1
|
Yan Z, He L, Yuan J, Niu Y, Shuai S, Luo S, Du C, Rao H. The splicing factor SRRM2 modulates two S6K kinases to promote colorectal cancer growth. Oncogene 2025; 44:1284-1299. [PMID: 39956864 DOI: 10.1038/s41388-025-03307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/16/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
The mechanistic target of rapamycin (mTOR) pathway plays a critical role in cell growth and metabolic homeostasis. The ribosomal protein S6 kinases S6K1 and S6K2 are the major effectors of the mTOR pathway key to translation efficiency, but the underlying regulatory mechanisms remain largely unclear. In this study, we searched for mTOR regulators and found that the splicing factor SRRM2 modulates the levels of S6K1 and S6K2, thereby activating the mTOR-S6K pathway. Interestingly, SRRM2 facilitates the expression of S6K2 by modulating alternative splicing, and enhances the stability of the S6K1 protein by regulating the E3 ubiquitin ligase WWP2. Moreover, SRRM2 is highly expressed in colorectal cancer (CRC) tissues and is associated with a poor prognosis. SRRM2 promotes CRC growth in vitro and in vivo. Combined, these data reveal an oncogenic role of SRRM2 in CRC through activating the mTOR-S6K pathway by two different approaches, further suggesting SRRM2 as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Zhengwei Yan
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Luling He
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jiawei Yuan
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yulong Niu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shimin Shuai
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shiwen Luo
- School of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Changzheng Du
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Beijing Tsinghua Changgung Hospital & Tsinghua University School of Medicine, 168 Litang Road, Changping District, Beijing, 102218, PR China
| | - Hai Rao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
2
|
Zhang BW, Huang T, Yang YF, Li MY, Shao GB. Lysine methyltransferase SETD7 in cancer: functions, molecular mechanisms and therapeutic implications. Mol Biol Rep 2025; 52:389. [PMID: 40232640 DOI: 10.1007/s11033-025-10494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Since its discovery as a histone methyltransferase, SETD7 has been implicated in many signaling pathways and carcinogenesis. SETD7 catalyzes the methylation of histone H3 and non-histone proteins, regulating their translation, stability and activity. SETD7 is frequently abnormally expressed and has a significant influence on cell proliferation, invasion, autophagy and immune response. As cancer is a complex disease, an outstanding concept in cancer biology is the "hallmarks of cancer". In this review, we focus on the involvement of SETD7 in the hallmarks of cancer, describing its functions and underlying mechanisms in detail. Additionally, we discuss non-coding RNAs and chemical inhibitors targeting SETD7, highlighting the potential and importance of SETD7 in cancer therapy.
Collapse
Affiliation(s)
- Bo-Wen Zhang
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Ting Huang
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Yi-Fan Yang
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Ming-Yang Li
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Gen-Bao Shao
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
- Present Address: Jiangsu University, No.301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu province, China.
| |
Collapse
|
3
|
Turnham RE, Pitea A, Jang GM, Xu Z, Lim HC, Choi AL, Von Dollen J, Levin RS, Webber JT, McCarthy E, Hu J, Li X, Che L, Singh A, Yoon A, Chan G, Kelley RK, Swaney DL, Zhang W, Bandyopadhyay S, Theis FJ, Eckhardt M, Chen X, Shokat KM, Ideker T, Krogan NJ, Gordan JD. HBV Remodels PP2A Complexes to Rewire Kinase Signaling in Hepatocellular Carcinoma. Cancer Res 2025; 85:660-674. [PMID: 39652575 PMCID: PMC11949624 DOI: 10.1158/0008-5472.can-24-0456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/09/2024] [Accepted: 12/04/2024] [Indexed: 02/18/2025]
Abstract
Hepatitis B virus (HBV) infections promote liver cancer initiation by inducing inflammation and cellular stress. Despite a primarily indirect effect on oncogenesis, HBV is associated with a recurrent genomic phenotype in hepatocellular carcinoma (HCC), suggesting that it impacts the biology of established HCC. Characterization of the interaction of HBV with host proteins and the mechanistic contributions of HBV to HCC initiation and maintenance could provide insights into HCC biology and uncover therapeutic vulnerabilities. In this study, we used affinity purification mass spectrometry to comprehensively map a network of 145 physical interactions between HBV and human proteins in HCC. A subset of the host factors targeted by HBV proteins were preferentially mutated in non-HBV-associated HCC, suggesting that their interaction with HBV influences HCC biology. HBV interacted with proteins involved in mRNA splicing, mitogenic signaling, and DNA repair, with the latter set interacting with the HBV oncoprotein X (HBx). HBx remodeled the PP2A phosphatase complex by excluding striatin regulatory subunits from the PP2A holoenzyme, and the HBx effects on PP2A caused Hippo kinase activation. In parallel, HBx activated mTOR complex 2, which can prevent YAP degradation. mTOR complex 2-mediated upregulation of YAP was observed in human HCC specimens and mouse HCC models and could be targeted with mTOR kinase inhibitors. Thus, HBV interaction with host proteins rewires HCC signaling rather than directly activating mitogenic pathways, providing an alternative paradigm for the cellular effects of a tumor-promoting virus. Significance: Integrative proteomic and genomic analysis of HBV/host interactions illuminated modifiers of hepatocellular carcinoma behavior and key signaling mechanisms in advanced disease, which suggested that HBV may have therapeutically actionable effects.
Collapse
Affiliation(s)
- Rigney E Turnham
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Adriana Pitea
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Gwendolyn M Jang
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - Zhong Xu
- Department of Bioengineering, University of California, San Francisco CA
| | - Huat Chye Lim
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Alex L Choi
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - John Von Dollen
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - Rebecca S. Levin
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - James T Webber
- Department of Bioengineering, University of California, San Francisco CA
| | - Elizabeth McCarthy
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - Junjie Hu
- Department of Bioengineering, University of California, San Francisco CA
| | - Xiaolei Li
- Department of Bioengineering, University of California, San Francisco CA
| | - Li Che
- Department of Bioengineering, University of California, San Francisco CA
| | - Ananya Singh
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Alex Yoon
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Gary Chan
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Robin K Kelley
- Division of Hematology/Oncology, University of California, San Francisco CA
| | - Danielle L Swaney
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - Wei Zhang
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | - Fabian J Theis
- TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Manon Eckhardt
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA
| | - Xin Chen
- Department of Bioengineering, University of California, San Francisco CA
| | - Kevan M Shokat
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
- Howard Hughes Medical Institute, University of California, San Francisco CA
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Nevan J Krogan
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA
| | - John D Gordan
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| |
Collapse
|
4
|
Nithianandam V, Sarkar S, Feany MB. Pathways controlling neurotoxicity and proteostasis in mitochondrial complex I deficiency. Hum Mol Genet 2024; 33:860-871. [PMID: 38324746 PMCID: PMC11070137 DOI: 10.1093/hmg/ddae018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/02/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
Neuromuscular disorders caused by dysfunction of the mitochondrial respiratory chain are common, severe and untreatable. We recovered a number of mitochondrial genes, including electron transport chain components, in a large forward genetic screen for mutations causing age-related neurodegeneration in the context of proteostasis dysfunction. We created a model of complex I deficiency in the Drosophila retina to probe the role of protein degradation abnormalities in mitochondrial encephalomyopathies. Using our genetic model, we found that complex I deficiency regulates both the ubiquitin/proteasome and autophagy/lysosome arms of the proteostasis machinery. We further performed an in vivo kinome screen to uncover new and potentially druggable mechanisms contributing to complex I related neurodegeneration and proteostasis failure. Reduction of RIOK kinases and the innate immune signaling kinase pelle prevented neurodegeneration in complex I deficiency animals. Genetically targeting oxidative stress, but not RIOK1 or pelle knockdown, normalized proteostasis markers. Our findings outline distinct pathways controlling neurodegeneration and protein degradation in complex I deficiency and introduce an experimentally facile model in which to study these debilitating and currently treatment-refractory disorders.
Collapse
Affiliation(s)
- Vanitha Nithianandam
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, 5425 Wisconsin Avenue, Chevy Chase, MD 20815, United States
| | - Souvarish Sarkar
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, 5425 Wisconsin Avenue, Chevy Chase, MD 20815, United States
| | - Mel B Feany
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, 5425 Wisconsin Avenue, Chevy Chase, MD 20815, United States
| |
Collapse
|
5
|
Ghandadi M, Dobi A, Malhotra SV. A role for RIO kinases in the crosshair of cancer research and therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189100. [PMID: 38604268 DOI: 10.1016/j.bbcan.2024.189100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
RIO (right open reading frame) family of kinases including RIOK1, RIOK2 and RIOK3 are known for their role in the ribosomal biogenesis. Dysfunction of RIO kinases have been implicated in malignancies, including acute myeloid leukemia, glioma, breast, colorectal, lung and prostatic adenocarcinoma suggesting RIO kinases as potential targets in cancer. In vitro, in vivo and clinical studies have demonstrated that RIO kinases are overexpressed in various types of cancers suggesting important roles in tumorigenesis, especially in metastasis. In the context of malignancies, RIO kinases are involved in cancer-promoting pathways including AKT/mTOR, RAS, p53 and NF-κB and cell cycle regulation. Here we review the role of RIO kinases in cancer development emphasizing their potential as therapeutic target and encouraging further development and investigation of inhibitors in the context of cancer.
Collapse
Affiliation(s)
- Morteza Ghandadi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Medicinal Plants Research Center, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery at the Uniformed Services, University of the Health Sciences, Bethesda, MD 20817, USA; Henry Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Sanjay V Malhotra
- Department of Cell, Development and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
6
|
Kumar R, Malik MZ, Thanaraj TA, Bagabir SA, Haque S, Tambuwala M, Haider S. A computational biology approach to identify potential protein biomarkers and drug targets for sporadic amyotrophic lateral sclerosis. Cell Signal 2023; 112:110915. [PMID: 37838312 DOI: 10.1016/j.cellsig.2023.110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by the loss of upper and lower motor neurons. The sporadic ALS (sALS) is a multigenic disorder and the complex mechanisms underlying its onset are still not fully delineated. Despite the recent scientific advancements, certain aspects of ALS pathogenic targets need to be yet clarified. The aim of the presented study is to identify potential genetic biomarkers and drug targets for sALS, by analysing gene expression profiles, presented in the publicly available GSE68605 dataset, of motor neurons cells obtained from sALS patients. We used different computational approaches including differential expression analysis, protein network mapping, candidate protein biomarker (CPB) identification, elucidation of the role of functional modules, and molecular docking analysis. The resultant top ten up- and downregulated genes were further used to construct protein-protein interaction network (PPIN). The PPIN analysis resulted in identifying four CPBs (namely RIOK2, AKT1, CTNNB1, and TNF) that commonly overlapped with one another in network parameters (degree, bottleneck and maximum neighbourhood component). The RIOK2 protein emerged as a potential mediator of top five functional modules that are associated with RNA binding, lipoprotein particle receptor binding in pre-ribosome, and interferon, cytokine-mediated signaling pathway. Furthermore, molecular docking analysis revealed that cyclosporine exhibited the highest binding affinity (-8.6 kJ/mol) with RIOK2, and surpassed the FDA-approved ALS drugs, such as riluzole and edaravone. This suggested that cyclosporine may serve as a promising candidate for targeting RIOK2 downregulation observed in sALS patients. In order to validate our computational results, it is suggested that in vitro and in vivo studies may be conducted in future to provide a more detailed understanding of ALS diagnosis, prognosis, and therapeutic intervention.
Collapse
Affiliation(s)
- Rupesh Kumar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Sec-62, Uttar Pradesh, India.
| | - Md Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, P.O. Box 1180, Kuwait city 15462, Kuwait.
| | - Thangavel Alphonse Thanaraj
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, P.O. Box 1180, Kuwait city 15462, Kuwait.
| | - Sali Abubaker Bagabir
- Genetics Unit, Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| | - Shazia Haider
- Department of Biosciences, Jamia Millia University, New Delhi 110025, India.
| |
Collapse
|
7
|
Damizia M, Moretta GM, De Wulf P. The RioK1 network determines p53 activity at multiple levels. Cell Death Discov 2023; 9:410. [PMID: 37935656 PMCID: PMC10630321 DOI: 10.1038/s41420-023-01704-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
By responding to a host of adverse conditions, ranging from DNA damage to viral infection, transcription factor p53 supports genomic stability, cellular health, and survival. Not surprisingly, tumours across the cancer spectrum carry mutations in p53, misexpress the protein, or dysregulate its activity. Several signalling pathways, many of which comprise oncogenic proteins, converge upon p53 to control its stability and activity. We here present the conserved kinase/ATPase RioK1 as an upstream factor that determines p53 activity at the DNA, RNA, and protein levels. It achieves this task by integrating the regulatory events that act on p53 into a coherent response circuit. We will also discuss how RIOK1 overexpression represents an alternative mechanism for cancers to inactivate p53, and how targeting RioK1 could eradicate malignancies that are driven by a dysregulated RioK1-p53 network.
Collapse
Affiliation(s)
- Michela Damizia
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123, Trento (TN), Italy
| | - Gian Mario Moretta
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123, Trento (TN), Italy
| | - Peter De Wulf
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123, Trento (TN), Italy.
| |
Collapse
|
8
|
Bertrand M, Szeremeta F, Hervouet-Coste N, Sarou-Kanian V, Landon C, Morisset-Lopez S, Decoville M. An adult Drosophila glioma model to highlight metabolic dysfunctions and evaluate the role of the serotonin 5-HT 7 receptor as a potential therapeutic target. FASEB J 2023; 37:e23230. [PMID: 37781977 DOI: 10.1096/fj.202300783rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Gliomas account for 50% of brain cancers and are therefore the most common brain tumors. Molecular alterations involved in adult gliomas have been identified and mainly affect tyrosine kinase receptors with amplification and/or mutation of the epidermal growth factor receptor (EGFR) and its associated signaling pathways. Several targeted therapies have been developed, but current treatments remain ineffective for glioblastomas, the most severe forms. Thus, it is a priority to identify new pharmacological targets. Drosophila glioma models established in larvae and adults are useful to identify new genes and signaling pathways involved in glioma progression. Here, we used a Drosophila glioma model in adults, to characterize metabolic disturbances associated with glioma and assess the consequences of 5-HT7 R expression on glioma development. First, by using in vivo magnetic resonance imaging, we have shown that expression of the constitutively active forms of EGFR and PI3K in adult glial cells induces brain enlargement. Then, we explored altered cellular metabolism by using high-resolution magic angle spinning NMR and 1 H-13 C heteronuclear single quantum coherence solution states. Discriminant metabolites identified highlight the rewiring of metabolic pathways in glioma and associated cachexia phenotypes. Finally, the expression of 5-HT7 R in this adult model attenuates phenotypes associated with glioma development. Collectively, this whole-animal approach in Drosophila allowed us to provide several rapid and robust phenotype readouts, such as enlarged brain volume and glioma-associated cachexia, as well as to determine the metabolic pathways involved in glioma genesis and finally to confirm the interest of the 5-HT7 R in the treatment of glioma.
Collapse
Affiliation(s)
- Marylène Bertrand
- Centre de Biophysique Moléculaire-CBM, UPR 4301, CNRS, Orléans, France
| | | | | | - Vincent Sarou-Kanian
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation-CEMHTI-CNRS UPR 3079, Orléans, France
| | - Céline Landon
- Centre de Biophysique Moléculaire-CBM, UPR 4301, CNRS, Orléans, France
| | | | - Martine Decoville
- Centre de Biophysique Moléculaire-CBM, UPR 4301, CNRS, Orléans, France
- UFR Sciences et Techniques, Université d'Orléans, Orléans, France
| |
Collapse
|
9
|
Xiong H, Yu Q, Ma H, Yu X, Ouyang Y, Zhang ZM, Zhou W, Zhang Z, Cai Q. Exploration of tricyclic heterocycles as core structures for RIOK2 inhibitors. RSC Med Chem 2023; 14:2007-2011. [PMID: 37859717 PMCID: PMC10583808 DOI: 10.1039/d3md00209h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/20/2023] [Indexed: 10/21/2023] Open
Abstract
Right open reading frame kinase 2 (RIOK2) is an atypical kinase and has been proved to be involved in multiple human cancers including non-small cell lung cancer (NSCLC), acute myeloid leukemia (AML), glioblastoma and anemia. Although tremendous efforts have been devoted to the studies of RIOK2, its biological functions remain poorly understood. It is highly important to develop potent and selective RIOK2 inhibitors as potential research tools to elucidate its functions and as drug candidates for further therapies. We have previously identified a highly potent and selective RIOK2 inhibitor (CQ211). To confirm the importance of the "V-shaped" structure of CQ211 for binding with RIOK2, a variety of tricyclic compounds with different core structures instead of the [1,2,3]triazolo[4,5-c]quinolin-4-one core of CQ211 were designed, synthesized, and the binding affinities of these tricyclic heterocycles with RIOK2 were also evaluated.
Collapse
Affiliation(s)
- Huilan Xiong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
| | - Qiuchun Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
| | - Haowen Ma
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
| | - Xiuwen Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
| | - Yifan Ouyang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
| | - Zhi-Min Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
| | - Wei Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
| | - Qian Cai
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
| |
Collapse
|
10
|
Handle F, Puhr M, Gruber M, Andolfi C, Schäfer G, Klocker H, Haybaeck J, De Wulf P, Culig Z. The Oncogenic Protein Kinase/ATPase RIOK1 Is Up-Regulated via the c-myc/E2F Transcription Factor Axis in Prostate Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1284-1297. [PMID: 37301535 DOI: 10.1016/j.ajpath.2023.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
The atypical protein kinase/ATPase RIO kinase (RIOK)-1 is involved in pre-40S ribosomal subunit production, cell-cycle progression, and protein arginine N-methyltransferase 5 methylosome substrate recruitment. RIOK1 overexpression is a characteristic of several malignancies and is correlated with cancer stage, therapy resistance, poor patient survival, and other prognostic factors. However, its role in prostate cancer (PCa) is unknown. In this study, the expression, regulation, and therapeutic potential of RIOK1 in PCa were examined. RIOK1 mRNA and protein expression were elevated in PCa tissue samples and correlated with proliferative and protein homeostasis-related pathways. RIOK1 was identified as a downstream target gene of the c-myc/E2F transcription factors. Proliferation of PCa cells was significantly reduced with RIOK1 knockdown and overexpression of the dominant-negative RIOK1-D324A mutant. Biochemical inhibition of RIOK1 with toyocamycin led to strong antiproliferative effects in androgen receptor-negative and -positive PCa cell lines with EC50 values of 3.5 to 8.8 nmol/L. Rapid decreases in RIOK1 protein expression and total rRNA content, and a shift in the 28S/18S rRNA ratio, were found with toyocamycin treatment. Apoptosis was induced with toyocamycin treatment at a level similar to that with the chemotherapeutic drug docetaxel used in clinical practice. In summary, the current study indicates that RIOK1 is a part of the MYC oncogene network, and as such, could be considered for future treatment of patients with PCa.
Collapse
Affiliation(s)
- Florian Handle
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria; Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martina Gruber
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Chiara Andolfi
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Schäfer
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Helmut Klocker
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria; Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Peter De Wulf
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
11
|
Osama M, Essibayi MA, Osama M, Ibrahim IA, Nasr Mostafa M, Şakir Ekşi M. The impact of interaction between verteporfin and yes-associated protein 1/transcriptional coactivator with PDZ-binding motif-TEA domain pathway on the progression of isocitrate dehydrogenase wild-type glioblastoma. J Cent Nerv Syst Dis 2023; 15:11795735231195760. [PMID: 37600236 PMCID: PMC10439684 DOI: 10.1177/11795735231195760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Verteporfin and 5-ALA are used for visualizing malignant tissue components in different body tumors and as photodynamic therapy in treating isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM). Additionally, verteporfin interferes with Yes-associated protein 1 (YAP)/Transcriptional coactivator with PDZ-binding motif - TEA domain (TAZ-TEAD) pathway, thus inhibiting the downstream effect of these oncogenes and reducing the malignant properties of GBM. Animal studies have shown verteporfin to be successful in increasing survival rates, which have led to the conduction of phase 1 and 2 clinical trials to further investigate its efficacy in treating GBM. In this article, we aimed to review the novel mechanism of verteporfin's action, the impact of its interaction with YAP/TAZ-TEAD, its effect on glioblastoma stem cells, and its role in inducing ferroptosis.
Collapse
Affiliation(s)
- Mahmoud Osama
- Department of Neurosurgery, Nasser Institute for Research and Treatment, Cairo, Egypt
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Muhammed Amir Essibayi
- Department of Neurosurgery, Albert Einstein College of Medicine, New York City, NY, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Mona Osama
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ismail A. Ibrahim
- Department of Physical Therapy and Rehabilitation, Fenerbahce University, Istanbul, Turkey
| | | | - Murat Şakir Ekşi
- Neurosurgery Clinic, FSM Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
12
|
Smurova K, Damizia M, Irene C, Stancari S, Berto G, Perticari G, Iacovella MG, D'Ambrosio I, Giubettini M, Philippe R, Baggio C, Callegaro E, Casagranda A, Corsini A, Polese VG, Ricci A, Dassi E, De Wulf P. Rio1 downregulates centromeric RNA levels to promote the timely assembly of structurally fit kinetochores. Nat Commun 2023; 14:3172. [PMID: 37263996 DOI: 10.1038/s41467-023-38920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
Kinetochores assemble on centromeres via histone H3 variant CENP-A and low levels of centromere transcripts (cenRNAs). The latter are ensured by the downregulation of RNA polymerase II (RNAPII) activity, and cenRNA turnover by the nuclear exosome. Using S. cerevisiae, we now add protein kinase Rio1 to this scheme. Yeast cenRNAs are produced either as short (median lengths of 231 nt) or long (4458 nt) transcripts, in a 1:1 ratio. Rio1 limits their production by reducing RNAPII accessibility and promotes cenRNA degradation by the 5'-3'exoribonuclease Rat1. Rio1 similarly curtails the concentrations of noncoding pericenRNAs. These exist as short transcripts (225 nt) at levels that are minimally two orders of magnitude higher than the cenRNAs. In yeast depleted of Rio1, cen- and pericenRNAs accumulate, CEN nucleosomes and kinetochores misform, causing chromosome instability. The latter phenotypes are also observed with human cells lacking orthologue RioK1, suggesting that CEN regulation by Rio1/RioK1 is evolutionary conserved.
Collapse
Affiliation(s)
- Ksenia Smurova
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Michela Damizia
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Carmela Irene
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Stefania Stancari
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Giovanna Berto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Giulia Perticari
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Maria Giuseppina Iacovella
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139, Milano, Italy
| | - Ilaria D'Ambrosio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Maria Giubettini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Réginald Philippe
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Chiara Baggio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Elisabetta Callegaro
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Andrea Casagranda
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Alessandro Corsini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Vincenzo Gentile Polese
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Anna Ricci
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Erik Dassi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Peter De Wulf
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| |
Collapse
|
13
|
Shechter S, Ya'ar Bar S, Khattib H, Gage MJ, Avni D. Riok1, A Novel Potential Target in MSI-High p53 Mutant Colorectal Cancer Cells. Molecules 2023; 28:molecules28114452. [PMID: 37298928 DOI: 10.3390/molecules28114452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
The vulnerabilities of cancer cells constitute a promising strategy for drug therapeutics. This paper integrates proteomics, bioinformatics, and cell genotype together with in vitro cell proliferation assays to identify key biological processes and potential novel kinases that could account, at least in part, for the clinical differences observed in colorectal cancer (CRC) patients. This study started by focusing on CRC cell lines stratified by their microsatellite (MS) state and p53 genotype. It shows that cell-cycle checkpoint, metabolism of proteins and RNA, signal transduction, and WNT signaling processes are significantly more active in MSI-High p53-WT cell lines. Conversely, MSI-High cell lines with a mutant (Mut) p53 gene showed hyperactivation of cell signaling, DNA repair, and immune-system processes. Several kinases were linked to these phenotypes, from which RIOK1 was selected for additional exploration. We also included the KRAS genotype in our analysis. Our results showed that RIOK1's inhibition in CRC MSI-High cell lines was dependent on both the p53 and KRAS genotypes. Explicitly, Nintedanib showed relatively low cytotoxicity in MSI-High with both mutant p53 and KRAS (HCT-15) but no inhibition in p53 and KRAS WT (SW48) MSI-High cells. This trend was flipped in CRC MSI-High bearing opposite p53-KRAS genotypes (e.g., p53-Mut KRAS-WT or p53-WT KRAS-Mut), where observed cytotoxicity was more extensive compared to the p53-KRAS WT-WT or Mut-Mut cells, with HCT 116 (KRAS-Mut and p53-WT) being the most sensitive to RIOK1 inhibition. These results highlight the potential of our in silico computational approach to identify novel kinases in CRC sub-MSI-High populations as well as the importance of clinical genomics in determining drug potency.
Collapse
Affiliation(s)
- Sharon Shechter
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854-2874, USA
| | - Sapir Ya'ar Bar
- Department of Natural Compound, Nutrition, and Health, MIGAL Galilee Research Institute, Kiryat Shmona 1101600, Israel
| | - Hamdan Khattib
- Department of Natural Compound, Nutrition, and Health, MIGAL Galilee Research Institute, Kiryat Shmona 1101600, Israel
| | - Matthew J Gage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854-2874, USA
| | - Dorit Avni
- Department of Natural Compound, Nutrition, and Health, MIGAL Galilee Research Institute, Kiryat Shmona 1101600, Israel
| |
Collapse
|
14
|
Bowling GC, Rands MG, Dobi A, Eldhose B. Emerging Developments in ETS-Positive Prostate Cancer Therapy. Mol Cancer Ther 2023; 22:168-178. [PMID: 36511830 DOI: 10.1158/1535-7163.mct-22-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/26/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Prostate cancer is a global health concern, which has a low survival rate in its advanced stages. Even though second-generation androgen receptor-axis inhibitors serve as the mainstay treatment options, utmost of the metastatic cases progress into castration-resistant prostate cancer after their initial treatment response with poor prognostic outcomes. Hence, there is a dire need to develop effective inhibitors that aim the causal oncogenes tangled in the prostate cancer initiation and progression. Molecular-targeted therapy against E-26 transformation-specific (ETS) transcription factors, particularly ETS-related gene, has gained wide attention as a potential treatment strategy. ETS rearrangements with the male hormone responsive transmembrane protease serine 2 promoter defines a significant number of prostate cancer cases and is responsible for cancer initiation and progression. Notably, inhibition of ETS activity has shown to reduce tumorigenesis, thus highlighting its potential as a clinical therapeutic target. In this review, we recapitulate the various targeted drug approaches, including small molecules, peptidomimetics, nucleic acids, and many others, aimed to suppress ETS activity. Several inhibitors have demonstrated ERG antagonist activity in prostate cancer, but further investigations into their molecular mechanisms and impacts on nontumor ETS-containing tissues is warranted.
Collapse
Affiliation(s)
- Gartrell C Bowling
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Mitchell G Rands
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Binil Eldhose
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| |
Collapse
|
15
|
Frederico SC, Zhang X, Hu B, Kohanbash G. Pre-clinical models for evaluating glioma targeted immunotherapies. Front Immunol 2023; 13:1092399. [PMID: 36700223 PMCID: PMC9870312 DOI: 10.3389/fimmu.2022.1092399] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Gliomas have an extremely poor prognosis in both adult and pediatric patient populations as these tumors are known to grow aggressively and respond poorly to standard of care treatment. Currently, treatment for gliomas involves surgical resection followed by chemoradiation therapy. However, some gliomas, such as diffuse midline glioma, have more limited treatment options such as radiotherapy alone. Even with these interventions, the prognosis for those diagnosed with a glioma remains poor. Immunotherapy is highly effective for some cancers and there is great interest in the development of effective immunotherapies for the treatment of gliomas. Clinical trials evaluating the efficacy of immunotherapies targeted to gliomas have largely failed to date, and we believe this is partially due to the poor choice in pre-clinical mouse models that are used to evaluate these immunotherapies. A key consideration in evaluating new immunotherapies is the selection of pre-clinical models that mimic the glioma-immune response in humans. Multiple pre-clinical options are currently available, each one with their own benefits and limitations. Informed selection of pre-clinical models for testing can facilitate translation of more promising immunotherapies in the clinical setting. In this review we plan to present glioma cell lines and mouse models, as well as alternatives to mouse models, that are available for pre-clinical glioma immunotherapy studies. We plan to discuss considerations of model selection that should be made for future studies as we hope this review can serve as a guide for investigators as they choose which model is best suited for their study.
Collapse
Affiliation(s)
- Stephen C. Frederico
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xiaoran Zhang
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: Gary Kohanbash,
| |
Collapse
|
16
|
Matsuzaki Y, Naito Y, Miura N, Mori T, Watabe Y, Yoshimoto S, Shibahara T, Takano M, Honda K. RIOK2 Contributes to Cell Growth and Protein Synthesis in Human Oral Squamous Cell Carcinoma. Curr Oncol 2022; 30:381-391. [PMID: 36661680 PMCID: PMC9857684 DOI: 10.3390/curroncol30010031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Ribosomes are responsible for the protein synthesis that maintains cellular homeostasis and is required for the rapid cellular division of cancer cells. However, the role of ribosome biogenesis mediators in the malignant behavior of tongue squamous cell carcinoma (TSCC) is unknown. In this study, we found that the expression of RIOK2, a key enzyme involved in the maturation steps of the pre-40S ribosomal complex, was significantly associated with poorer overall survival in patients with TSCC. Further, multivariate analysis revealed that RIOK2 is an independent prognostic factor (hazard ratio, 3.53; 95% confidence interval, 1.19-10.91). Inhibition of RIOK2 expression by siRNA decreased cell growth and S6 ribosomal protein expression in oral squamous cell carcinoma cell lines. RIOK2 knockdown also led to a significant decrease in the protein synthesis in cancer cells. RIOK2 has potential application as a novel therapeutic target for TSCC treatment.
Collapse
Affiliation(s)
- Yusuke Matsuzaki
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo 113-8602, Japan
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Yutaka Naito
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo 113-8602, Japan
| | - Nami Miura
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo 113-8602, Japan
| | - Taisuke Mori
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Yukio Watabe
- Department of Dentistry and Oral Surgery, Tokyo Metropolitan Tama Medical Center, Tokyo 183-8524, Japan
| | - Seiichi Yoshimoto
- Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Takahiko Shibahara
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Masayuki Takano
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Kazufumi Honda
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo 113-8602, Japan
- Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
17
|
Li K, Zou J, Yan H, Li Y, Li MM, Liu Z. Pan-cancer analyses reveal multi-omics and clinical characteristics of RIO kinase 2 in cancer. Front Chem 2022; 10:1024670. [DOI: 10.3389/fchem.2022.1024670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
RIO kinase 2 has emerged as a critical kinase for ribosome maturation, and recently it has also been found to play a fundamental role in cancer, being involved in the occurrence and progression of glioblastoma, liver cancer, prostate cancer, non-small cell lung cancer, and acute myeloid leukemia. However, our knowledge in this regard is fragmented and limited and it is difficult to determine the exact role of RIO kinase 2 in tumors. Here, we conducted an integrated pan-cancer analysis comprising 33 cancer-types to determine the function of RIO kinase 2 in malignancies. The results show that RIO kinase 2 is highly expressed in all types of cancer and is significantly associated with tumor survival, metastasis, and immune cell infiltration. Moreover, RIO kinase 2 alteration via DNA methylation, and protein phosphorylation are involved in tumorigenesis. In summary, RIO kinase two serves as a promising target for the identification of cancer and increases our understanding of tumorigenesis and cancer progression and enhancing the ultimate goal of improved treatment for these diseases.
Collapse
|
18
|
Analysis of RIOK2 Functions in Mediating the Toxic Effects of Deoxynivalenol in Porcine Intestinal Epithelial Cells. Int J Mol Sci 2022; 23:ijms232112712. [PMID: 36361502 PMCID: PMC9653672 DOI: 10.3390/ijms232112712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
Deoxynivalenol (DON) is a type of mycotoxin that threatens human and livestock health. Right open reading frame kinase 2 (RIOK2) is a kinase that has a pivotal function in ribosome maturation and cell cycle progression. This study aims to clarify the role of the RIOK2 gene in DON-induced cytotoxicity regulation in porcine intestinal epithelial cells (IPEC-J2). Cell viability assay and flow cytometry showed that the knockdown of RIOK2 inhibited proliferation and induced apoptosis, cell cycle arrest, and oxidative stress in DON-induced IPEC-J2. Then, transcriptome profiling identified candidate genes and pathways that closely interacted with both DON cytotoxicity regulation and RIOK2 expression. Furthermore, RIOK2 interference promoted the activation of the MAPK signaling pathway by increasing the phosphorylation of ERK and JNK. Additionally, we performed the dual-luciferase reporter and ChIP assays to elucidate that the expression of RIOK2 was influenced by the binding of transcription factor Sp1 with the promoter region. Briefly, the reduced expression of the RIOK2 gene exacerbates the cytotoxic effects induced by DON in IPEC-J2. Our findings provide insights into the control strategies for DON contamination by identifying functional genes and effective molecular markers.
Collapse
|
19
|
Saborio JG, Young EE, Chen AS, Read RD. A protocol to use Drosophila melanogaster larvae to model human glioblastoma. STAR Protoc 2022; 3:101609. [PMID: 35990742 PMCID: PMC9385699 DOI: 10.1016/j.xpro.2022.101609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This protocol describes a genetic model system we developed for glioblastoma (GBM) in Drosophila melanogaster, which can be used to explore the pathogenic phenotypic effects of mutated genetic pathways and to identify potential therapeutic targets for tumors with these mutations. We present genetic schemes and experimental steps needed to create neoplastic glial brain tumors in larval Drosophila. We also provide steps to manipulate genes in this model and to perform brain fixation, immunostaining, and imaging of neoplastic larval brains. For complete details on the use and execution of this protocol, please refer to Read et al., (2009).
Collapse
Affiliation(s)
- Julia G Saborio
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA; Graduate Program in Cancer Biology and Translational Oncology, Emory University, Atlanta, GA 30322, USA
| | - Elizabeth E Young
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Alexander S Chen
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Renee D Read
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA; Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
20
|
Jiang H, Kimura T, Hai H, Yamamura R, Sonoshita M. Drosophila as a toolkit to tackle cancer and its metabolism. Front Oncol 2022; 12:982751. [PMID: 36091180 PMCID: PMC9458318 DOI: 10.3389/fonc.2022.982751] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is one of the most severe health problems worldwide accounting for the second leading cause of death. Studies have indicated that cancers utilize different metabolic systems as compared with normal cells to produce extra energy and substances required for their survival, which contributes to tumor formation and progression. Recently, the fruit fly Drosophila has been attracting significant attention as a whole-body model for elucidating the cancer mechanisms including metabolism. This tiny organism offers a valuable toolkit with various advantages such as high genetic conservation and similar drug response to mammals. In this review, we introduce flies modeling for cancer patient genotypes which have pinpointed novel therapeutic targets and drug candidates in the salivary gland, thyroid, colon, lung, and brain. Furthermore, we introduce fly models for metabolic diseases such as diabetes mellitus, obesity, and cachexia. Diabetes mellitus and obesity are widely acknowledged risk factors for cancer, while cachexia is a cancer-related metabolic condition. In addition, we specifically focus on two cancer metabolic alterations: the Warburg effect and redox metabolism. Indeed, flies proved useful to reveal the relationship between these metabolic changes and cancer. Such accumulating achievements indicate that Drosophila offers an efficient platform to clarify the mechanisms of cancer as a systemic disease.
Collapse
Affiliation(s)
- Hui Jiang
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Taku Kimura
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Oral Diagnosis and Medicine, Graduate school of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Han Hai
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Ryodai Yamamura
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- *Correspondence: Ryodai Yamamura, ; Masahiro Sonoshita,
| | - Masahiro Sonoshita
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- *Correspondence: Ryodai Yamamura, ; Masahiro Sonoshita,
| |
Collapse
|
21
|
Antonica F, Aiello G, Soldano A, Abballe L, Miele E, Tiberi L. Modeling Brain Tumors: A Perspective Overview of in vivo and Organoid Models. Front Mol Neurosci 2022; 15:818696. [PMID: 35706426 PMCID: PMC9190727 DOI: 10.3389/fnmol.2022.818696] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Brain tumors are a large and heterogeneous group of neoplasms that affect the central nervous system and include some of the deadliest cancers. Almost all the conventional and new treatments fail to hinder tumoral growth of the most malignant brain tumors. This is due to multiple factors, such as intra-tumor heterogeneity, the microenvironmental properties of the human brain, and the lack of reliable models to test new therapies. Therefore, creating faithful models for each tumor and discovering tailored treatments pose great challenges in the fight against brain cancer. Over the years, different types of models have been generated, and, in this review, we investigated the advantages and disadvantages of the models currently used.
Collapse
Affiliation(s)
- Francesco Antonica
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giuseppe Aiello
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessia Soldano
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Luana Abballe
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Evelina Miele
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- *Correspondence: Luca Tiberi,
| |
Collapse
|
22
|
RIOK1 mediates p53 degradation and radioresistance in colorectal cancer through phosphorylation of G3BP2. Oncogene 2022; 41:3433-3444. [PMID: 35589951 DOI: 10.1038/s41388-022-02352-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022]
Abstract
RIO Kinase 1 (RIOK1) is involved in various pathologies, including cancer. However, the role of RIOK1 in radioresistance of colorectal cancer (CRC) remains largely unknown. In this study, we reported that RIOK1 was overexpressed in rectal cancer tissue with weaker tumor regression after neoadjuvant chemoradiotherapy (neoCRT). Moreover, higher RIOK1 expression predicted a poor prognosis in patients with rectal cancer. Blockade of RIOK1 using Toyocamycin, a pharmacological inhibitor of RIOK1, or by knocking down its expression, decreased the resistance of CRC cells to radiotherapy in vitro and in vivo. A mechanistic study revealed that RIOK1 regulates radioresistance by suppressing the p53 signaling pathway. Furthermore, we found that RIOK1 and Ras-GAP SH3 domain binding protein 2 (G3BP2) interact with each other. RIOK1 phosphorylates G3BP2 at Thr226, which increases the activity of G3BP2. RIOK1-mediated phosphorylation of G3BP2 facilitated ubiquitination of p53 by murine double minute 2 protein (MDM2). Altogether, our study revealed the clinical significance of RIOK1 in CRC, and therapies targeting RIOK1 might alleviate the CRC tumor burden in patients.
Collapse
|
23
|
Ouyang Y, Si H, Zhu C, Zhong L, Ma H, Li Z, Xiong H, Liu T, Liu Z, Zhang Z, Zhang ZM, Cai Q. Discovery of 8-(6-Methoxypyridin-3-yl)-1-(4-(piperazin-1-yl)-3-(trifluoromethyl)phenyl)-1,5-dihydro- 4H-[1,2,3]triazolo[4,5- c]quinolin-4-one (CQ211) as a Highly Potent and Selective RIOK2 Inhibitor. J Med Chem 2022; 65:7833-7842. [PMID: 35584513 DOI: 10.1021/acs.jmedchem.2c00271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RIOK2 is an atypical kinase implicated in multiple human cancers. Although recent studies establish the role of RIOK2 in ribosome maturation and cell cycle progression, its biological functions remain poorly elucidated, hindering the potential to explore RIOK2 as a therapeutic target. Here, we report the discovery of CQ211, the most potent and selective RIOK2 inhibitor reported so far. CQ211 displays a high binding affinity (Kd = 6.1 nM) and shows excellent selectivity to RIOK2 in both enzymatic and cellular studies. It also exhibits potent proliferation inhibition activity against multiple cancer cell lines and demonstrates promising in vivo efficacy in mouse xenograft models. The crystal structure of RIOK2-CQ211 sheds light on the molecular mechanism of inhibition and informs the subsequent optimization. The study provides a cell-active chemical probe for verifying RIOK2 functions, which may also serve as a leading molecule in the development of therapeutic RIOK2 inhibitors.
Collapse
Affiliation(s)
- Yifan Ouyang
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510530, China
| | - Hongfei Si
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510530, China
| | - Chengjun Zhu
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510530, China
| | - Liang Zhong
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510530, China
| | - Haowen Ma
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510530, China
| | - Zongyang Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Huilan Xiong
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510530, China
| | - Tongzheng Liu
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510530, China
| | - Zhong Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhang Zhang
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510530, China
| | - Zhi-Min Zhang
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510530, China
| | - Qian Cai
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510530, China
| |
Collapse
|
24
|
Courant F, Maravat M, Chen W, Gosset D, Blot L, Hervouet-Coste N, Sarou-Kanian V, Morisset-Lopez S, Decoville M. Expression of the Human Serotonin 5-HT 7 Receptor Rescues Phenotype Profile and Restores Dysregulated Biomarkers in a Drosophila melanogaster Glioma Model. Cells 2022; 11:1281. [PMID: 35455961 PMCID: PMC9028361 DOI: 10.3390/cells11081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Gliomas are the most common primary brain tumors in adults. Significant progress has been made in recent years in identifying the molecular alterations involved in gliomas. Among them, an amplification/overexpression of the EGFR (Epidermal Growth Factor Receptor) proto-oncogene and its associated signaling pathways have been widely described. However, current treatments remain ineffective for glioblastomas, the most severe forms. Thus, the identification of other pharmacological targets could open new therapeutic avenues. We used a glioma model in Drosophila melanogaster that results from the overexpression of constitutively active forms of EGFR and PI3K specifically in glial cells. We observed hyperproliferation of glial cells that leads to an increase in brain size and lethality at the third instar larval stage. After expression of the human serotonin 5-HT7 receptor in this glioma model, we observed a decrease in larval lethality associated with the presence of surviving adults and a return to a normal morphology of brain for some Drosophila. Those phenotypic changes are accompanied by the normalization of certain metabolic biomarkers measured by High-Resolution Magic Angle Spinning NMR (HR-MAS NMR). The 5-HT7R expression in glioma also restores some epigenetic modifications and characteristic markers of the signaling pathways associated with tumor growth. This study demonstrates the role of the serotonin 5-HT7 receptor as a tumor suppressor gene which is in agreement with transcriptomic analysis obtained on human glioblastomas.
Collapse
Affiliation(s)
- Florestan Courant
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Marion Maravat
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation—CEMHTI-CNRS UPR 3079, CEDEX 02, F-45071 Orléans, France; (M.M.); (V.S.-K.)
| | - Wanyin Chen
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - David Gosset
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Lauren Blot
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Nadège Hervouet-Coste
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Vincent Sarou-Kanian
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation—CEMHTI-CNRS UPR 3079, CEDEX 02, F-45071 Orléans, France; (M.M.); (V.S.-K.)
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Martine Decoville
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
- UFR Sciences et Techniques, Université d’Orléans, 6 Avenue du Parc Floral, F-45100 Orléans, France
| |
Collapse
|
25
|
Messling JE, Agger K, Andersen KL, Kromer K, Kuepper HM, Lund AH, Helin K. Targeting RIOK2 ATPase activity leads to decreased protein synthesis and cell death in acute myeloid leukemia. Blood 2022; 139:245-255. [PMID: 34359076 PMCID: PMC8759535 DOI: 10.1182/blood.2021012629] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/29/2021] [Indexed: 01/16/2023] Open
Abstract
Novel therapies for the treatment of acute myeloid leukemia (AML) are urgently needed, because current treatments do not cure most patients with AML. We report a domain-focused, kinome-wide CRISPR-Cas9 screening that identified protein kinase targets for the treatment of AML, which led to the identification of Rio-kinase 2 (RIOK2) as a potential novel target. Loss of RIOK2 led to a decrease in protein synthesis and to ribosomal instability followed by apoptosis in leukemic cells, but not in fibroblasts. Moreover, the ATPase function of RIOK2 was necessary for cell survival. When a small-molecule inhibitor was used, pharmacological inhibition of RIOK2 similarly led to loss of protein synthesis and apoptosis and affected leukemic cell growth in vivo. Our results provide proof of concept for targeting RIOK2 as a potential treatment of patients with AML.
Collapse
Affiliation(s)
- Jan-Erik Messling
- Biotech Research and Innovation Centre and
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark; and
| | - Karl Agger
- Biotech Research and Innovation Centre and
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark; and
| | | | - Kristina Kromer
- Biotech Research and Innovation Centre and
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark; and
| | - Hanna M Kuepper
- Biotech Research and Innovation Centre and
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark; and
| | | | - Kristian Helin
- Biotech Research and Innovation Centre and
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark; and
- Cell Biology Program and
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
26
|
Zhang W, Zhang C, Huang R, Qiu M, Li FX. Induction of right open reading frame kinase 3 (RIOK3) during ovulation and luteinisation in rat ovary. Reprod Fertil Dev 2021; 33:810-816. [PMID: 34758896 DOI: 10.1071/rd21118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022] Open
Abstract
Atypical protein serine kinase RIOK3 is involved in cellular invasion and survival. The spatiotemporal expression pattern and regulatory mechanisms controlling expression of Riok3 were investigated in the rat ovary during the periovulatory period. Immature female rats (22-23 days old) were treated with pregnant mare's serum gonadotropin (PMSG) to stimulate follicular development, followed 48h later by injection with human chorionic gonadotrophin (hCG). Ovaries, granulosa cells, or theca-interstitial cells were collected at various times after hCG administration. Both real-time polymerase chain reaction (PCR) and in situ hybridisation analysis revealed that Riok3 was highly induced in both granulosa cells and theca-interstitial cells by hCG. Riok3 expression was induced in theca-interstitial cells at 4h after hCG. However, the expression of Riok3 mRNA was stimulated in granulosa cells at 8h. Both protein kinase C inhibitor (GF109203) and the protein kinase A inhibitor (H89) could block the stimulation of Riok3 mRNA by hCG. Furthermore, Riok3 induction is dependent on new protein synthesis. Inhibition of prostaglandin synthesis or progesterone action did not alter Riok3 mRNA expression, whereas inhibition of the epidermal growth factor (EGF) pathway downregulated Riok3 expression. In conclusion, our findings suggest that the induction of the RIOK3 may be important for ovulation and luteinisation.
Collapse
Affiliation(s)
- Wei Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Chujing Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Ruiqi Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Fei-Xue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
27
|
Ostalé CM, Esteban N, López-Varea A, de Celis JF. Functional requirements of protein kinases and phosphatases in the development of the Drosophila melanogaster wing. G3-GENES GENOMES GENETICS 2021; 11:6380433. [PMID: 34599799 PMCID: PMC8664455 DOI: 10.1093/g3journal/jkab348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/06/2021] [Indexed: 11/14/2022]
Abstract
Protein kinases and phosphatases constitute a large family of conserved enzymes that control a variety of biological processes by regulating the phosphorylation state of target proteins. They play fundamental regulatory roles during cell cycle progression and signaling, among other key aspects of multicellular development. The complement of protein kinases and phosphatases includes approximately 326 members in Drosophila, and they have been the subject of several functional screens searching for novel components of signaling pathways and regulators of cell division and survival. These approaches have been carried out mostly in cell cultures using RNA interference to evaluate the contribution of each protein in different functional assays, and have contributed significantly to assign specific roles to the corresponding genes. In this work we describe the results of an evaluation of the Drosophila complement of kinases and phosphatases using the wing as a system to identify their functional requirements in vivo. We also describe the results of several modifying screens aiming to identify among the set of protein kinases and phosphatases additional components or regulators of the activities of the Epidermal Growth Factor and Insulin receptors signaling pathways.
Collapse
Affiliation(s)
- Cristina M Ostalé
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Nuria Esteban
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ana López-Varea
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jose F de Celis
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
28
|
Hu Q, Qin Y, Ji S, Shi X, Dai W, Fan G, Li S, Xu W, Liu W, Liu M, Zhang Z, Ye Z, Zhou Z, Yang J, Zhuo Q, Yu X, Li M, Xu X. MTAP Deficiency-Induced Metabolic Reprogramming Creates a Vulnerability to Cotargeting De Novo Purine Synthesis and Glycolysis in Pancreatic Cancer. Cancer Res 2021; 81:4964-4980. [PMID: 34385182 DOI: 10.1158/0008-5472.can-20-0414] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/18/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022]
Abstract
Methylthioadenosine phosphorylase (MTAP) is a key enzyme associated with the salvage of methionine and adenine that is deficient in 20% to 30% of pancreatic cancer. Our previous study revealed that MTAP deficiency indicates a poor prognosis for patients with pancreatic ductal adenocarcinoma (PDAC). In this study, bioinformatics analysis of The Cancer Genome Atlas (TCGA) data indicated that PDACs with MTAP deficiency display a signature of elevated glycolysis. Metabolomics studies showed that that MTAP deletion-mediated metabolic reprogramming enhanced glycolysis and de novo purine synthesis in pancreatic cancer cells. Western blot analysis revealed that MTAP knockout stabilized hypoxia-inducible factor 1α (HIF1α) protein via posttranslational phosphorylation. RIO kinase 1 (RIOK1), a downstream kinase upregulated in MTAP-deficient cells, interacted with and phosphorylated HIF1α to regulate its stability. In vitro experiments demonstrated that the glycolysis inhibitor 2-deoxy-d-glucose (2-DG) and the de novo purine synthesis inhibitor l-alanosine synergized to kill MTAP-deficient pancreatic cancer cells. Collectively, these results reveal that MTAP deficiency drives pancreatic cancer progression by inducing metabolic reprogramming, providing a novel target and therapeutic strategy for treating MTAP-deficient disease. SIGNIFICANCE: This study demonstrates that MTAP status impacts glucose and purine metabolism, thus identifying multiple novel treatment options against MTAP-deficient pancreatic cancer.
Collapse
Affiliation(s)
- Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xiuhui Shi
- Department of Medicine, Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Weixing Dai
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shuo Li
- Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Mengqi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zheng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zhijun Zhou
- Department of Medicine, Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jingxuan Yang
- Department of Medicine, Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Qifeng Zhuo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Min Li
- Department of Medicine, Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Yu M, Hu X, Yan J, Wang Y, Lu F, Chang J. RIOK2 Inhibitor NSC139021 Exerts Anti-Tumor Effects on Glioblastoma via Inducing Skp2-Mediated Cell Cycle Arrest and Apoptosis. Biomedicines 2021; 9:biomedicines9091244. [PMID: 34572430 PMCID: PMC8470931 DOI: 10.3390/biomedicines9091244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
Up to now, the chemotherapy approaches for glioblastoma were limited. 1-[2-Thiazolylazo]-2-naphthol (named as NSC139021) was shown to significantly inhibit the proliferation of prostate cancer cells by targeting the atypical protein kinase RIOK2. It is documented that RIOK2 overexpressed in glioblastoma. However, whether NSC139021 can inhibit the growth of glioblastoma cells and be a potential drug for glioblastoma treatment need to be clarified. In this study, we investigated the effects of NSC139021 on human U118MG, LN-18, and mouse GL261 glioblastoma cells and the mouse models of glioblastoma. We verified that NSC139021 effectively inhibited glioblastoma cells proliferation, but it is independent of RIOK2. Our data showed that NSC139021 induced cell cycle arrest at G0/G1 phase via the Skp2-p27/p21-Cyclin E/CDK2-pRb signaling pathway in G1/S checkpoint regulation. In addition, NSC139021 also increased the apoptosis of glioblastoma cells by activating the p53 signaling pathway and increasing the levels of Bax and cleaved caspase 3. Furthermore, intraperitoneal administration of 150 mg/kg NSC139021 significantly suppressed the growth of human and mouse glioblastoma in vivo. Our study suggests that NSC139021 may be a potential chemotherapy drug for the treatment of glioblastoma by targeting the Skp2-p27/p21-Cyclin E/CDK2-pRb signaling pathway.
Collapse
Affiliation(s)
- Min Yu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (M.Y.); (X.H.); (J.Y.); (Y.W.)
| | - Xiaoyan Hu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (M.Y.); (X.H.); (J.Y.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Jingyu Yan
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (M.Y.); (X.H.); (J.Y.); (Y.W.)
| | - Ying Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (M.Y.); (X.H.); (J.Y.); (Y.W.)
| | - Fei Lu
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Correspondence: (F.L.); (J.C.); Tel.: +86-755-26032279 (F.L.); +86-755-86585254 (J.C.)
| | - Junlei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (M.Y.); (X.H.); (J.Y.); (Y.W.)
- Correspondence: (F.L.); (J.C.); Tel.: +86-755-26032279 (F.L.); +86-755-86585254 (J.C.)
| |
Collapse
|
30
|
Wang Y, Xie X, Li S, Zhang D, Zheng H, Zhang M, Zhang Z. Co-overexpression of RIOK1 and AKT1 as a prognostic risk factor in glioma. J Cancer 2021; 12:5745-5752. [PMID: 34475988 PMCID: PMC8408104 DOI: 10.7150/jca.60596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most frequent primary malignancies of the brain. Although the treatment strategy has significantly improved, patient prognosis remains poor. In vitro studies have shown that the right open reading frame kinase 1/protein kinase B (RIOK1-AKT) signaling pathway plays an important role in the malignant phenotype of glioma cells. This study aimed to investigate the co-expression of RIOK1 and ATK in glioma tissues and its clinical significance. Compared with normal tissues, RIOK1 and AKT1 expression were significantly upregulated in glioma tissues. In addition, patients with higher World Health Organization staging grades had increased RIOK1 and AKT1 expression levels, and RIOK1 and AKT1 expression were positively correlated. Notably, both RIOK1 and AKT1 expressions were correlated with poor prognosis. In vitro experiments showed that silencing RIOK1 inhibited the proliferation, migration, and invasion of glioma cell lines by suppressing AKT and c-Myc expression. These results indicate that the RIOK1-AKT1 axis could play an important role in GBM progression.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Human Anatomy, Shenyang Medical College, Shenyang City, Liaoning Province 110034, P.R. China.,Department of Pathology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang City, Liaoning Province 110034, P.R. China
| | - Xiaochen Xie
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, 110001, P.R. China
| | - Shu Li
- Department of Human Anatomy, Shenyang Medical College, Shenyang City, Liaoning Province 110034, P.R. China
| | - Dongyong Zhang
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Heping District, Shenyang City, Liaoning Province, 110001, P.R. China
| | - Heyu Zheng
- Department of Human Anatomy, Shenyang Medical College, Shenyang City, Liaoning Province 110034, P.R. China
| | - Min Zhang
- Department of Pathology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang City, Liaoning Province 110034, P.R. China
| | - Zhong Zhang
- Department of Pathology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang City, Liaoning Province 110034, P.R. China
| |
Collapse
|
31
|
Holmes B, Benavides-Serrato A, Saunders JT, Kumar S, Nishimura RN, Gera J. mTORC2-mediated direct phosphorylation regulates YAP activity promoting glioblastoma growth and invasive characteristics. Neoplasia 2021; 23:951-965. [PMID: 34343821 PMCID: PMC8347669 DOI: 10.1016/j.neo.2021.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022]
Abstract
The Hippo and mTOR signaling cascades are major regulators of cell growth and division. Aberrant regulation of these pathways has been demonstrated to contribute to gliomagenesis and result in enhanced glioblastoma proliferation and invasive characteristics. Several crosstalk mechanisms have been described between these two pathways, although a complete picture of these signaling interactions is lacking and is required for effective therapeutic targeting. Here we report the ability of mTORC2 to directly phosphorylate YAP at serine 436 (Ser436) positively regulating YAP activity. We show that mTORC2 activity enhances YAP transcriptional activity and the induction of YAP-dependent target gene expression while its ablation via genetic or pharmacological means has the opposite affects on YAP function. mTORC2 interacts with YAP via Sin1 and mutational analysis of serine 436 demonstrates that this phosphorylation event affects several properties of YAP leading to enhanced transactivation potential. Moreover, YAP serine 436 mutants display altered glioblastoma growth, migratory capacity and invasiveness both in vitro and in xenograft experiments. We further demonstrate that mTORC2 is able to regulate a Hippo pathway resistant allele of YAP suggesting that mTORC2 can regulate YAP independent of Hippo signaling. Correlative associations between the expression of these components in GBM patient samples also supported the presence of this signaling relationship. These results advance a direct mTORC2/YAP signaling axis driving GBM growth, motility and invasiveness.
Collapse
Affiliation(s)
- Brent Holmes
- Departments of Medicine; Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CL
| | - Angelica Benavides-Serrato
- Departments of Medicine; Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CL
| | - Jacquelyn T Saunders
- Departments of Medicine; Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CL
| | - Sunil Kumar
- Department of Pharmaceutical and Biomedical Sciences, California Health Sciences University, Clovis, CL; Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CL
| | - Robert N Nishimura
- Neurology, David Geffen School of Medicine at UCLA; Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CL
| | - Joseph Gera
- Departments of Medicine; Jonnson Comprehensive Cancer Center; Molecular Biology Institute, University of California-Los Angeles, CL; Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CL.
| |
Collapse
|
32
|
Preynat-Seauve O, Nguyen EBV, Westermaier Y, Héritier M, Tardy S, Cambet Y, Feyeux M, Caillon A, Scapozza L, Krause KH. Novel Mechanism for an Old Drug: Phenazopyridine is a Kinase Inhibitor Affecting Autophagy and Cellular Differentiation. Front Pharmacol 2021; 12:664608. [PMID: 34421588 PMCID: PMC8371461 DOI: 10.3389/fphar.2021.664608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Phenazopyridine is a widely used drug against urinary tract pain. The compound has also been shown to enhance neural differentiation of pluripotent stem cells. However, its mechanism of action is not understood. Based on its chemical structure, we hypothesized that phenazopyridine could be a kinase inhibitor. Phenazopyridine was investigated in the following experimental systems: 1) activity of kinases in pluripotent stem cells; 2) binding to recombinant kinases, and 3) functional impact on pluripotent stem cells. Upon addition to pluripotent stem cells, phenazopyridine induced changes in kinase activities, particularly involving Mitogen-Activated Protein Kinases, Cyclin-Dependent Kinases, and AKT pathway kinases. To identify the primary targets of phenazopyridine, we screened its interactions with 401 human kinases. Dose-inhibition curves showed that three of these kinases interacted with phenazopyridine with sub-micromolar binding affinities: cyclin-G-associated kinase, and the two phosphatidylinositol kinases PI4KB and PIP4K2C, the latter being known for participating in pain induction. Docking revealed that phenazopyridine forms strong H-bonds with the hinge region of the ATP-binding pocket of these kinases. As previous studies suggested increased autophagy upon inhibition of the phosphatidyl-inositol/AKT pathway, we also investigated the impact of phenazopyridine on this pathway and found an upregulation. In conclusion, our study demonstrates for the first time that phenazopyridine is a kinase inhibitor, impacting notably phosphatidylinositol kinases involved in nociception.
Collapse
Affiliation(s)
- Olivier Preynat-Seauve
- Laboratory of Therapy and Stem Cells, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Evelyne Bao-Vi Nguyen
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yvonne Westermaier
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Margaux Héritier
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Sébastien Tardy
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Yves Cambet
- READS Unit, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Maxime Feyeux
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurélie Caillon
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Laboratory of Therapy and Stem Cells, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
33
|
Mughal MN, Ye Q, Zhao L, Grevelding CG, Li Y, Di W, He X, Li X, Gasser RB, Hu M. First Evidence of Function for Schistosoma japonicumriok-1 and RIOK-1. Pathogens 2021; 10:862. [PMID: 34358012 PMCID: PMC8308690 DOI: 10.3390/pathogens10070862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Protein kinases are known as key molecules that regulate many biological processes in animals. The right open reading frame protein kinase (riok) genes are known to be essential regulators in model organisms such as the free-living nematode Caenorhabditis elegans. However, very little is known about their function in parasitic trematodes (flukes). In the present study, we characterized the riok-1 gene (Sj-riok-1) and the inferred protein (Sj-RIOK-1) in the parasitic blood fluke, Schistosoma japonicum. We gained a first insight into function of this gene/protein through double-stranded RNA interference (RNAi) and chemical inhibition. RNAi significantly reduced Sj-riok-1 transcription in both female and male worms compared with untreated control worms, and subtle morphological alterations were detected in the ovaries of female worms. Chemical knockdown of Sj-RIOK-1 with toyocamycin (a specific RIOK-1 inhibitor/probe) caused a substantial reduction in worm viability and a major accumulation of mature oocytes in the seminal receptacle (female worms), and of spermatozoa in the sperm vesicle (male worms). These phenotypic alterations indicate that the function of Sj-riok-1 is linked to developmental and/or reproductive processes in S. japonicum.
Collapse
Affiliation(s)
- Mudassar N. Mughal
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
- Biomedical Research Center Seltersberg, Institute of Parasitology, Justus Liebig University Giessen, D-35392 Giessen, Germany;
| | - Qing Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Lu Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Christoph G. Grevelding
- Biomedical Research Center Seltersberg, Institute of Parasitology, Justus Liebig University Giessen, D-35392 Giessen, Germany;
| | - Ying Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Wenda Di
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China;
| | - Xin He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Xuesong Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| |
Collapse
|
34
|
Lebo DPV, Chirn A, Taylor JD, Levan A, Doerre Torres V, Agreda E, Serizier SB, Lord AK, Jenkins VK, McCall K. An RNAi screen of the kinome in epithelial follicle cells of the Drosophila melanogaster ovary reveals genes required for proper germline death and clearance. G3-GENES GENOMES GENETICS 2021; 11:6080751. [PMID: 33693600 PMCID: PMC8022946 DOI: 10.1093/g3journal/jkaa066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Programmed cell death and cell corpse clearance are an essential part of organismal health and development. Cell corpses are often cleared away by professional phagocytes such as macrophages. However, in certain tissues, neighboring cells known as nonprofessional phagocytes can also carry out clearance functions. Here, we use the Drosophila melanogaster ovary to identify novel genes required for clearance by nonprofessional phagocytes. In the Drosophila ovary, germline cells can die at multiple time points. As death proceeds, the epithelial follicle cells act as phagocytes to facilitate the clearance of these cells. We performed an unbiased kinase screen to identify novel proteins and pathways involved in cell clearance during two death events. Of 224 genes examined, 18 demonstrated severe phenotypes during developmental death and clearance while 12 demonstrated severe phenotypes during starvation-induced cell death and clearance, representing a number of pathways not previously implicated in phagocytosis. Interestingly, it was found that several genes not only affected the clearance process in the phagocytes, but also non-autonomously affected the process by which germline cells died. This kinase screen has revealed new avenues for further exploration and investigation.
Collapse
Affiliation(s)
- Diane P V Lebo
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Alice Chirn
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Jeffrey D Taylor
- Department of Biology, Boston University, Boston, MA 02215, USA.,Program in Biochemistry and Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Andre Levan
- Department of Biology, Boston University, Boston, MA 02215, USA.,Program in Biochemistry and Molecular Biology, Boston University, Boston, MA 02215, USA
| | | | - Emily Agreda
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Sandy B Serizier
- Department of Biology, Boston University, Boston, MA 02215, USA.,Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Allison K Lord
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Kimberly McCall
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
35
|
Cerezo EL, Houles T, Lié O, Sarthou MK, Audoynaud C, Lavoie G, Halladjian M, Cantaloube S, Froment C, Burlet-Schiltz O, Henry Y, Roux PP, Henras AK, Romeo Y. RIOK2 phosphorylation by RSK promotes synthesis of the human small ribosomal subunit. PLoS Genet 2021; 17:e1009583. [PMID: 34125833 PMCID: PMC8224940 DOI: 10.1371/journal.pgen.1009583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022] Open
Abstract
Ribosome biogenesis lies at the nexus of various signaling pathways coordinating protein synthesis with cell growth and proliferation. This process is regulated by well-described transcriptional mechanisms, but a growing body of evidence indicates that other levels of regulation exist. Here we show that the Ras/mitogen-activated protein kinase (MAPK) pathway stimulates post-transcriptional stages of human ribosome synthesis. We identify RIOK2, a pre-40S particle assembly factor, as a new target of the MAPK-activated kinase RSK. RIOK2 phosphorylation by RSK stimulates cytoplasmic maturation of late pre-40S particles, which is required for optimal protein synthesis and cell proliferation. RIOK2 phosphorylation facilitates its release from pre-40S particles and its nuclear re-import, prior to completion of small ribosomal subunits. Our results bring a detailed mechanistic link between the Ras/MAPK pathway and the maturation of human pre-40S particles, which opens a hitherto poorly explored area of ribosome biogenesis.
Collapse
Affiliation(s)
- Emilie L. Cerezo
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Thibault Houles
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Québec, Canada
| | - Oriane Lié
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Kerguelen Sarthou
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Charlotte Audoynaud
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Geneviève Lavoie
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Québec, Canada
| | - Maral Halladjian
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sylvain Cantaloube
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carine Froment
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Yves Henry
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Philippe P. Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Québec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Anthony K. Henras
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Romeo
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
36
|
Abstract
AbstractIn the developing Drosophila CNS, two pools of neural stem cells, the symmetrically dividing progenitors in the neuroepithelium (NE) and the asymmetrically dividing neuroblasts (NBs) generate the majority of the neurons that make up the adult central nervous system (CNS). The generation of a correct sized brain depends on maintaining the fine balance between neural stem cell self-renewal and differentiation, which are regulated by cell-intrinsic and cell-extrinsic cues. In this review, we will discuss our current understanding of how self-renewal and differentiation are regulated in the two neural stem cell pools, and the consequences of the deregulation of these processes.
Collapse
Affiliation(s)
- Francesca Froldi
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
| | - Milán Szuperák
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
| | - Louise Y. Cheng
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
37
|
Gao S, Sha Z, Zhou J, Wu Y, Song Y, Li C, Liu X, Zhang T, Yu R. BYSL contributes to tumor growth by cooperating with the mTORC2 complex in gliomas. Cancer Biol Med 2021; 18:88-104. [PMID: 33628587 PMCID: PMC7877178 DOI: 10.20892/j.issn.2095-3941.2020.0096] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: BYSL, which encodes the Bystin protein in humans, is upregulated in reactive astrocytes following brain damage and/or inflammation. We aimed to determine the role and mechanism of BYSL in glioma cell growth and survival. Methods: BYSL expression in glioma tissues was measured by quantitative real-time PCR, Western blot, and immunohistochemistry. In vitro assays were performed to assess the role of BYSL in cell proliferation and apoptosis. Protein interactions and co-localization were determined by co-immunoprecipitation and double immunofluorescence. The expression and activity of the AKT/mTOR signaling molecules were determined by Western blot analysis, and the role of BYSL in glioma growth was confirmed in an orthotopic xenograft model. Results: The BYSL mRNA and protein levels were elevated in glioma tissues. Silencing BYSL inhibited glioma cell proliferation, impeded cell cycle progression, and induced apoptosis, whereas overexpressing BYSL protein led to the opposite effects. We identified a complex consisting of BYSL, RIOK2, and mTOR, and observed co-localization and positive correlations between BYSL and RIOK2 in glioma cells and tissues. Overexpressing BYSL or RIOK2 increased the expression and activity of AKT/mTOR signaling molecules, whereas downregulation of BYSL or RIOK2 decreased the activity of AKT/mTOR signaling molecules. Silencing BYSL or RIOK2 decreased the growth of the tumors and prolonged the lifespan of the animals in an orthotopic xenograft model. Conclusions: High expression of BYSL in gliomas promoted tumor cell growth and survival both in vitro and in vivo. These effects could be attributed to the association of BYSL with RIOK2 and mTOR, and the subsequent activation of AKT signaling.
Collapse
Affiliation(s)
- Shangfeng Gao
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Zhuang Sha
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Junbo Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Yihao Wu
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Yunnong Song
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Cheng Li
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xuejiao Liu
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Tong Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| |
Collapse
|
38
|
Yang X, Wang X, Lei L, Sun L, Jiao A, Zhu K, Xie T, Liu H, Zhang X, Su Y, Zhang C, Shi L, Zhang D, Zheng H, Zhang J, Liu X, Wang X, Zhou X, Sun C, Zhang B. Age-Related Gene Alteration in Naïve and Memory T cells Using Precise Age-Tracking Model. Front Cell Dev Biol 2021; 8:624380. [PMID: 33644036 PMCID: PMC7905051 DOI: 10.3389/fcell.2020.624380] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/29/2020] [Indexed: 12/22/2022] Open
Abstract
In aged individuals, age-related changes in immune cells, especially T cell deficiency, are associated with an increased incidence of infection, tumor, and autoimmune disease, as well as an impaired response to vaccination. However, the features of gene expression levels in aged T cells are still unknown. Our previous study successfully tracked aged T cells generated from one wave of developing thymocytes of young age by a lineage-specific and inducible Cre-controlled reporter (TCRδCreERR26ZsGreen mouse strain). In this study, we utilized this model and genome-wide transcriptomic analysis to examine changes in gene expression in aged naïve and memory T cell populations during the aging process. We identified profound gene alterations in aged CD4 and CD8 T cells. Both aged CD4+ and CD8+ naïve T cells showed significantly decreased organelle function. Importantly, genes associated with lymphocyte activation and function demonstrated a significant increase in aged memory T cells, accompanied by upregulation of immunosuppressive markers and immune checkpoints, revealing an abnormal T cell function in aged cells. Furthermore, aging significantly affects T cell survival and death signaling. While aged CD4 memory T cells exhibited pro-apoptotic gene signatures, aged CD8 memory T cells expressed anti-apoptotic genes. Thus, the transcriptional analysis of gene expression and signaling pathways in aged T cell subsets shed light on our understanding of altered immune function with aging, which will have great potential for clinical interventions for older adults.
Collapse
Affiliation(s)
- Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Lina Sun
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States.,Center for Molecular Medicine, University of Georgia, Athens, GA, United States
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Kun Zhu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Tao Xie
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Haiyan Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xingzhe Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lin Shi
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Dan Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Huiqiang Zheng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jiahui Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaobin Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaobo Zhou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chenming Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| |
Collapse
|
39
|
Jarabo P, de Pablo C, Herranz H, Martín FA, Casas-Tintó S. Insulin signaling mediates neurodegeneration in glioma. Life Sci Alliance 2021; 4:4/3/e202000693. [PMID: 33526430 PMCID: PMC7898663 DOI: 10.26508/lsa.202000693] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022] Open
Abstract
Tumoral cells secrete an antagonist that attenuates insulin signaling in neurons. It induces mitochondrial defects and synapse loss; restoring neuronal insulin activity rescues neurodegeneration. Cell to cell communication facilitates tissue development and physiology. Under pathological conditions, brain tumors disrupt glia-neuron communication signals that in consequence, promote tumor expansion at the expense of surrounding healthy tissue. The glioblastoma is one of the most aggressive and frequent primary brain tumors. This type of glioma expands and infiltrates into the brain, causing neuronal degeneration and neurological decay, among other symptoms. Here, we describe in a Drosophila model how glioblastoma cells produce ImpL2, an antagonist of the insulin pathway, which targets neighboring neurons and causes mitochondrial disruption as well as synapse loss, both early symptoms of neurodegeneration. Furthermore, glioblastoma progression requires insulin pathway attenuation in neurons. Restoration of neuronal insulin activity is sufficient to rescue synapse loss and to delay the premature death caused by glioma. Therefore, signals from glioblastoma to neuron emerge as a potential field of study to prevent neurodegeneration and to develop anti-tumoral strategies.
Collapse
Affiliation(s)
- Patricia Jarabo
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid, Spain
| | - Carmen de Pablo
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid, Spain
| | | | | | - Sergio Casas-Tintó
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid, Spain
| |
Collapse
|
40
|
Akter F, Simon B, de Boer NL, Redjal N, Wakimoto H, Shah K. Pre-clinical tumor models of primary brain tumors: Challenges and opportunities. Biochim Biophys Acta Rev Cancer 2021; 1875:188458. [PMID: 33148506 PMCID: PMC7856042 DOI: 10.1016/j.bbcan.2020.188458] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/09/2023]
Abstract
Primary brain tumors are a heterogeneous group of malignancies that originate in cells of the central nervous system. A variety of models tractable for preclinical studies have been developed to recapitulate human brain tumors, allowing us to understand the underlying pathobiology and explore potential treatments. However, many promising therapeutic strategies identified using preclinical models have shown limited efficacy or failed at the clinical trial stage. The inability to develop therapeutic strategies that significantly improve survival rates in patients highlight the compelling need to revisit the design of currently available animal models and explore the use of new models that allow us to bridge the gap between promising preclinical findings and clinical translation. In this review, we discuss current strategies used to model glioblastoma, the most malignant brain tumor in adults and highlight the shortcomings of specific models that must be circumvented for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Farhana Akter
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Brennan Simon
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Nadine Leonie de Boer
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Navid Redjal
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Hiroaki Wakimoto
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, United States of America.
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, United States of America.
| |
Collapse
|
41
|
Wang CB, Lorente-Macías Á, Wells C, Pickett JE, Picado A, Zuercher WJ, Axtman AD. Towards a RIOK2 chemical probe: cellular potency improvement of a selective 2-(acylamino)pyridine series. RSC Med Chem 2021; 12:129-136. [PMID: 34046605 PMCID: PMC8130602 DOI: 10.1039/d0md00292e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/13/2020] [Indexed: 11/21/2022] Open
Abstract
RIOK2 is an understudied kinase associated with a variety of human cancers including non-small cell lung cancer and glioblastoma. No potent, selective, and cell-active chemical probe currently exists for RIOK2. Such a reagent would expedite re-search into the biological functions of RIOK2 and validate it as a therapeutic target. Herein, we describe the synthesis of naphthyl-pyridine based compounds that have improved cellular activity while maintaining selectivity for RIOK2. While our compounds do not represent RIOK2 chemical probes, they are the best available tool molecules to begin to characterize RIOK2 function in vitro.
Collapse
Affiliation(s)
- Christopher B Wang
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Álvaro Lorente-Macías
- Departamento de Química Farmacéutica y Orgánica, University of Granada Granada 18071 Spain
| | - Carrow Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Julie E Pickett
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Alfredo Picado
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - William J Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Alison D Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| |
Collapse
|
42
|
Subbannayya Y, Haug M, Pinto SM, Mohanty V, Meås HZ, Flo TH, Prasad TK, Kandasamy RK. The Proteomic Landscape of Resting and Activated CD4+ T Cells Reveal Insights into Cell Differentiation and Function. Int J Mol Sci 2020; 22:E275. [PMID: 33383959 PMCID: PMC7795831 DOI: 10.3390/ijms22010275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
CD4+ T cells (T helper cells) are cytokine-producing adaptive immune cells that activate or regulate the responses of various immune cells. The activation and functional status of CD4+ T cells is important for adequate responses to pathogen infections but has also been associated with auto-immune disorders and survival in several cancers. In the current study, we carried out a label-free high-resolution FTMS-based proteomic profiling of resting and T cell receptor-activated (72 h) primary human CD4+ T cells from peripheral blood of healthy donors as well as SUP-T1 cells. We identified 5237 proteins, of which significant alterations in the levels of 1119 proteins were observed between resting and activated CD4+ T cells. In addition to identifying several known T-cell activation-related processes altered expression of several stimulatory/inhibitory immune checkpoint markers between resting and activated CD4+ T cells were observed. Network analysis further revealed several known and novel regulatory hubs of CD4+ T cell activation, including IFNG, IRF1, FOXP3, AURKA, and RIOK2. Comparison of primary CD4+ T cell proteomic profiles with human lymphoblastic cell lines revealed a substantial overlap, while comparison with mouse CD+ T cell data suggested interspecies proteomic differences. The current dataset will serve as a valuable resource to the scientific community to compare and analyze the CD4+ proteome.
Collapse
Affiliation(s)
- Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Y.S.); (M.H.); (S.M.P.); (H.Z.M.); (T.H.F.)
| | - Markus Haug
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Y.S.); (M.H.); (S.M.P.); (H.Z.M.); (T.H.F.)
| | - Sneha M. Pinto
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Y.S.); (M.H.); (S.M.P.); (H.Z.M.); (T.H.F.)
| | - Varshasnata Mohanty
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India; (V.M.); (T.S.K.P.)
| | - Hany Zakaria Meås
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Y.S.); (M.H.); (S.M.P.); (H.Z.M.); (T.H.F.)
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Y.S.); (M.H.); (S.M.P.); (H.Z.M.); (T.H.F.)
| | - T.S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India; (V.M.); (T.S.K.P.)
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Y.S.); (M.H.); (S.M.P.); (H.Z.M.); (T.H.F.)
| |
Collapse
|
43
|
Vigneswaran K, Boyd NH, Oh SY, Lallani S, Boucher A, Neill SG, Olson JJ, Read RD. YAP/TAZ Transcriptional Coactivators Create Therapeutic Vulnerability to Verteporfin in EGFR-mutant Glioblastoma. Clin Cancer Res 2020; 27:1553-1569. [PMID: 33172899 DOI: 10.1158/1078-0432.ccr-20-0018] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 08/04/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Glioblastomas (GBMs), neoplasms derived from glia and neuroglial progenitor cells, are the most common and lethal malignant primary brain tumors diagnosed in adults, with a median survival of 14 months. GBM tumorigenicity is often driven by genetic aberrations in receptor tyrosine kinases, such as amplification and mutation of EGFR. EXPERIMENTAL DESIGN Using a Drosophila glioma model and human patient-derived GBM stem cells and xenograft models, we genetically and pharmacologically tested whether the YAP and TAZ transcription coactivators, effectors of the Hippo pathway that promote gene expression via TEA domain (TEAD) cofactors, are key drivers of GBM tumorigenicity downstream of oncogenic EGFR signaling. RESULTS YAP and TAZ are highly expressed in EGFR-amplified/mutant human GBMs, and their knockdown in EGFR-amplified/mutant GBM cells inhibited proliferation and elicited apoptosis. Our results indicate that YAP/TAZ-TEAD directly regulates transcription of SOX2, C-MYC, and EGFR itself to create a feedforward loop to drive survival and proliferation of human GBM cells. Moreover, the benzoporphyrin derivative verteporfin, a disruptor of YAP/TAZ-TEAD-mediated transcription, preferentially induced apoptosis of cultured patient-derived EGFR-amplified/mutant GBM cells, suppressed expression of YAP/TAZ transcriptional targets, including EGFR, and conferred significant survival benefit in an orthotopic xenograft GBM model. Our efforts led us to design and initiate a phase 0 clinical trial of Visudyne, an FDA-approved liposomal formulation of verteporfin, where we used intraoperative fluorescence to observe verteporfin uptake into tumor cells in GBM tumors in human patients. CONCLUSIONS Together, our data suggest that verteporfin is a promising therapeutic agent for EGFR-amplified and -mutant GBM.
Collapse
Affiliation(s)
| | - Nathaniel H Boyd
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Se-Yeong Oh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Shoeb Lallani
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Andrew Boucher
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - Stewart G Neill
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia.,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Renee D Read
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia. .,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
44
|
Chen A, Feng Y, Lai H, Ju W, Li Z, Li Y, Wang A, Hong Q, Zhong F, Wei C, Fu J, Guan T, Liu B, Kretzler M, Lee K, He JC. Soluble RARRES1 induces podocyte apoptosis to promote glomerular disease progression. J Clin Invest 2020; 130:5523-5535. [PMID: 32634130 PMCID: PMC7524479 DOI: 10.1172/jci140155] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Using the Nephrotic Syndrome Study Network Consortium data set and other publicly available transcriptomic data sets, we identified retinoic acid receptor responder protein 1 (RARRES1) as a gene whose expression positively correlated with renal function decline in human glomerular disease. The glomerular expression of RARRES1, which is largely restricted to podocytes, increased in focal segmental glomerulosclerosis (FSGS) and diabetic kidney disease (DKD). TNF-α was a potent inducer of RARRES1 expression in cultured podocytes, and transcriptomic analysis showed the enrichment of cell death pathway genes with RARRES1 overexpression. The overexpression of RARRES1 indeed induced podocyte apoptosis in vitro. Notably, this effect was dependent on its cleavage in the extracellular domain, as the mutation of its cleavage site abolished the apoptotic effect. Mechanistically, the soluble RARRES1 was endocytosed and interacted with and inhibited RIO kinase 1 (RIOK1), resulting in p53 activation and podocyte apoptosis. In mice, podocyte-specific overexpression of RARRES1 resulted in marked glomerular injury and albuminuria, while the overexpression of RARRES1 cleavage mutant had no effect. Conversely, podocyte-specific knockdown of Rarres1 in mice ameliorated glomerular injury in the setting of adriamycin-induced nephropathy. Our study demonstrates an important role and the mechanism of RARRES1 in podocyte injury in glomerular disease.
Collapse
Affiliation(s)
- Anqun Chen
- Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ye Feng
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nephrology, Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Han Lai
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Zhengzhe Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yu Li
- Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Andrew Wang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Quan Hong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fang Zhong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tianjun Guan
- Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Bichen Liu
- Department of Nephrology, Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Renal Section, James J. Peters VA Medical Center, Bronx, New York, USA
| |
Collapse
|
45
|
Goldstein NB, Steel A, Barbulescu CC, Koster MI, Wright MJ, Jones KL, Gao B, Ward B, Woessner B, Trottier Z, Pakieser J, Hu J, Lambert KA, Shellman YG, Fujita M, Robinson WA, Roop DR, Norris DA, Birlea SA. Melanocyte Precursors in the Hair Follicle Bulge of Repigmented Vitiligo Skin Are Controlled by RHO-GTPase, KCTD10, and CTNNB1 Signaling. J Invest Dermatol 2020; 141:638-647.e13. [PMID: 32800877 DOI: 10.1016/j.jid.2020.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/18/2020] [Accepted: 07/06/2020] [Indexed: 01/09/2023]
Abstract
In repigmentation of human vitiligo, the melanocyte (MC) precursors in the hair follicle bulge proliferate, migrate, and differentiate to repopulate the depigmented epidermis. Here, we present a comprehensive characterization of pathways and signals in the bulge that control the repigmentation process. Using biopsies from patients with vitiligo, we have selectively harvested, by laser capture microdissection, MC and keratinocyte precursors from the hair follicle bulge of untreated vitiligo skin and vitiligo skin treated with narrow-band UVB. The captured material was subjected to whole transcriptome RNA-sequencing. With this strategy, we found that repigmentation in the bulge MC precursors is driven by KCTD10, a signal with unknown roles in the skin, and CTNNB1 (encoding β-catenin) and RHO guanosine triphosphatase [RHO GTPase, RHO], two signaling pathways previously shown to be involved in pigmentation biology. Knockdown studies in cultured human MCs of RHOJ, the upmost differentially expressed RHO family component, corroborated with our findings in patients with vitiligo, identified RHOJ involvement in UV response and melanization, and confirmed previously identified roles in melanocytic cell migration and apoptosis. A better understanding of mechanisms that govern repigmentation in MC precursors will enable the discovery of molecules that induce robust repigmentation phenotypes in vitiligo.
Collapse
Affiliation(s)
| | - Andrea Steel
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA
| | | | - Maranke I Koster
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado, Aurora, Colorado, USA
| | - Michael J Wright
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado, Aurora, Colorado, USA
| | - Kenneth L Jones
- Department of Hematology, University of Colorado, Aurora, Colorado, USA; Department of Pediatrics, University of Colorado, Aurora, Colorado, USA
| | - Bifeng Gao
- Sequencing and Microarray Core, University of Colorado, Aurora, Colorado, USA
| | - Brian Ward
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado, Aurora, Colorado, USA
| | - Brian Woessner
- Sequencing and Microarray Core, University of Colorado, Aurora, Colorado, USA
| | - Zachary Trottier
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado, Aurora, Colorado, USA
| | - Jen Pakieser
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado, Aurora, Colorado, USA
| | - Junxiao Hu
- Department of Pediatrics, University of Colorado, Aurora, Colorado, USA; Cancer Center Biostatistics Core, University of Colorado, Aurora, Colorado, USA
| | - Karoline A Lambert
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA
| | - Yiqun G Shellman
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado, Aurora, Colorado, USA; Denver Department of Veterans Affairs Medical Center, Denver, Colorado, USA
| | | | - Dennis R Roop
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado, Aurora, Colorado, USA
| | - David A Norris
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado, Aurora, Colorado, USA; Denver Department of Veterans Affairs Medical Center, Denver, Colorado, USA
| | - Stanca A Birlea
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado, Aurora, Colorado, USA; Human Medical Genetics and Genomics Program, Aurora, Colorado, USA.
| |
Collapse
|
46
|
Huang Z, Li X, Xie T, Gu C, Ni K, Yin Q, Cao X, Zhang C. Elevated Expression of RIOK1 Is Correlated with Breast Cancer Hormone Receptor Status and Promotes Cancer Progression. Cancer Res Treat 2020; 52:1067-1083. [PMID: 32599985 PMCID: PMC7577803 DOI: 10.4143/crt.2020.187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose RIOK1 has been proved to play an important role in cancer cell proliferation and migration in various types of cancers—such as colorectal and gastric cancers. However, the expression of RIOK1 in breast cancer (BC) and the relationship between RIOK1 expression and the development of BC are not well characterized. In this study, we assessed the expression of RIOK1 in BC and evaluated the mechanisms underlying its biological function in this disease context. Materials and Methods We used immunohistochemistry, western blot and quantitative real-time polymerase chain reaction to evaluate the expression of RIOK1 in BC patients. Then, knockdown or overexpression of RIOK1 were used to evaluate the effect on BC cells in vitro and in vivo. Finally, we predicted miR-204-5p could be a potential regulator of RIOK1. Results We found that the expression levels of RIOK1 were significantly higher in hormone receptor (HR)–negative BC patients and was associated with tumor grades (p=0.010) and p53 expression (p=0.008) and survival duration (p=0.011). Kaplan-Meier analysis suggested a tendency for the poor prognosis. In vitro, knockdown of RIOK1 could inhibit proliferation, invasion, and induced apoptosis in HR-negative BC cells and inhibited tumorigenesis in vivo, while overexpression of RIOK1 promoted HR-positive tumor progression. MiR-204-5p could regulate RIOK1 expression and be involved in BC progression. Conclusion These findings indicate that RIOK1 expression could be a biomarker of HR-negative BC, and it may serve as an effective prognostic indicator and promote BC progression.
Collapse
Affiliation(s)
- Zhiqi Huang
- Medical School of Nantong University, Nantong, China
| | - Xingyu Li
- Medical School of Nantong University, Nantong, China
| | - Tian Xie
- Department of Clinical Research Center, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Changjiang Gu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Kan Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Qingqing Yin
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaolei Cao
- Medical School of Nantong University, Nantong, China
| | - Chunhui Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
47
|
CRISPR/Cas9 mediated genetic resource for unknown kinase and phosphatase genes in Drosophila. Sci Rep 2020; 10:7383. [PMID: 32355295 PMCID: PMC7193564 DOI: 10.1038/s41598-020-64253-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/13/2020] [Indexed: 11/09/2022] Open
Abstract
Kinases and phosphatases are crucial for cellular processes and animal development. Various sets of resources in Drosophila have contributed significantly to the identification of kinases, phosphatases and their regulators. However, there are still many kinases, phosphatases and associate genes with unknown functions in the Drosophila genome. In this study, we utilized a CRISPR/Cas9 strategy to generate stable mutants for these unknown kinases, phosphatases and associate factors in Drosophila. For all the 156 unknown gene loci, we totally obtained 385 mutant alleles of 105 candidates, with 18 failure due to low efficiency of selected gRNAs and other 33 failure due to few recovered F0, which indicated high probability of lethal genes. From all the 105 mutated genes, we observed 9 whose mutants were lethal and another 4 sterile, most of which with human orthologs referred in OMIM, representing their huge value for human disease research. Here, we deliver these mutants as an open resource for more interesting studies.
Collapse
|
48
|
Song Y, Li C, Jin L, Xing J, Sha Z, Zhang T, Ji D, Yu R, Gao S. RIOK2 is negatively regulated by miR-4744 and promotes glioma cell migration/invasion through epithelial-mesenchymal transition. J Cell Mol Med 2020; 24:4494-4509. [PMID: 32125767 PMCID: PMC7176854 DOI: 10.1111/jcmm.15107] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/06/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
RIOK2 is a member of RIO (right open reading frame) kinase family. Recent studies have revealed the involvement of RIO kinases in glioma cell growth and expansion. However, the role and mechanism of RIOK2 in glioma cell migration and invasion remain unclear. Wound healing assay, Transwell assay and real‐time quantitative PCR (qRT‐PCR) detection of matrix metalloproteinases (MMPs) were used to evaluate the migration/invasion of glioma cells. Western blot and qRT‐PCR were employed to measure the expression of epithelial‐mesenchymal transition (EMT) markers. Dual luciferase reporter assay was performed to determine the binding between RIOK2 and miR‐4744. In addition, RIOK2 and miR‐4744 levels were quantified by qRT‐PCR and/or immunohistochemistry in glioma tissues. Transfection of RIOK2 siRNAs significantly inhibited glioma cell migration and invasion and down‐regulated the expression of MMPs (MMP2 and MMP9) and mesenchymal markers (N‐cadherin, β‐catenin, Twist1, fibronectin, ZEB‐1) in glioma cells. Overexpression of RIOK2 showed the opposite effects. MiR‐4744 directly bound to the 3'‐untranslated region of RIOK2 and negatively regulated the expression of RIOK2. Up‐regulation of miR‐4744 inhibited the migration and invasion of glioma cells. Overexpression of RIOK2 could reverse the effects of miR‐4744 up‐regulation on the migration, invasion and EMT process in glioma cells. Moreover, RIOK2 was high, while miR‐4744 was low in glioma tissues, and a negative correlation was found between them. These results suggest that RIOK2 is post‐transcriptionally targeted by miR‐4744, the low miR‐4744 and high RIOK2 levels in glioma may contribute to tumour cell infiltration through promoting the EMT.
Collapse
Affiliation(s)
- Yunnong Song
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Cheng Li
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lei Jin
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jingsong Xing
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Zhuang Sha
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tong Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Daofei Ji
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shangfeng Gao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
49
|
Identifying conserved molecular targets required for cell migration of glioblastoma cancer stem cells. Cell Death Dis 2020; 11:152. [PMID: 32102991 PMCID: PMC7044427 DOI: 10.1038/s41419-020-2342-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Glioblastoma (GBM) is the most prevalent primary malignant brain tumor and is associated with extensive tumor cell infiltration into the adjacent brain parenchyma. However, there are limited targeted therapies that address this disease hallmark. While the invasive capacity of self-renewing cancer stem cells (CSCs) and their non-CSC progeny has been investigated, the mode(s) of migration used by CSCs during invasion is currently unknown. Here we used time-lapse microscopy to evaluate the migratory behavior of CSCs, with a focus on identifying key regulators of migration. A head-to-head migration assay demonstrated that CSCs are more invasive than non-CSCs. Time-lapse live cell imaging further revealed that GBM patient-derived CSC models either migrate in a collective manner or in a single cell fashion. To uncover conserved molecular regulators responsible for collective cell invasion, we utilized the genetically tractable Drosophila border cell collective migration model. Candidates for functional studies were generated using results from a targeted Drosophila genetic screen followed by gene expression analysis of the human homologs in GBM tumors and associated GBM patient prognosis. This strategy identified the highly conserved small GTPase, Rap1a, as a potential regulator of cell invasion. Alteration of Rap1a activity impaired the forward progress of Drosophila border cells during development. Rap1a expression was elevated in GBM and associated with higher tumor grade. Functionally, the levels of activated Rap1a impacted CSC migration speed out of spheres onto extracellular matrix. The data presented here demonstrate that CSCs are more invasive than non-CSCs, are capable of both collective and single cell migration, and express conserved genes that are required for migration and invasion. Using this integrated approach, we identified a new role for Rap1a in the migration of GBM CSCs.
Collapse
|
50
|
Hakes AE, Brand AH. Tailless/TLX reverts intermediate neural progenitors to stem cells driving tumourigenesis via repression of asense/ASCL1. eLife 2020; 9:e53377. [PMID: 32073402 PMCID: PMC7058384 DOI: 10.7554/elife.53377] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
Understanding the sequence of events leading to cancer relies in large part upon identifying the tumour cell of origin. Glioblastoma is the most malignant brain cancer but the early stages of disease progression remain elusive. Neural lineages have been implicated as cells of origin, as have glia. Interestingly, high levels of the neural stem cell regulator TLX correlate with poor patient prognosis. Here we show that high levels of the Drosophila TLX homologue, Tailless, initiate tumourigenesis by reverting intermediate neural progenitors to a stem cell state. Strikingly, we could block tumour formation completely by re-expressing Asense (homologue of human ASCL1), which we show is a direct target of Tailless. Our results predict that expression of TLX and ASCL1 should be mutually exclusive in glioblastoma, which was verified in single-cell RNA-seq of human glioblastoma samples. Counteracting high TLX is a potential therapeutic strategy for suppressing tumours originating from intermediate progenitor cells.
Collapse
Affiliation(s)
- Anna E Hakes
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Andrea H Brand
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|