituting capacities, and Bexarotene treatment inhibited expansion of functional CB HSCs. RNA-seq analysis revealed that RXR regulates expression of FBP1 (a negative regulator of glucose metabolism) and many genes involved in differentation. ECAR analysis showed that HX531 significantly promoted glycolytic activity of CB CD34+ HSCs and HPCs. Our studies suggest that RXR is a negative regulator of ex vivo expansion of CB HSCs and HPCs.
Collapse
Affiliation(s)
- Yuting Jin
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280, Chong-Qing South Road, West Bldg #2, Shanghai, 200025, China
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 200233, Shanghai, China
| | - Jie Huang
- Children's Hospital, Fudan University, Minhang, Shanghai, China
| | - Qin Wang
- Department of Gynecology and Obstetrics, The First People's Hospital of Kunshan, Kunshan, 215300, China
| | - Jiefeng He
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Yincheng Teng
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 200233, Shanghai, China
| | - Rongzhen Jiang
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 200233, Shanghai, China.
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA.
| | - Bin Guo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280, Chong-Qing South Road, West Bldg #2, Shanghai, 200025, China.
| |
Collapse
|
39
|
Ratsma DMA, Zillikens MC, van der Eerden BCJ. Upstream Regulators of Fibroblast Growth Factor 23. Front Endocrinol (Lausanne) 2021; 12:588096. [PMID: 33716961 PMCID: PMC7952762 DOI: 10.3389/fendo.2021.588096] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor 23 (FGF23) has been described as an important regulator of mineral homeostasis, but has lately also been linked to iron deficiency, inflammation, and erythropoiesis. FGF23 is essential for the maintenance of phosphate homeostasis in the body and activating mutations in the gene itself or inactivating mutations in its upstream regulators can result in severe chronic hypophosphatemia, where an unbalanced mineral homeostasis often leads to rickets in children and osteomalacia in adults. FGF23 can be regulated by changes in transcriptional activity or by changes at the post-translational level. The balance between O-glycosylation and phosphorylation is an important determinant of how much active intact or inactive cleaved FGF23 will be released in the circulation. In the past years, it has become evident that iron deficiency and inflammation regulate FGF23 in a way that is not associated with its classical role in mineral metabolism. These conditions will not only result in an upregulation of FGF23 transcription, but also in increased cleavage, leaving the levels of active intact FGF23 unchanged. The exact mechanisms behind and function of this process are still unclear. However, a deeper understanding of FGF23 regulation in both the classical and non-classical way is important to develop better treatment options for diseases associated with disturbed FGF23 biology. In this review, we describe how the currently known upstream regulators of FGF23 change FGF23 transcription and affect its post-translational modifications at the molecular level.
Collapse
|
40
|
Ran C, Shi Y, Li N, Liu C, Xiao J. FAM20A is Dispensable for Dentinogenesis and Osteogenesis. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chunxiao Ran
- Department of Oral Pathology, College of Stomatolgy, Dalian Medical University
| | - Yiding Shi
- Department of Oral Pathology, College of Stomatolgy, Dalian Medical University
| | - Nan Li
- Department of Oral Pathology, College of Stomatolgy, Dalian Medical University
| | - Chao Liu
- Department of Oral Pathology, College of Stomatolgy, Dalian Medical University
| | - Jing Xiao
- Department of Oral Pathology, College of Stomatolgy, Dalian Medical University
| |
Collapse
|
41
|
Abstract
Great strides over the past few decades have increased our understanding of the pathophysiology of hypophosphatemic disorders. Phosphate is critically important to a variety of physiologic processes, including skeletal growth, development and mineralization, as well as DNA, RNA, phospholipids, and signaling pathways. Consequently, hypophosphatemic disorders have effects on multiple systems, and may cause a variety of nonspecific signs and symptoms. The acute effects of hypophosphatemia include neuromuscular symptoms and compromise. However, the dominant effects of chronic hypophosphatemia are the effects on musculoskeletal function including rickets, osteomalacia and impaired growth during childhood. While the most common causes of chronic hypophosphatemia in children are congenital, some acquired conditions also result in hypophosphatemia during childhood through a variety of mechanisms. Improved understanding of the pathophysiology of these congenital conditions has led to novel therapeutic approaches. This article will review the pathophysiologic causes of congenital hypophosphatemia, their clinical consequences and medical therapy.
Collapse
Affiliation(s)
- Erik Allen Imel
- Division of Endocrinology, Departments of Medicine and Pediatrics, Indiana University School of Medicine, 1120 West Michigan Street, Gatch Building Room 365, Indianapolis, IN, 46112, USA.
| |
Collapse
|
42
|
Abstract
FGF23 is a phosphotropic hormone produced by the bone. FGF23 works by binding to the FGF receptor-Klotho complex. Klotho is expressed in several limited tissues including the kidney and parathyroid glands. This tissue-restricted expression of Klotho is believed to determine the target organs of FGF23. FGF23 reduces serum phosphate by suppressing the expression of type 2a and 2c sodium-phosphate cotransporters in renal proximal tubules. FGF23 also decreases 1,25-dihydroxyvitamin D levels by regulating the expression of vitamin D-metabolizing enzymes, which results in reduced intestinal phosphate absorption. Excessive actions of FGF23 cause several types of hypophosphatemic rickets/osteomalacia characterized by impaired mineralization of bone matrix. In contrast, deficient actions of FGF23 result in hyperphosphatemic tumoral calcinosis with high 1,25-dihydroxyvitamin D levels. These results indicate that FGF23 is a physiological regulator of phosphate and vitamin D metabolism and indispensable for the maintenance of serum phosphate levels.
Collapse
|
43
|
Khor JM, Ettensohn CA. Transcription Factors of the Alx Family: Evolutionarily Conserved Regulators of Deuterostome Skeletogenesis. Front Genet 2020; 11:569314. [PMID: 33329706 PMCID: PMC7719703 DOI: 10.3389/fgene.2020.569314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Members of the alx gene family encode transcription factors that contain a highly conserved Paired-class, DNA-binding homeodomain, and a C-terminal OAR/Aristaless domain. Phylogenetic and comparative genomic studies have revealed complex patterns of alx gene duplications during deuterostome evolution. Remarkably, alx genes have been implicated in skeletogenesis in both echinoderms and vertebrates. In this review, we provide an overview of current knowledge concerning alx genes in deuterostomes. We highlight their evolutionarily conserved role in skeletogenesis and draw parallels and distinctions between the skeletogenic gene regulatory circuitries of diverse groups within the superphylum.
Collapse
Affiliation(s)
- Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
44
|
Hirose K, Ishimoto T, Usami Y, Sato S, Oya K, Nakano T, Komori T, Toyosawa S. Overexpression of Fam20C in osteoblast in vivo leads to increased cortical bone formation and osteoclastic bone resorption. Bone 2020; 138:115414. [PMID: 32416287 DOI: 10.1016/j.bone.2020.115414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 01/03/2023]
Abstract
Fam20C, which phosphorylates many secretory proteins with S-x-E/pS motifs, is highly expressed in bone and tooth tissues, implying that Fam20C-mediated phosphorylation is critical for regulation of these mineralized tissues. Previous studies of Fam20C-deficient mice revealed that Fam20C plays important roles in bone formation and mineralization. However, Fam20C-deficient mice develop hypophosphatemia, a systemic factor that masks the local effect of Fam20C in the bone tissue; consequently, the local role of Fam20C remains unknown. To elucidate the local function of Fam20C in bone tissue, we studied osteoblast-specific Fam20C transgenic (Fam20C-Tg) mice, which have no alteration in serum calcium and phosphate levels. Fam20C-Tg mice had more highly phosphorylated proteins in bone tissue than wild-type mice. In cortical bone of Fam20C-Tg mice, bone volume, mineralization surface (MS/BS), and mineral apposition rate (MAR) were elevated; in addition, the transgenic mice had an elevated number of vascular canals, resulting in an increased cortical porosity. Osteocyte number was elevated in the transgenics, but osteoblast number was unchanged. The microstructure of bone matrix characterized by the preferential orientation of collagen and apatite, was degraded and thus the mechanical function of bone material was deteriorated. In trabecular bone of Fam20C-Tg mice, bone volume was reduced, whereas MS/BS and MAR were unchanged. Osteoclast number was elevated and eroded surface area was non-significantly elevated with an increased serum CTX-I level, whereas osteoblast number was unchanged. These findings indicated that Fam20C overexpression in osteoblasts promotes cortical bone formation by increasing MS/BS and MAR and promoting osteocyte differentiation, but does not affect trabecular bone formation. Furthermore, Fam20C overexpression indirectly promotes osteoclastic bone resorption in cortical and trabecular bones. Our findings show that osteoblastic Fam20C-mediated phosphorylation in bone tissue regulates bone formation and resorption, and bone material quality.
Collapse
Affiliation(s)
- Katsutoshi Hirose
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yu Usami
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Sunao Sato
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kaori Oya
- Clinical Laboratory, Osaka University Dental Hospital, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Toshihisa Komori
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.
| | - Satoru Toyosawa
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
45
|
Cotti S, Huysseune A, Koppe W, Rücklin M, Marone F, Wölfel EM, Fiedler IAK, Busse B, Forlino A, Witten PE. More Bone with Less Minerals? The Effects of Dietary Phosphorus on the Post-Cranial Skeleton in Zebrafish. Int J Mol Sci 2020; 21:ijms21155429. [PMID: 32751494 PMCID: PMC7432380 DOI: 10.3390/ijms21155429] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
Dietary phosphorus (P) is essential for bone mineralisation in vertebrates. P deficiency can cause growth retardation, osteomalacia and bone deformities, both in teleosts and in mammals. Conversely, excess P supply can trigger soft tissue calcification and bone hypermineralisation. This study uses a wide range of complementary techniques (X-rays, histology, TEM, synchrotron X-ray tomographic microscopy, nanoindentation) to describe in detail the effects of dietary P on the zebrafish skeleton, after two months of administering three different diets: 0.5% (low P, LP), 1.0% (regular P, RP), and 1.5% (high P, HP) total P content. LP zebrafish display growth retardation and hypomineralised bones, albeit without deformities. LP zebrafish increase production of non-mineralised bone matrix, and osteoblasts have enlarged endoplasmic reticulum cisternae, indicative for increased collagen synthesis. The HP diet promotes growth, high mineralisation, and stiffness but causes vertebral centra fusions. Structure and arrangement of bone matrix collagen fibres are not influenced by dietary P in all three groups. In conclusion, low dietary P content stimulates the formation of non-mineralised bone without inducing malformations. This indicates that bone formation and mineralisation are uncoupled. In contrast, high dietary P content promotes mineralisation and vertebral body fusions. This new zebrafish model is a useful tool to understand the mechanisms underlying osteomalacia and abnormal mineralisation, due to underlying variations in dietary P levels.
Collapse
Affiliation(s)
- Silvia Cotti
- Evolutionary Developmental Biology Group, Department of Biology, Ghent University, 9000 Ghent, Belgium; (S.C.); (A.H.)
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, 27100 Pavia, Italy;
| | - Ann Huysseune
- Evolutionary Developmental Biology Group, Department of Biology, Ghent University, 9000 Ghent, Belgium; (S.C.); (A.H.)
| | | | - Martin Rücklin
- Department of Vertebrate Evolution, Development and Ecology, Naturalis Biodiversity Center, 2333 Leiden, The Netherlands;
| | - Federica Marone
- X-ray Tomography Group, Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland;
| | - Eva M. Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; (E.M.W.); (I.A.K.F.); (B.B.)
| | - Imke A. K. Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; (E.M.W.); (I.A.K.F.); (B.B.)
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; (E.M.W.); (I.A.K.F.); (B.B.)
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, 27100 Pavia, Italy;
| | - P. Eckhard Witten
- Evolutionary Developmental Biology Group, Department of Biology, Ghent University, 9000 Ghent, Belgium; (S.C.); (A.H.)
- Correspondence:
| |
Collapse
|
46
|
Du JH, Lin SX, Wu XL, Yang SM, Cao LY, Zheng A, Wu JN, Jiang XQ. The Function of Wnt Ligands on Osteocyte and Bone Remodeling. J Dent Res 2020; 98:930-938. [PMID: 31282847 DOI: 10.1177/0022034519854704] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone homeostasis is continually maintained by the process of bone remodeling throughout life. Recent studies have demonstrated that Wnt signaling pathways play a fundamental role in the process of bone homeostasis and remodeling. Intracellular Wnt signaling cascades are initially triggered by a Wnt ligand-receptor complex formation. In previous studies, the blocking of Wnt ligands from different osteoblastic differentiation stages could cause defective bone development at an early stage. Osteocytes, the most abundant and long-lived type of bone cell, are a crucial orchestrator of bone remodeling. However, the role of Wnt ligands on osteocyte and bone remodeling remains unclear. In our present study, we found that, besides osteoblasts, osteocytes also express multiple Wnt ligands in the bone environment. Then, we used a Dmp1-Cre mouse line, in which there is expression in a subset of osteoblasts but mainly osteocytes, to study the function of Wnt ligands on osteocyte and bone remodeling in vivo. Furthermore, we explored the role of Wnt ligands on osteocytic mineralization ability, as well as the regulatory function of osteocytes on the process of osteoblastic differentiation and osteoclastic migration and maturity in vitro. We concluded that Wnt proteins play an important regulatory role in 1) the process of perilacunar/canalicular remodeling, as mediated by osteocytes, and 2) the balance of osteogenesis and bone resorption at the bone surface, as mediated by osteoblasts and osteoclasts, at least partly through the canonical Wnt/β-catenin signaling pathway and the OPG/RANKL signaling pathway.
Collapse
Affiliation(s)
- J H Du
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - S X Lin
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,5 Department of Prosthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - X L Wu
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - S M Yang
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - L Y Cao
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - A Zheng
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - J N Wu
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - X Q Jiang
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
47
|
Eltan M, Alavanda C, Yavas Abali Z, Ergenekon P, Yalındag Ozturk N, Sakar M, Dagcinar A, Kirkgoz T, Kaygusuz SB, Gokdemir Y, Elcioglu HN, Guran T, Bereket A, Ata P, Turan S. A Rare Cause of Hypophosphatemia: Raine Syndrome Changing Clinical Features with Age. Calcif Tissue Int 2020; 107:96-103. [PMID: 32337609 PMCID: PMC7222149 DOI: 10.1007/s00223-020-00694-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/11/2020] [Indexed: 11/29/2022]
Abstract
Raine Syndrome (RS) is caused by biallelic loss-of-function mutations in FAM20C gene and characterized by hypophosphatemia, typical facial and skeletal features. Subperiosteal bone formation and generalized osteosclerosis are the most common radiological findings. Here we present a new case with RS. A 9-month-old male patient on a home-type ventilator was referred for hypophosphatemia. He was born with a weight of 3800 g to non-consanguineous parents. Prenatal ultrasound had demonstrated nasal bone agenesis. A large anterior fontanel, frontal bossing, exophthalmos, hypoplastic nose, high arched palate, low set ears, triangular mouth, and corneal opacification were detected on physical examination. Serial skeletal X-rays revealed diffuse osteosclerosis at birth which was gradually decreased by the age of 5 months with subperiosteal undermineralized bone formation and medullary space of long bone could be distinguishable with bone-within-a-bone appearance. At 9 months of age, hand X-ray revealed cupping of the ulna with loose radial bone margin with minimal fraying and osteopenia. Cranial computed tomography scan showed bilateral periventricular calcification and hydrocephalus in progress. The clinical, laboratory, and radiological examinations were consistent with RS. Molecular analyses revealed a compound heterozygous mutation in FAM20C gene (a known pathogenic mutation, c.1645C > T, p.Arg549Trp; and a novel c.863 + 5 G > C variant). The patient died due to respiratory failure at 17 months of age. This case allowed us to demonstrate natural progression of skeletal features in RS. Furthermore, we have described a novel FAM20C variant causing RS. Previous literature on RS is also reviewed.
Collapse
Affiliation(s)
- Mehmet Eltan
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Ceren Alavanda
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul, Turkey
| | - Zehra Yavas Abali
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Pinar Ergenekon
- Department of Pediatric Chest Disease, Marmara University School of Medicine, Istanbul, Turkey
| | - Nilufer Yalındag Ozturk
- Department of Pediatric Intensive Care Unit, Marmara University School of Medicine, Istanbul, Turkey
| | - Mustafa Sakar
- Department of Pediatric Neurosurgery, Marmara University School of Medicine, Istanbul, Turkey
| | - Adnan Dagcinar
- Department of Pediatric Neurosurgery, Marmara University School of Medicine, Istanbul, Turkey
| | - Tarik Kirkgoz
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Sare Betul Kaygusuz
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Yasemin Gokdemir
- Department of Pediatric Chest Disease, Marmara University School of Medicine, Istanbul, Turkey
| | - Huriye Nursel Elcioglu
- Department of Pediatric Genetics, Marmara University School of Medicine, Istanbul, Turkey
| | - Tulay Guran
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Abdullah Bereket
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Pinar Ata
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul, Turkey
| | - Serap Turan
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
48
|
Cebeci AN, Zou M, BinEssa HA, Alzahrani AS, Al-Rijjal RA, Al-Enezi AF, Al-Mohanna FA, Cavalier E, Meyer BF, Shi Y. Mutation of SGK3, a Novel Regulator of Renal Phosphate Transport, Causes Autosomal Dominant Hypophosphatemic Rickets. J Clin Endocrinol Metab 2020; 105:5672651. [PMID: 31821448 DOI: 10.1210/clinem/dgz260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/09/2019] [Indexed: 11/19/2022]
Abstract
CONTEXT Hypophosphatemic rickets (HR) is a group of rare hereditary renal phosphate wasting disorders caused by mutations in PHEX, FGF23, DMP1, ENPP1, CLCN5, SLC9A3R1, SLC34A1, or SLC34A3. OBJECTIVE A large kindred with 5 HR patients was recruited with dominant inheritance. The study was undertaken to investigate underlying genetic defects in HR patients. DESIGN Patients and their family members were initially analyzed for PHEX and FGF23 mutations using polymerase chain reaction sequencing and copy number analysis. Exome sequencing was subsequently performed to identify novel candidate genes. RESULTS PHEX and FGF23 mutations were not detected in the patients. No copy number variation was observed in the genome using CytoScan HD array analysis. Mutations in DMP1, ENPP1, CLCN5, SLC9A3R1, SLC34A1, or SLC34A3 were also not found by exome sequencing. A novel c.979-96 T>A mutation in the SGK3 gene was found to be strictly segregated in a heterozygous pattern in patients and was not present in normal family members. The mutation is located 1 bp downstream of a highly conserved adenosine branch point, resulted in exon 13 skipping and in-frame deletion of 29 amino acids, which is part of the protein kinase domain and contains a Thr-320 phosphorylation site that is required for its activation. Protein tertiary structure modelling showed significant structural change in the protein kinase domain following the deletion. CONCLUSIONS The c.979-96 T>A splice mutation in the SGK3 gene causes exon 13 skipping and deletion of 29 amino acids in the protein kinase domain. The SGK3 mutation may cause autosomal dominant HR.
Collapse
Affiliation(s)
- Ayşe Nurcan Cebeci
- Department of Pediatric Endocrinology, Istanbul Bilim University, Istanbul, Turkey
| | - Minjing Zou
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Huda A BinEssa
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Ali S Alzahrani
- Department of Medicine King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Roua A Al-Rijjal
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Anwar F Al-Enezi
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Futwan A Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Etienne Cavalier
- Department of Clinical Chemistry, University of Liège, CHU de Liège, Liège, Belgium
| | - Brian F Meyer
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Yufei Shi
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
49
|
Zhang H, Li L, Kesterke MJ, Lu Y, Qin C. High-Phosphate Diet Improved the Skeletal Development of Fam20c-Deficient Mice. Cells Tissues Organs 2020; 208:25-36. [PMID: 32101876 DOI: 10.1159/000506005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/19/2020] [Indexed: 12/29/2022] Open
Abstract
FAM20C (family with sequence similarity 20 - member C) is a protein kinase that phosphorylates secretory proteins, including the proteins that are essential to the formation and mineralization of calcified tissues. Previously, we reported that inactivation of Fam20c in mice led to hypophosphatemic rickets/osteomalacia along with increased circulating fibroblast growth factor 23 (FGF23) levels and dental defects. In this study, we examined whether a high-phosphate (hPi) diet could rescue the skeletal defects in Fam20c-deficient mice. Fam20c conditional knockout (cKO) mice were generated by crossing female Fam20c-floxed mice (Fam20cfl/fl) with male Sox2-Cre;Fam20cfl/+ mice. The pregnant female Fam20cfi/fl mice were fed either a normal or hPi diet until the litters were weaned. The cKO and control offspring were continuously given a normal or hPi diet for 4 weeks after weaning. Plain X-ray radiography, micro-CT, histology, immunohistochemistry (FGF23, DMP1, OPN, and SOX9), and in situ hybridization (type II and type X collagen) analyses were performed to evaluate the effects of an hPi diet on the mouse skeleton. Plain X-ray radiography and micro-CT radiography analyses showed that the hPi diet improved the shape and mineral density of the Fam20c-deficient femurs/tibiae, and rescued the growth plate defects in the long bone. Histology analyses further demonstrated that an hPi diet nearly completely rescued the growth plate-widening defects in the long bone and restored the expanded hypertrophic zone to nearly normal width. These results suggested that the hPi diet significantly improved the skeletal development of the Fam20c-deficient mice, implying that hypophosphatemia partially contributed to the skeletal defects in Fam20c-deficient subjects.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA,
| | - Lili Li
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Matthew J Kesterke
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Yongbo Lu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Chunlin Qin
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| |
Collapse
|
50
|
Hernández-Zavala A, Cortés-Camacho F, Palma-Lara I, Godínez-Aguilar R, Espinosa AM, Pérez-Durán J, Villanueva-Ocampo P, Ugarte-Briones C, Serrano-Bello CA, Sánchez-Santiago PJ, Bonilla-Delgado J, Yáñez-López MA, Victoria-Acosta G, López-Ornelas A, García Alonso-Themann P, Moreno J, Palacios-Reyes C. Two Novel FAM20C Variants in A Family with Raine Syndrome. Genes (Basel) 2020; 11:genes11020222. [PMID: 32093234 PMCID: PMC7073523 DOI: 10.3390/genes11020222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/30/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Two siblings from a Mexican family who carried lethal Raine syndrome are presented. A newborn term male (case 1) and his 21 gestational week brother (case 2), with a similar osteosclerotic pattern: generalized osteosclerosis, which is more evident in facial bones and cranial base. Prenatal findings at 21 weeks and histopathological features for case 2 are described. A novel combination of biallelic FAM20C pathogenic variants were detected, a maternal cytosine duplication at position 456 and a paternal deletion of a cytosine in position 474 in exon 1, which change the reading frame with a premature termination at codon 207 and 185 respectively. These changes are in concordance with a negative detection of the protein in liver and kidney as shown in case 2. Necropsy showed absence of pancreatic Langerhans Islets, which are reported here for the first time. Corpus callosum absence is added to the few reported cases of brain defects in Raine syndrome. This report shows two new FAM20C variants not described previously, and negative protein detection in the liver and the kidney. We highlight that lethal Raine syndrome is well defined as early as 21 weeks, including mineralization defects and craniofacial features. Pancreas and brain defects found here in FAM20C deficiency extend the functional spectrum of this protein to previously unknown organs.
Collapse
Affiliation(s)
- Araceli Hernández-Zavala
- Laboratory of Cellular and Molecular Morphology, Section of Postgraduate Studies and Research, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico; (A.H.-Z.); (F.C.-C.); (I.P.-L.)
| | - Fernando Cortés-Camacho
- Laboratory of Cellular and Molecular Morphology, Section of Postgraduate Studies and Research, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico; (A.H.-Z.); (F.C.-C.); (I.P.-L.)
- Direction and Division of Research, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (R.G.-A.); (J.B.-D.); (G.V.-A.); (A.L.-O.); (J.M.)
| | - Icela Palma-Lara
- Laboratory of Cellular and Molecular Morphology, Section of Postgraduate Studies and Research, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico; (A.H.-Z.); (F.C.-C.); (I.P.-L.)
| | - Ricardo Godínez-Aguilar
- Direction and Division of Research, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (R.G.-A.); (J.B.-D.); (G.V.-A.); (A.L.-O.); (J.M.)
| | - Ana María Espinosa
- Service of Clinical Pharmacology, Hospital General de México, Dr. Balmis 148, Doctores, Cuauhtémoc, Mexico City 06720, Mexico;
| | - Javier Pérez-Durán
- National Institute of Perinatology, Calle Montes Urales 800, Lomas - Virreyes, Lomas de Chapultepec IV Section, Miguel Hidalgo, Mexico City 11000, Mexico; (J.P.-D.); (P.G.A.-T.)
| | - Patricia Villanueva-Ocampo
- Deparment of Ginecology, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico;
| | - Carlos Ugarte-Briones
- Department of Pathology, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (C.U.-B.); (C.A.S.-B.); (P.J.S.-S.)
| | - Carlos Alberto Serrano-Bello
- Department of Pathology, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (C.U.-B.); (C.A.S.-B.); (P.J.S.-S.)
| | - Paula Jesús Sánchez-Santiago
- Department of Pathology, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (C.U.-B.); (C.A.S.-B.); (P.J.S.-S.)
| | - José Bonilla-Delgado
- Direction and Division of Research, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (R.G.-A.); (J.B.-D.); (G.V.-A.); (A.L.-O.); (J.M.)
| | - Marco Antonio Yáñez-López
- Department of Radiology & Imagenology, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico;
| | - Georgina Victoria-Acosta
- Direction and Division of Research, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (R.G.-A.); (J.B.-D.); (G.V.-A.); (A.L.-O.); (J.M.)
| | - Adolfo López-Ornelas
- Direction and Division of Research, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (R.G.-A.); (J.B.-D.); (G.V.-A.); (A.L.-O.); (J.M.)
| | - Patricia García Alonso-Themann
- National Institute of Perinatology, Calle Montes Urales 800, Lomas - Virreyes, Lomas de Chapultepec IV Section, Miguel Hidalgo, Mexico City 11000, Mexico; (J.P.-D.); (P.G.A.-T.)
| | - José Moreno
- Direction and Division of Research, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (R.G.-A.); (J.B.-D.); (G.V.-A.); (A.L.-O.); (J.M.)
| | - Carmen Palacios-Reyes
- Direction and Division of Research, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (R.G.-A.); (J.B.-D.); (G.V.-A.); (A.L.-O.); (J.M.)
- Correspondence:
| |
Collapse
|