1
|
Duthoo E, Beyls E, Backers L, Gudjónsson T, Huang P, Jonckheere L, Riemann S, Parton B, Du L, Debacker V, De Bruyne M, Hoste L, Baeyens A, Vral A, Van Braeckel E, Staal J, Mortier G, Kerre T, Pan-Hammarström Q, Sørensen CS, Haerynck F, Claes KB, Tavernier SJ. Replication stress, microcephalic primordial dwarfism, and compromised immunity in ATRIP deficient patients. J Exp Med 2025; 222:e20241432. [PMID: 40029331 PMCID: PMC11874998 DOI: 10.1084/jem.20241432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/13/2024] [Accepted: 12/23/2024] [Indexed: 03/05/2025] Open
Abstract
Ataxia telangiectasia and Rad3-related (ATR) kinase and its interacting protein ATRIP orchestrate the replication stress response. Homozygous splice variants in the ATRIP gene, resulting in ATRIP deficiency, were identified in two patients of independent ancestry with microcephaly, primordial dwarfism, and recurrent infections. The c.829+5G>T patient exhibited lymphopenia, poor vaccine responses, autoimmune features with hemolytic anemia, and neutropenia. Immunophenotyping revealed reduced CD16+/CD56dim NK cells and absent naïve T cells, MAIT cells, and iNKT cells. Lymphocytic defects were characterized by TCR oligoclonality, abnormal class switch recombination, and impaired T cell proliferation. ATRIP deficiency resulted in low-grade ATR activation but impaired CHK1 phosphorylation under genotoxic stress. ATRIP-deficient cells inadequately regulated DNA replication, leading to chromosomal instability, compromised cell cycle control, and impaired cell viability. CRISPR-SelectTIME confirmed reduced cell fitness for both variants. This study establishes ATRIP deficiency as a monogenic cause of microcephalic primordial dwarfism, highlights ATRIP's critical role in protecting immune cells from replication stress, and offers new insights into its canonical functions.
Collapse
Affiliation(s)
- Evi Duthoo
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, ERN-RITA Reference Center, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Elien Beyls
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, ERN-RITA Reference Center, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Lynn Backers
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Thorkell Gudjónsson
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peiquan Huang
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leander Jonckheere
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Sebastian Riemann
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bram Parton
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Likun Du
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Veronique Debacker
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, ERN-RITA Reference Center, Ghent University Hospital, Ghent, Belgium
| | - Marieke De Bruyne
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Levi Hoste
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Ans Baeyens
- Radiobiology Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Anne Vral
- Radiobiology Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Eva Van Braeckel
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jens Staal
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Geert Mortier
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Tessa Kerre
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, ERN-RITA Reference Center, Ghent University Hospital, Ghent, Belgium
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Claus S. Sørensen
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filomeen Haerynck
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, ERN-RITA Reference Center, Ghent University Hospital, Ghent, Belgium
- Department of Pediatric Respiratory and Infectious Medicine, Ghent University Hospital, Ghent, Belgium
| | - Kathleen B.M. Claes
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Simon J. Tavernier
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, ERN-RITA Reference Center, Ghent University Hospital, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
2
|
Biller M, Kabir S, Nipper S, Allen S, Kayali Y, Kuncik S, Sasanuma H, Zhou P, Vaziri C, Tomida J. REV7 associates with ATRIP and inhibits ATR kinase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633588. [PMID: 39868202 PMCID: PMC11761088 DOI: 10.1101/2025.01.17.633588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Integration of DNA replication with DNA repair, cell cycle progression, and other biological processes is crucial for preserving genome stability and fundamentally important for all life. Ataxia-telangiectasia mutated and RAD3-related (ATR) and its partner ATR-interacting protein (ATRIP) function as a critical proximal sensor and transducer of the DNA Damage Response (DDR). Several ATR substrates, including p53 and CHK1, are crucial for coordination of cell cycle phase transitions, transcription, and DNA repair when cells sustain DNA damage. While much is known about ATR activation mechanisms, it is less clear how ATR signaling is negatively regulated in cells. Here, we identify the DNA repair protein REV7 as a novel direct binding partner of ATRIP. We define a REV7-interaction motif in ATRIP, which when mutated abrogates the REV7-ATRIP interaction in vitro and in intact cells. Using in vitro kinase assays, we show that REV7 inhibits ATR-mediated phosphorylation of its substrates, including p53. Disruption of the REV7-ATRIP interaction also enhances phosphorylation of CHK1 at Ser317 (a known ATR target site) in intact cells. Taken together our results establish REV7 as a critical negative regulator of ATR signaling. REV7 has pleiotropic roles in multiple DDR pathways including Trans-Lesion Synthesis, DNA Double-Strand Break resection, and p53 stability and may play a central role in the integration of multiple genome maintenance pathways.
Collapse
|
3
|
Pal S, Kulshrestha S, Garg N, Gupta D, Gupta ND, Puri RD. Two-Compound Heterozygous Deletions Affecting TUBGCP6 in a Patient with Microcephaly and Ocular Abnormalities and in an Unborn Sibling with Abnormal Sulcation. Mol Syndromol 2024; 15:503-516. [PMID: 39634241 PMCID: PMC11614437 DOI: 10.1159/000539099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/24/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction TUBGCP6-related disorder is a known cause of autosomal recessive microcephaly and chorioretinopathy, which was originally recognized as a new syndrome based on unique ocular findings on a phenotypic overlap of microcephalic primordial short stature. Since the elucidation of its molecular mechanism, limited families have been published in literature and the disorder remains rare worldwide. Case Presentation We present the first Indian family with an affected child and sibling fetus with microcephaly, dysmorphism, and agyria/pachygyria complex on brain imaging in both and short stature, intellectual disability, and visual impairment in proband. As for many patients with long diagnostic odysseys, this child also underwent multiple genomic tests. Genome sequencing through the Indian Undiagnosed Disease Program (I-UDP) confirmed the diagnosis in both proband and sibling fetus. Compound heterozygous variants were identified in TUBGCP6 including an eleven base pair deletion (inherited from father) and 405 base pair large deletion (inherited from mother). Reverse phenotyping to confirm the ocular phenotype in proband confirmed TUBGCP6-related microcephaly and chorioretinopathy. We report third trimester microcephaly with ventriculomegaly and abnormal sulcation as part of the antenatal presentation for this condition. Conclusion This case represents an Indian family with a seemingly obvious clinical diagnosis compounded by a long diagnostic odyssey and the first ever structural variant to be identified via whole genome sequencing in TUBGCP6 in trans with an indel variant.
Collapse
Affiliation(s)
- Swasti Pal
- Institute of Medical Genetics and Genomics Ganga Ram Institute of Post Graduate Medical Education and Research Sir Ganga Ram Hospital, New Delhi, India
| | - Samarth Kulshrestha
- Institute of Medical Genetics and Genomics Ganga Ram Institute of Post Graduate Medical Education and Research Sir Ganga Ram Hospital, New Delhi, India
| | - Neha Garg
- Institute of Medical Genetics and Genomics Ganga Ram Institute of Post Graduate Medical Education and Research Sir Ganga Ram Hospital, New Delhi, India
| | - Deepti Gupta
- Institute of Medical Genetics and Genomics Ganga Ram Institute of Post Graduate Medical Education and Research Sir Ganga Ram Hospital, New Delhi, India
| | - Nandita Dimri Gupta
- Department of Fetal Medicine, Ganga Ram Institute of Post Graduate Medical Education and Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics Ganga Ram Institute of Post Graduate Medical Education and Research Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
4
|
Jurca AD, Petchesi CD, Jurca S, Severin E, Jurca AA, Jurca CM. Clinical Challenges in Diagnosing Primordial Dwarfism: Insights from a MOPD II Case Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1906. [PMID: 39597091 PMCID: PMC11596399 DOI: 10.3390/medicina60111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Background and Objectives.Primordial dwarfism (PD) is a rare group of genetic conditions where individuals experience severe growth restriction, both in the womb and after birth. From as early as the fetal stage, those affected are significantly smaller than their peers. What makes PD distinct is its slow but steady growth pattern, resulting in proportionate dwarfism, where all parts of the body are equally shortened. Diagnosing and managing PD presents significant challenges due to its rarity and the wide range of clinical and genetic variability. The main conditions in this group include Seckel syndrome, Microcephalic Osteodysplastic Primordial Dwarfism (MOPD) types I/III, MOPD type II, Meier-Gorlin syndrome, and Silver-Russell syndrome (SRS). The first four-Seckel syndrome, MOPD types I/III, MOPD type II, and Meier-Gorlin syndrome-are associated with microcephaly, and together they are known as microcephalic PD. Given how uncommon PD is, establishing its exact incidence is difficult. It is estimated that about 4 million infants die within the first month of life, with 99% of these deaths occurring in the neonatal period. Materials and Methods. Accurately diagnosing PD requires meticulous evaluation, as it can be easily confused with other genetic disorders that also cause dwarfism. In this article, we present the case of a 10-year-old patient diagnosed with MOPD II, the most common and well-documented form of microcephalic PD. Results. Genetic analysis revealed a pathogenic variant in the PCNT (pericentrin) gene ((c.1550dup, p.Gln518Alafs*7), alongside a deletion of exons 37-41. Conclusions. This case sheds light on the clinical and genetic complexities of primordial dwarfism, underscoring the importance of timely and accurate diagnosis for effective patient care.
Collapse
Affiliation(s)
- Alexandru Daniel Jurca
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania; (A.D.J.); (C.D.P.); (C.M.J.)
| | - Codruța Diana Petchesi
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania; (A.D.J.); (C.D.P.); (C.M.J.)
- Regional Center of Medical Genetics Bihor, County Emergency Clinical Hospital Oradea (Part of ERN-ITHACA), 410469 Oradea, Romania
| | - Sânziana Jurca
- Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania;
| | - Emilia Severin
- Department of Genetics, ”Carol Davila”University of Medicine and Pharmacy–Bucharest, Dionisie Lupu Street, Number 37, District 2, 020021 Bucharest, Romania
| | | | - Claudia Maria Jurca
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania; (A.D.J.); (C.D.P.); (C.M.J.)
- Regional Center of Medical Genetics Bihor, County Emergency Clinical Hospital Oradea (Part of ERN-ITHACA), 410469 Oradea, Romania
| |
Collapse
|
5
|
Burkhalter MD, Stiff T, Maerz LD, Casar Tena T, Wiese H, Gerhards J, Sailer SA, Vu LAT, Duong Phu M, Donow C, Alupei M, Iben S, Groth M, Wiese S, Church JA, Jeggo PA, Philipp M. Cilia defects upon loss of WDR4 are linked to proteasomal hyperactivity and ubiquitin shortage. Cell Death Dis 2024; 15:660. [PMID: 39251572 PMCID: PMC11384789 DOI: 10.1038/s41419-024-07042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
The WD repeat-containing protein 4 (WDR4) has repeatedly been associated with primary microcephaly, a condition of impaired brain and skull growth. Often, faulty centrosomes cause microcephaly, yet aberrant cilia may also be involved. Here, we show using a combination of approaches in human fibroblasts, zebrafish embryos and patient-derived cells that WDR4 facilitates cilium formation. Molecularly, we associated WDR4 loss-of-function with increased protein synthesis and concomitant upregulation of proteasomal activity, while ubiquitin precursor pools are reduced. Inhibition of proteasomal activity as well as supplementation with free ubiquitin restored normal ciliogenesis. Proteasome inhibition ameliorated microcephaly phenotypes. Thus, we propose that WDR4 loss-of-function impairs head growth and neurogenesis via aberrant cilia formation, initially caused by disturbed protein and ubiquitin homeostasis.
Collapse
Affiliation(s)
- Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Tom Stiff
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Lars D Maerz
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Teresa Casar Tena
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Heike Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Julian Gerhards
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Steffen A Sailer
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Linh Anna Trúc Vu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Max Duong Phu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Cornelia Donow
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Marius Alupei
- Department of Dermatology, Ulm University, 89081, Ulm, Germany
| | - Sebastian Iben
- Department of Dermatology, Ulm University, 89081, Ulm, Germany
| | - Marco Groth
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute, 07745, Jena, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Joseph A Church
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, 90033, USA
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany.
| |
Collapse
|
6
|
Mollinari C, Cardinale A, Lupacchini L, Martire A, Chiodi V, Martinelli A, Rinaldi AM, Fini M, Pazzaglia S, Domenici MR, Garaci E, Merlo D. The DNA repair protein DNA-PKcs modulates synaptic plasticity via PSD-95 phosphorylation and stability. EMBO Rep 2024; 25:3707-3737. [PMID: 39085642 PMCID: PMC11315936 DOI: 10.1038/s44319-024-00198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
The key DNA repair enzyme DNA-PKcs has several and important cellular functions. Loss of DNA-PKcs activity in mice has revealed essential roles in immune and nervous systems. In humans, DNA-PKcs is a critical factor for brain development and function since mutation of the prkdc gene causes severe neurological deficits such as microcephaly and seizures, predicting yet unknown roles of DNA-PKcs in neurons. Here we show that DNA-PKcs modulates synaptic plasticity. We demonstrate that DNA-PKcs localizes at synapses and phosphorylates PSD-95 at newly identified residues controlling PSD-95 protein stability. DNA-PKcs -/- mice are characterized by impaired Long-Term Potentiation (LTP), changes in neuronal morphology, and reduced levels of postsynaptic proteins. A PSD-95 mutant that is constitutively phosphorylated rescues LTP impairment when over-expressed in DNA-PKcs -/- mice. Our study identifies an emergent physiological function of DNA-PKcs in regulating neuronal plasticity, beyond genome stability.
Collapse
Affiliation(s)
- Cristiana Mollinari
- Istituto Superiore di Sanita', Department of Neuroscience, 00161, Rome, Italy
- Institute of Translational Pharmacology, National Research Council, 00133, Rome, Italy
| | | | | | - Alberto Martire
- Istituto Superiore di Sanita', National Centre for Drug Research and Evaluation, 00161, Rome, Italy
| | - Valentina Chiodi
- Istituto Superiore di Sanita', National Centre for Drug Research and Evaluation, 00161, Rome, Italy
| | - Andrea Martinelli
- Istituto Superiore di Sanita', Experimental Animal Welfare Sector, 00161, Rome, Italy
| | - Anna Maria Rinaldi
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133, Rome, Italy
| | | | - Simonetta Pazzaglia
- ENEA SSPT-TECS-TEB, Casaccia Research Center, Division of Health Protection Technology (TECS), Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123, Rome, Italy
| | - Maria Rosaria Domenici
- Istituto Superiore di Sanita', National Centre for Drug Research and Evaluation, 00161, Rome, Italy
| | - Enrico Garaci
- IRCCS San Raffaele Roma, 00163, Rome, Italy
- MEBIC Consortium, 00166, Rome, Italy
| | - Daniela Merlo
- Istituto Superiore di Sanita', Department of Neuroscience, 00161, Rome, Italy.
| |
Collapse
|
7
|
Maeda J, Chailapakul P, Kato TA. ATM and ATR gene editing mediated by CRISPR/Cas9 in Chinese Hamster cells. Mutat Res 2024; 829:111871. [PMID: 39024734 DOI: 10.1016/j.mrfmmm.2024.111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
Chinese hamster-derived cell lines including Chinese hamster lung fibroblasts (V79) have been used as model somatic cell lines in radiation biology and toxicology research for decades and have been instrumental in advancing our understanding of DNA damage response (DDR) mechanisms. Whereas many mutant lines deficient in DDR genes have been generated more than over decades, several key DDR genes such as ATM and ATR have not been established in the Chinese hamster system. Here, we transfected CRISPR/Cas9 vectors targeting Chinese hamster ATM or ATR into V79 cells and investigated whether the isolated clones had the characteristics reported in human and mouse studies. We obtained two clones of ATM knockout cells containing an insertion or deletions in the targeted locus. The ATM knockouts with no detectable ATM protein expression exhibited increased sensitivity to radiation and DNA double strand break inducing agents, cell cycle checkpoint defects and defective chromatid break repair. These are all characteristics of defective ATM function. Among the obtained ATR cells, which contained mutations in both ATR alleles while maintaining normal levels of ATR protein expression, one clone exhibited hypersensitivity to UV and replication stress agents. In the present study, we successfully established CRISPR-Cas9 derived ATM knockout cells. We couldn't knock out the ATR gene but obtained ATR mutant cells. Our results showed that Chinese hamster origin ATM knockout cells and ATR mutant cells could be useful tools for further research to reveal oncogenic functions and effects of developing anti-cancer therapeutics.
Collapse
Affiliation(s)
- Junko Maeda
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Piyawan Chailapakul
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Takamitsu A Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
8
|
Ngoi NYL, Pilié PG, McGrail DJ, Zimmermann M, Schlacher K, Yap TA. Targeting ATR in patients with cancer. Nat Rev Clin Oncol 2024; 21:278-293. [PMID: 38378898 DOI: 10.1038/s41571-024-00863-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Pharmacological inhibition of the ataxia telangiectasia and Rad3-related protein serine/threonine kinase (ATR; also known as FRAP-related protein (FRP1)) has emerged as a promising strategy for cancer treatment that exploits synthetic lethal interactions with proteins involved in DNA damage repair, overcomes resistance to other therapies and enhances antitumour immunity. Multiple novel, potent ATR inhibitors are being tested in clinical trials using biomarker-directed approaches and involving patients across a broad range of solid cancer types; some of these inhibitors have now entered phase III trials. Further insight into the complex interactions of ATR with other DNA replication stress response pathway components and with the immune system is necessary in order to optimally harness the potential of ATR inhibitors in the clinic and achieve hypomorphic targeting of the various ATR functions. Furthermore, a deeper understanding of the diverse range of predictive biomarkers of response to ATR inhibitors and of the intraclass differences between these agents could help to refine trial design and patient selection strategies. Key challenges that remain in the clinical development of ATR inhibitors include the optimization of their therapeutic index and the development of rational combinations with these agents. In this Review, we detail the molecular mechanisms regulated by ATR and their clinical relevance, and discuss the challenges that must be addressed to extend the benefit of ATR inhibitors to a broad population of patients with cancer.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrick G Pilié
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Katharina Schlacher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Rocha-Martins M. Cell behaviors that pattern developing tissues: the case of the vertebrate nervous system. Curr Top Dev Biol 2023; 159:30-58. [PMID: 38729679 DOI: 10.1016/bs.ctdb.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Morphogenesis from cells to tissue gives rise to the complex architectures that make our organs. How cells and their dynamic behavior are translated into functional spatial patterns is only starting to be understood. Recent advances in quantitative imaging revealed that, although highly heterogeneous, cellular behaviors make reproducible tissue patterns. Emerging evidence suggests that mechanisms of cellular coordination, intrinsic variability and plasticity are critical for robust pattern formation. While pattern development shows a high level of fidelity, tissue organization has undergone drastic changes throughout the course of evolution. In addition, alterations in cell behavior, if unregulated, can cause developmental malformations that disrupt function. Therefore, comparative studies of different species and of disease models offer a powerful approach for understanding how novel spatial configurations arise from variations in cell behavior and the fundamentals of successful pattern formation. In this chapter, I dive into the development of the vertebrate nervous system to explore efforts to dissect pattern formation beyond molecules, the emerging core principles and open questions.
Collapse
|
10
|
Cybulski C, Zamani N, Kluźniak W, Milano L, Wokołorczyk D, Stempa K, Rudnicka H, Zhang S, Zadeh M, Huzarski T, Jakubowska A, Dębniak T, Lener M, Szwiec M, Domagała P, Samani AA, Narod S, Gronwald J, Masson JY, Lubiński J, Akbari MR. Variants in ATRIP are associated with breast cancer susceptibility in the Polish population and UK Biobank. Am J Hum Genet 2023; 110:648-662. [PMID: 36977412 PMCID: PMC10119148 DOI: 10.1016/j.ajhg.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
Several breast cancer susceptibility genes have been discovered, but more are likely to exist. To identify additional breast cancer susceptibility genes, we used the founder population of Poland and performed whole-exome sequencing on 510 women with familial breast cancer and 308 control subjects. We identified a rare mutation in ATRIP (GenBank: NM_130384.3: c.1152_1155del [p.Gly385Ter]) in two women with breast cancer. At the validation phase, we found this variant in 42/16,085 unselected Polish breast cancer-affected individuals and in 11/9,285 control subjects (OR = 2.14, 95% CI = 1.13-4.28, p = 0.02). By analyzing the sequence data of the UK Biobank study participants (450,000 individuals), we identified ATRIP loss-of-function variants among 13/15,643 breast cancer-affected individuals versus 40/157,943 control subjects (OR = 3.28, 95% CI = 1.76-6.14, p < 0.001). Immunohistochemistry and functional studies showed the ATRIP c.1152_1155del variant allele is weakly expressed compared to the wild-type allele, and truncated ATRIP fails to perform its normal function to prevent replicative stress. We showed that tumors of women with breast cancer who have a germline ATRIP mutation have loss of heterozygosity at the site of ATRIP mutation and genomic homologous recombination deficiency. ATRIP is a critical partner of ATR that binds to RPA coating single-stranded DNA at sites of stalled DNA replication forks. Proper activation of ATR-ATRIP elicits a DNA damage checkpoint crucial in regulating cellular responses to DNA replication stress. Based on our observations, we conclude ATRIP is a breast cancer susceptibility gene candidate linking DNA replication stress to breast cancer.
Collapse
Affiliation(s)
- Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Neda Zamani
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Wojciech Kluźniak
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Larissa Milano
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Axis; Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC, Canada
| | - Dominika Wokołorczyk
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Klaudia Stempa
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Helena Rudnicka
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Shiyu Zhang
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, ON, Canada
| | - Maryam Zadeh
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tomasz Huzarski
- Department of Clinical Genetics and Pathology, University of Zielona Góra, Zielona Góra, Poland
| | - Anna Jakubowska
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland; Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Tadeusz Dębniak
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marcin Lener
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marek Szwiec
- Department of Surgery and Oncology, University of Zielona Góra, Zielona Góra, Poland
| | - Paweł Domagała
- Department of Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Amir Abbas Samani
- Department of Laboratory Medicine and Pathology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Humber River Hospital, University of Toronto, Toronto, ON, Canada
| | - Steven Narod
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Jacek Gronwald
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Axis; Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC, Canada
| | - Jan Lubiński
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Mohammad R Akbari
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Akalın A, Şimşek-Kiper PÖ, Taşkıran EZ, Karaosmanoğlu B, Utine GE, Boduroğlu K. A novel biallelic CRIPT variant in a patient with short stature, microcephaly, and distinctive facial features. Am J Med Genet A 2023; 191:1119-1127. [PMID: 36630262 DOI: 10.1002/ajmg.a.63120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/11/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023]
Abstract
Primordial dwarfism (PD) is one of a highly heterogeneous group of disorders characterized by severe prenatal/postnatal growth restriction. Defects in various pathways such as DNA repair mechanism, impaired centrioles, abnormal IGF expression, and spliceosomal machinery may cause PD including Seckel syndrome, Silver-Russell syndrome. Microcephalic osteodysplastic primordial dwarfism (MOPD) types I/III, II, and Meier-Gorlin syndrome. In recent years with the wide application of exome sequencing (ES) in the field of PD, new genes involved in novel pathways causing new phenotypes have been identified. Pathogenic variants in CRIPT (MIM# 604594) encoding cysteine-rich PDZ domain-binding protein have recently been described in patients with PD with a unique phenotype. This phenotype is characterized by prenatal/postnatal growth restriction, facial dysmorphism, ocular abnormalities, and ectodermal findings such as skin lesions with hyper/hypopigmented patchy areas and hair abnormalities. To our knowledge, only three patients with homozygous or compound heterozygous variants in CRIPT have been reported so far. Here, we report on a male patient who presented with profound prenatal/postnatal growth restriction, developmental delay, dysmorphic facial features, and skin lesions along with the findings of bicytopenia and extensive retinal pigmentation defect. A novel truncating homozygous variant c.7_8delTG; p.(Cys3Argfs*4) was detected in CRIPT with the aid of ES. With this report, we further expand the mutational and clinical spectrum of this rare entity.
Collapse
Affiliation(s)
- Akçahan Akalın
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | - Ekim Z Taşkıran
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Beren Karaosmanoğlu
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gülen Eda Utine
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Koray Boduroğlu
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
12
|
Chevarin M, Alcantara D, Albuisson J, Collonge-Rame MA, Populaire C, Selmani Z, Baurand A, Sawka C, Bertolone G, Callier P, Duffourd Y, Jonveaux P, Bignon YJ, Coupier I, Cornelis F, Cordier C, Mozelle-Nivoix M, Rivière JB, Kuentz P, Thauvin C, Boidot R, Ghiringhelli F, O'Driscoll M, Faivre L, Nambot S. The "extreme phenotype approach" applied to male breast cancer allows the identification of rare variants of ATR as potential breast cancer susceptibility alleles. Oncotarget 2023; 14:111-125. [PMID: 36749285 PMCID: PMC9904323 DOI: 10.18632/oncotarget.28358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
In oncogenetics, some patients could be considered as "extreme phenotypes", such as those with very early onset presentation or multiple primary malignancies, unusually high numbers of cancers of the same spectrum or rare cancer types in the same parental branch. For these cases, a genetic predisposition is very likely, but classical candidate gene panel analyses often and frustratingly remains negative. In the framework of the EX2TRICAN project, exploring unresolved extreme cancer phenotypes, we applied exome sequencing on rare familial cases with male breast cancer, identifying a novel pathogenic variant of ATR (p.Leu1808*). ATR has already been suspected as being a predisposing gene to breast cancer in women. We next identified 3 additional ATR variants in a cohort of both male and female with early onset and familial breast cancers (c.7762-2A>C; c.2078+1G>A; c.1A>G). Further molecular and cellular investigations showed impacts on transcripts for variants affecting splicing sites and reduction of ATR expression and phosphorylation of the ATR substrate CHEK1. This work further demonstrates the interest of an extended genetic analysis such as exome sequencing to identify very rare variants that can play a role in cancer predisposition in extreme phenotype cancer cases unexplained by classical cancer gene panels testing.
Collapse
Affiliation(s)
- Martin Chevarin
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Unité Fonctionnelle Innovation diagnostique dans les maladies rares, laboratoire de génétique chromosomique et moléculaire, Plateau Technique de Biologie, CHU Dijon Bourgogne, Dijon, France
| | - Diana Alcantara
- Human DNA Damage Response Disorders Group, University of Sussex, Genome Damage and Stability Centre, Brighton, United Kingdom
| | - Juliette Albuisson
- Service d’Oncogénétique, Centre Georges François Leclerc, Dijon, France
- Département de biologie et pathologie des tumeurs, Centre Georges François Leclerc, Dijon, France
| | | | - Céline Populaire
- Oncobiologie Génétique Bioinformatique, PCBio, CHU Besançon, Besançon, France
| | - Zohair Selmani
- Oncobiologie Génétique Bioinformatique, PCBio, CHU Besançon, Besançon, France
| | - Amandine Baurand
- Service d’Oncogénétique, Centre Georges François Leclerc, Dijon, France
- Centre de Génétique et Centre de Référence Maladies Rares Anomalies du Développement de l’Interrégion Est, Hôpital d’Enfants, CHU Dijon Bourgogne, Dijon, France
| | - Caroline Sawka
- Centre de Génétique et Centre de Référence Maladies Rares Anomalies du Développement de l’Interrégion Est, Hôpital d’Enfants, CHU Dijon Bourgogne, Dijon, France
| | - Geoffrey Bertolone
- Centre de Génétique et Centre de Référence Maladies Rares Anomalies du Développement de l’Interrégion Est, Hôpital d’Enfants, CHU Dijon Bourgogne, Dijon, France
| | - Patrick Callier
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Unité Fonctionnelle Innovation diagnostique dans les maladies rares, laboratoire de génétique chromosomique et moléculaire, Plateau Technique de Biologie, CHU Dijon Bourgogne, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| | - Yannis Duffourd
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| | - Philippe Jonveaux
- Laboratoire de Génétique Médicale, INSERM U954, Hôpitaux de Brabois, Vandoeuvre les Nancy, France
| | - Yves-Jean Bignon
- Laboratoire d’Oncologie Moléculaire, Centre Jean Perrin, Clermont-Ferrand, France
| | | | - François Cornelis
- Université Bordeaux, IMB, UMR 5251, Talence, France
- Service d’imagerie diagnostique et interventionnelle de l’adulte, Hôpital Pellegrin, CHU de Bordeaux, France
| | | | | | - Jean-Baptiste Rivière
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Centre de Génétique et Centre de Référence Maladies Rares Anomalies du Développement de l’Interrégion Est, Hôpital d’Enfants, CHU Dijon Bourgogne, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| | - Paul Kuentz
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Oncobiologie Génétique Bioinformatique, PCBio, CHU Besançon, Besançon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| | - Christel Thauvin
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Centre de Génétique et Centre de Référence Maladies Rares Anomalies du Développement de l’Interrégion Est, Hôpital d’Enfants, CHU Dijon Bourgogne, Dijon, France
| | - Romain Boidot
- Département de biologie et pathologie des tumeurs, Centre Georges François Leclerc, Dijon, France
| | - François Ghiringhelli
- Département d’oncologie médicale, INSERM LNC U1231, Centre Georges François Leclerc, Dijon, France
| | - Marc O'Driscoll
- Human DNA Damage Response Disorders Group, University of Sussex, Genome Damage and Stability Centre, Brighton, United Kingdom
| | - Laurence Faivre
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Service d’Oncogénétique, Centre Georges François Leclerc, Dijon, France
- Centre de Génétique et Centre de Référence Maladies Rares Anomalies du Développement de l’Interrégion Est, Hôpital d’Enfants, CHU Dijon Bourgogne, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| | - Sophie Nambot
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Service d’Oncogénétique, Centre Georges François Leclerc, Dijon, France
- Centre de Génétique et Centre de Référence Maladies Rares Anomalies du Développement de l’Interrégion Est, Hôpital d’Enfants, CHU Dijon Bourgogne, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
13
|
Merlo D, Mollinari C. The Need for a Break. Curr Alzheimer Res 2023; 20:523-525. [PMID: 37921166 DOI: 10.2174/0115672050272291231013140116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 11/04/2023]
Affiliation(s)
- Daniela Merlo
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Cristiana Mollinari
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
- Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
14
|
Connally NJ, Nazeen S, Lee D, Shi H, Stamatoyannopoulos J, Chun S, Cotsapas C, Cassa CA, Sunyaev SR. The missing link between genetic association and regulatory function. eLife 2022; 11:e74970. [PMID: 36515579 PMCID: PMC9842386 DOI: 10.7554/elife.74970] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
The genetic basis of most traits is highly polygenic and dominated by non-coding alleles. It is widely assumed that such alleles exert small regulatory effects on the expression of cis-linked genes. However, despite the availability of gene expression and epigenomic datasets, few variant-to-gene links have emerged. It is unclear whether these sparse results are due to limitations in available data and methods, or to deficiencies in the underlying assumed model. To better distinguish between these possibilities, we identified 220 gene-trait pairs in which protein-coding variants influence a complex trait or its Mendelian cognate. Despite the presence of expression quantitative trait loci near most GWAS associations, by applying a gene-based approach we found limited evidence that the baseline expression of trait-related genes explains GWAS associations, whether using colocalization methods (8% of genes implicated), transcription-wide association (2% of genes implicated), or a combination of regulatory annotations and distance (4% of genes implicated). These results contradict the hypothesis that most complex trait-associated variants coincide with homeostatic expression QTLs, suggesting that better models are needed. The field must confront this deficit and pursue this 'missing regulation.'
Collapse
Affiliation(s)
- Noah J Connally
- Department of Biomedical Informatics, Harvard Medical SchoolBostonUnited States
- Brigham and Women’s Hospital, Division of Genetics, Harvard Medical SchoolBostonUnited States
- Program in Medical and Population Genetics, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Sumaiya Nazeen
- Department of Biomedical Informatics, Harvard Medical SchoolBostonUnited States
- Brigham and Women’s Hospital, Division of Genetics, Harvard Medical SchoolBostonUnited States
- Brigham and Women’s Hospital, Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Daniel Lee
- Department of Biomedical Informatics, Harvard Medical SchoolBostonUnited States
- Brigham and Women’s Hospital, Division of Genetics, Harvard Medical SchoolBostonUnited States
- Program in Medical and Population Genetics, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Huwenbo Shi
- Program in Medical and Population Genetics, Broad Institute of MIT and HarvardCambridgeUnited States
- Department of Epidemiology, Harvard T.H. Chan School of Public HealthBostonUnited States
| | | | - Sung Chun
- Division of Pulmonary Medicine, Boston Children’s HospitalBostonUnited States
| | - Chris Cotsapas
- Program in Medical and Population Genetics, Broad Institute of MIT and HarvardCambridgeUnited States
- Department of Neurology, Yale Medical SchoolNew HavenUnited States
- Department of Genetics, Yale Medical SchoolNew HavenUnited States
| | - Christopher A Cassa
- Brigham and Women’s Hospital, Division of Genetics, Harvard Medical SchoolBostonUnited States
- Program in Medical and Population Genetics, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Shamil R Sunyaev
- Department of Biomedical Informatics, Harvard Medical SchoolBostonUnited States
- Brigham and Women’s Hospital, Division of Genetics, Harvard Medical SchoolBostonUnited States
- Program in Medical and Population Genetics, Broad Institute of MIT and HarvardCambridgeUnited States
| |
Collapse
|
15
|
Turkyilmaz A, Donmez AS, Cayir A. A Genetic Approach in the Evaluation of Short Stature. Eurasian J Med 2022; 54:179-186. [PMID: 36655465 PMCID: PMC11163345 DOI: 10.5152/eurasianjmed.2022.22171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/28/2022] [Indexed: 01/19/2023] Open
Abstract
Short stature is considered a condition in which the height is 2 standard deviations below the mean height of a given age, sex, and population group. Human height is a polygenic and heterogeneous characteristic, and its heritability is reported to be approximately 80%. More than 600 variants associated with human growth were detected in the genome-wide association studies. Rare and common variants concurrently affect human height. The rare variations that play a role in human height determination and have a strong impact on protein functions lead to monogenic short stature phenotypes, which are a highly heterogeneous group. With rapidly developing technologies in the last decade, molecular genetic tests have begun to be used widely in clinical genetics, and thus, the genetic etiology of several rare diseases has been elucidated. Identifying the genetic etiology underlying idiopathic short stature which represents phenotypically heterogeneous group of diseases ranging from isolated short stature to severe and syndromic short stature has promoted the understanding of the genetic regulation of growth plate and longitudinal bone growth. In cases of short stature, definite molecular diagnosis based on genetic evaluation enables the patient and family to receive genetic counseling on the natural course of the disease, prognosis, genetic basis, and recurrence risk. The determination of the genetic etiology in growth disorders is essential for the development of novel targeted therapies and crucial in the development of mutation-specific treatments in the future.
Collapse
Affiliation(s)
- Ayberk Turkyilmaz
- Department of Medical Genetics, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Ayse Sena Donmez
- Department of Pediatrics, Regional Training and Research Hospital, Erzurum, Turkey
| | - Atilla Cayir
- Department of Pediatric Endocrinology, Regional Training and Research Hospital, Erzurum, Turkey
| |
Collapse
|
16
|
Grange LJ, Reynolds JJ, Ullah F, Isidor B, Shearer RF, Latypova X, Baxley RM, Oliver AW, Ganesh A, Cooke SL, Jhujh SS, McNee GS, Hollingworth R, Higgs MR, Natsume T, Khan T, Martos-Moreno GÁ, Chupp S, Mathew CG, Parry D, Simpson MA, Nahavandi N, Yüksel Z, Drasdo M, Kron A, Vogt P, Jonasson A, Seth SA, Gonzaga-Jauregui C, Brigatti KW, Stegmann APA, Kanemaki M, Josifova D, Uchiyama Y, Oh Y, Morimoto A, Osaka H, Ammous Z, Argente J, Matsumoto N, Stumpel CTRM, Taylor AMR, Jackson AP, Bielinsky AK, Mailand N, Le Caignec C, Davis EE, Stewart GS. Pathogenic variants in SLF2 and SMC5 cause segmented chromosomes and mosaic variegated hyperploidy. Nat Commun 2022; 13:6664. [PMID: 36333305 PMCID: PMC9636423 DOI: 10.1038/s41467-022-34349-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Embryonic development is dictated by tight regulation of DNA replication, cell division and differentiation. Mutations in DNA repair and replication genes disrupt this equilibrium, giving rise to neurodevelopmental disease characterized by microcephaly, short stature and chromosomal breakage. Here, we identify biallelic variants in two components of the RAD18-SLF1/2-SMC5/6 genome stability pathway, SLF2 and SMC5, in 11 patients with microcephaly, short stature, cardiac abnormalities and anemia. Patient-derived cells exhibit a unique chromosomal instability phenotype consisting of segmented and dicentric chromosomes with mosaic variegated hyperploidy. To signify the importance of these segmented chromosomes, we have named this disorder Atelís (meaning - incomplete) Syndrome. Analysis of Atelís Syndrome cells reveals elevated levels of replication stress, partly due to a reduced ability to replicate through G-quadruplex DNA structures, and also loss of sister chromatid cohesion. Together, these data strengthen the functional link between SLF2 and the SMC5/6 complex, highlighting a distinct role for this pathway in maintaining genome stability.
Collapse
Affiliation(s)
- Laura J Grange
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - John J Reynolds
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Farid Ullah
- Advanced Center for Genetic and Translational Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
- National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU Nantes, Nantes Cedex 1, France
| | - Robert F Shearer
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Xenia Latypova
- Service de Génétique Médicale, CHU Nantes, Nantes Cedex 1, France
| | - Ryan M Baxley
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Antony W Oliver
- Genome Damage and Stability Centre, Science Park Road, University of Sussex, Falmer, Brighton, UK
| | - Anil Ganesh
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Sophie L Cooke
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Satpal S Jhujh
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Gavin S McNee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Robert Hollingworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Martin R Higgs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka, Japan
| | - Tahir Khan
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Gabriel Á Martos-Moreno
- Hospital Infantil Universitario Niño Jesús, CIBER de fisiopatología de la obesidad y nutrición (CIBEROBN), Instituto de Salud Carlos III, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Christopher G Mathew
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - David Parry
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh, Scotland
| | - Michael A Simpson
- Department of Medical and Molecular Genetics, Faculty of Life Science and Medicine, Guy's Hospital, King's College London, London, UK
| | - Nahid Nahavandi
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Zafer Yüksel
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Mojgan Drasdo
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Anja Kron
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Petra Vogt
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Annemarie Jonasson
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | | | - Claudia Gonzaga-Jauregui
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, México
| | | | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Masato Kanemaki
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | | | - Yuri Uchiyama
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukiko Oh
- Department of Paediatrics, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Akira Morimoto
- Department of Paediatrics, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hitoshi Osaka
- Department of Paediatrics, Jichi Medical University School of Medicine, Tochigi, Japan
| | | | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, CIBER de fisiopatología de la obesidad y nutrición (CIBEROBN), Instituto de Salud Carlos III, Universidad Autónoma de Madrid, Madrid, Spain
- IMDEA Alimentación/IMDEA Food, Madrid, Spain
| | - Naomichi Matsumoto
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Constance T R M Stumpel
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alexander M R Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Andrew P Jackson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh, Scotland
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Niels Mailand
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cedric Le Caignec
- Centre Hospitalier Universitaire Toulouse, Service de Génétique Médicale and ToNIC, Toulouse NeuroImaging Center, Inserm, UPS, Université de Toulouse, Toulouse, France.
| | - Erica E Davis
- Advanced Center for Genetic and Translational Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA.
- Department of Pediatrics; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
17
|
Tirado-Class N, Hathaway C, Chung WK, Dungrawala H. PHIP variants associated with Chung-Jansen syndrome disrupt replication fork stability and genome integrity. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006212. [PMID: 35863899 PMCID: PMC9528965 DOI: 10.1101/mcs.a006212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Chung-Jansen syndrome (CJS) is a rare, autosomal dominant disorder characterized by developmental delay, intellectual disability/cognitive impairment, behavioral challenges, obesity, and dysmorphic features. CJS is associated with heterozygous variants in PHIP (Pleckstrin-Homology Interacting Protein), a gene that encodes one of several substrate receptors for Cullin4-RING (CRL4) E3 ubiquitin ligase complex. Full length PHIP, also called DCAF14, was recently identified to function as a replication stress response protein. Herein, we report the identification of two PHIP missense variants identified by exome sequencing in unrelated individuals with CJS. The variants p.D488V and p.E963G occur in different functional elements of DCAF14- WD40 repeat domain and pleckstrin homology-binding region (PBR), respectively. Using DNA fiber assays, we reveal that cells expressing either variant exhibit defective replication fork progression in conditions of replication stress. Furthermore, unlike wild type DCAF14, both variants fail to accomplish DNA replication after exposure to genotoxic stress indicating a critical role of DCAF14 in protecting stalled replication forks. Thus, we have identified replication defects associated with CJS variants and predict replication-associated genome instability with CJS syndrome.
Collapse
|
18
|
Masih S, Moirangthem A, Shambhavi A, Rai A, Mandal K, Saxena D, Nilay M, Agrawal N, Srivastava S, Sait H, Phadke SR. Deciphering the molecular landscape of microcephaly in 87 Indian families by exome sequencing. Eur J Med Genet 2022; 65:104520. [PMID: 35568357 DOI: 10.1016/j.ejmg.2022.104520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/21/2022] [Accepted: 05/08/2022] [Indexed: 11/25/2022]
Abstract
Microcephaly is a frequent feature of neurodevelopmental disorders (NDDs). Our study presents the heterogeneous spectrum of genetic disorders in patients with microcephaly either in isolated form or in association with other neurological and extra-neural abnormalities. We present data of 91 patients from 87 unrelated families referred to our clinic during 2016-2020 and provide a comprehensive clinical and genetic landscape in the studied cohort. Molecular diagnosis using exome sequencing was made in 45 families giving a yield of 51.7%. In 9 additional families probable causative variants were detected. We identified disease causing variations in 49 genes that are involved in different functional pathways Among these, 36 had an autosomal recessive pattern, 8 had an autosomal dominant pattern (all inherited de novo), and 5 had an X-linked pattern. In 41 probands where sequence variations in autosomal recessive genes were identified 31 were homozygotes (including 16 from non-consanguineous families). The study added 28 novel pathogenic/likely pathogenic variations. The study also calls attention to phenotypic variability and expansion in spectrum as well as uncovers genes where microcephaly is not reported previously or is a rare finding. We here report phenotypes associated with the genes for ultra-rare NDDs with microcephaly namely ATRIP, MINPP1, PNPLA8, AIMP2, ANKLE2, NCAPD2 and TRIT1.
Collapse
Affiliation(s)
- Suzena Masih
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Amita Moirangthem
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Arya Shambhavi
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Archana Rai
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Deepti Saxena
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Mayank Nilay
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Neha Agrawal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Somya Srivastava
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Haseena Sait
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India.
| |
Collapse
|
19
|
Kimbrel NA, Ashley-Koch AE, Qin XJ, Lindquist JH, Garrett ME, Dennis MF, Hair LP, Huffman JE, Jacobson DA, Madduri RK, Trafton JA, Coon H, Docherty AR, Kang J, Mullins N, Ruderfer DM, Harvey PD, McMahon BH, Oslin DW, Hauser ER, Hauser MA, Beckham JC. A genome-wide association study of suicide attempts in the million veterans program identifies evidence of pan-ancestry and ancestry-specific risk loci. Mol Psychiatry 2022; 27:2264-2272. [PMID: 35347246 PMCID: PMC9910180 DOI: 10.1038/s41380-022-01472-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 12/30/2022]
Abstract
To identify pan-ancestry and ancestry-specific loci associated with attempting suicide among veterans, we conducted a genome-wide association study (GWAS) of suicide attempts within a large, multi-ancestry cohort of U.S. veterans enrolled in the Million Veterans Program (MVP). Cases were defined as veterans with a documented history of suicide attempts in the electronic health record (EHR; N = 14,089) and controls were defined as veterans with no documented history of suicidal thoughts or behaviors in the EHR (N = 395,064). GWAS was performed separately in each ancestry group, controlling for sex, age and genetic substructure. Pan-ancestry risk loci were identified through meta-analysis and included two genome-wide significant loci on chromosomes 20 (p = 3.64 × 10-9) and 1 (p = 3.69 × 10-8). A strong pan-ancestry signal at the Dopamine Receptor D2 locus (p = 1.77 × 10-7) was also identified and subsequently replicated in a large, independent international civilian cohort (p = 7.97 × 10-4). Additionally, ancestry-specific genome-wide significant loci were also detected in African-Americans, European-Americans, Asian-Americans, and Hispanic-Americans. Pathway analyses suggested over-representation of many biological pathways with high clinical significance, including oxytocin signaling, glutamatergic synapse, cortisol synthesis and secretion, dopaminergic synapse, and circadian rhythm. These findings confirm that the genetic architecture underlying suicide attempt risk is complex and includes both pan-ancestry and ancestry-specific risk loci. Moreover, pathway analyses suggested many commonly impacted biological pathways that could inform development of improved therapeutics for suicide prevention.
Collapse
Affiliation(s)
- Nathan A Kimbrel
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, USA.
- VA Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA.
- VA Health Services Research and Development Center of Innovation to Accelerate Discovery and Practice Transformation, Durham, NC, USA.
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA.
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Durham, NC, USA
- Department of Medicine, Duke University Health System, Durham, NC, USA
| | - Xue J Qin
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
| | - Jennifer H Lindquist
- VA Health Services Research and Development Center of Innovation to Accelerate Discovery and Practice Transformation, Durham, NC, USA
| | | | - Michelle F Dennis
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Lauren P Hair
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Jennifer E Huffman
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Daniel A Jacobson
- Biosciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
- Department of Psychology, NeuroNet Research Center, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Ravi K Madduri
- Consortium for Advanced Science and Engineering, The University of Chicago, Chicago, IL, USA
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, USA
| | - Jodie A Trafton
- Program Evaluation and Resource Center, Office of Mental Health and Suicide Prevention, VA Palo Alto Health Care System, Menlo Park, CA, USA
| | - Hilary Coon
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, US
- Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, US
| | - Anna R Docherty
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, US
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, US
| | - Jooeun Kang
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, US
| | - Niamh Mullins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, US
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, US
| | - Douglas M Ruderfer
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, US
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, US
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, US
| | - Philip D Harvey
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
- Research Service Bruce W. Carter VA Medical Center, Miami, FL, USA
| | - Benjamin H McMahon
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - David W Oslin
- VISN 4 Mental Illness Research, Education, and Clinical Center, Center of Excellence, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth R Hauser
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
| | - Michael A Hauser
- Duke Molecular Physiology Institute, Durham, NC, USA
- Department of Medicine, Duke University Health System, Durham, NC, USA
| | - Jean C Beckham
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
20
|
Tingler M, Philipp M, Burkhalter MD. DNA Replication proteins in primary microcephaly syndromes. Biol Cell 2022; 114:143-159. [PMID: 35182397 DOI: 10.1111/boc.202100061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
Abstract
SCOPE Improper expansion of neural stem and progenitor cells during brain development manifests in primary microcephaly. It is characterized by a reduced head circumference, which correlates with a reduction in brain size. This often corresponds to a general underdevelopment of the brain and entails cognitive, behavioral and motoric retardation. In the past decade significant research efforts have been undertaken to identify genes and the molecular mechanisms underlying microcephaly. One such gene set encompasses factors required for DNA replication. Intriguingly, a growing body of evidence indicates that a substantial number of these genes mediate faithful centrosome and cilium function in addition to their canonical function in genome duplication. Here, we summarize, which DNA replication factors are associated with microcephaly syndromes and to which extent they impact on centrosomes and cilia. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Melanie Tingler
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, 72074, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, 72074, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, 72074, Germany
| |
Collapse
|
21
|
Khojah O, Alamoudi S, Aldawsari N, Babgi M, Lary A. Central nervous system vasculopathy and Seckel syndrome: case illustration and systematic review. Childs Nerv Syst 2021; 37:3847-3860. [PMID: 34345934 PMCID: PMC8604825 DOI: 10.1007/s00381-021-05284-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/30/2021] [Indexed: 11/05/2022]
Abstract
PURPOSE To systematically review reported cases of Seckel syndrome (SS) and point out cases associated with central nervous system (CNS) vasculopathy and provide a summary of their clinical presentation, management, and outcomes including our illustrative case. METHODS We conducted a search on the MEDLINE, PubMed, Google Scholar, and Cochrane databases using the keywords "Seckel + syndrome." We identified 127 related articles reporting 252 cases of SS apart from our case. Moreover, we searched for SS cases with CNS vasculopathies from the same databases. We identified 7 related articles reporting 7 cases of CNS vasculopathies in SS patients. RESULTS The overall rate of CNS vasculopathy in SS patients is 3.16% (n = 8/253), where moyamoya disease (MMD) accounted for 1.97%. The mean age is 13.5 years (6-19 years), with equal gender distribution (M:F, 1:1). The most common presenting symptoms were headache and seizure followed by weakness or coma. Aneurysms were mostly located in the basilar artery, middle cerebral artery, and internal carotid artery, respectively. Regardless of the management approach, 50% of the cases sustained mild-moderate neurological deficit, 37.5% have died, and 12.5% sustained no deficit. CONCLUSION A high index of suspicion should be maintained in (SS) patients, and MMD should be part of the differential diagnosis. Prevalence of CNS vasculopathy in SS is 3.16% with a much higher prevalence of MMD compared to the general population. Screening for cerebral vasculopathy in SS is justifiable especially in centers that have good resources. Further data are still needed to identify the most appropriate management plan in these cases.
Collapse
Affiliation(s)
- Osama Khojah
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia.
| | - Saeed Alamoudi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Nouf Aldawsari
- King Abdulaziz Medical City, National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Mohammed Babgi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- Division of Neurosurgery, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Ahmed Lary
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Abdulaziz Medical City, National Guard Health Affairs, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Abstract
In this review, Phan et al. discuss the different models that have been proposed to explain how centrosome dysfunction impairs cortical development, and review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Last, they also extend their discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair Primary microcephaly is a brain growth disorder characterized by a severe reduction of brain size and thinning of the cerebral cortex. Many primary microcephaly mutations occur in genes that encode centrosome proteins, highlighting an important role for centrosomes in cortical development. Centrosomes are microtubule organizing centers that participate in several processes, including controlling polarity, catalyzing spindle assembly in mitosis, and building primary cilia. Understanding which of these processes are altered and how these disruptions contribute to microcephaly pathogenesis is a central unresolved question. In this review, we revisit the different models that have been proposed to explain how centrosome dysfunction impairs cortical development. We review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Finally, we also extend our discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair.
Collapse
|
23
|
Spotlight on the Replisome: Aetiology of DNA Replication-Associated Genetic Diseases. Trends Genet 2021; 37:317-336. [DOI: 10.1016/j.tig.2020.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/26/2022]
|
24
|
Watts LP, Natsume T, Saito Y, Garzon J, Dong Q, Boteva L, Gilbert N, Kanemaki MT, Hiraga SI, Donaldson AD. The RIF1-long splice variant promotes G1 phase 53BP1 nuclear bodies to protect against replication stress. eLife 2020; 9:e58020. [PMID: 33141022 PMCID: PMC7671687 DOI: 10.7554/elife.58020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Human cells lacking RIF1 are highly sensitive to replication inhibitors, but the reasons for this sensitivity have been enigmatic. Here, we show that RIF1 must be present both during replication stress and in the ensuing recovery period to promote cell survival. Of two isoforms produced by alternative splicing, we find that RIF1-Long alone can protect cells against replication inhibition, but RIF1-Short is incapable of mediating protection. Consistent with this isoform-specific role, RIF1-Long is required to promote the formation of the 53BP1 nuclear bodies that protect unrepaired damage sites in the G1 phase following replication stress. Overall, our observations show that RIF1 is needed at several cell cycle stages after replication insult, with the RIF1-Long isoform playing a specific role during the ensuing G1 phase in damage site protection.
Collapse
Affiliation(s)
- Lotte P Watts
- Institute of Medical Sciences, University of AberdeenAberdeenUnited Kingdom
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS)MishimaJapan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI)MishimaJapan
| | - Yuichiro Saito
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS)MishimaJapan
| | - Javier Garzon
- Institute of Medical Sciences, University of AberdeenAberdeenUnited Kingdom
| | - Qianqian Dong
- Institute of Medical Sciences, University of AberdeenAberdeenUnited Kingdom
| | - Lora Boteva
- MRC Human Genetics Unit, The University of EdinburghEdinburghUnited Kingdom
| | - Nick Gilbert
- MRC Human Genetics Unit, The University of EdinburghEdinburghUnited Kingdom
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS)MishimaJapan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI)MishimaJapan
| | - Shin-ichiro Hiraga
- Institute of Medical Sciences, University of AberdeenAberdeenUnited Kingdom
| | - Anne D Donaldson
- Institute of Medical Sciences, University of AberdeenAberdeenUnited Kingdom
| |
Collapse
|
25
|
Matos-Rodrigues GE, Tan PB, Rocha-Martins M, Charlier CF, Gomes AL, Cabral-Miranda F, Grigaravicius P, Hofmann TG, Frappart PO, Martins RAP. Progenitor death drives retinal dysplasia and neuronal degeneration in a mouse model of ATRIP-Seckel syndrome. Dis Model Mech 2020; 13:dmm045807. [PMID: 32994318 PMCID: PMC7648607 DOI: 10.1242/dmm.045807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/27/2020] [Indexed: 01/03/2023] Open
Abstract
Seckel syndrome is a type of microcephalic primordial dwarfism (MPD) that is characterized by growth retardation and neurodevelopmental defects, including reports of retinopathy. Mutations in key mediators of the replication stress response, the mutually dependent partners ATR and ATRIP, are among the known causes of Seckel syndrome. However, it remains unclear how their deficiency disrupts the development and function of the central nervous system (CNS). Here, we investigated the cellular and molecular consequences of ATRIP deficiency in different cell populations of the developing murine neural retina. We discovered that conditional inactivation of Atrip in photoreceptor neurons did not affect their survival or function. In contrast, Atrip deficiency in retinal progenitor cells (RPCs) led to severe lamination defects followed by secondary photoreceptor degeneration and loss of vision. Furthermore, we showed that RPCs lacking functional ATRIP exhibited higher levels of replicative stress and accumulated endogenous DNA damage that was accompanied by stabilization of TRP53. Notably, inactivation of Trp53 prevented apoptosis of Atrip-deficient progenitor cells and was sufficient to rescue retinal dysplasia, neurodegeneration and loss of vision. Together, these results reveal an essential role of ATRIP-mediated replication stress response in CNS development and suggest that the TRP53-mediated apoptosis of progenitor cells might contribute to retinal malformations in Seckel syndrome and other MPD disorders.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Gabriel E Matos-Rodrigues
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Pedro B Tan
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Maurício Rocha-Martins
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Clara F Charlier
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Anielle L Gomes
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Felipe Cabral-Miranda
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | | | - Thomas G Hofmann
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, 55131 Germany
| | - Pierre-Olivier Frappart
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, 55131 Germany
| | - Rodrigo A P Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| |
Collapse
|
26
|
Schnabel F, Kornak U, Wollnik B. Premature aging disorders: A clinical and genetic compendium. Clin Genet 2020; 99:3-28. [PMID: 32860237 DOI: 10.1111/cge.13837] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022]
Abstract
Progeroid disorders make up a heterogeneous group of very rare hereditary diseases characterized by clinical signs that often mimic physiological aging in a premature manner. Apart from Hutchinson-Gilford progeria syndrome, one of the best-investigated progeroid disorders, a wide spectrum of other premature aging phenotypes exist, which differ significantly in their clinical presentation and molecular pathogenesis. Next-generation sequencing (NGS)-based approaches have made it feasible to determine the molecular diagnosis in the early stages of a disease. Nevertheless, a broad clinical knowledge on these disorders and their associated symptoms is still fundamental for a comprehensive patient management and for the interpretation of variants of unknown significance from NGS data sets. This review provides a detailed overview on characteristic clinical features and underlying molecular genetics of well-known as well as only recently identified premature aging disorders and also highlights novel findings towards future therapeutic options.
Collapse
Affiliation(s)
- Franziska Schnabel
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
27
|
Falquet B, Ölmezer G, Enkner F, Klein D, Challa K, Appanah R, Gasser SM, Rass U. Disease-associated DNA2 nuclease-helicase protects cells from lethal chromosome under-replication. Nucleic Acids Res 2020; 48:7265-7278. [PMID: 32544229 PMCID: PMC7367196 DOI: 10.1093/nar/gkaa524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 01/28/2023] Open
Abstract
DNA2 is an essential nuclease–helicase implicated in DNA repair, lagging-strand DNA synthesis, and the recovery of stalled DNA replication forks (RFs). In Saccharomyces cerevisiae, dna2Δ inviability is reversed by deletion of the conserved helicase PIF1 and/or DNA damage checkpoint-mediator RAD9. It has been suggested that Pif1 drives the formation of long 5′-flaps during Okazaki fragment maturation, and that the essential function of Dna2 is to remove these intermediates. In the absence of Dna2, 5′-flaps are thought to accumulate on the lagging strand, resulting in DNA damage-checkpoint arrest and cell death. In line with Dna2’s role in RF recovery, we find that the loss of Dna2 results in severe chromosome under-replication downstream of endogenous and exogenous RF-stalling. Importantly, unfaithful chromosome replication in Dna2-mutant cells is exacerbated by Pif1, which triggers the DNA damage checkpoint along a pathway involving Pif1’s ability to promote homologous recombination-coupled replication. We propose that Dna2 fulfils its essential function by promoting RF recovery, facilitating replication completion while suppressing excessive RF restart by recombination-dependent replication (RDR) and checkpoint activation. The critical nature of Dna2’s role in controlling the fate of stalled RFs provides a framework to rationalize the involvement of DNA2 in Seckel syndrome and cancer.
Collapse
Affiliation(s)
- Benoît Falquet
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Gizem Ölmezer
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Franz Enkner
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Dominique Klein
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Kiran Challa
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Rowin Appanah
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Ulrich Rass
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| |
Collapse
|
28
|
Soutourina O, Dubois T, Monot M, Shelyakin PV, Saujet L, Boudry P, Gelfand MS, Dupuy B, Martin-Verstraete I. Genome-Wide Transcription Start Site Mapping and Promoter Assignments to a Sigma Factor in the Human Enteropathogen Clostridioides difficile. Front Microbiol 2020; 11:1939. [PMID: 32903654 PMCID: PMC7438776 DOI: 10.3389/fmicb.2020.01939] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
The emerging human enteropathogen Clostridioides difficile is the main cause of diarrhea associated with antibiotherapy. Regulatory pathways underlying the adaptive responses remain understudied and the global view of C. difficile promoter structure is still missing. In the genome of C. difficile 630, 22 genes encoding sigma factors are present suggesting a complex pattern of transcription in this bacterium. We present here the first transcriptional map of the C. difficile genome resulting from the identification of transcriptional start sites (TSS), promoter motifs and operon structures. By 5′-end RNA-seq approach, we mapped more than 1000 TSS upstream of genes. In addition to these primary TSS, this analysis revealed complex structure of transcriptional units such as alternative and internal promoters, potential RNA processing events and 5′ untranslated regions. By following an in silico iterative strategy that used as an input previously published consensus sequences and transcriptomic analysis, we identified candidate promoters upstream of most of protein-coding and non-coding RNAs genes. This strategy also led to refine consensus sequences of promoters recognized by major sigma factors of C. difficile. Detailed analysis focuses on the transcription in the pathogenicity locus and regulatory genes, as well as regulons of transition phase and sporulation sigma factors as important components of C. difficile regulatory network governing toxin gene expression and spore formation. Among the still uncharacterized regulons of the major sigma factors of C. difficile, we defined the SigL regulon by combining transcriptome and in silico analyses. We showed that the SigL regulon is largely involved in amino-acid degradation, a metabolism crucial for C. difficile gut colonization. Finally, we combined our TSS mapping, in silico identification of promoters and RNA-seq data to improve gene annotation and to suggest operon organization in C. difficile. These data will considerably improve our knowledge of global regulatory circuits controlling gene expression in C. difficile and will serve as a useful rich resource for scientific community both for the detailed analysis of specific genes and systems biology studies.
Collapse
Affiliation(s)
- Olga Soutourina
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France.,Institut Universitaire de France, Paris, France.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Thomas Dubois
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Marc Monot
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | | | - Laure Saujet
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Pierre Boudry
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems, Moscow, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Bruno Dupuy
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
29
|
Forrer Charlier C, Martins RAP. Protective Mechanisms Against DNA Replication Stress in the Nervous System. Genes (Basel) 2020; 11:E730. [PMID: 32630049 PMCID: PMC7397197 DOI: 10.3390/genes11070730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
The precise replication of DNA and the successful segregation of chromosomes are essential for the faithful transmission of genetic information during the cell cycle. Alterations in the dynamics of genome replication, also referred to as DNA replication stress, may lead to DNA damage and, consequently, mutations and chromosomal rearrangements. Extensive research has revealed that DNA replication stress drives genome instability during tumorigenesis. Over decades, genetic studies of inherited syndromes have established a connection between the mutations in genes required for proper DNA repair/DNA damage responses and neurological diseases. It is becoming clear that both the prevention and the responses to replication stress are particularly important for nervous system development and function. The accurate regulation of cell proliferation is key for the expansion of progenitor pools during central nervous system (CNS) development, adult neurogenesis, and regeneration. Moreover, DNA replication stress in glial cells regulates CNS tumorigenesis and plays a role in neurodegenerative diseases such as ataxia telangiectasia (A-T). Here, we review how replication stress generation and replication stress response (RSR) contribute to the CNS development, homeostasis, and disease. Both cell-autonomous mechanisms, as well as the evidence of RSR-mediated alterations of the cellular microenvironment in the nervous system, were discussed.
Collapse
Affiliation(s)
| | - Rodrigo A. P. Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
30
|
Colombo CV, Gnugnoli M, Gobbini E, Longhese MP. How do cells sense DNA lesions? Biochem Soc Trans 2020; 48:677-691. [PMID: 32219379 DOI: 10.1042/bst20191118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2023]
Abstract
DNA is exposed to both endogenous and exogenous DNA damaging agents that chemically modify it. To counteract the deleterious effects exerted by DNA lesions, eukaryotic cells have evolved a network of cellular pathways, termed DNA damage response (DDR). The DDR comprises both mechanisms devoted to repair DNA lesions and signal transduction pathways that sense DNA damage and transduce this information to specific cellular targets. These targets, in turn, impact a wide range of cellular processes including DNA replication, DNA repair and cell cycle transitions. The importance of the DDR is highlighted by the fact that DDR inactivation is commonly found in cancer and causes many different human diseases. The protein kinases ATM and ATR, as well as their budding yeast orthologs Tel1 and Mec1, act as master regulators of the DDR. The initiating events in the DDR entail both DNA lesion recognition and assembly of protein complexes at the damaged DNA sites. Here, we review what is known about the early steps of the DDR.
Collapse
Affiliation(s)
- Chiara Vittoria Colombo
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Marco Gnugnoli
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Elisa Gobbini
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
31
|
Petr MA, Tulika T, Carmona-Marin LM, Scheibye-Knudsen M. Protecting the Aging Genome. Trends Cell Biol 2020; 30:117-132. [DOI: 10.1016/j.tcb.2019.12.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022]
|
32
|
|
33
|
Functional interplay between the oxidative stress response and DNA damage checkpoint signaling for genome maintenance in aerobic organisms. J Microbiol 2019; 58:81-91. [DOI: 10.1007/s12275-020-9520-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
|
34
|
Abstract
PURPOSE OF REVIEW The goal of the review is to provide a comprehensive overview of the current understanding of the mechanisms underlying variation in human stature. RECENT FINDINGS Human height is an anthropometric trait that varies considerably within human populations as well as across the globe. Historically, much research focus was placed on understanding the biology of growth plate chondrocytes and how modifications to core chondrocyte proliferation and differentiation pathways potentially shaped height attainment in normal as well as pathological contexts. Recently, much progress has been made to improve our understanding regarding the mechanisms underlying the normal and pathological range of height variation within as well as between human populations, and today, it is understood to reflect complex interactions among a myriad of genetic, environmental, and evolutionary factors. Indeed, recent improvements in genetics (e.g., GWAS) and breakthroughs in functional genomics (e.g., whole exome sequencing, DNA methylation analysis, ATAC-sequencing, and CRISPR) have shed light on previously unknown pathways/mechanisms governing pathological and common height variation. Additionally, the use of an evolutionary perspective has also revealed important mechanisms that have shaped height variation across the planet. This review provides an overview of the current knowledge of the biological mechanisms underlying height variation by highlighting new research findings on skeletal growth control with an emphasis on previously unknown pathways/mechanisms influencing pathological and common height variation. In this context, this review also discusses how evolutionary forces likely shaped the genomic architecture of height across the globe.
Collapse
Affiliation(s)
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
35
|
Tarnauskaitė Ž, Bicknell LS, Marsh JA, Murray JE, Parry DA, Logan CV, Bober MB, de Silva DC, Duker AL, Sillence D, Wise C, Jackson AP, Murina O, Reijns MAM. Biallelic variants in DNA2 cause microcephalic primordial dwarfism. Hum Mutat 2019; 40:1063-1070. [PMID: 31045292 PMCID: PMC6773220 DOI: 10.1002/humu.23776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/15/2019] [Accepted: 04/28/2019] [Indexed: 11/11/2022]
Abstract
Microcephalic primordial dwarfism (MPD) is a group of rare single-gene disorders characterized by the extreme reduction in brain and body size from early development onwards. Proteins encoded by MPD-associated genes play important roles in fundamental cellular processes, notably genome replication and repair. Here we report the identification of four MPD individuals with biallelic variants in DNA2, which encodes an adenosine triphosphate (ATP)-dependent helicase/nuclease involved in DNA replication and repair. We demonstrate that the two intronic variants (c.1764-38_1764-37ins(53) and c.74+4A>C) found in these individuals substantially impair DNA2 transcript splicing. Additionally, we identify a missense variant (c.1963A>G), affecting a residue of the ATP-dependent helicase domain that is highly conserved between humans and yeast, with the resulting substitution (p.Thr655Ala) predicted to directly impact ATP/ADP (adenosine diphosphate) binding by DNA2. Our findings support the pathogenicity of these variants as biallelic hypomorphic mutations, establishing DNA2 as an MPD disease gene.
Collapse
Affiliation(s)
- Žygimantė Tarnauskaitė
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Louise S. Bicknell
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Joseph A. Marsh
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Jennie E. Murray
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - David A. Parry
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Clare V. Logan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Michael B. Bober
- Division of Genetics, Department of PediatricsNemours/Alfred I. duPont Hospital for ChildrenWilmingtonDelaware
| | - Deepthi C. de Silva
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaColomboSri Lanka
| | - Angela L. Duker
- Division of Genetics, Department of PediatricsNemours/Alfred I. duPont Hospital for ChildrenWilmingtonDelaware
| | - David Sillence
- Discipline of Genomic Medicine, Faculty of Medicine and HealthUniversity of SydneySydneyAustralia
- Western Sydney Genetics ProgramSydney Children's Hospitals NetworkWestmeadAustralia
| | - Carol Wise
- Sarah M. and Charles E. Seay Center for Musculoskeletal ResearchTexas Scottish, Rite Hospital for ChildrenDallasTexas
- McDermott Center for Human Growth and DevelopmentUniversity of Texas, Southwestern Medical CenterDallasTexas
- Department of Orthopaedic SurgeryUniversity of Texas Southwestern Medical CenterDallasTexas
- Department of PediatricsUniversity of Texas Southwestern Medical CenterDallasTexas
| | - Andrew P. Jackson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Olga Murina
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Martin A. M. Reijns
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
36
|
ATM, DNA-PKcs and ATR: shaping development through the regulation of the DNA damage responses. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42764-019-00003-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Kalogeropoulou A, Lygerou Z, Taraviras S. Cortical Development and Brain Malformations: Insights From the Differential Regulation of Early Events of DNA Replication. Front Cell Dev Biol 2019; 7:29. [PMID: 30915332 PMCID: PMC6421272 DOI: 10.3389/fcell.2019.00029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/20/2019] [Indexed: 12/27/2022] Open
Abstract
During the development of the cortex distinct populations of Neural Stem Cells (NSCs) are defined by differences in their cell cycle duration, self-renewal capacity and transcriptional profile. A key difference across the distinct populations of NSCs is the length of G1 phase, where the licensing of the DNA replication origins takes place by the assembly of a pre-replicative complex. Licensing of DNA replication is a process that is adapted accordingly to the cell cycle length of NSCs to secure the timed duplication of the genome. Moreover, DNA replication should be efficiently coordinated with ongoing transcription for the prevention of conflicts that would impede the progression of both processes, compromising the normal course of development. In the present review we discuss how the differential regulation of the licensing and initiation of DNA replication in different cortical NSCs populations is integrated with the properties of these stem cells populations. Moreover, we examine the implication of the initial steps of DNA replication in the pathogenetic mechanisms of neurodevelopmental defects and Zika virus-related microcephaly, highlighting the significance of the differential regulation of DNA replication during brain development.
Collapse
Affiliation(s)
| | - Zoi Lygerou
- Department of General Biology, Medical School, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
38
|
Verification and rectification of cell type-specific splicing of a Seckel syndrome-associated ATR mutation using iPS cell model. J Hum Genet 2019; 64:445-458. [PMID: 30846821 PMCID: PMC8075875 DOI: 10.1038/s10038-019-0574-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/25/2018] [Accepted: 01/18/2019] [Indexed: 11/08/2022]
Abstract
Seckel syndrome (SS) is a rare spectrum of congenital severe microcephaly and dwarfism. One SS-causative gene is Ataxia Telangiectasia and Rad3-Related Protein (ATR), and ATR (c.2101 A>G) mutation causes skipping of exon 9, resulting in a hypomorphic ATR defect. This mutation is considered the cause of an impaired response to DNA replication stress, the main function of ATR, contributing to the pathogenesis of microcephaly. However, the precise behavior and impact of this splicing defect in human neural progenitor cells (NPCs) is unclear. To address this, we established induced pluripotent stem cells (iPSCs) from fibroblasts carrying the ATR mutation and an isogenic ATR-corrected counterpart iPSC clone. SS-patient-derived iPSCs (SS-iPSCs) exhibited cell type-specific splicing; exon 9 was dominantly skipped in fibroblasts and iPSC-derived NPCs, but it was included in undifferentiated iPSCs and definitive endodermal cells. SS-iPSC-derived NPCs (SS-NPCs) showed distinct expression profiles from ATR non-mutated NPCs with negative enrichment of neuronal genesis-related gene sets. In SS-NPCs, abnormal mitotic spindles occurred more frequently than in gene-corrected counterparts, and the alignment of NPCs in the surface of the neurospheres was perturbed. Finally, we tested several splicing-modifying compounds and found that TG003, a CLK1 inhibitor, could pharmacologically rescue the exon 9 skipping in SS-NPCs. Treatment with TG003 restored the ATR kinase activity in SS-NPCs and decreased the frequency of abnormal mitotic events. In conclusion, our iPSC model revealed a novel effect of the ATR mutation in mitotic processes of NPCs and NPC-specific missplicing, accompanied by the recovery of neuronal defects using a splicing rectifier.
Collapse
|
39
|
Samuels ME, Campeau PM. Genetics of the patella. Eur J Hum Genet 2019; 27:671-680. [PMID: 30664715 DOI: 10.1038/s41431-018-0329-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 11/09/2022] Open
Abstract
We review genetic diseases with identified molecular bases that include abnormal, reduced (hypoplasia), or absent (aplasia) patellae as a significant aspect of the phenotype. The known causal genes can be broadly organized according to three major developmental and cellular processes, although some genes may act in more than one of these: limb specification and pattern formation; DNA replication and chromatin structure; bone development and differentiation. There are also several genes whose phenotypes in mice indicate relevance to patellar development, for which human equivalent syndromes have not been reported. Developmental studies in mouse and chick embryos, as well as patellar involvement in human diseases with decreased mobility, document the additional importance of local environmental factors in patellar ontogenesis. Patellar anomalies found in humans can be an important clue to a clinical genetic diagnosis, and a better knowledge of the genetics of patellar anomalies will improve our understanding of limb development.
Collapse
Affiliation(s)
- Mark E Samuels
- Département de médicine, Université de Montréal, Montreal, Canada. .,Centre de Recherche du CHU Ste-Justine, Montreal, Canada.
| | - Philippe M Campeau
- Department of Pediatrics, Centre de Recherche du CHU Ste-Justine, Montreal, Canada
| |
Collapse
|
40
|
Llorens-Agost M, Luessing J, van Beneden A, Eykelenboom J, O’Reilly D, Bicknell LS, Reynolds JJ, van Koegelenberg M, Hurles ME, Brady AF, Jackson AP, Stewart GS, Lowndes NF. Analysis of novel missense ATR mutations reveals new splicing defects underlying Seckel syndrome. Hum Mutat 2018; 39:1847-1853. [PMID: 30199583 PMCID: PMC7615757 DOI: 10.1002/humu.23648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/17/2018] [Accepted: 09/06/2018] [Indexed: 01/01/2023]
Abstract
Ataxia Telangiectasia and Rad3 related (ATR) is one of the main regulators of the DNA damage response. It coordinates cell cycle checkpoint activation, replication fork stability, restart and origin firing to maintain genome integrity. Mutations of the ATR gene have been reported in Seckel patients, who suffer from a rare genetic disease characterized by severe microcephaly and growth retardation. Here, we report the case of a Seckel patient with compound heterozygous mutations in ATR. One allele has an intronic mutation affecting splicing of neighboring exons, the other an exonic missense mutation, producing the variant p.Lys1665Asn, of unknown pathogenicity. We have modeled this novel missense mutation, as well as a previously described missense mutation p.Met1159Ile, and assessed their effect on ATR function. Interestingly, our data indicate that both missense mutations have no direct effect on protein function, but rather result in defective ATR splicing. These results emphasize the importance of splicing mutations in Seckel Syndrome.
Collapse
Affiliation(s)
- Marta Llorens-Agost
- Centre for Chromosome Biology, National University of Ireland in Galway, Galway, Ireland
| | - Janna Luessing
- Centre for Chromosome Biology, National University of Ireland in Galway, Galway, Ireland
| | - Amandine van Beneden
- Centre for Chromosome Biology, National University of Ireland in Galway, Galway, Ireland
| | - John Eykelenboom
- Centre for Chromosome Biology, National University of Ireland in Galway, Galway, Ireland
- School of Life Sciences, University of Dundee, Dundee, Scotland
| | - Dawn O’Reilly
- Oxford Stem Cell Institute, University of Oxford, Oxford, UK
| | - Louise S Bicknell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - John J Reynolds
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - Matthew E Hurles
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Angela F Brady
- North West Thames Regional Genetics Service, Northwick Park Hospital, Harrow, UK
| | - Andrew P Jackson
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburg, Scotland
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Noel F Lowndes
- Centre for Chromosome Biology, National University of Ireland in Galway, Galway, Ireland
| |
Collapse
|
41
|
Abstract
The chemical treatment of cancer started with the realization that DNA damaging agents such as mustard gas present notable antitumoural properties. Consequently, early drug development focused on genotoxic chemicals, some of which are still widely used in the clinic. However, the efficacy of such therapies is often limited by the side effects of these drugs on healthy cells. A refinement to this approach is to use compounds that can exploit the presence of DNA damage in cancer cells. Given that replication stress (RS) is a major source of genomic instability in cancer, targeting the RS-response kinase ataxia telangiectasia and Rad3-related protein (ATR) has emerged as a promising alternative. With ATR inhibitors now entering clinical trials, we here revisit the biology behind this strategy and discuss potential biomarkers that could be used for a better selection of patients who respond to therapy.
Collapse
Affiliation(s)
- Emilio Lecona
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
42
|
Imbert-Bouteille M, Mau Them FT, Thevenon J, Guignard T, Gatinois V, Riviere JB, Boland A, Meyer V, Deleuze JF, Sanchez E, Apparailly F, Geneviève D, Willems M. LARP7 variants and further delineation of the Alazami syndrome phenotypic spectrum among primordial dwarfisms: 2 sisters. Eur J Med Genet 2018; 62:161-166. [PMID: 30006060 DOI: 10.1016/j.ejmg.2018.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/20/2018] [Accepted: 07/09/2018] [Indexed: 11/18/2022]
Abstract
Alazami syndrome (AS) (MIM# 615071) is an autosomal recessive microcephalic primordial dwarfism (PD) with recognizable facial features and severe intellectual disability due to depletion or loss of function variants in LARP7. To date, 15 patients with AS have been reported. Here we describe two consanguineous Algerian sisters with Alazami PD due to LARP7 homozygous pathogenic variants detected by whole exome sequencing. By comparing these two additional cases with those previously reported, we strengthen the key features of AS: severe growth restriction, severe intellectual disability and some distinguishing facial features such as broad nose, malar hypoplasia, wide mouth, full lips and abnormally set teeth. We also report significant new findings enabling further delineation of this syndrome: disproportionately mild microcephaly, stereotypic hand wringing and severe anxiety, thickened skin over the hands and feet, and skeletal, eye and heart malformations. From previous reviews, we summarize the main etiologies of PD according to the involved mechanisms and cellular pathways, highlighting their clinical core features.
Collapse
Affiliation(s)
- Marion Imbert-Bouteille
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Centre de Référence Anomalies du développement et Syndromes Malformatifs, Plateforme Recherche de Microremaniements Chromosomiques, CHU de Montpellier, Université de Montpellier, France
| | - Frédéric Tran Mau Them
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Centre de Référence Anomalies du développement et Syndromes Malformatifs, Plateforme Recherche de Microremaniements Chromosomiques, CHU de Montpellier, Université de Montpellier, France; Unité Inserm, U1183, Hôpital Saint-Eloi, CHU de Montpellier, Montpellier, France; Equipe Génétique des Anomalies du Développement, INSERM UMR1231, Université de Bourgogne-Franche Comté, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'Enfants, CHU Dijon et Université de Bourgogne, France
| | - Julien Thevenon
- Equipe Génétique des Anomalies du Développement, INSERM UMR1231, Université de Bourgogne-Franche Comté, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'Enfants, CHU Dijon et Université de Bourgogne, France; Centre de Génétique, Hôpital Couple-Enfant, CHU Grenoble-Alpes, La Tronche, France
| | - Thomas Guignard
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Centre de Référence Anomalies du développement et Syndromes Malformatifs, Plateforme Recherche de Microremaniements Chromosomiques, CHU de Montpellier, Université de Montpellier, France
| | - Vincent Gatinois
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Centre de Référence Anomalies du développement et Syndromes Malformatifs, Plateforme Recherche de Microremaniements Chromosomiques, CHU de Montpellier, Université de Montpellier, France
| | - Jean-Baptiste Riviere
- Laboratoire de Génétique Moléculaire, Plateau Technique de Biologie - CHU Dijon, Dijon, France
| | - Anne Boland
- Centre National de Génotypage, Institut de Génomique, Commissariat à l'Energie Atomique, Evry, France
| | - Vincent Meyer
- Centre National de Génotypage, Institut de Génomique, Commissariat à l'Energie Atomique, Evry, France
| | - Jean-François Deleuze
- Centre National de Génotypage, Institut de Génomique, Commissariat à l'Energie Atomique, Evry, France
| | - Elodie Sanchez
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Centre de Référence Anomalies du développement et Syndromes Malformatifs, Plateforme Recherche de Microremaniements Chromosomiques, CHU de Montpellier, Université de Montpellier, France; Unité Inserm, U1183, Hôpital Saint-Eloi, CHU de Montpellier, Montpellier, France
| | - Florence Apparailly
- Unité Inserm, U1183, Hôpital Saint-Eloi, CHU de Montpellier, Montpellier, France
| | - David Geneviève
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Centre de Référence Anomalies du développement et Syndromes Malformatifs, Plateforme Recherche de Microremaniements Chromosomiques, CHU de Montpellier, Université de Montpellier, France; Unité Inserm, U1183, Hôpital Saint-Eloi, CHU de Montpellier, Montpellier, France
| | - Marjolaine Willems
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Centre de Référence Anomalies du développement et Syndromes Malformatifs, Plateforme Recherche de Microremaniements Chromosomiques, CHU de Montpellier, Université de Montpellier, France; Unité Inserm, U1183, Hôpital Saint-Eloi, CHU de Montpellier, Montpellier, France.
| |
Collapse
|
43
|
Andrade AC, Jee YH, Nilsson O. New Genetic Diagnoses of Short Stature Provide Insights into Local Regulation of Childhood Growth
. Horm Res Paediatr 2018; 88:22-37. [PMID: 28334714 DOI: 10.1159/000455850] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022] Open
Abstract
Idiopathic short stature is a common condition with a heterogeneous etiology. Advances in genetic methods, including genome sequencing techniques and bioinformatics approaches, have emerged as important tools to identify the genetic defects in families with monogenic short stature. These findings have contributed to the understanding of growth regulation and indicate that growth plate chondrogenesis, and therefore linear growth, is governed by a large number of genes important for different signaling pathways and cellular functions, including genetic defects in hormonal regulation, paracrine signaling, cartilage matrix, and fundamental cellular processes. In addition, mutations in the same gene can cause a wide phenotypic spectrum depending on the severity and mode of inheritance of the mutation.
.
Collapse
Affiliation(s)
- Anenisia C Andrade
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Youn Hee Jee
- Section of Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Ola Nilsson
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Örebro University and University Hospital, Örebro, Sweden
| |
Collapse
|
44
|
ATM and ATR play complementary roles in the behavior of excitatory and inhibitory vesicle populations. Proc Natl Acad Sci U S A 2017; 115:E292-E301. [PMID: 29279380 DOI: 10.1073/pnas.1716892115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ATM (ataxia-telangiectasia mutated) and ATR (ATM and Rad3-related) are large PI3 kinases whose human mutations result in complex syndromes that include a compromised DNA damage response (DDR) and prominent nervous system phenotypes. Both proteins are nuclear-localized in keeping with their DDR functions, yet both are also found in cytoplasm, including on neuronal synaptic vesicles. In ATM- or ATR-deficient neurons, spontaneous vesicle release is reduced, but a drop in ATM or ATR level also slows FM4-64 dye uptake. In keeping with this, both proteins bind to AP-2 complex components as well as to clathrin, suggesting roles in endocytosis and vesicle recycling. The two proteins play complementary roles in the DDR; ATM is engaged in the repair of double-strand breaks, while ATR deals mainly with single-strand damage. Unexpectedly, this complementarity extends to these proteins' synaptic function as well. Superresolution microscopy and coimmunoprecipitation reveal that ATM associates exclusively with excitatory (VGLUT1+) vesicles, while ATR associates only with inhibitory (VGAT+) vesicles. The levels of ATM and ATR respond to each other; when ATM is deficient, ATR levels rise, and vice versa. Finally, blocking NMDA, but not GABA, receptors causes ATM levels to rise while ATR levels respond to GABA, but not NMDA, receptor blockade. Taken together, our data suggest that ATM and ATR are part of the cellular "infrastructure" that maintains the excitatory/inhibitory balance of the nervous system. This idea has important implications for the human diseases resulting from their genetic deficiency.
Collapse
|
45
|
Goffinet AM. The evolution of cortical development: the synapsid-diapsid divergence. Development 2017; 144:4061-4077. [PMID: 29138289 DOI: 10.1242/dev.153908] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cerebral cortex covers the rostral part of the brain and, in higher mammals and particularly humans, plays a key role in cognition and consciousness. It is populated with neuronal cell bodies distributed in radially organized layers. Understanding the common and lineage-specific molecular mechanisms that orchestrate cortical development and evolution are key issues in neurobiology. During evolution, the cortex appeared in stem amniotes and evolved divergently in two main branches of the phylogenetic tree: the synapsids (which led to present day mammals) and the diapsids (reptiles and birds). Comparative studies in organisms that belong to those two branches have identified some common principles of cortical development and organization that are possibly inherited from stem amniotes and regulated by similar molecular mechanisms. These comparisons have also highlighted certain essential features of mammalian cortices that are absent or different in diapsids and that probably evolved after the synapsid-diapsid divergence. Chief among these is the size and multi-laminar organization of the mammalian cortex, and the propensity to increase its area by folding. Here, I review recent data on cortical neurogenesis, neuronal migration and cortical layer formation and folding in this evolutionary perspective, and highlight important unanswered questions for future investigation.
Collapse
Affiliation(s)
- Andre M Goffinet
- University of Louvain, Avenue Mounier, 73 Box B1.73.16, B1200 Brussels, Belgium
| |
Collapse
|
46
|
DNA Damage as a Driver for Growth Delay: Chromosome Instability Syndromes with Intrauterine Growth Retardation. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8193892. [PMID: 29238724 PMCID: PMC5702399 DOI: 10.1155/2017/8193892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/16/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022]
Abstract
DNA is constantly exposed to endogenous and exogenous mutagenic stimuli that are capable of producing diverse lesions. In order to protect the integrity of the genetic material, a wide array of DNA repair systems that can target each specific lesion has evolved. Despite the availability of several repair pathways, a common general program known as the DNA damage response (DDR) is stimulated to promote lesion detection, signaling, and repair in order to maintain genetic integrity. The genes that participate in these pathways are subject to mutation; a loss in their function would result in impaired DNA repair and genomic instability. When the DDR is constitutionally altered, every cell of the organism, starting from development, will show DNA damage and subsequent genomic instability. The cellular response to this is either uncontrolled proliferation and cell cycle deregulation that ensues overgrowth, or apoptosis and senescence that result in tissue hypoplasia. These diverging growth abnormalities can clinically translate as cancer or growth retardation; both features can be found in chromosome instability syndromes (CIS). The analysis of the clinical, cellular, and molecular phenotypes of CIS with intrauterine growth retardation allows inferring that replication alteration is their unifying feature.
Collapse
|
47
|
Duerinckx S, Abramowicz M. The genetics of congenitally small brains. Semin Cell Dev Biol 2017; 76:76-85. [PMID: 28912110 DOI: 10.1016/j.semcdb.2017.09.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022]
Abstract
Primary microcephaly (PM) refers to a congenitally small brain, resulting from insufficient prenatal production of neurons, and serves as a model disease for brain volumic development. Known PM genes delineate several cellular pathways, among which the centriole duplication pathway, which provide interesting clues about the cellular mechanisms involved. The general interest of the genetic dissection of PM is illustrated by the convergence of Zika virus infection and PM gene mutations on congenital microcephaly, with CENPJ/CPAP emerging as a key target. Physical (protein-protein) and genetic (digenic inheritance) interactions of Wdr62 and Aspm have been demonstrated in mice, and should now be sought in humans using high throughput parallel sequencing of multiple PM genes in PM patients and control subjects, in order to categorize mutually interacting genes, hence delineating functional pathways in vivo in humans.
Collapse
Affiliation(s)
- Sarah Duerinckx
- IRIBHM, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| | - Marc Abramowicz
- IRIBHM, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium; Department of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| |
Collapse
|
48
|
Analysis of centrosome and DNA damage response in PLK4 associated Seckel syndrome. Eur J Hum Genet 2017; 25:1118-1125. [PMID: 28832566 DOI: 10.1038/ejhg.2017.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 05/18/2017] [Accepted: 06/27/2017] [Indexed: 11/08/2022] Open
Abstract
Microcephalic primordial dwarfism (MPD) is a group of autosomal recessive inherited single-gene disorders with intrauterine and postnatal global growth failure. Seckel syndrome is the most common form of the MPD. Ten genes are known with Seckel syndrome. Using genome-wide SNP genotyping and homozygosity mapping we mapped a Seckel syndrome gene to chromosomal region 4q28.1-q28.3 in a Turkish family. Direct sequencing of PLK4 (polo-like kinase 4) revealed a homozygous splicing acceptor site transition (c.31-3 A>G) that results in a premature translation termination (p.[=,Asp11Profs*14]) causing deletion of all known functional domains of the protein. PLK4 is a master regulator of centriole biogenesis and its deficiency has recently been associated with Seckel syndrome. However, the role of PLK4 in genomic stability and the DNA damage response is unclear. Evaluation of the PLK4-Seckel fibroblasts obtained from patient revealed the expected impaired centriole biogenesis, disrupted mitotic morphology, G2/M delay, and extended cell doubling time. Analysis of the PLK4-Seckel cells indicated that PLK4 is also essential for genomic stability and DNA damage response. These findings provide mechanistic insight into the pathogenesis of the severe growth failure associated with PLK4-deficiency.
Collapse
|
49
|
Abstract
Short stature is a common and heterogeneous condition that is often genetic in etiology. For most children with genetic short stature, the specific molecular causes remain unknown; but with advances in exome/genome sequencing and bioinformatics approaches, new genetic causes of growth disorders have been identified, contributing to the understanding of the underlying molecular mechanisms of longitudinal bone growth and growth failure. Identifying new genetic causes of growth disorders has the potential to improve diagnosis, prognostic accuracy, and individualized management, and help avoid unnecessary testing for endocrine and other disorders.
Collapse
Affiliation(s)
- Youn Hee Jee
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive MSC 1103, Bethesda, MD 20892-1103, USA.
| | - Anenisia C Andrade
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Solnavägen 1, Solna 171 77, Sweden
| | - Jeffrey Baron
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive MSC 1103, Bethesda, MD 20892-1103, USA
| | - Ola Nilsson
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Solnavägen 1, Solna 171 77, Sweden; University Hospital, Örebro University, Södra Grev Rosengatan, Örebro 701 85, Sweden
| |
Collapse
|
50
|
Abstract
PURPOSE OF THE REVIEW This review will provide an overview of the microcephalic primordial dwarfism (MPD) class of disorders and provide the reader comprehensive clinical review with suggested care guidelines for patients with microcephalic osteodysplastic primordial dwarfism, type II (MOPDII). RECENT FINDINGS Over the last 15 years, significant strides have been made in the diagnosis, natural history, and management of MOPDII. MOPDII is the most common and well described form of MPD. The classic features of the MPD group are severe pre- and postnatal growth retardation, with marked microcephaly. In addition to these features, individuals with MOPDII have characteristic facies, skeletal dysplasia, abnormal dentition, and an increased risk for cerebrovascular disease and insulin resistance. Biallelic loss-of-function mutations in the pericentrin gene cause MOPDII, which is inherited in an autosomal recessive manner.
Collapse
Affiliation(s)
- Michael B. Bober
- 0000 0001 2166 5843grid.265008.9Stanley Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA USA
- 0000 0004 0458 9676grid.239281.3A. I. DuPont Hospital for Children, 1600 Rockland-Road, Wilmington, DE 19803 USA
| | - Andrew P. Jackson
- 0000 0004 1936 7988grid.4305.2MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| |
Collapse
|