1
|
Li Y, Liu P, Wang W, Jia H, Bai Y, Yuan Z, Yang Z. A novel genotype-phenotype between persistent-cloaca-related VACTERL and mutations of 8p23 and 12q23.1. Pediatr Res 2024; 95:1246-1253. [PMID: 38135728 DOI: 10.1038/s41390-023-02928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023]
Abstract
The mechanism underlying anorectal malformations (ARMs)-related VACTERL (vertebral defects, anal atresia, cardiac defects, tracheo-esophageal fistula, and renal and limb abnormalities) remains unclear. Copy number variation (CNV) contributed to VACTERL pathogenicity. Here, we report a novel CNV in 8p23 and 12q23.1 identified in a case of ARMs-related VACTERL association. This 12-year-old girl presented a cloaca (urethra, vagina, and rectum opening together and sharing a single tube length), an isolated kidney, and a perpetuation of the left superior vena cava at birth. Her intelligence, growth, and development were slightly lower than those of normal children of the same age. Array comparative genomic hybridization revealed a 9.6-Mb deletion in 8p23.1-23.3 and a 0.52-Mb duplication in 12q23.1 in her genome. Furthermore, we reviewed the cases involving CNVs in patients with VACTERL, 8p23 deletion, and 12q23.1 duplication, and our case was the first displaying ARMs-related VACTERL association with CNV in 8p23 and 12q23.1. These findings enriched our understanding between VACTERL association and the mutations of 8p23 deletion and 12q23.1 duplication. IMPACT: This is a novel case of a Chinese girl with anorectal malformations (ARMs)-related VACTERL with an 8p23.1-23.3 deletion and 12q23.1 duplication. Cloaca malformation is presented with novel copy number variation in 8p23.1-23.3 deletion and 12q23.1 duplication.
Collapse
Affiliation(s)
- Yue Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peiqi Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huimin Jia
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Huang Y, Bao T, Zhang T, Ji G, Wang Y, Ling Z, Li W. Machine Learning Study of SNPs in Noncoding Regions to Predict Non-small Cell Lung Cancer Susceptibility. Clin Oncol (R Coll Radiol) 2023; 35:701-712. [PMID: 37689528 DOI: 10.1016/j.clon.2023.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/23/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the most common pathological subtype of lung cancer. Both environmental and genetic factors have been reported to impact the lung cancer susceptibility. We conducted a genome-wide association study (GWAS) of 287 NSCLC patients and 467 healthy controls in a Chinese population using the Illumina Genome-Wide Asian Screening Array Chip on 712,095 SNPs (single nucleotide polymorphisms). Using logistic regression modeling, GWAS identified 17 new noncoding region SNP loci associated with the NSCLC risk, and the top three (rs80040741, rs9568547, rs6010259) were under a stringent p-value (<3.02e-6). Notably, rs80040741 and rs6010259 were annotated from the intron regions of MUC3A and MLC1, respectively. Together with another five SNPs previously reported in Chinese NSCLC patients and another four covariates (e.g., smoking status, age, low dose CT screening, sex), a predictive model by machine learning methods can separate the NSCLC from healthy controls with an accuracy of 86%. This is the first time to apply machine learning method in predicting the NSCLC susceptibility using both genetic and clinical characteristics. Our findings will provide a promising method in NSCLC early diagnosis and improve our understanding of applying machine learning methods in precision medicine.
Collapse
Affiliation(s)
- Y Huang
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Institute of Respiratory Healthy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - T Bao
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Institute of Respiratory Healthy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - T Zhang
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Institute of Respiratory Healthy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - G Ji
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Institute of Respiratory Healthy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Y Wang
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Institute of Respiratory Healthy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Z Ling
- Chengdu Genepre Technology Co., LTD, Chengdu, Sichuan, China
| | - W Li
- Institute of Respiratory Healthy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Respiratory and Critical Care Medicine, Institute of Respiratory Healthy, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China; State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu, Sichuan 610041, West China Hospital, China.
| |
Collapse
|
3
|
Zou K, Sun P, Huang H, Zhuo H, Qie R, Xie Y, Luo J, Li N, Li J, He J, Aschebrook-Kilfoy B, Zhang Y. Etiology of lung cancer: Evidence from epidemiologic studies. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:216-225. [PMID: 39036545 PMCID: PMC11256564 DOI: 10.1016/j.jncc.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 12/05/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer incidence and mortality worldwide. While smoking, radon, air pollution, as well as occupational exposure to asbestos, diesel fumes, arsenic, beryllium, cadmium, chromium, nickel, and silica are well-established risk factors, many lung cancer cases cannot be explained by these known risk factors. Over the last two decades the incidence of adenocarcinoma has risen, and it now surpasses squamous cell carcinoma as the most common histologic subtype. This increase warrants new efforts to identify additional risk factors for specific lung cancer subtypes as well as a comprehensive review of current evidence from epidemiologic studies to inform future studies. Given the myriad exposures individuals experience in real-world settings, it is essential to investigate mixture effects from complex exposures and gene-environment interactions in relation to lung cancer and its subtypes.
Collapse
Affiliation(s)
- Kaiyong Zou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiyuan Sun
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huang Huang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haoran Zhuo
- Yale School of Public Health, New Haven, United States of America
| | - Ranran Qie
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuting Xie
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiajun Luo
- Department of Public Health Sciences, the University of Chicago, Chicago, United States of America
| | - Ni Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Yawei Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Li L, Yu X, Ma G, Ji Z, Bao S, He X, Song L, Yu Y, Shi M, Liu X. Identification of an Innate Immune-Related Prognostic Signature in Early-Stage Lung Squamous Cell Carcinoma. Int J Gen Med 2021; 14:9007-9022. [PMID: 34876838 PMCID: PMC8643179 DOI: 10.2147/ijgm.s341175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 12/26/2022] Open
Abstract
Background Early-stage lung squamous cell carcinoma (LUSC) progression is accompanied by changes in immune microenvironments and the expression of immune-related genes (IRGs). Identifying innate IRGs associated with prognosis may improve treatment and reveal new immunotherapeutic targets. Methods Gene expression profiles and clinical data of early-stage LUSC patients were obtained from the Gene Expression Omnibus and The Cancer Genome Atlas databases and IRGs from the InnateDB database. Univariate and multivariate Cox regression and LASSO regression analyses were performed to identify an innate IRG signature model prognostic in patients with early-stage LUSC. The predictive ability of this model was assessed by time-dependent receiver operator characteristic curve analysis, with the independence of the model-determined risk score assessed by univariate and multivariate Cox regression analyses. Overall survival (OS) in early-stage LUSC patients was assessed using a nomogram and decision curve analysis (DCA). Functional and biological pathways were determined by gene set enrichment analysis, and differences in biological functions and immune microenvironments between the high- and low-risk groups were assessed by ESTIMATE and the CIBERSORT algorithm. Results A signature involving six IRGs (SREBF2, GP2, BMX, NR1H4, DDX41, and GOPC) was prognostic of OS. Samples were divided into high- and low-risk groups based on median risk scores. OS was significantly shorter in the high-risk than in the low-risk group in the training (P < 0.001), GEO validation (P = 0.00021) and TCGA validation (P = 0.034) cohorts. Multivariate Cox regression analysis showed that risk score was an independent risk factor for OS, with the combination of risk score and T stage being optimally predictive of clinical benefit. GSEA, ESTIMATE, and the CIBERSORT algorithm showed that immune cell infiltration was higher and immune-related pathways were more strongly expressed in the low-risk group. Conclusion A signature that includes these six innate IRGs may predict prognosis in patients with early-stage LUSC.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Xue Yu
- Department of Pediatrics, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 420100, People's Republic of China
| | - Guanqiang Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Zhiqi Ji
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Shihao Bao
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Xiaopeng He
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Liang Song
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Yang Yu
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Mo Shi
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Xiangyan Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| |
Collapse
|
5
|
Influence of CMTM8 polymorphisms on lung cancer susceptibility in the Chinese Han population. Pharmacogenet Genomics 2020; 31:89-95. [PMID: 33395025 DOI: 10.1097/fpc.0000000000000426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related mortality worldwide and CMTM8 is a potential tumor suppressor gene, which is down-regulated in lung cancer. The objective of this research was to assess the association of CMTM8 genetic polymorphisms with lung cancer risk. METHODS To evaluate the correlation between CMTM8 polymorphisms and lung cancer risk, Agena MassArray platform was used for genotype determination among 509 lung cancer patients and 506 controls. Multiple genetic models, stratification analysis and Haploview analysis were used by calculating odds ratio (OR) and 95% confidence intervals (CIs). RESULTS Significant associations were detected between CMTM8 rs6771238 and an increased lung cancer risk in codominant (adjusted OR = 1.57, 95% CI: 1.01-2.42, P = 0.044) and dominant (adjusted OR = 1.54, 95% CI: 1.01-2.36, P = 0.047) models. After sex stratification analysis, we observed that rs6771238 was related to an increased risk of lung squamous cell carcinoma, while rs6771238 was associated with an increased risk of lung adenocarcinoma. Rs9835916 was linked to increased risk of lymph node metastasis in lung cancer patients. CONCLUSION Our study first reported that CMTM8 polymorphisms were a risk factor for lung cancer, which suggested the potential roles of CMTM8 in the development of lung cancer.
Collapse
|
6
|
Qiu L, Qu X, He J, Cheng L, Zhang R, Sun M, Yang Y, Wang J, Wang M, Zhu X, Guo W. Predictive model for risk of gastric cancer using genetic variants from genome-wide association studies and high-evidence meta-analysis. Cancer Med 2020; 9:7310-7316. [PMID: 32777176 PMCID: PMC7541133 DOI: 10.1002/cam4.3354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 02/05/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified some single nucleotide polymorphisms (SNPs) associated with the risk of gastric cancer (GCa). However, currently, there is no published predictive model to assess the risk of GCa. In the present study, risk-associated SNPs derived from GWAS and large meta-analyses were selected to construct a predictive model to assess the risk of GCa. A total of 1115 GCa cases and 1172 controls from the eastern Chinese population were included. Logistic regression models were used to identify SNPs that correlated with the risk of GCa. A predictive model to assess the risk of GCa was established by receiver operating characteristic curve analysis. Multifactor dimensionality reduction (MDR) and classification and regression tree (CART) were applied to calculate the effect of high-order gene-environment interactions on risk of the cancer. A total of 42 SNPs were selected for further analysis. The results revealed that ASH1L rs80142782, PKLR rs3762272, PRKAA1 rs13361707, MUC1 rs4072037, PSCA rs2294008, and PLCE1 rs2274223 polymorphisms were associated with a risk of GCa. The area under curve considering both genetic factors and BMI was 3.10% higher than that of BMI alone. MDR analysis revealed that rs13361707 and rs4072307 variants and BMI had interaction effects on susceptibility to GCa, with the highest predictive accuracy (61.23%) and cross-validation consistency (100/100). CART analysis also supported this interaction model that non-overweight status and a six SNP panel could synergistically increase the susceptibility to GCa. The six SNP panel for predicting the risk of GCa may provide new tools for prevention of the cancer based on GWAS and large meta-analyses derived genetic variants.
Collapse
Affiliation(s)
- Lixin Qiu
- Department of Medical OncologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Cancer InstituteCollaborative Innovation Center for Cancer MedicineFudan University Shanghai Cancer CenterShanghaiChina
| | - Xiaofei Qu
- Cancer InstituteCollaborative Innovation Center for Cancer MedicineFudan University Shanghai Cancer CenterShanghaiChina
| | - Jing He
- Cancer InstituteCollaborative Innovation Center for Cancer MedicineFudan University Shanghai Cancer CenterShanghaiChina
| | - Lei Cheng
- Department of Medical OncologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Cancer InstituteCollaborative Innovation Center for Cancer MedicineFudan University Shanghai Cancer CenterShanghaiChina
| | - Ruoxin Zhang
- Cancer InstituteCollaborative Innovation Center for Cancer MedicineFudan University Shanghai Cancer CenterShanghaiChina
| | - Menghong Sun
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Yajun Yang
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghaiChina
- Fudan‐Taizhou Institute of Health SciencesTaizhouChina
| | - Jiucun Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghaiChina
- Fudan‐Taizhou Institute of Health SciencesTaizhouChina
| | - Mengyun Wang
- Cancer InstituteCollaborative Innovation Center for Cancer MedicineFudan University Shanghai Cancer CenterShanghaiChina
| | - Xiaodong Zhu
- Department of Medical OncologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Weijian Guo
- Department of Medical OncologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
7
|
Lowry MB, Guo C, Zhang Y, Fantacone ML, Logan IE, Campbell Y, Zhang W, Le M, Indra AK, Ganguli-Indra G, Xie J, Gallo RL, Koeffler HP, Gombart AF. A mouse model for vitamin D-induced human cathelicidin antimicrobial peptide gene expression. J Steroid Biochem Mol Biol 2020; 198:105552. [PMID: 31783153 PMCID: PMC7089838 DOI: 10.1016/j.jsbmb.2019.105552] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/12/2019] [Accepted: 11/24/2019] [Indexed: 12/16/2022]
Abstract
In humans and other primates, 1,25(OH)2vitamin D3 regulates the expression of the cathelicidin antimicrobial peptide (CAMP) gene via toll-like receptor (TLR) signaling that activates the vitamin D pathway. Mice and other mammals lack the vitamin D response element (VDRE) in their CAMP promoters. To elucidate the biological importance of this pathway, we generated transgenic mice that carry a genomic DNA fragment encompassing the entire human CAMP gene and crossed them with Camp knockout (KO) mice. We observed expression of the human transgene in various tissues and innate immune cells. However, in mouse CAMP transgenic macrophages, TLR activation in the presence of 25(OH)D3 did not induce expression of either CAMP or CYP27B1 as would normally occur in human macrophages, reinforcing important species differences in the actions of vitamin D. Transgenic mice did show increased resistance to colonization by Salmonella typhimurium in the gut. Furthermore, the human CAMP gene restored wound healing in the skin of Camp KO mice. Topical application of 1,25(OH)2vitamin D3 to the skin of CAMP transgenic mice induced CAMP expression and increased killing of Staphylococcus aureus in a wound infection model. Our model can help elucidate the biological importance of the vitamin D-cathelicidin pathway in both pathogenic and non-pathogenic states.
Collapse
Affiliation(s)
- Malcolm B Lowry
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Chunxiao Guo
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Yang Zhang
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Nutrition Graduate Program, School of Biological & Population Health Sciences, College of Public Health & Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Mary L Fantacone
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Isabelle E Logan
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Yan Campbell
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Weijian Zhang
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Mai Le
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Arup K Indra
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; Knight Cancer Institute, OHSU, Portland, OR 97239, USA; Department of Dermatology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Jingwei Xie
- Department of Surgery, Transplant & Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Richard L Gallo
- Department of Dermatology, University of California San Diego, La Jolla, CA 92093, USA
| | - H Phillip Koeffler
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90048, USA; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Adrian F Gombart
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
8
|
Precision oncology of lung cancer: genetic and genomic differences in Chinese population. NPJ Precis Oncol 2019; 3:14. [PMID: 31069257 PMCID: PMC6499836 DOI: 10.1038/s41698-019-0086-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/15/2019] [Indexed: 02/07/2023] Open
Abstract
Knowledge of the lung cancer genome has experienced rapid growth over the past decade. Genome-wide association studies and sequencing studies have identified dozens of genetic variants and somatic mutations implicated in the development of lung cancer in both Chinese and Caucasian populations. With the accumulating evidence, heterogeneities in lung cancer susceptibility were observed in different ethnicities. In this review, the progress on germline-based genetic variants and somatic-based genomic mutations associated with lung cancer and the differences between Chinese and Caucasian populations were systematically summarized. In the analysis of the genetic predisposition to lung cancer, 6 susceptibility loci were shared by Chinese and Caucasian populations (3q28, 5p15, 6p21, 9p21.3, 12q13.13 and 15q25), 14 loci were specific to the Chinese population (1p36.32, 5q31.1, 5q32, 6p21.1, 6q22.2, 6p21.32, 7p15.3, 10p14, 10q25.2, 12q23.1, 13q22, 17q24.3, 20q13.2, and 22q12), and 12 loci were specific to the Caucasian population (1p31.1, 2q32.1, 6q27, 8p21.1, 8p12, 10q24.3, 11q23.3, 12p13.33, 13q13.1, 15q21.1, 20q13.33 and 22q12.1). In the analysis of genomic and somatic alterations, different mutation rates were observed for EGFR (Chinese: 39–59% vs. TCGA: 14%), KRAS (Chinese: 7–11% vs. TCGA: 31%), TP53 (Chinese: 44% vs. TCGA: 53%), CDKN2A (Chinese: 22% vs. TCGA: 15%), NFE2L2 (Chinese: 28% vs. TCGA: 17%), STK11 (Chinese: 4–7% vs. TCGA: 16%), KEAP1 (Chinese: 3–5% vs. TCGA: 18%), and NF1 (Chinese: <2% vs. TCGA: 12%). In addition, frequently amplified regions encompassing genes involved in cytoskeletal organization or focal adhesion were identified only in Chinese patients. These results provide a comprehensive description of the genetic and genomic differences in lung cancer susceptibility between Chinese and Caucasian populations and may contribute to the development of precision medicine for lung cancer treatment and prevention.
Collapse
|
9
|
Saifullah, Tsukahara T. Genotyping of single nucleotide polymorphisms using the SNP-RFLP method. Biosci Trends 2018; 12:240-246. [PMID: 30012914 DOI: 10.5582/bst.2018.01102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Genetic polymorphisms, including single nucleotide polymorphisms (SNPs), are responsible for inter-individual variability in susceptibility to cancer and other disorders. Both environmental factors (e.g., smoking or carcinogen exposure) and genetic variation underlie the development of cancer; however, studies of twins suggest that genetic variation is more important. Hence, the identification of SNPs makes an important contribution to cancer research. In this study, 13 SNPs in 12 genes were genotyped in HEK 293 and HeLa cells using the simple and inexpensive SNP-RFLP method. Sanger sequencing was performed for one SNP to validate the SNP-RFLP results. Of the 13 SNPs, 10 were homozygous and three were heterozygous (rs10937405, rs12296850, and rs3814113) in HEK 293 cells, while 12 were homozygous and one was heterozygous (rs995030) in HeLa cells. The cells carried eight disease-associated risk alleles (32% of typed alleles), including rs2853677, rs995030, rs2736100, and rs6010620 in HEK 293 cells, and rs10937405, rs3814113, rs4767364, and rs6010620 in HeLa cells. Four SNP loci were homozygous for different alleles in each cell line, with HEK 293 cells having a CC genotype at rs2853677, GG at rs2736100 and rs4767364, and TT at rs3819197, while HeLa cells had TT genotypes at rs2853677 and rs2736100, AA at rs4767364, and CC at rs3819197. In conclusion, these results are potentially applicable for testing of novel gene therapeutic approaches in future experiments where the non-risk alleles of the eight identified risk alleles are substituted into HEK 293 or HeLa cells.
Collapse
Affiliation(s)
- Saifullah
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST)
| | - Toshifumi Tsukahara
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST)
| |
Collapse
|
10
|
Holy P, Kloudova A, Soucek P. Importance of genetic background of oxysterol signaling in cancer. Biochimie 2018; 153:109-138. [DOI: 10.1016/j.biochi.2018.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/27/2018] [Indexed: 12/14/2022]
|
11
|
Bossé Y, Amos CI. A Decade of GWAS Results in Lung Cancer. Cancer Epidemiol Biomarkers Prev 2018; 27:363-379. [PMID: 28615365 PMCID: PMC6464125 DOI: 10.1158/1055-9965.epi-16-0794] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/06/2016] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Genome-wide association studies (GWAS) were successful to identify genetic factors robustly associated with lung cancer. This review aims to synthesize the literature in this field and accelerate the translation of GWAS discoveries into results that are closer to clinical applications. A chronologic presentation of published GWAS on lung cancer susceptibility, survival, and response to treatment is presented. The most important results are tabulated to provide a concise overview in one read. GWAS have reported 45 lung cancer susceptibility loci with varying strength of evidence and highlighted suspected causal genes at each locus. Some genetic risk loci have been refined to more homogeneous subgroups of lung cancer patients in terms of histologic subtypes, smoking status, gender, and ethnicity. Overall, these discoveries are an important step for future development of new therapeutic targets and biomarkers to personalize and improve the quality of care for patients. GWAS results are on the edge of offering new tools for targeted screening in high-risk individuals, but more research is needed if GWAS are to pay off the investment. Complementary genomic datasets and functional studies are needed to refine the underlying molecular mechanisms of lung cancer preliminarily revealed by GWAS and reach results that are medically actionable. Cancer Epidemiol Biomarkers Prev; 27(4); 363-79. ©2018 AACRSee all articles in this CEBP Focus section, "Genome-Wide Association Studies in Cancer."
Collapse
Affiliation(s)
- Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada.
- Department of Molecular Medicine, Laval University, Quebec, Canada
| | - Christopher I Amos
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
12
|
Ren Y, Zhao S, Jiang D, Feng X, Zhang Y, Wei Z, Wang Z, Zhang W, Zhou QF, Li Y, Hou H, Xu Y, Zhou F. Proteomic biomarkers for lung cancer progression. Biomark Med 2018; 12:205-215. [DOI: 10.2217/bmm-2018-0015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Lung adenocarcinoma (LUAD) and lung squamous-cell carcinoma (LUSC) are two major subtypes of lung cancer and constitute about 70% of all the lung cancer cases. The patient's lifespan and living quality will be significantly improved if they are diagnosed at an early stage and adequately treated. Methods & results: This study comprehensively screened the proteomic dataset of both LUAD and LUSC, and proposed classification models for the progression stages of LUAD and LUSC with accuracies 86.51 and 89.47%, respectively. Discussion & conclusion: A comparative analysis was also carried out on related transcriptomic datasets, which indicates that the proposed biomarkers provide discerning power for accurate stage prediction, and will be improved when larger-scale proteomic quantitative technologies become available.
Collapse
Affiliation(s)
- Yanjiao Ren
- College of Computer Science & Technology, & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, PR China
| | - Shishun Zhao
- Center for Applied Statistical Research, College of Mathematics, Jilin University, Changchun, Jilin 130012, PR China
| | - Dandan Jiang
- Center for Applied Statistical Research, College of Mathematics, Jilin University, Changchun, Jilin 130012, PR China
| | - Xin Feng
- College of Computer Science & Technology, & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, PR China
| | - Yexian Zhang
- College of Computer Science & Technology, & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, PR China
| | - Zhipeng Wei
- College of Computer Science & Technology, & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, PR China
| | - Zhongyu Wang
- College of Computer Science & Technology, & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, PR China
| | - Wenniu Zhang
- College of Computer Science & Technology, & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, PR China
| | - Qing F Zhou
- School of Electrical Engineering & Intelligentization, Dongguan University of Technology, Dongguan 523000, PR China
| | - Yong Li
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, PR China
| | - Hanxu Hou
- School of Electrical Engineering & Intelligentization, Dongguan University of Technology, Dongguan 523000, PR China
| | - Ying Xu
- Computational Systems Biology Lab, Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
- College of Computer Science & Technology, & College of Public Health, Jilin University, Changchun, Jilin 130012, PR China
| | - Fengfeng Zhou
- College of Computer Science & Technology, & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, PR China
| |
Collapse
|
13
|
A rare missense variant in NR1H4 associates with lower cholesterol levels. Commun Biol 2018; 1:14. [PMID: 30271901 PMCID: PMC6123719 DOI: 10.1038/s42003-018-0015-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 01/11/2018] [Indexed: 12/12/2022] Open
Abstract
Searching for novel sequence variants associated with cholesterol levels is of particular interest due to the causative role of non-HDL cholesterol levels in cardiovascular disease. Through whole-genome sequencing of 15,220 Icelanders and imputation of the variants identified, we discovered a rare missense variant in NR1H4 (R436H) associating with lower levels of total cholesterol (effect = −0.47 standard deviations or −0.55 mmol L−1, p = 4.21 × 10−10, N = 150,211). Importantly, NR1H4 R436H also associates with lower levels of non-HDL cholesterol and, consistent with this, protects against coronary artery disease. NR1H4 encodes FXR that regulates bile acid homeostasis, however, we do not detect a significant association between R436H and biological markers of liver function. Transcriptional profiling of hepatocytes carrying R436H shows that it is not a loss-of-function variant. Rather, we observe changes in gene expression compatible with effects on lipids. These findings highlight the role of FXR in regulation of cholesterol levels in humans. Aimee Deaton et al. identify a rare missense variant in the bile acid receptor gene NR1H4, which is associated with lower levels of total cholesterol in the Icelandic population. Hepatocytes expressing the missense variant showed altered expression of a small number of genes, with enrichment in lipid-related pathways.
Collapse
|
14
|
Wang T, Li Y, Zhu M, Yao W, Wu H, Ji X, Hu Z, Shen H, Fan X, Ni C. Association Analysis Identifies New Risk Loci for Coal Workers’ Pneumoconiosis in Han Chinese Men. Toxicol Sci 2018; 163:206-213. [DOI: 10.1093/toxsci/kfy017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ting Wang
- Department of Pathology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu Province 210008, China
| | - Yan Li
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenxi Yao
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongyan Wu
- Department of Pathology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu Province 210008, China
| | - Xiaoming Ji
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiangshan Fan
- Department of Pathology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu Province 210008, China
| | - Chunhui Ni
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
15
|
Li X, Xu X, Fang J, Wang L, Mu Y, Zhang P, Yao Z, Ma Z, Liu Z. Rs2853677 modulates Snail1 binding to the TERT enhancer and affects lung adenocarcinoma susceptibility. Oncotarget 2018; 7:37825-37838. [PMID: 27191258 PMCID: PMC5122352 DOI: 10.18632/oncotarget.9339] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/28/2016] [Indexed: 01/07/2023] Open
Abstract
Genome wide association studies (GWAS) have shown that SNPs in non-coding regions are associated with inherited susceptibility to cancer. The effect of one single SNP, however, is weak. To identify potential co-factors of SNPs, we investigated the underlying mechanism by which SNPs affect lung cancer susceptibility. We found that rs2853677 is located within the Snail1 binding site in a TERT enhancer. This enhancer increases TERT transcription when juxtaposed to the TERT promoter. The binding of Snail1 to the enhancer disrupts enhancer-promoter colocalization and silences TERT transcription. The high risk variant of rs2853677 disrupts the Snail1 binding site and derepresses TERT expression in response to Snail1 upregulation, thus increasing lung adenocarcinoma susceptibility. Our data suggest that Snail1 may be a co-factor of rs2853677 for predicting lung adenocarcinoma susceptibility and prognosis.
Collapse
Affiliation(s)
- Xiaoting Li
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Department of Forensic Medicine, Tianjin Medical University, Tianjin, China
| | - Xing Xu
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Jiali Fang
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lin Wang
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yanchao Mu
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Peng Zhang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhi Yao
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Zhenyi Ma
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Zhe Liu
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
16
|
Zhang J, Zhao T, Xu C, Huang J, Yu H. Genetic susceptibility of lung cancer in Chinese population: An overview of systematic reviews and meta-analyses. J Evid Based Med 2017; 10:207-211. [PMID: 28857506 DOI: 10.1111/jebm.12269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/12/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND Genetic susceptibility of lung cancer has been widely studied for Chinese population, and meta-analysis of candidate gene association studies has also been performed for those genes. However, the overall evidence has not been well recognized. OBJECTIVE To investigate genetic association for the risk of lung cancer in Chinese. METHOD An overview of systematic reviews and meta-analyses of candidate gene association studies for lung cancer in Chinese was performed up to August 10th , 2016. The AMSTAR tool was used to assess the quality of the included systematic reviews and meta-analyses. Bibliometric analysis was performed to analyze the characteristics of reviews. RESULTS A total of 21 variants in 17 genes from 20 meta-analyses were included in this study. All 20 meta-analyses were published from 2011 to 2016. The quality scores of AMSTAR ranged from 3 to 7. All included genes were in the pathogenesis of lung cancer, such as the CYPs genes, GSTs genes, and base excision repair genes. Three polymorphisms were found to be associated with decreased risk of lung cancer for Chinese, 15 polymorphisms were found to be associated with increased risk of lung cancer for Chinese, but three polymorphisms were found to be not associated with lung cancer risk for Chinese. CONCLUSION The current study supports the genetic risk factors of lung cancer for Chinese are more likely to be variants from genes that contribute to the etiology of lung cancer.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Taiqiang Zhao
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Chengjie Xu
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Jiang Huang
- Department of Respiratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Hua Yu
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Park SL, Cheng I, Haiman CA. Genome-Wide Association Studies of Cancer in Diverse Populations. Cancer Epidemiol Biomarkers Prev 2017. [PMID: 28637795 DOI: 10.1158/1055-9965.epi-17-0169] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genome-wide association studies (GWAS) of cancer have identified more than 700 risk loci, of which approximately 80% were first discovered in European ancestry populations, approximately 15% in East Asians, 3% in multiethnic scans, and less than 1% in African and Latin American populations. These percentages closely mirror the distribution of samples included in the discovery phase of cancer GWAS to date (84% European, 11% East Asian, 4% African, and 1% Latin American ancestry). GWAS in non-European ancestry populations have provided insight into ancestry-specific variation in cancer and have pointed to regions of susceptibility that are of particular importance in certain populations. Uncovering and characterizing cancer risk loci in diverse populations is critical for understanding underlying biological mechanisms and developing future genetic risk prediction models in non-European ancestry populations. New GWAS and continued collaborations will be required to eliminate population inequalities in the number of studies, sample sizes, and variant content on GWAS arrays, and to better align genetic research in cancer to the global distribution of race/ethnicity Cancer Epidemiol Biomarkers Prev; 27(4); 405-17. ©2018 AACRSee all articles in this CEBP Focus section, "Genome-Wide Association Studies in Cancer."
Collapse
Affiliation(s)
- Sungshim L Park
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Iona Cheng
- Cancer Prevention Institute of California, Fremont, California.,Stanford Cancer Institute, Palo Alto, California
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
18
|
Feng Y, Wang Y, Liu H, Liu Z, Mills C, Han Y, Hung RJ, Brhane Y, McLaughlin J, Brennan P, Bickeboeller H, Rosenberger A, Houlston RS, Caporaso NE, Teresa Landi M, Brueske I, Risch A, Ye Y, Wu X, Christiani DC, Amos CI, Wei Q. Genetic variants of PTPN2 are associated with lung cancer risk: a re-analysis of eight GWASs in the TRICL-ILCCO consortium. Sci Rep 2017; 7:825. [PMID: 28400551 PMCID: PMC5429754 DOI: 10.1038/s41598-017-00850-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/15/2017] [Indexed: 01/25/2023] Open
Abstract
The T-cell protein tyrosine phosphatase (TCPTP) pathway consists of signaling events mediated by TCPTP. Mutations and genetic variants of some genes in the TCPTP pathway are associated with lung cancer risk and survival. In the present study, we first investigated associations of 5,162 single nucleotide polymorphisms (SNPs) in 43 genes of this TCPTP pathway with lung cancer risk by using summary data of six published genome-wide association studies (GWAS) of 12,160 cases and 16,838 controls. We identified 11 independent SNPs in eight genes after correction for multiple comparisons by a false discovery rate <0.20. Then, we performed in silico functional analyses for these 11 SNPs by eQTL analysis, two of which, PTPN2 SNPs rs2847297 and rs2847282, were chosen as tagSNPs. We further included two additional GWAS datasets of Harvard University (984 cases and 970 controls) and deCODE (1,319 cases and 26,380 controls), and the overall effects of these two SNPs among all eight GWAS studies remained significant (OR = 0.95, 95% CI = 0.92-0.98, and P = 0.004 for rs2847297; OR = 0.95, 95% CI = 0.92-0.99, and P = 0.009 for rs2847282). In conclusion, the PTPN2 rs2847297 and rs2847282 may be potential susceptible loci for lung cancer risk.
Collapse
Affiliation(s)
- Yun Feng
- Department of Respiration, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yanru Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Zhensheng Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Coleman Mills
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Younghun Han
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yonathan Brhane
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer (IARC), 69372, Lyon, France
| | - Heike Bickeboeller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, 37073, Göttingen, Germany
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, 37073, Göttingen, Germany
| | - Richard S Houlston
- Division of Genetics and Epidemiology, the Institute of Cancer Research, London, SW7 3RP, UK
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Irene Brueske
- Helmholtz Centre Munich, German Research Centre for Environmental Health, Institute of Epidemiology I, 85764, Neuherberg, Germany
| | - Angela Risch
- Department of Molecular Biology, University of Salzburg, 5020, Salzburg, Austria
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David C Christiani
- Massachusetts General Hospital, Boston, MA 02114, USA, Department of Environmental Health, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Christopher I Amos
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
19
|
Zhou F, Wang Y, Liu H, Ready N, Han Y, Hung RJ, Brhane Y, McLaughlin J, Brennan P, Bickeböller H, Rosenberger A, Houlston RS, Caporaso N, Landi MT, Brüske I, Risch A, Ye Y, Wu X, Christiani DC, Goodman G, Chen C, Amos CI, Qingyi W, Transdisciplinary Research in Cancer of the Lung (TRICL) Research Team.. Susceptibility loci of CNOT6 in the general mRNA degradation pathway and lung cancer risk-A re-analysis of eight GWASs. Mol Carcinog 2017; 56:1227-1238. [PMID: 27805284 PMCID: PMC5354966 DOI: 10.1002/mc.22585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/28/2016] [Accepted: 10/28/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE mRNA degradation is an important regulatory step for controlling gene expression and cell functions. Genetic abnormalities involved in mRNA degradation genes were found to be associated with cancer risks. Therefore, we systematically investigated the roles of genetic variants in the general mRNA degradation pathway in lung cancer risk. EXPERIMENTAL DESIGN Meta-analyses were conducted using summary data from six lung cancer genome-wide association studies (GWASs) from the Transdisciplinary Research in Cancer of the Lung and additional two GWASs from Harvard University and deCODE in the International Lung Cancer Consortium. Expression quantitative trait loci analysis (eQTL) was used for in silico functional validation of the identified significant susceptibility loci. RESULTS This pathway-based analysis included 6816 single nucleotide polymorphisms (SNP) in 68 genes in 14 463 lung cancer cases and 44 188 controls. In the single-locus analysis, we found that 20 SNPs were associated with lung cancer risk with a false discovery rate threshold of <0.05. Among the 11 newly identified SNPs in CNOT6, which were in high linkage disequilibrium, the rs2453176 with a RegulomDB score "1f" was chosen as the tagSNP for further analysis. We found that the rs2453176 T allele was significantly associated with lung cancer risk (odds ratio = 1.11, 95% confidence interval = 1.04-1.18) in the eight GWASs. In the eQTL analysis, we found that levels of CNOT6 mRNA expression were significantly correlated with the rs2453176 T allele, which provided additional biological basis for the observed positive association. CONCLUSION The CNOT6 rs2453176 SNP may be a new functional susceptible locus for lung cancer risk. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fei Zhou
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanru Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Neal Ready
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Younghun Han
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Rayjean J. Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yonathan Brhane
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer (IARC), 69372 Lyon, France
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University, Göttingen, 37073 Göttingen, Germany
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University, Göttingen, 37073 Göttingen, Germany
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, the Institute of Cancer Research, London , SW7 3RP, UK
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Irene Brüske
- Helmholtz Centre Munich, German Research Centre for Environmental Health, Institute of Epidemiology I, 85764 Neuherberg, Germany
| | - Angela Risch
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David C. Christiani
- Massachusetts General Hospital, Boston, MA 02114, USA, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | - Gary Goodman
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Swedish Cancer Institute, Seattle, WA 98104, USA
| | - Chu Chen
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Christopher I. Amos
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Wei Qingyi
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | | |
Collapse
|
20
|
Pan Y, Liu H, Wang Y, Kang X, Liu Z, Owzar K, Han Y, Su L, Wei Y, Hung RJ, Brhane Y, McLaughlin J, Brennan P, Bickeböller H, Rosenberger A, Houlston RS, Caporaso N, Teresa Landi M, Heinrich J, Risch A, Wu X, Ye Y, Christiani DC, Amos CI, Wei Q. Associations between genetic variants in mRNA splicing-related genes and risk of lung cancer: a pathway-based analysis from published GWASs. Sci Rep 2017; 7:44634. [PMID: 28304396 PMCID: PMC5356340 DOI: 10.1038/srep44634] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/06/2017] [Indexed: 01/08/2023] Open
Abstract
mRNA splicing is an important mechanism to regulate mRNA expression. Abnormal regulation of this process may lead to lung cancer. Here, we investigated the associations of 11,966 single-nucleotide polymorphisms (SNPs) in 206 mRNA splicing-related genes with lung cancer risk by using the summary data from six published genome-wide association studies (GWASs) of Transdisciplinary Research in Cancer of the Lung (TRICL) (12,160 cases and 16,838 controls) and another two lung cancer GWASs of Harvard University (984 cases and 970 controls) and deCODE (1,319 cases and 26,380 controls). We found that a total of 12 significant SNPs with false discovery rate (FDR) ≤0.05 were mapped to one novel gene PRPF6 and two previously reported genes (DHX16 and LSM2) that were also confirmed in this study. The six novel SNPs in PRPF6 were in high linkage disequilibrium and associated with PRPF6 mRNA expression in lymphoblastoid cells from 373 Europeans in the 1000 Genomes Project. Taken together, our studies shed new light on the role of mRNA splicing genes in the development of lung cancer.
Collapse
Affiliation(s)
- Yongchu Pan
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Yanru Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Xiaozheng Kang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Zhensheng Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Kouros Owzar
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Younghun Han
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, USA
| | - Li Su
- Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Yongyue Wei
- Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Rayjean J. Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yonathan Brhane
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, the Institute of Cancer Research, London, United Kingdom
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joachim Heinrich
- Helmholtz Centre Munich, German Research Centre for Environmental Health, Institute of Epidemiology I, Neuherberg, Germany
| | - Angela Risch
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Xifeng Wu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuanqing Ye
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David C. Christiani
- Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Christopher I. Amos
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
21
|
Wang T, Zhang L, Tian P, Tian S. Identification of differentially-expressed genes between early-stage adenocarcinoma and squamous cell carcinoma lung cancer using meta-analysis methods. Oncol Lett 2017; 13:3314-3322. [PMID: 28521438 DOI: 10.3892/ol.2017.5838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/06/2016] [Indexed: 01/04/2023] Open
Abstract
Lung adenocarcinoma (AC) and squamous cell lung carcinoma (SCC) are two major subtypes of non-small cell lung cancer (NSCLC). Previous studies have demonstrated that fundamental differences exist in the underlying mechanisms of tumor development, growth and invasion between these subtypes. The investigation of differentially-expressed genes (DEGs) between these two NSCLC subtypes is useful for determining and understanding such differences. The present study aimed to identify those DEGs using meta-analysis and the data from four microarray experiments, consisting of 164 AC and 161 SCC samples. Raw gene expression values were converted into the probability of expression (POE) representing the differentially-expressed probability of a gene and expression barcode values representing its expression status. The results indicated that when applying a meta-analysis using barcode values, heterogeneity in genes across studies was less severe than when applying a meta-analysis using POE values. DEGs in each meta-analysis method overlapped substantially (P=1.3×10-4), but the barcode method yielded a lower global false discovery rate. Based on this and several other performance statistics, it was concluded that the barcode approach outperformed the POE method. Finally, using those DEGs, ontology and pathway analyses were conducted. A number of genes and enriched pathways were found to be closely associated with NSCLC.
Collapse
Affiliation(s)
- Tianjiao Wang
- School of Life Science, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Lei Zhang
- School of Life Science, Jilin University, Changchun, Jilin 130012, P.R. China.,Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Pu Tian
- School of Life Science, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Suyan Tian
- Division of Clinical Epidemiology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
22
|
Zhang Y, Wang DC, Shi L, Zhu B, Min Z, Jin J. Genome analyses identify the genetic modification of lung cancer subtypes. Semin Cancer Biol 2017; 42:20-30. [DOI: 10.1016/j.semcancer.2016.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022]
|
23
|
Malhotra J, Malvezzi M, Negri E, La Vecchia C, Boffetta P. Risk factors for lung cancer worldwide. Eur Respir J 2016; 48:889-902. [PMID: 27174888 DOI: 10.1183/13993003.00359-2016] [Citation(s) in RCA: 554] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/04/2016] [Indexed: 02/06/2023]
Abstract
Lung cancer is the most frequent malignant neoplasm in most countries, and the main cancer-related cause of mortality worldwide in both sexes combined.The geographic and temporal patterns of lung cancer incidence, as well as lung cancer mortality, on a population level are chiefly determined by tobacco consumption, the main aetiological factor in lung carcinogenesis.Other factors such as genetic susceptibility, poor diet, occupational exposures and air pollution may act independently or in concert with tobacco smoking in shaping the descriptive epidemiology of lung cancer. Moreover, novel approaches in the classification of lung cancer based on molecular techniques have started to bring new insights to its aetiology, in particular among nonsmokers. Despite the success in delineation of tobacco smoking as the major risk factor for lung cancer, this highly preventable disease remains among the most common and most lethal cancers globally.Future preventive efforts and research need to focus on non-cigarette tobacco smoking products, as well as better understanding of risk factors underlying lung carcinogenesis in never-smokers.
Collapse
Affiliation(s)
- Jyoti Malhotra
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Matteo Malvezzi
- Dept of Clinical Sciences and Community Health, University of Milan, Milan, Italy Dept of Epidemiology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Eva Negri
- Dept of Epidemiology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Carlo La Vecchia
- Dept of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Paolo Boffetta
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
24
|
Sun L, Zhang X, He L. GWAS promotes precision medicine in China. J Genet Genomics 2016; 43:477-9. [DOI: 10.1016/j.jgg.2016.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 05/30/2016] [Accepted: 05/30/2016] [Indexed: 11/28/2022]
|
25
|
Zanetti KA, Wang Z, Aldrich M, Amos CI, Blot WJ, Bowman ED, Burdette L, Cai Q, Caporaso N, Chung CC, Gillanders EM, Haiman CA, Hansen HM, Henderson BE, Kolonel LN, Marchand LL, Li S, McNeill LH, Ryan BM, Schwartz AG, Sison JD, Spitz MR, Tucker M, Wenzlaff AS, Wiencke JK, Wilkens L, Wrensch MR, Wu X, Zheng W, Zhou W, Christiani D, Palmer JR, Penning TM, Rieber AG, Rosenberg L, Ruiz-Narvaez EA, Su L, Vachani A, Wei Y, Whitehead AS, Chanock SJ, Harris CC. Genome-wide association study confirms lung cancer susceptibility loci on chromosomes 5p15 and 15q25 in an African-American population. Lung Cancer 2016; 98:33-42. [PMID: 27393504 PMCID: PMC4939239 DOI: 10.1016/j.lungcan.2016.05.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Genome-wide association studies (GWAS) of lung cancer have identified regions of common genetic variation with lung cancer risk in Europeans who smoke and never-smoking Asian women. This study aimed to conduct a GWAS in African Americans, who have higher rates of lung cancer despite smoking fewer cigarettes per day when compared with Caucasians. This population provides a different genetic architecture based on underlying African ancestry allowing the identification of new regions and exploration of known regions for finer mapping. MATERIALS AND METHODS We genotyped 1,024,001 SNPs in 1737 cases and 3602 controls in stage 1, followed by a replication phase of 20 SNPs (p<1.51×10(-5)) in an independent set of 866 cases and 796 controls in stage 2. RESULTS AND CONCLUSION In the combined analysis, we confirmed two loci to be associated with lung cancer that achieved the threshold of genome-wide significance: 15q25.1 marked by rs2036527 (p=1.3×10(-9); OR=1.32; 95% CI=1.20-1.44) near CHRNA5, and 5p15.33 marked by rs2853677 (p=2.8×10(-9); OR=1.28; 95% CI=1.18-1.39) near TERT. The association with rs2853677 is driven by the adenocarcinoma subtype of lung cancer (p=1.3×10(-8); OR=1.37; 95% CI=1.23-1.54). No SNPs reached genome-wide significance for either of the main effect models examining smoking - cigarettes per day and current or former smoker. Our study was powered to identify strong risk loci for lung cancer in African Americans; we confirmed results previously reported in African Americans and other populations for two loci near plausible candidate genes, CHRNA5 and TERT, on 15q25.1 and 5p15.33 respectively, are associated with lung cancer. Additional work is required to map and understand the biological underpinnings of the strong association of these loci with lung cancer risk in African Americans.
Collapse
Affiliation(s)
- Krista A Zanetti
- Division of Cancer Control and Population Sciences, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20892, USA.
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20892, USA.
| | - Melinda Aldrich
- Division of Epidemiology, Vanderbilt University Medical Center, 1161 21st Avenue South, D-3100 Medical Center North, Nashville, TN 37232, USA; Department of Thoracic Surgery, Vanderbilt University Medical Center, 609 Oxford House, 1313 21st Ave South, Nashville, TN 37232-4682, USA.
| | - Christopher I Amos
- Department of Biomedical Data Science, Geisel School of Medicine, 1 Rope Ferry Road, Dartmouth, Lebanon, NH 03755-1404, USA.
| | - William J Blot
- Division of Epidemiology, Vanderbilt University Medical Center, 1161 21st Avenue South, D-3100 Medical Center North, Nashville, TN 37232, USA.
| | - Elise D Bowman
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Building 37, Room 3068A, Bethesda, MD 20892, USA.
| | - Laurie Burdette
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20892, USA.
| | - Qiuyin Cai
- Division of Epidemiology, Vanderbilt University Medical Center, 1161 21st Avenue South, D-3100 Medical Center North, Nashville, TN 37232, USA.
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20892, USA.
| | - Charles C Chung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20892, USA.
| | - Elizabeth M Gillanders
- Division of Cancer Control and Population Sciences, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20892, USA.
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California and Norris Comprehensive Cancer Center, 1975 Zonal Avenue, Los Angeles, CA 90033, USA.
| | - Helen M Hansen
- Department of Neurological Surgery, University of California, 505 Parnassus Ave., Room 779 M, San Francisco, San Francisco, CA 94143-00112, USA.
| | - Brian E Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California and Norris Comprehensive Cancer Center, 1975 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Laurence N Kolonel
- Epidemiology Program, Cancer Research Center, University of Hawaii, 701 Ilalo Street, Honolulu, HI 96813, USA.
| | - Loic Le Marchand
- Epidemiology Program, Cancer Research Center, University of Hawaii, 701 Ilalo Street, Honolulu, HI 96813, USA.
| | - Shengchao Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20892, USA.
| | - Lorna Haughton McNeill
- Department of Health Disparities Research, Division of OVP, Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 91, Houston, TX 77030, USA.
| | - Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Building 37, Room 3068A, Bethesda, MD 20892, USA.
| | - Ann G Schwartz
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA.
| | - Jennette D Sison
- Department of Neurological Surgery, University of California, 505 Parnassus Ave., Room 779 M, San Francisco, San Francisco, CA 94143-00112, USA.
| | - Margaret R Spitz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM225, Houston, TX 77030, USA.
| | - Margaret Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20892, USA.
| | - Angela S Wenzlaff
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA.
| | - John K Wiencke
- Department of Neurological Surgery, University of California, 505 Parnassus Ave., Room 779 M, San Francisco, San Francisco, CA 94143-00112, USA.
| | - Lynne Wilkens
- Epidemiology Program, Cancer Research Center, University of Hawaii, 701 Ilalo Street, Honolulu, HI 96813, USA.
| | - Margaret R Wrensch
- Department of Neurological Surgery, University of California, 505 Parnassus Ave., Room 779 M, San Francisco, San Francisco, CA 94143-00112, USA.
| | - Xifeng Wu
- Department of Epidemiology, Division of OVP, Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Unit 1340, PO Box 301439, Houston, TX 77230-1439, USA.
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt University Medical Center, 1161 21st Avenue South, D-3100 Medical Center North, Nashville, TN 37232, USA.
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20892, USA.
| | - David Christiani
- Harvard School of Public Health, Massachusetts General Hospital/Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| | - Julie R Palmer
- Slone Epidemiology Cancer Center at Boston University, 1010 Commonwealth Avenue, 4th Floor, Boston, MA 02215, USA.
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Mezzanine, Philadelphia PA 19104, USA; Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Mezzanine, Philadelphia PA 19104, USA.
| | - Alyssa G Rieber
- Department of General Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | - Lynn Rosenberg
- Slone Epidemiology Cancer Center at Boston University, 1010 Commonwealth Avenue, 4th Floor, Boston, MA 02215, USA.
| | - Edward A Ruiz-Narvaez
- Slone Epidemiology Cancer Center at Boston University, 1010 Commonwealth Avenue, 4th Floor, Boston, MA 02215, USA.
| | - Li Su
- Harvard School of Public Health, Massachusetts General Hospital/Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| | - Anil Vachani
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Mezzanine, Philadelphia PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Mezzanine, Philadelphia, PA 19104, USA.
| | - Yongyue Wei
- Harvard School of Public Health, Massachusetts General Hospital/Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| | - Alexander S Whitehead
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Mezzanine, Philadelphia PA 19104, USA; Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Mezzanine, Philadelphia PA 19104, USA.
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20892, USA.
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Building 37, Room 3068A, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Shen H. Progress of cancer genomics. Thorac Cancer 2015; 6:557-60. [PMID: 26445603 PMCID: PMC4566999 DOI: 10.1111/1759-7714.12281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Hongbing Shen
- Department of Epidemiology and Biostatistics School of Public Health Nanjing Medical University Nanjing China
- Jiangsu Key Lab of Cancer Biomarkers Prevention and Treatment Collaborative Innovation Center for Cancer Personalized Medicine Nanjing Medical University Nanjing China
| |
Collapse
|
27
|
Fong KM, Daniels M, Goh F, Yang IA, Bowman RV. The current and future roles of genomics. Lung Cancer 2015. [DOI: 10.1183/2312508x.10009614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Fructus phyllanthi tannin fraction induces apoptosis and inhibits migration and invasion of human lung squamous carcinoma cells in vitro via MAPK/MMP pathways. Acta Pharmacol Sin 2015; 36:758-68. [PMID: 25864648 DOI: 10.1038/aps.2014.130] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/30/2014] [Indexed: 01/22/2023]
Abstract
AIM Fructus phyllanthi tannin fraction (PTF) from the traditional Tibetan medicine Fructus phyllanthi has been found to inhibit lung and liver carcinoma in mice. In this study we investigated the anticancer mechanisms of PTF in human lung squamous carcinoma cells in vitro. METHODS Human lung squamous carcinoma cell line (NCI-H1703), human large-cell lung cancer cell line (NCI-H460), human lung adenocarcinoma cell line (A549) and human fibrosarcoma cell line (HT1080) were tested. Cell viability was detected with MTT assay. Cell migration and invasion were assessed using a wound healing assay and a transwell chemotaxis chambers assay, respectively. Cell apoptosis was analyzed with flow cytometric analysis. The levels of apoptosis-related and metastasis-related proteins were detected by Western blot and immunofluorescence. RESULTS PTF dose-dependently inhibited the viability of the 3 human lung cancer cells. The IC50 values of PTF in inhibition of NCI-H1703, NCI-H460, and A549 cells were 33, 203, and 94 mg/L, respectively. PTF (15, 30, and 60 mg/L) dose-dependently induced apoptosis of NCI-H1703 cells. Treatment of NCI-H1703 and HT1080 cells with PTF significantly inhibited cell migration, and reduced the number of invasive cells through Matrigel. Furthermore, PTF dose-dependently down-regulated the expression of phosphor-ERK1/2, MMP-2 and MMP-9, up-regulated the expression of phosphor-JNK, but had no significant effect on the expression of ERK1/2 or JNK. CONCLUSION PTF induces cell apoptosis and inhibits the migration and invasion of NCI-H1703 cells by decreasing MPPs expression through regulation of the MAPK pathway.
Collapse
|
29
|
Etokebe GE, Zienolddiny S, Kupanovac Z, Enersen M, Balen S, Flego V, Bulat-Kardum L, Radojčić-Badovinac A, Skaug V, Bakke P, Haugen A, Dembic Z. Association of the FAM46A gene VNTRs and BAG6 rs3117582 SNP with non small cell lung cancer (NSCLC) in Croatian and Norwegian populations. PLoS One 2015; 10:e0122651. [PMID: 25884493 PMCID: PMC4401550 DOI: 10.1371/journal.pone.0122651] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/11/2015] [Indexed: 12/25/2022] Open
Abstract
We analyzed for associations between a variable number of tandem repeat (VNTR) polymorphism in the Family with sequence similarity 46, member A (FAM46A) gene and a single nucleotide polymorphism (rs3117582) in the BCL2-Associated Athanogene 6 (BAG6) with non small cell lung cancer in Croatian and Norwegian subjects. A total of 503 (262 Croatian and 241Norwegian) non small cell lung cancer patients and 897 controls (568 Croatian and 329 Norwegian) were analyzed. We found that the frequency of allele b (three VNTR repeats) of FAM46A gene was significantly increased in the patients compared to the healthy controls in the Croatian and the combined Croatian and Norwegian subjects. Genotype frequencies of cd (four and five VNTR repeats) and cc (four VNTR repeats homozygote) of the FAM46A gene were significantly decreased in the patients compared to the healthy controls in the Croatian and Norwegian subjects, respectively. Logistic regression analyses revealed FAM46A genotype cc to be an independent predictive factor for non small cell lung cancer risk in the Norwegian subjects after adjustment for age, gender and smoking status. This is the first study to suggest an association between the FAM46A gene VNTR polymorphisms and non small cell lung cancer. We found also that BAG6 rs3117582 SNP was associated with non small cell lung cancer in the Norwegian subjects and the combined Croatian-Norwegian subjects corroborating the earlier finding that BAG6 rs3117582 SNP was associated with lung cancer in Europeans. Logistic regression analyses revealed that genotypes and alleles of BAG6 were independent predictive factor for non small cell lung cancer risk in the Norwegian and combined Croatian-Norwegian subjects, after adjustment for age and gender.
Collapse
Affiliation(s)
- Godfrey Essien Etokebe
- Institute for Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- * E-mail:
| | - Shanbeh Zienolddiny
- Department of Chemical and Biological Working Environment, National Institute of Occupational Health, Oslo, Norway
| | - Zeljko Kupanovac
- Institute for Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Section of Pulmology, Department of Internal Medicine, Clinical Hospital Center, University of Rijeka, Rijeka, Croatia
| | - Morten Enersen
- Institute for Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Sanja Balen
- Institute for Transfusion Medicine, Clinical Hospital Center, University of Rijeka, Rijeka, Croatia
| | - Veljko Flego
- Section of Pulmology, Department of Internal Medicine, Clinical Hospital Center, University of Rijeka, Rijeka, Croatia
| | - Ljiljana Bulat-Kardum
- Section of Pulmology, Department of Internal Medicine, Clinical Hospital Center, University of Rijeka, Rijeka, Croatia
| | | | - Vidar Skaug
- Department of Chemical and Biological Working Environment, National Institute of Occupational Health, Oslo, Norway
| | - Per Bakke
- Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Aage Haugen
- Department of Chemical and Biological Working Environment, National Institute of Occupational Health, Oslo, Norway
| | - Zlatko Dembic
- Institute for Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Re-annotation of presumed noncoding disease/trait-associated genetic variants by integrative analyses. Sci Rep 2015; 5:9453. [PMID: 25819875 PMCID: PMC4377585 DOI: 10.1038/srep09453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 03/02/2015] [Indexed: 11/08/2022] Open
Abstract
Using RefSeq annotations, most disease/trait-associated genetic variants identified by genome-wide association studies (GWAS) appear to be located within intronic or intergenic regions, which makes it difficult to interpret their functions. We reassessed GWAS-Associated single-nucleotide polymorphisms (herein termed as GASs) for their potential functionalities using integrative approaches. 8834 of 9184 RefSeq “noncoding” GASs were reassessed to have potential regulatory functionalities. As examples, 3 variants (rs3130320, rs3806932 and rs6890853) were shown to have regulatory properties in HepG2, A549 and 293T cells. Except rs3130320 as a known expression quantitative trait loci (eQTL), rs3806932 and rs6890853 were not reported as eQTLs in previous reports. 1999 of 9184 “noncoding” GASs were re-annotated to the promoters or intragenic regions using Ensembl, UCSC and AceView gene annotations but they were not annotated into corresponding regions in RefSeq database. Moreover, these GAS-harboring genes were broadly expressed across different tissues and a portion of them was expressed in a tissue-specific manner, suggesting that they could be functional. Collectively, our study demonstrates the benefits of using integrative analyses to interpret genetic variants and may help to predict or explain disease susceptibility more accurately and comprehensively.
Collapse
|
31
|
Systematical analyses of variants in CTCF-binding sites identified a novel lung cancer susceptibility locus among Chinese population. Sci Rep 2015; 5:7833. [PMID: 25592173 PMCID: PMC4296290 DOI: 10.1038/srep07833] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/12/2014] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association studies identified genetic susceptibility variants mostly lie outside of protein-coding regions. It suggested variants located at transcriptional regulatory region should play an important role in cancer carcinogenesis including lung cancer. In the present study, we systematically investigated the associations between the variants in the binding sites of an extensive transcription factor CTCF and lung cancer risk in Chinese population. A two-stage case-control design was conducted to evaluate the variants located at the uniform CTCF ChIP-seq peaks in a Chinese population (2,331 vs 3,077; 1,115 vs 1,346). The ChIP-seq data for CTCF, specified on lung cancer cell line A549, were downloaded from ENCODE database. Imputation was performed to increase the genome coverage in the CTCF binding regions. Three variants in CTCF binding sites were found to associate with lung cancer risk in the first stage. Further replication revealed a novel single nucleotide polymorphism rs60507107 was significantly associated with increased risk of lung cancer in two stages (Additive model: OR = 1.19, 95%CI = 1.11–1.27, P = 6.98 × 10−7). Our results indicate that rs60507107 in the binding site of CTCF is associated with an increased risk of lung cancer. This may further advance our understanding of regulatory DNA sequences in cancer development.
Collapse
|
32
|
Yang IA, Holloway JW, Fong KM. Genetic susceptibility to lung cancer and co-morbidities. J Thorac Dis 2014; 5 Suppl 5:S454-62. [PMID: 24163739 DOI: 10.3978/j.issn.2072-1439.2013.08.06] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/18/2022]
Abstract
Lung cancer is a leading cause of cancer death and disease burden in many countries. Understanding of the biological pathways involved in lung cancer aetiology is required to identify key biomolecules that could be of significant clinical value, either as predictive, prognostic or diagnostic markers, or as targets for the development of novel therapies to treat this disease, in addition to smoking avoidance strategies. Genome-wide association studies (GWAS) have enabled significant progress in the past 5 years in investigating genetic susceptibility to lung cancer. Large scale, multi-cohort GWAS of mainly Caucasian, smoking, populations have identified strong associations for lung cancer mapped to chromosomal regions 15q [nicotinic acetylcholine receptor (nAChR) subunits: CHRNA3, CHRNA5], 5p (TERT-CLPTM1L locus) and 6p (BAT3-MSH5). Some studies in Asian populations of smokers have found similar risk loci, whereas GWAS in never smoking Asian females have identified associations in other chromosomal regions, e.g., 3q (TP63), that are distinct from smoking-related lung cancer risk loci. GWAS of smoking behaviour have identified risk loci for smoking quantity at 15q (similar genes to lung cancer susceptibility: CHRNA3, CHRNA5) and 19q (CYP2A6). Other genes have been mapped for smoking initiation and smoking cessation. In chronic obstructive pulmonary disease (COPD), which is a known risk factor for lung cancer, GWAS in large cohorts have also found CHRNA3 and CHRNA5 single nucleotide polymorphisms (SNPs) mapping at 15q as risk loci, as well as other regions at 4q31 (HHIP), 4q24 (FAM13A) and 5q (HTR4). The overlap in risk loci between lung cancer, smoking behaviour and COPD may be due to the effects of nicotine addiction; however, more work needs to be undertaken to explore the potential direct effects of nicotine and its metabolites in gene-environment interaction in these phenotypes. Goals of future genetic susceptibility studies of lung cancer should focus on refining the strongest risk loci in a wide range of populations with lung cancer, and integrating other clinical and biomarker information, in order to achieve the aim of personalised therapy for lung cancer.
Collapse
Affiliation(s)
- Ian A Yang
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia; ; UQ Thoracic Research Centre, The University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
33
|
Dai X, Deng S, Wang T, Qiu G, Li J, Yang B, Feng W, He X, Deng Q, Ye J, Zhang W, He M, Zhang X, Guo H, Wu T. Associations between 25 lung cancer risk-related SNPs and polycyclic aromatic hydrocarbon-induced genetic damage in coke oven workers. Cancer Epidemiol Biomarkers Prev 2014; 23:986-96. [PMID: 24692499 DOI: 10.1158/1055-9965.epi-13-1251] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified multiple single-nucleotide polymorphisms (SNP) associated with lung cancer. However, whether these SNPs are associated with genetic damage, a crucial event in cancer initiation and evolution, is still unknown. We aimed to establish associations between these SNPs and genetic damage caused by the ubiquitous carcinogens, polycyclic aromatic hydrocarbons (PAH). METHODS We cross-sectionally investigated the associations between SNPs from published GWAS for lung cancer in Asians and PAH-induced genetic damage in 1,557 coke oven workers in China. Urinary PAH metabolites, plasma benzo[a]pyrene-r-7,t-8,c-10-tetrahydrotetrol-albumin (BPDE-Alb) adducts, urinary 8-hydroxydeoxyguanosine (8-OHdG), and micronuclei (MN) frequency were determined by gas chromatography-mass spectrometry, sandwich ELISA, high-performance liquid chromatography, and cytokinesis-block micronucleus assay, respectively. RESULTS 13q12.12-rs753955C was suggestively associated with elevated 8-OHdG levels (P = 0.003). Higher 8-OHdG levels were observed in individuals with rare allele homozygotes (CC) than in TT homozygotes (β, 0.297; 95% confidence interval, 0.124-0.471; P = 0.001). 9p21-rs1333040C, 10p14-rs1663689G, and 15q25.1-rs3813572G were significantly associated with lower MN frequency (P values were 0.002, 0.001, and 0.005, respectively). 10p14-rs1663689G polymorphism downregulated the relationship of the total concentration of PAH metabolites to 8-OHdG levels (Pinteraction = 0.002). TERT-rs2736100G and VTI1A-rs7086803A aggravated the relationship of BPDE-Alb adducts to MN frequency, whereas BPTF-rs7216064G attenuated that correlation (all Pinteraction < 0.001). CONCLUSIONS Lung cancer risk-associated SNPs and their correlations with PAH exposure were associated with 8-OHdG levels and MN frequency. IMPACT Lung cancer risk-associated SNPs might influence one's susceptibility to genetic damage caused by PAHs. Cancer Epidemiol Biomarkers Prev; 23(6); 986-96. ©2014 AACR.
Collapse
Affiliation(s)
- Xiayun Dai
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Siyun Deng
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Tian Wang
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Gaokun Qiu
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Jun Li
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Binyao Yang
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Wei Feng
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Xiaosheng He
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Qifei Deng
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Jian Ye
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Wangzhen Zhang
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Meian He
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Huan Guo
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Tangchun Wu
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| |
Collapse
|