1
|
AlAbdi L, Maddirevula S, Aljamal B, Hamid H, Almulhim A, Hashem MO, Algoos Y, Alqahtani M, Albaloshi S, Alghamdi M, Alduaylij M, Shamseldin HE, Nadeef S, Patel N, Abdulwahab F, Abouyousef O, Alshidi T, Jaafar A, Abouelhoda M, Alhazzani A, Alfares A, Qudair A, Alsulaiman A, Alhashem A, Khan AO, Chedrawi A, Alebdi B, AlAjlan F, Alotaibi F, Alzaidan H, Banjar H, Abdelraouf H, Alkuraya H, Abumansour I, Alfayez K, Tulbah M, Alowain M, Alqahtani M, El-Kalioby M, Shboul M, Sulaiman R, Al Tala S, Khan S, Coskun S, Mrouge S, Alenazi W, Rahbeeni Z, Alkuraya FS. Arab founder variants: Contributions to clinical genomics and precision medicine. MED 2025; 6:100528. [PMID: 39504961 DOI: 10.1016/j.medj.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/16/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Founder variants are ancestral variants shared by individuals who are not closely related. The large effect size of some of these variants in the context of Mendelian disorders offers numerous precision medicine opportunities. METHODS Using one of the largest datasets on Mendelian disorders in the Middle East, we identified 2,908 medically relevant founder variants derived from 18,360 exomes and genomes and investigated their contribution to the clinical annotation of the human genome. FINDINGS Strikingly, ∼34% of Arab founder variants are absent in gnomAD. We found a strong contribution of Arab founder variants to the identification of novel gene-disease links (n = 224) and the support/dispute (n = 81 support, n = 101 dispute) of previously reported candidate gene-disease links. The powerful segregation evidence generated by Arab founder variants allowed many ClinVar and Human Gene Mutation Database variants to be reclassified. Overall, 39.5% of diagnostic reports from our clinical lab are based on founder variants, and 19.41% of tested individuals carry at least one pathogenic founder variant. The presumptive loss-of-function mechanism that typically underlies autosomal recessive diseases means that Arab founder variants also offer unique opportunities in "druggable genome" research. Arab founder variants were also informative of migration patterns in the Middle East consistent with documented historical accounts. CONCLUSIONS We highlight the contribution of founder variants from an under-represented population group to precision medicine and inform future prevention programs. Our study also sheds light on the added value of these variants in supplementing other lines of research in tracing population history. FUNDING There is no funding for this work.
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Clinical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Bayan Aljamal
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Halima Hamid
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - Aisha Almulhim
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Yusra Algoos
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mashael Alqahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Shahad Albaloshi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammed Alghamdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammed Alduaylij
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Seba Nadeef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Nisha Patel
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Omar Abouyousef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Tarfa Alshidi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Amal Jaafar
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Computational Science, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Adel Alhazzani
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Ahmed Alfares
- Department of Clinical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Ahmad Qudair
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia
| | - Ahood Alsulaiman
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Amal Alhashem
- Department of Pediatrics, Prince Sultan Military Medical Center, Riyadh 12233, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Seha Virtual Hospital, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Arif O Khan
- Eye Institute, Cleveland Clinic, Abu Dhabi, UAE; Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Aziza Chedrawi
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Basel Alebdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Fahad AlAjlan
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Fawaz Alotaibi
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Hamad Alzaidan
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Hanaa Banjar
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Hanem Abdelraouf
- Department of Pediatrics, Prince Sultan Military Medical Center, Riyadh 12233, Saudi Arabia
| | - Hisham Alkuraya
- Global Eye Care, Specialized Medical Center Hospital, Riyadh 13215, Saudi Arabia
| | - Iman Abumansour
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia; Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Khowlah Alfayez
- Department of Pediatrics, Prince Sultan Military Medical Center, Riyadh 12233, Saudi Arabia
| | - Maha Tulbah
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammed Alowain
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mohammed Alqahtani
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammed El-Kalioby
- Department of Computational Science, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammad Shboul
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Raashda Sulaiman
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Saed Al Tala
- Department of Pediatrics, Armed Forces Hospital, Khamis Mushayt 62413, Saudi Arabia
| | - Sameena Khan
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center and College of Medicine, Riyadh 11564, Saudi Arabia
| | - Sobaihi Mrouge
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia
| | - Walaa Alenazi
- Department of Computational Science, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; Department of Pediatrics, Prince Sultan Military Medical Center, Riyadh 12233, Saudi Arabia.
| |
Collapse
|
2
|
He Z, Chen M, Luo Z. Bioinformatics analysis of the tumor microenvironment in melanoma - Constructing a prognostic model based on CD8+ T cell-related genes: An observational study. Medicine (Baltimore) 2024; 103:e38924. [PMID: 39121331 PMCID: PMC11315512 DOI: 10.1097/md.0000000000038924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 08/11/2024] Open
Abstract
This research endeavor seeks to explore the microenvironment of melanoma tumors and construct a prognostic model by focusing on genes specific to CD8+ T cells. The single-cell sequencing data of melanoma underwent processing with the Seurat package, subsequent to which cell communication network analysis was conducted using the iTALK package and transcription factor analysis was performed using the SCENIC package. Univariate COX and LASSO regression analyses were utilized to pinpoint genes linked to the prognosis of melanoma patients, culminating in the creation of a prognostic model through multivariate COX analysis. The model was validated using the GSE65904 and GSE35640 datasets. Multi-omics analysis was conducted utilizing the maftools, limma, edgeR, ChAMP, and clusterProfiler packages. The examination of single-cell sequencing data revealed the presence of 8 cell types, with the transcription factors RFXAP, CLOCK, MGA, RBBP, and ZNF836 exhibiting notably high expression levels in CD8+ T cells as determined by the SCENIC package. Utilizing these transcription factors and their associated target genes, a prognostic model was developed through COX and LASSO analyses, incorporating the genes GPR171, FAM174A, and BPI. This study validated the model with independent datasets and conducted additional analysis involving multi-omics and immune infiltration to identify a more favorable prognosis for patients in the low-risk group. The findings provide valuable insights into the tumor microenvironment of melanoma and establish a reliable prognostic model. The integration of multi-omics and immune infiltration analyses enhances our understanding of the pathogenesis of melanoma. The identification of specific genes holds promise as potential biomarkers for individuals with melanoma, serving as important indicators for predicting patient outcomes and determining their response to immunotherapy.
Collapse
Affiliation(s)
- Zhenghao He
- Department of Plastic Surgery, the First Affiliated Hospital of Jinan University, Guangdong, Guangzhou, China
- Department of Plastic Surgery, Zhongshan City People’s Hospital, Guangdong, Zhongshan, China
| | - Manli Chen
- Department of Plastic Surgery, Zhongshan City People’s Hospital, Guangdong, Zhongshan, China
| | - Zhijun Luo
- Department of Plastic Surgery, Zhongshan City People’s Hospital, Guangdong, Zhongshan, China
| |
Collapse
|
3
|
Yin L, Li L, Gao M, Qi Y, Xu L, Peng J. circMIRIAF aggravates myocardial ischemia-reperfusion injury via targeting miR-544/WDR12 axis. Redox Biol 2024; 73:103175. [PMID: 38795544 PMCID: PMC11140810 DOI: 10.1016/j.redox.2024.103175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/28/2024] Open
Abstract
Exploring and discovering novel circRNAs is one of the ways to develop innovative drugs for the diagnosis and treatment of myocardial ischemia-reperfusion injury (MI/RI). In the work, some dysregulated circRNAs were found by microarray screening analysis in AC16 cells, and hsa_circRNA_104852 named circMIRIAF was screened, which was up-regulated in AC16 cells damaged by hypoxia-reoxygenation injury (H/RI). The comprehensive analysis of ceRNA network revealed the potential relationship of circMIRIAF/miR-544/WDR12. Then, the results of interaction research confirmed that circMIRIAF acted as sponge of miR-544 to positively regulate WDR12 protein expression. Further, the validation results indicate that miR-544 silencing increased the expression of WDR12, and WDR12 activated Notch1 signal to aggravate H/RI of AC16 cells and MI/RI of mice via regulating oxidative stress and inflammation. Furthermore, silencing circMIRIAF caused the decreased circMIRIAF levels and the increased miR-544 levels in cardiomyocytes, while excessive miR-544 inhibited WDR12 expression to alleviate the disorder. On the contrary, excessive circMIRIAF increased WDR12 expression by adsorbing miR-544 to exacerbate H/RI in AC16 cells. In addition, circMIRIAF siRNA reversed the aggravation of H/RI in cells caused by WDR12 overexpression. Overall, circMIRIAF can serve as a drug target or treating MI/RI, and circMIRIAF could sponge miR-544 and enhance WDR12 expression to aggravate MI/RI, which may provide a novel therapeutic strategy for MI/RI treatment.
Collapse
Affiliation(s)
- Lianhong Yin
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Lili Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Meng Gao
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Yan Qi
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Lina Xu
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China.
| | - Jinyong Peng
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China; College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China.
| |
Collapse
|
4
|
Wang L, Zhao J, Schank M, Hill AC, Banik P, Zhang Y, Wu XY, Lightner JW, Ning S, El Gazzar M, Moorman JP, Yao ZQ. Circulating GDF-15: a biomarker for metabolic dysregulation and aging in people living with HIV. FRONTIERS IN AGING 2024; 5:1414866. [PMID: 38895099 PMCID: PMC11183798 DOI: 10.3389/fragi.2024.1414866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Despite effective control of HIV replication by antiretroviral therapy (ART), a significant number of people living with HIV (PLWH) fail to achieve complete immune reconstitution and thus are deemed immune non-responders (INRs). Compared with immune responders (IRs) who have restored their CD4 T cell numbers and functions, CD4 T cells from these INRs exhibit prominent mitochondrial dysfunction and premature aging, which play a major role in increasing the incidence of non-AIDS, non-communicable diseases (NCDs). To date, there are no reliable biomarkers that can be used to typify and manage PLWH, especially INRs with non-AIDS NCDs. Growth differential factor-15 (GDF-15) is a transforming growth factor-β (TGF-β) family member known to regulate several biological processes involved in cell aging and stress responses. Since PLWH exhibit premature aging and metabolic dysregulation, here we measured the plasma levels of GDF-15 by ELISA and metabolic proteins by proteomic array and correlated the results with clinical parameters in ART-controlled PLWH (including INRs and IRs) and healthy subjects (HS). We found that GDF-15 levels were significantly elevated in PLWH compared to HS. GDF-15 levels were positively correlated with age and negatively associated with body mass and LDL cholesterol levels in the study subjects. Also, elevated GDF-15 levels were correlated with differential dysregulation of multiple metabolic proteins in PLWH. These results suggest that GDF-15 protein may serve as a biomarker of metabolic dysregulation and aging, and this biomarker will be useful in clinical trials targeting aging and metabolic disorders in ART-treated PLWH.
Collapse
Affiliation(s)
- Ling Wang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Juan Zhao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Madison Schank
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Addison C. Hill
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Puja Banik
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Yi Zhang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Xiao Y. Wu
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Janet W. Lightner
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Shunbin Ning
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Mohamed El Gazzar
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Jonathan P. Moorman
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Hepatitis (HBV/HCV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States
| | - Zhi Q. Yao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Hepatitis (HBV/HCV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States
| |
Collapse
|
5
|
Stefaniuk-Szmukier M, Piórkowska K, Ropka-Molik K. Equine Metabolic Syndrome: A Complex Disease Influenced by Multifactorial Genetic Factors. Genes (Basel) 2023; 14:1544. [PMID: 37628596 PMCID: PMC10454496 DOI: 10.3390/genes14081544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Equine metabolic syndrome (EMS) has become an important issue in modern veterinary medicine and is linked to the common, extremely painful, most-of-the-time performance-terminating hoof laminitis. The growing knowledge in the field of genetic background, inducing environmental factors, diagnosis, treatment and maintenance of affected equines led us to summarise the available information to be used not only for scientific purposes but for fieldwork. In horses, the clinical presentation of EMS includes: obesity or local fat deposition, bilateral lameness or hoof rings attributed to ongoing or previous (pasted) laminitis with the key feature of the occurrence of insulin dysregulation, disturbing the homeostasis within insulin, glucose and lipid metabolism. The management of EMS is based on dietary and fitness discipline; however, intensive research is ongoing in the field of regenerative medicine to develop modern and promising therapies.
Collapse
Affiliation(s)
- Monika Stefaniuk-Szmukier
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | | | | |
Collapse
|
6
|
Hamilton MC, Fife JD, Akinci E, Yu T, Khowpinitchai B, Cha M, Barkal S, Thi TT, Yeo GH, Ramos Barroso JP, Francoeur MJ, Velimirovic M, Gifford DK, Lettre G, Yu H, Cassa CA, Sherwood RI. Systematic elucidation of genetic mechanisms underlying cholesterol uptake. CELL GENOMICS 2023; 3:100304. [PMID: 37228746 PMCID: PMC10203276 DOI: 10.1016/j.xgen.2023.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/02/2022] [Accepted: 03/24/2023] [Indexed: 05/27/2023]
Abstract
Genetic variation contributes greatly to LDL cholesterol (LDL-C) levels and coronary artery disease risk. By combining analysis of rare coding variants from the UK Biobank and genome-scale CRISPR-Cas9 knockout and activation screening, we substantially improve the identification of genes whose disruption alters serum LDL-C levels. We identify 21 genes in which rare coding variants significantly alter LDL-C levels at least partially through altered LDL-C uptake. We use co-essentiality-based gene module analysis to show that dysfunction of the RAB10 vesicle transport pathway leads to hypercholesterolemia in humans and mice by impairing surface LDL receptor levels. Further, we demonstrate that loss of function of OTX2 leads to robust reduction in serum LDL-C levels in mice and humans by increasing cellular LDL-C uptake. Altogether, we present an integrated approach that improves our understanding of the genetic regulators of LDL-C levels and provides a roadmap for further efforts to dissect complex human disease genetics.
Collapse
Affiliation(s)
- Marisa C. Hamilton
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - James D. Fife
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ersin Akinci
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tian Yu
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Benyapa Khowpinitchai
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Minsun Cha
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sammy Barkal
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Thi Tun Thi
- Precision Medicine Research Programme, Cardiovascular Disease Research Programme, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Grace H.T. Yeo
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Juan Pablo Ramos Barroso
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Jake Francoeur
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Minja Velimirovic
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David K. Gifford
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
- Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Haojie Yu
- Precision Medicine Research Programme, Cardiovascular Disease Research Programme, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christopher A. Cassa
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Richard I. Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Hamilton MC, Fife JD, Akinci E, Yu T, Khowpinitchai B, Cha M, Barkal S, Thi TT, Yeo GH, Ramos Barroso JP, Jake Francoeur M, Velimirovic M, Gifford DK, Lettre G, Yu H, Cassa CA, Sherwood RI. Systematic elucidation of genetic mechanisms underlying cholesterol uptake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.500804. [PMID: 36711952 PMCID: PMC9881906 DOI: 10.1101/2023.01.09.500804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Genetic variation contributes greatly to LDL cholesterol (LDL-C) levels and coronary artery disease risk. By combining analysis of rare coding variants from the UK Biobank and genome-scale CRISPR-Cas9 knockout and activation screening, we have substantially improved the identification of genes whose disruption alters serum LDL-C levels. We identify 21 genes in which rare coding variants significantly alter LDL-C levels at least partially through altered LDL-C uptake. We use co-essentiality-based gene module analysis to show that dysfunction of the RAB10 vesicle transport pathway leads to hypercholesterolemia in humans and mice by impairing surface LDL receptor levels. Further, we demonstrate that loss of function of OTX2 leads to robust reduction in serum LDL-C levels in mice and humans by increasing cellular LDL-C uptake. Altogether, we present an integrated approach that improves our understanding of genetic regulators of LDL-C levels and provides a roadmap for further efforts to dissect complex human disease genetics.
Collapse
Affiliation(s)
- Marisa C. Hamilton
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - James D. Fife
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ersin Akinci
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tian Yu
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Benyapa Khowpinitchai
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Minsun Cha
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sammy Barkal
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Thi Tun Thi
- Precision Medicine Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cardiovascular Disease Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Grace H.T. Yeo
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Juan Pablo Ramos Barroso
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Jake Francoeur
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Minja Velimirovic
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David K. Gifford
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montréal, Québec, H1T 1C8, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Haojie Yu
- Precision Medicine Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cardiovascular Disease Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher A. Cassa
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Richard I. Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Mitok KA, Keller MP, Attie AD. Sorting through the extensive and confusing roles of sortilin in metabolic disease. J Lipid Res 2022; 63:100243. [PMID: 35724703 PMCID: PMC9356209 DOI: 10.1016/j.jlr.2022.100243] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/06/2023] Open
Abstract
Sortilin is a post-Golgi trafficking receptor homologous to the yeast vacuolar protein sorting receptor 10 (VPS10). The VPS10 motif on sortilin is a 10-bladed β-propeller structure capable of binding more than 50 proteins, covering a wide range of biological functions including lipid and lipoprotein metabolism, neuronal growth and death, inflammation, and lysosomal degradation. Sortilin has a complex cellular trafficking itinerary, where it functions as a receptor in the trans-Golgi network, endosomes, secretory vesicles, multivesicular bodies, and at the cell surface. In addition, sortilin is associated with hypercholesterolemia, Alzheimer's disease, prion diseases, Parkinson's disease, and inflammation syndromes. The 1p13.3 locus containing SORT1, the gene encoding sortilin, carries the strongest association with LDL-C of all loci in human genome-wide association studies. However, the mechanism by which sortilin influences LDL-C is unclear. Here, we review the role sortilin plays in cardiovascular and metabolic diseases and describe in detail the large and often contradictory literature on the role of sortilin in the regulation of LDL-C levels.
Collapse
Affiliation(s)
- Kelly A Mitok
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
9
|
Zimoń M, Huang Y, Trasta A, Halavatyi A, Liu JZ, Chen CY, Blattmann P, Klaus B, Whelan CD, Sexton D, John S, Huber W, Tsai EA, Pepperkok R, Runz H. Pairwise effects between lipid GWAS genes modulate lipid plasma levels and cellular uptake. Nat Commun 2021; 12:6411. [PMID: 34741066 PMCID: PMC8571362 DOI: 10.1038/s41467-021-26761-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 10/09/2021] [Indexed: 12/27/2022] Open
Abstract
Complex traits are characterized by multiple genes and variants acting simultaneously on a phenotype. However, studying the contribution of individual pairs of genes to complex traits has been challenging since human genetics necessitates very large population sizes, while findings from model systems do not always translate to humans. Here, we combine genetics with combinatorial RNAi (coRNAi) to systematically test for pairwise additive effects (AEs) and genetic interactions (GIs) between 30 lipid genome-wide association studies (GWAS) genes. Gene-based burden tests from 240,970 exomes show that in carriers with truncating mutations in both, APOB and either PCSK9 or LPL ("human double knock-outs") plasma lipid levels change additively. Genetics and coRNAi identify overlapping AEs for 12 additional gene pairs. Overlapping GIs are observed for TOMM40/APOE with SORT1 and NCAN. Our study identifies distinct gene pairs that modulate plasma and cellular lipid levels primarily via AEs and nominates putative drug target pairs for improved lipid-lowering combination therapies.
Collapse
Affiliation(s)
- Magdalena Zimoń
- grid.4709.a0000 0004 0495 846XMolecular Medicine Partnership Unit (MMPU), University of Heidelberg/EMBL, Heidelberg, Germany ,Cell Biology and Biophysics Unit, European Molecular Biological Laboratory, Heidelberg, Germany
| | - Yunfeng Huang
- grid.417832.b0000 0004 0384 8146Translational Biology, Biogen Inc, Cambridge, MA USA
| | - Anthi Trasta
- grid.4709.a0000 0004 0495 846XMolecular Medicine Partnership Unit (MMPU), University of Heidelberg/EMBL, Heidelberg, Germany ,Cell Biology and Biophysics Unit, European Molecular Biological Laboratory, Heidelberg, Germany
| | - Aliaksandr Halavatyi
- Advanced Light Microscopy Facility (ALMF), European Molecular Biological Laboratory, Heidelberg, Germany
| | - Jimmy Z. Liu
- grid.417832.b0000 0004 0384 8146Translational Biology, Biogen Inc, Cambridge, MA USA
| | - Chia-Yen Chen
- grid.417832.b0000 0004 0384 8146Translational Biology, Biogen Inc, Cambridge, MA USA ,grid.32224.350000 0004 0386 9924Psychiatric and Neurodevelopmental Genetics Unit, Mass General Hospital, Boston, MA USA
| | - Peter Blattmann
- grid.4709.a0000 0004 0495 846XMolecular Medicine Partnership Unit (MMPU), University of Heidelberg/EMBL, Heidelberg, Germany ,Cell Biology and Biophysics Unit, European Molecular Biological Laboratory, Heidelberg, Germany ,grid.508389.f0000 0004 6414 2411Idorsia Pharmaceuticals Ltd, Basel, Switzerland
| | - Bernd Klaus
- Genome Biology Unit, European Molecular Biological Laboratory, Heidelberg, Germany
| | - Christopher D. Whelan
- grid.417832.b0000 0004 0384 8146Translational Biology, Biogen Inc, Cambridge, MA USA
| | - David Sexton
- grid.417832.b0000 0004 0384 8146Translational Biology, Biogen Inc, Cambridge, MA USA
| | - Sally John
- grid.417832.b0000 0004 0384 8146Translational Biology, Biogen Inc, Cambridge, MA USA
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biological Laboratory, Heidelberg, Germany
| | - Ellen A. Tsai
- grid.417832.b0000 0004 0384 8146Translational Biology, Biogen Inc, Cambridge, MA USA
| | - Rainer Pepperkok
- grid.4709.a0000 0004 0495 846XMolecular Medicine Partnership Unit (MMPU), University of Heidelberg/EMBL, Heidelberg, Germany ,Cell Biology and Biophysics Unit, European Molecular Biological Laboratory, Heidelberg, Germany ,Advanced Light Microscopy Facility (ALMF), European Molecular Biological Laboratory, Heidelberg, Germany
| | - Heiko Runz
- grid.4709.a0000 0004 0495 846XMolecular Medicine Partnership Unit (MMPU), University of Heidelberg/EMBL, Heidelberg, Germany ,grid.417832.b0000 0004 0384 8146Translational Biology, Biogen Inc, Cambridge, MA USA
| |
Collapse
|
10
|
Ibdah RK, Al-Eitan LN, Alrabadi NN, Almasri AY, Alnaamneh AH, Khasawneh RH, Alghamdi MA. Impact of PCSK9, WDR12, CDKN2A, and CXCL12 Polymorphisms in Jordanian Cardiovascular Patients on Warfarin Responsiveness and Sensitivity. Int J Gen Med 2021; 14:103-118. [PMID: 33488114 PMCID: PMC7814275 DOI: 10.2147/ijgm.s287238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Background The main objective of this study is sought to determine the impacts of PCSK9, WDR12, CDKN2A, and CXCL12 polymorphisms on warfarin sensitivity and responsiveness in Jordanian cardiovascular patients during the initiation and stabilization phases of therapy. Methods This study took place at the anticoagulation clinic at Queen Alia Heart Institute (QAHI) in Jordan. DNA samples were collected from 212 cardiovascular patients and 213 healthy controls. Genomic SNPs genotyping was conducted using the MassARRAY System at the Australian Genome Research Facility. Results This study assessed 10 polymorphisms (rs11206510 within the PCSK9 gene, rs6725887 and rs7582720 within the WDR12 gene, rs4977574, rs10757278, and rs1333049 within the CDKN2A gene, rs2862116, rs7906426, rs1746048, and rs268322 within the CXCL12 gene) in 212 Jordanian cardiovascular patients. Carriers of CDKN2A rs1333049, rs10757278, and PCSK9 rs11206510 polymorphisms had an increased risk of resistance during the initiation phase of warfarin therapy compared to those who do not carry it, or those who are carrying one polymorphism only (P < 0.05), while carriers of CXCL12 rs7906426 polymorphism had similar increased risk but during the stabilization phase of warfarin therapy (P < 0.05). Conclusion Carriers of CXCL12 rs2862116 polymorphism had an increased risk to be warfarin extensive responders compared to those with no or only one polymorphism (P = 0.01). However, the presence of PCSK9 rs11206510 polymorphism affects the warfarin maintenance doses (P ˃ 0.0001).
Collapse
Affiliation(s)
- Rasheed K Ibdah
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Laith N Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Nasr N Alrabadi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ayah Y Almasri
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Adan H Alnaamneh
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Rame H Khasawneh
- Department of Hematopathology, King Hussein Medical Center (KHMC), Jordan Royal Medical Services (RMS), Amman, Jordan
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Genomics and Personalized Medicine Unit,College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
11
|
Mendelian randomization while jointly modeling cis genetics identifies causal relationships between gene expression and lipids. Nat Commun 2020; 11:4930. [PMID: 33004804 PMCID: PMC7530717 DOI: 10.1038/s41467-020-18716-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Inference of causality between gene expression and complex traits using Mendelian randomization (MR) is confounded by pleiotropy and linkage disequilibrium (LD) of gene-expression quantitative trait loci (eQTL). Here, we propose an MR method, MR-link, that accounts for unobserved pleiotropy and LD by leveraging information from individual-level data, even when only one eQTL variant is present. In simulations, MR-link shows false-positive rates close to expectation (median 0.05) and high power (up to 0.89), outperforming all other tested MR methods and coloc. Application of MR-link to low-density lipoprotein cholesterol (LDL-C) measurements in 12,449 individuals with expression and protein QTL summary statistics from blood and liver identifies 25 genes causally linked to LDL-C. These include the known SORT1 and ApoE genes as well as PVRL2, located in the APOE locus, for which a causal role in liver was not known. Our results showcase the strength of MR-link for transcriptome-wide causal inferences. Mendelian randomization is a useful tool to infer causal relationships between traits, but can be confounded by the presence of pleiotropy. Here, the authors have developed MR-link, a Mendelian randomization method which accounts for unobserved pleiotropy and linkage disequilibrium between instrumental variables.
Collapse
|
12
|
Li Y, Liu S, Wang YT, Min H, Adi D, Li XM, Yang YN, Fu ZY, Ma YT. TBL2 methylation is associated with hyper-low-density lipoprotein cholesterolemia: a case-control study. Lipids Health Dis 2020; 19:186. [PMID: 32811528 PMCID: PMC7433086 DOI: 10.1186/s12944-020-01359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 08/04/2020] [Indexed: 11/23/2022] Open
Abstract
Background HMGCR, SCAP, SREBF1, SREBF2 and TBL2 are well-known genes that are involved in the process of lipid metabolism. However, it is not known whether epigenetic changes of these genes are associated with lipid metabolism. In this study, the methylation levels of the HMGCR, SCAP, SREBF1, SREBF2 and TBL2 genes were analyzed between samples from a hyper-low-density lipoprotein cholesterolemia (hyper-LDL) group and a control group to examine the association between the methylation levels of these genes and the risk of hyper-LDL. Methods In this study, a case-control approach was used to explore the association between DNA methylation and hyper-LDL. The DNA methylation levels of HMGCR, SCAP, SREBF1, SREBF2 and TBL2 genes and 231 CpG sites in the promoter regions of these genes were measured in 98 hyper-LDL participants and 89 participants without hypo-LDL. Results Compared with participants without hyper-LDL, patients with hyper-LDL TBL2 gene had lower methylation levels (11.93 vs. 12.02, P = 0.004). The methylation haplotypes with significant abundance in the TBL2 gene are tcttttttttt (P = 0.034), ctttttttcct (P = 0.025), ctctttctttt (P = 0.040), ccttttttttt (P = 0.028), and tctttttttttttttt. Conclusion The study demonstrates that participants with hyper-LDL have lower methylation of TBL2. The results suggest that DNA methylation of TBL2 can decrease the risk for hyper-LDL in humans.
Collapse
Affiliation(s)
- Yang Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China
| | - Shuai Liu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China
| | - Yong-Tao Wang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China
| | - Han Min
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China
| | - Dilare Adi
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China
| | - Xiao-Mei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China
| | - Yi-Ning Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China
| | - Zhen Yan Fu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China. .,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China.
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China. .,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China.
| |
Collapse
|
13
|
Galantino-Homer H, Brooks SA. Genetics and Signaling Pathways of Laminitis. Vet Clin North Am Equine Pract 2020; 36:379-394. [PMID: 32654786 DOI: 10.1016/j.cveq.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Laminitis is a devastating disease with diverse etiologies and few, if any, effective treatments. Gene expression and hypothesis-generating genomic studies have provided a fresh look at the key molecular players at crucial timepoints in diverse experimental and naturally affected tissues. We summarize findings to date, and propose a unifying model of the laminitis disease process that includes several pathogenesis concepts shared with other diseases of epidermal and epithelial tissues. The value of these new pathways as potential therapeutic targets is exciting but will require careful future work to validate new methods and launch systematic clinical trials.
Collapse
Affiliation(s)
- Hannah Galantino-Homer
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | - Samantha A Brooks
- Department of Animal Sciences, UF Genetics Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
14
|
Cash CM, Fitzgerald DM, Spence RJ, de Laat MA. Preliminary analysis of the FAM174A gene suggests it lacks a strong association with equine metabolic syndrome in ponies. Domest Anim Endocrinol 2020; 72:106439. [PMID: 32169753 DOI: 10.1016/j.domaniend.2020.106439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 12/13/2022]
Abstract
Equine metabolic syndrome (EMS) describes a group of risk factors, including obesity and insulin dysregulation (hyperinsulinemia and/or insulin resistance), that can lead to the development of the debilitating hoof disease laminitis. Although the underlying mechanisms of EMS are not fully understood, a genetic component has been reported, and an 11 guanine polymorphism located at the FAM174A gene has been identified as a risk locus for the syndrome in Arabian horses. To examine associations between the FAM174A risk allele and the clinical signs of EMS, the allele was examined in an Australian cohort of ponies (n = 20) with known metabolic status. The 11 guanine polymorphism was identified in only 3 of 13 ponies with EMS, and no significant association could be made between the risk loci and morphometric measurements associated with obesity (BCS [P = 0.21], cresty neck score [P = 0.58], basal triglyceride concentration [P = 0.85], and adiponectin concentration [P = 0.48]), or insulin dysregulation (insulin dysregulation status [P = 0.35] and serum insulin concentration during an oral glucose test [P = 0.44]). These results suggest that the FAM174A 11 guanine homopolymer allele is unlikely to be a singular key gene polymorphism associated with EMS in ponies. However, due to the small number of ponies identified with the polymorphism, further study of the FAM174A risk allele in a larger cohort of horses and ponies of uniform breed would be useful.
Collapse
Affiliation(s)
- C M Cash
- School of Biology and Environmental Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - D M Fitzgerald
- School of Biology and Environmental Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - R J Spence
- School of Biology and Environmental Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - M A de Laat
- School of Biology and Environmental Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
15
|
Hériché JK, Alexander S, Ellenberg J. Integrating Imaging and Omics: Computational Methods and Challenges. Annu Rev Biomed Data Sci 2019. [DOI: 10.1146/annurev-biodatasci-080917-013328] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fluorescence microscopy imaging has long been complementary to DNA sequencing- and mass spectrometry–based omics in biomedical research, but these approaches are now converging. On the one hand, omics methods are moving from in vitro methods that average across large cell populations to in situ molecular characterization tools with single-cell sensitivity. On the other hand, fluorescence microscopy imaging has moved from a morphological description of tissues and cells to quantitative molecular profiling with single-molecule resolution. Recent technological developments underpinned by computational methods have started to blur the lines between imaging and omics and have made their direct correlation and seamless integration an exciting possibility. As this trend continues rapidly, it will allow us to create comprehensive molecular profiles of living systems with spatial and temporal context and subcellular resolution. Key to achieving this ambitious goal will be novel computational methods and successfully dealing with the challenges of data integration and sharing as well as cloud-enabled big data analysis.
Collapse
Affiliation(s)
- Jean-Karim Hériché
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Stephanie Alexander
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| |
Collapse
|
16
|
Montasser ME, O’Hare EA, Wang X, Howard AD, McFarland R, Perry JA, Ryan KA, Rice K, Jaquish CE, Shuldiner AR, Miller M, Mitchell BD, Zaghloul NA, Chang YPC. An APOO Pseudogene on Chromosome 5q Is Associated With Low-Density Lipoprotein Cholesterol Levels. Circulation 2018; 138:1343-1355. [PMID: 29593015 PMCID: PMC6162188 DOI: 10.1161/circulationaha.118.034016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/19/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Elevated levels of low-density lipoprotein cholesterol (LDL-C) are a major risk factor for cardiovascular disease via its contribution to the development and progression of atherosclerotic lesions. Although the genetic basis of LDL-C has been studied extensively, currently known genetic variants account for only ≈20% of the variation in LDL-C levels. METHODS Through an array-based association analysis in 1102 Amish subjects, we identified a variant strongly associated with LDL-C levels. Using a combination of genetic analyses, zebrafish models, and in vitro experiments, we sought to identify the causal gene driving this association. RESULTS We identified a founder haplotype associated with a 15 mg/dL increase in LDL-C on chromosome 5. After recombination mapping, the associated region contained 8 candidate genes. Using a zebrafish model to evaluate the relevance of these genes to cholesterol metabolism, we found that expression of the transcribed pseudogene, APOOP1, increased LDL-C and vascular plaque formation. CONCLUSIONS Based on these data, we propose that APOOP1 regulates levels of LDL-C in humans, thus identifying a novel mechanism of lipid homeostasis.
Collapse
Affiliation(s)
- May E. Montasser
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Elizabeth A. O’Hare
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Xiaochun Wang
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Alicia D. Howard
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Rebecca McFarland
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - James A. Perry
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kathleen A. Ryan
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kenneth Rice
- Dept of Biostatistics, University of Washington, Seattle, WA
| | | | - Alan R. Shuldiner
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Michael Miller
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Braxton D. Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Norann A. Zaghloul
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Yen-Pei C. Chang
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
17
|
Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M, Leistner DM, Jakob P, Nakagawa S, Blankenberg S, Engelhardt S, Thum T, Weber C, Meder B, Hajjar R, Landmesser U. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J 2018; 39:2704-2716. [PMID: 28430919 PMCID: PMC6454570 DOI: 10.1093/eurheartj/ehx165] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/14/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
Recent research has demonstrated that the non-coding genome plays a key role in genetic programming and gene regulation during development as well as in health and cardiovascular disease. About 99% of the human genome do not encode proteins, but are transcriptionally active representing a broad spectrum of non-coding RNAs (ncRNAs) with important regulatory and structural functions. Non-coding RNAs have been identified as critical novel regulators of cardiovascular risk factors and cell functions and are thus important candidates to improve diagnostics and prognosis assessment. Beyond this, ncRNAs are rapidly emgerging as fundamentally novel therapeutics. On a first level, ncRNAs provide novel therapeutic targets some of which are entering assessment in clinical trials. On a second level, new therapeutic tools were developed from endogenous ncRNAs serving as blueprints. Particularly advanced is the development of RNA interference (RNAi) drugs which use recently discovered pathways of endogenous short interfering RNAs and are becoming versatile tools for efficient silencing of protein expression. Pioneering clinical studies include RNAi drugs targeting liver synthesis of PCSK9 resulting in highly significant lowering of LDL cholesterol or targeting liver transthyretin (TTR) synthesis for treatment of cardiac TTR amyloidosis. Further novel drugs mimicking actions of endogenous ncRNAs may arise from exploitation of molecular interactions not accessible to conventional pharmacology. We provide an update on recent developments and perspectives for diagnostic and therapeutic use of ncRNAs in cardiovascular diseases, including atherosclerosis/coronary disease, post-myocardial infarction remodelling, and heart failure.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Johann Wolfgang Goethe Universität, Theodor-Stern-Kai 7, Frankfurt am Main, Germany
- DZHK, Site Rhein-Main, Frankfurt, Germany
| | - Stephane Heymans
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Jan Haas
- Institute for Cardiomyopathies Heidelberg (ICH), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany
- DZHK, Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Mahir Karakas
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - David-Manuel Leistner
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Philipp Jakob
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama, Japan
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo, Japan
| | - Stefan Blankenberg
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Stefan Engelhardt
- Institute for Pharmacology and Toxikology, Technische Universität München, Biedersteiner Strasse 29, München, Germany
- DZHK, Site Munich, Munich, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Christian Weber
- DZHK, Site Munich, Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstrasse 8a/9, Munich, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies Heidelberg (ICH), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany
- DZHK, Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Roger Hajjar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ulf Landmesser
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
- Berlin Institute of Health, Kapelle-Ufer 2, Berlin, Germany
| |
Collapse
|
18
|
Systematic RNA-interference in primary human monocyte-derived macrophages: A high-throughput platform to study foam cell formation. Sci Rep 2018; 8:10516. [PMID: 30002403 PMCID: PMC6043567 DOI: 10.1038/s41598-018-28790-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022] Open
Abstract
Macrophage-derived foam cells are key regulators of atherogenesis. They accumulate in atherosclerotic plaques and support inflammatory processes by producing cytokines and chemokines. Identifying factors that regulate macrophage lipid uptake may reveal therapeutic targets for coronary artery disease (CAD). Here, we establish a high-throughput screening workflow to systematically identify genes that impact the uptake of DiI-labeled low-density lipoprotein (LDL) into monocyte-derived primary human macrophages. For this, monocytes isolated from peripheral blood were seeded onto 384-well plates, solid-phase transfected with siRNAs, differentiated in vitro into macrophages, and LDL-uptake per cell was measured by automated microscopy and quantitative image analysis. We applied this workflow to study how silencing of 89 genes impacts LDL-uptake into cells from 16 patients with CAD and 16 age-matched controls. Silencing of four novel genes (APOC1, CMTM6, FABP4, WBP5) reduced macrophage LDL-uptake. Additionally, knockdown of the chemokine receptor CXCR4 reduced LDL-uptake, most likely through a G-protein coupled mechanism that involves the CXCR4 ligand macrophage-induced factor (MIF), but is independent of CXCL12. We introduce a high-throughput strategy to systematically study gene function directly in primary CAD-patient cells. Our results propose a function for the MIF/CXCR4 signaling pathway, as well as several novel candidate genes impacting lipid uptake into human macrophages.
Collapse
|
19
|
Dong F, Jin X, Boettler MA, Sciulli H, Abu-Asab M, Del Greco C, Wang S, Hu YC, Campos MM, Jackson SN, Muller L, Woods AS, Combs CA, Zhang J, Nickerson ML, Kruth HS, Weiss JS, Kao WW. A Mouse Model of Schnyder Corneal Dystrophy with the N100S Point Mutation. Sci Rep 2018; 8:10219. [PMID: 29977031 PMCID: PMC6033878 DOI: 10.1038/s41598-018-28545-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/18/2018] [Indexed: 11/09/2022] Open
Abstract
Schnyder corneal dystrophy (SCD) is a rare autosomal dominant disease in humans, characterized by abnormal deposition of cholesterol and phospholipids in cornea caused by mutations in the UbiA prenyltransferase domain containing 1 (UBIAD1) gene. In this study, we generated a mouse line carrying Ubiad1 N100S point mutation using the CRISPR/Cas9 technique to investigate the pathogenesis of SCD. In vivo confocal microscopy revealed hyper-reflective dot-like deposits in the anterior cornea in heterozygotes and homozygotes. No significant change was found in corneal epithelial barrier function or wound healing. Electron microscopy revealed abnormal mitochondrial morphology in corneal epithelial, stromal, and endothelial cells. Mitochondrial DNA copy number assay showed 1.27 ± 0.07 fold change in homozygotes versus 0.98 ± 0.05 variation in wild type mice (P < 0.05). Lipidomic analysis indicated abnormal metabolism of glycerophosphoglycerols, a lipid class found in mitochondria. Four (34:1, 34:2, 36:2, and 44:8) of the 11 glycerophosphoglycerols species identified by mass spectrometry showed a significant increase in homozygous corneas compared with heterozygous and wild-type mouse corneas. Unexpectedly, we did not find a difference in the corneal cholesterol level between different genotypes by filipin staining or lipidomic analysis. The Ubiad1N100S mouse provides a promising animal model of SCD revealing that mitochondrial dysfunction is a prominent component of the disease. The different phenotype in human and mouse may due to difference in cholesterol metabolism between species.
Collapse
Affiliation(s)
- Fei Dong
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Xueting Jin
- Laboratory of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | | | - Harrison Sciulli
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Mones Abu-Asab
- Histopathology Facility, National Eye Institute, NIH, Bethesda, MD, USA
| | | | - Shurong Wang
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
- Ophthalmology, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yueh-Chiang Hu
- Transgenic Animal and Genome Editing Core, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Maria M Campos
- Histopathology Facility, National Eye Institute, NIH, Bethesda, MD, USA
| | - Shelley N Jackson
- Structural Biology Core, National Institute of Drug Abuse, NIH, Baltimore, MD, USA
| | - Ludovic Muller
- Structural Biology Core, National Institute of Drug Abuse, NIH, Baltimore, MD, USA
| | - Amina S Woods
- Structural Biology Core, National Institute of Drug Abuse, NIH, Baltimore, MD, USA
| | - Christian A Combs
- Light Microscopy Core Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Jianhua Zhang
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Michael L Nickerson
- Laboratory of Translational Genomics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Howard S Kruth
- Laboratory of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Jayne S Weiss
- Department of Ophthalmology, Pathology and Pharmacology, Louisiana State University School of Medicine, Louisiana State University Eye Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Winston W Kao
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
20
|
Systems Pharmacology Dissection of Cholesterol Regulation Reveals Determinants of Large Pharmacodynamic Variability between Cell Lines. Cell Syst 2017; 5:604-619.e7. [PMID: 29226804 PMCID: PMC5747350 DOI: 10.1016/j.cels.2017.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 08/17/2017] [Accepted: 11/02/2017] [Indexed: 01/06/2023]
Abstract
In individuals, heterogeneous drug-response phenotypes result from a complex interplay of dose, drug specificity, genetic background, and environmental factors, thus challenging our understanding of the underlying processes and optimal use of drugs in the clinical setting. Here, we use mass-spectrometry-based quantification of molecular response phenotypes and logic modeling to explain drug-response differences in a panel of cell lines. We apply this approach to cellular cholesterol regulation, a biological process with high clinical relevance. From the quantified molecular phenotypes elicited by various targeted pharmacologic or genetic treatments, we generated cell-line-specific models that quantified the processes beneath the idiotypic intracellular drug responses. The models revealed that, in addition to drug uptake and metabolism, further cellular processes displayed significant pharmacodynamic response variability between the cell lines, resulting in cell-line-specific drug-response phenotypes. This study demonstrates the importance of integrating different types of quantitative systems-level molecular measurements with modeling to understand the effect of pharmacological perturbations on complex biological processes.
Collapse
|
21
|
Lewis SL, Holl HM, Streeter C, Posbergh C, Schanbacher BJ, Place NJ, Mallicote MF, Long MT, Brooks SA. Genomewide association study reveals a risk locus for equine metabolic syndrome in the Arabian horse. J Anim Sci 2017; 95:1071-1079. [PMID: 28380523 DOI: 10.2527/jas.2016.1221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Equine obesity can cause life-threatening secondary chronic conditions, similar to those in humans and other animal species. Equine metabolic syndrome (EMS), primarily characterized by hyperinsulinemia, is often present in obese horses and ponies. Due to clinical similarities to conditions such as pituitary pars intermedia dysfunction (formerly equine Cushing's disease), conclusive diagnosis of EMS often proves challenging. Aside from changes in diet and exercise, few targeted treatments are available for EMS, emphasizing the need for early identification of at-risk individuals to enable implementation of preventative measures. A genomewide association study (GWAS) using Arabian horses with a history of severe laminitis secondary to EMS revealed significant genetic markers near a single candidate gene () that may play a role in cholesterol homeostasis. The best marker, BIEC2-263524 (chr14:69276814 T > C), was correlated with elevated insulin values and increased frequency of laminitis ( = 0.0024 and = 9.663 × 10, respectively). In a second population of Arabian horses, the BIEC2-263524 marker maintained its associations with higher modified insulin-to-glucose ratio (MIRG) values ( = 0.0056) and BCS ( = 0.0063). Screening of the predicted coding regions by sequencing identified a polymorphic guanine homopolymer and 5 haplotypes in the 3' untranslated region (UTR). An 11 guanine (11-G) allele at was correlated with elevated insulin values in the GWAS population ( = 0.0008) and, in the second population, elevated MIRG and increased BCS > 6.5 ( = 0.0055 and = 0.0162, respectively). The BIEC2-263524-C and the 3' UTR -11(G) polymorphisms were correlated at a 98% frequency, indicating strong linkage disequilibrium across this 150-kb haplotype. Assays for these markers could diagnose horses with a genetic predisposition to develop obesity. Additionally, discovery of FAM174A function may improve our understanding of the etiology of this troubling illness in the horse and warrants investigation of this locus for a role in metabolic- and obesity-related disorders of other species.
Collapse
|
22
|
Ebrahimi-Fakhari D, Wahlster L, Bartz F, Werenbeck-Ueding J, Praggastis M, Zhang J, Joggerst-Thomalla B, Theiss S, Grimm D, Ory DS, Runz H. Reduction of TMEM97 increases NPC1 protein levels and restores cholesterol trafficking in Niemann-pick type C1 disease cells. Hum Mol Genet 2016; 25:3588-3599. [PMID: 27378690 PMCID: PMC5179952 DOI: 10.1093/hmg/ddw204] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 02/07/2023] Open
Abstract
Niemann-Pick type C disease (NP-C) is a progressive lysosomal lipid storage disease caused by mutations in the NPC1 and NPC2 genes. NPC1 is essential for transporting cholesterol and other lipids out of lysosomes, but little is known about the mechanisms that control its cellular abundance and localization. Here we show that a reduction of TMEM97, a cholesterol-responsive NPC1-binding protein, increases NPC1 levels in cells through a post-transcriptional mechanism. Reducing TMEM97 through RNA-interference reduces lysosomal lipid storage and restores cholesterol trafficking to the endoplasmic reticulum in cell models of NP-C. In TMEM97 knockdown cells, NPC1 levels can be reinstated with wild type TMEM97, but not TMEM97 missing an ER-retention signal suggesting that TMEM97 contributes to controlling the availability of NPC1 to the cell. Importantly, knockdown of TMEM97 also increases levels of residual NPC1 in NPC1-mutant patient fibroblasts and reduces cholesterol storage in an NPC1-dependent manner. Our findings propose TMEM97 inhibition as a novel strategy to increase residual NPC1 levels in cells and a potential therapeutic target for NP-C.
Collapse
Affiliation(s)
- Darius Ebrahimi-Fakhari
- Institute of Human Genetics, Ruprecht-Karls-University Heidelberg
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Lara Wahlster
- Institute of Human Genetics, Ruprecht-Karls-University Heidelberg
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Fabian Bartz
- Institute of Human Genetics, Ruprecht-Karls-University Heidelberg
| | | | - Maria Praggastis
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jessie Zhang
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Susanne Theiss
- Institute of Human Genetics, Ruprecht-Karls-University Heidelberg
| | - Dirk Grimm
- Center for Infectious Diseases/Virology, BioQuant BQ0030, Heidelberg, Germany
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Heiko Runz
- Institute of Human Genetics, Ruprecht-Karls-University Heidelberg
- Molecular Medicine Partnership Unit (MMPU), Ruprecht-Karls-University Heidelberg/European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
23
|
Kim MJ, Yu CY, Theusch E, Naidoo D, Stevens K, Kuang YL, Schuetz E, Chaudhry AS, Medina MW. SUGP1 is a novel regulator of cholesterol metabolism. Hum Mol Genet 2016; 25:3106-3116. [PMID: 27206982 PMCID: PMC5181593 DOI: 10.1093/hmg/ddw151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/05/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022] Open
Abstract
A large haplotype on chromosome 19p13.11 tagged by rs10401969 in intron 8 of SURP and G patch domain containing 1 (SUGP1) is associated with coronary artery disease (CAD), plasma LDL cholesterol levels, and other energy metabolism phenotypes. Recent studies have suggested that TM6SF2 is the causal gene within the locus, but we postulated that this locus could harbor additional CAD risk genes, including the putative splicing factor SUGP1. Indeed, we found that rs10401969 regulates SUGP1 exon 8 skipping, causing non-sense-mediated mRNA decay. Hepatic Sugp1 overexpression in CD1 male mice increased plasma cholesterol levels 20–50%. In human hepatoma cell lines, SUGP1 knockdown stimulated 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) alternative splicing and decreased HMGCR transcript stability, thus reducing cholesterol synthesis and increasing LDL uptake. Our results strongly support a role for SUGP1 as a novel regulator of cholesterol metabolism and suggest that it contributes to the relationship between rs10401969 and plasma cholesterol.
Collapse
Affiliation(s)
- Mee J Kim
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Chi-Yi Yu
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Elizabeth Theusch
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Devesh Naidoo
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Kristen Stevens
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Yu-Lin Kuang
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Erin Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Amarjit S Chaudhry
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marisa W Medina
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| |
Collapse
|
24
|
Li Z, Feng S, Zhou L, Liu S, Cheng J. NS5ATP6 modulates intracellular triglyceride content through FGF21 and independently of SIRT1 and SREBP1. Biochem Biophys Res Commun 2016; 475:133-9. [PMID: 27179781 DOI: 10.1016/j.bbrc.2016.05.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is rising strikingly in Western countries and China. The molecular biological mechanism of NAFLD remains unclear, with no effective therapies developed so far. Fibroblast growth factor 21 (FGF21) is a recently discovered hormone, with safe lipid lowering effects. FGF21 analogs are being developed for clinical application. Here we demonstrated that a novel gene, NS5ATP6, modulated intracellular triglyceride (TG) content independently of sirtuin1 (SIRT1) and sterol regulatory element binding protein 1 (SREBP1) in HepG2 cells. Interestingly, NS5ATP6 regulated FGF21 expression both at the mRNA and protein levels. The modulatory effects of NS5ATP6 on intracellular TG content depended upon FGF21. Further studies revealed that NS5ATP6 decreased the promoter activity of FGF21. In addition, NS5ATP6 regulated the expression of miR-577, which directly targeted and regulated FGF21. Therefore, miR-577 might be involved in NS5ATP6 regulation of FGF21 at the post-transcriptional level. In conclusion, NS5ATP6 regulates the intracellular TG level via FGF21, and independently of SIRT1 and SREBP1.
Collapse
Affiliation(s)
- Zhongshu Li
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| | - Shenghu Feng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Ditan Hospital, Teaching Hospital of Peking University, Beijing 100015, China
| | - Li Zhou
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Ditan Hospital, Teaching Hospital of Peking University, Beijing 100015, China
| | - Shunai Liu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China.
| | - Jun Cheng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China.
| |
Collapse
|
25
|
Sung Y, Feng Z, Subedi S. A genome-wide association study of multiple longitudinal traits with related subjects. Stat (Int Stat Inst) 2016; 5:22-44. [PMID: 27134745 DOI: 10.1002/sta4.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pleiotropy is a phenomenon that a single gene inflicts multiple correlated phenotypic effects, often characterized as traits, involving multiple biological systems. We propose a two-stage method to identify pleiotropic effects on multiple longitudinal traits from a family-based data set. The first stage analyzes each longitudinal trait via a three-level mixed-effects model. Random effects at the subject-level and at the family-level measure the subject-specific genetic effects and between-subjects intraclass correlations within families, respectively. The second stage performs a simultaneous association test between a single nucleotide polymorphism and all subject-specific effects for multiple longitudinal traits. This is performed using a quasi-likelihood scoring method in which the correlation structure among related subjects is adjusted. Two simulation studies for the proposed method are undertaken to assess both the type I error control and the power. Furthermore, we demonstrate the utility of the two-stage method in identifying pleiotropic genes or loci by analyzing the Genetic Analysis Workshop 16 Problem 2 cohort data drawn from the Framingham Heart Study and illustrate an example of the kind of complexity in data that can be handled by the proposed approach. We establish that our two-stage method can identify pleiotropic effects whilst accommodating varying data types in the model.
Collapse
Affiliation(s)
- Yubin Sung
- Department of Mathematics & Statistics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Zeny Feng
- Department of Mathematics & Statistics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Sanjeena Subedi
- Department of Mathematics & Statistics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
26
|
Tsukumo Y, Tsukahara S, Furuno A, Iemura SI, Natsume T, Tomida A. TBL2 Associates WithATF4mRNA Via Its WD40 Domain and Regulates Its Translation During ER Stress. J Cell Biochem 2015; 117:500-9. [DOI: 10.1002/jcb.25301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 07/31/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Yoshinori Tsukumo
- Cancer Chemotherapy Center; Japanese Foundation for Cancer Research; Koto-ku Tokyo 135-8550 Japan
| | - Satomi Tsukahara
- Cancer Chemotherapy Center; Japanese Foundation for Cancer Research; Koto-ku Tokyo 135-8550 Japan
| | - Aki Furuno
- Cancer Chemotherapy Center; Japanese Foundation for Cancer Research; Koto-ku Tokyo 135-8550 Japan
| | - Shun-ichiro Iemura
- Innovative Drug Development TR Section; Fukushima Medical University; Fukushima City Fukushima 960-1295 Japan
| | - Tohru Natsume
- Biomedicinal Information Research Center; National Institute of Advanced Industrial Science and Technology; Koto-ku Tokyo 135-0064 Japan
| | - Akihiro Tomida
- Cancer Chemotherapy Center; Japanese Foundation for Cancer Research; Koto-ku Tokyo 135-8550 Japan
| |
Collapse
|
27
|
Usefulness of genome-wide association studies to identify novel genetic variants underlying the plasma lipoprotein metabolism as risk factors for CAD. J Taibah Univ Med Sci 2015. [DOI: 10.1016/j.jtumed.2015.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Itoh Y, Sanosaka M, Fuchino H, Yahara Y, Kumagai A, Takemoto D, Kagawa M, Doi J, Ohta M, Tsumaki N, Kawahara N, Takemori H. Salt-inducible Kinase 3 Signaling Is Important for the Gluconeogenic Programs in Mouse Hepatocytes. J Biol Chem 2015; 290:17879-17893. [PMID: 26048985 DOI: 10.1074/jbc.m115.640821] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Indexed: 01/24/2023] Open
Abstract
Salt-inducible kinases (SIKs), members of the 5'-AMP-activated protein kinase (AMPK) family, are proposed to be important suppressors of gluconeogenic programs in the liver via the phosphorylation-dependent inactivation of the CREB-specific coactivator CRTC2. Although a dramatic phenotype for glucose metabolism has been found in SIK3-KO mice, additional complex phenotypes, dysregulation of bile acids, cholesterol, and fat homeostasis can render it difficult to discuss the hepatic functions of SIK3. The aim of this study was to examine the cell autonomous actions of SIK3 in hepatocytes. To eliminate systemic effects, we prepared primary hepatocytes and screened the small compounds suppressing SIK3 signaling cascades. SIK3-KO primary hepatocytes produced glucose more quickly after treatment with the cAMP agonist forskolin than the WT hepatocytes, which was accompanied by enhanced gluconeogenic gene expression and CRTC2 dephosphorylation. Reporter-based screening identified pterosin B as a SIK3 signaling-specific inhibitor. Pterosin B suppressed SIK3 downstream cascades by up-regulating the phosphorylation levels in the SIK3 C-terminal regulatory domain. When pterosin B promoted glucose production by up-regulating gluconeogenic gene expression in mouse hepatoma AML-12 cells, it decreased the glycogen content and stimulated an association between the glycogen phosphorylase kinase gamma subunit (PHKG2) and SIK3. PHKG2 phosphorylated the peptides with sequences of the C-terminal domain of SIK3. Here we found that the levels of active AMPK were higher both in the SIK3-KO hepatocytes and in pterosin B-treated AML-12 cells than in their controls. These results suggest that SIK3, rather than SIK1, SIK2, or AMPKs, acts as the predominant suppressor in gluconeogenic gene expression in the hepatocytes.
Collapse
Affiliation(s)
- Yumi Itoh
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Osaka, 567-0085, Japan
| | - Masato Sanosaka
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Osaka, 567-0085, Japan
| | - Hiroyuki Fuchino
- Research Center for Medicinal Plant Resources, Tsukuba Division, Ibaraki, 305-0843, Japan
| | - Yasuhito Yahara
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Ayako Kumagai
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Osaka, 567-0085, Japan
| | - Daisaku Takemoto
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Osaka, 567-0085, Japan; Department of Life Science and Biotechnology, Kansai University, Osaka 564-8680, Japan
| | - Mai Kagawa
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Osaka, 567-0085, Japan
| | - Junko Doi
- Department of Food and Nutrition, Senri Kinran University, Osaka, 565-0873 Japan
| | - Miho Ohta
- Department of Nutrition and Health, Faculty of Human Development, Soai University, Osaka, 559-0033, Japan
| | - Noriyuki Tsumaki
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Nobuo Kawahara
- Research Center for Medicinal Plant Resources, Tsukuba Division, Ibaraki, 305-0843, Japan
| | - Hiroshi Takemori
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Osaka, 567-0085, Japan.
| |
Collapse
|
29
|
Surakka I, Horikoshi M, Mägi R, Sarin AP, Mahajan A, Lagou V, Marullo L, Ferreira T, Miraglio B, Timonen S, Kettunen J, Pirinen M, Karjalainen J, Thorleifsson G, Hägg S, Hottenga JJ, Isaacs A, Ladenvall C, Beekman M, Esko T, Ried JS, Nelson CP, Willenborg C, Gustafsson S, Westra HJ, Blades M, de Craen AJM, de Geus EJ, Deelen J, Grallert H, Hamsten A, Havulinna AS, Hengstenberg C, Houwing-Duistermaat JJ, Hyppönen E, Karssen LC, Lehtimäki T, Lyssenko V, Magnusson PKE, Mihailov E, Müller-Nurasyid M, Mpindi JP, Pedersen NL, Penninx BWJH, Perola M, Pers TH, Peters A, Rung J, Smit JH, Steinthorsdottir V, Tobin MD, Tsernikova N, van Leeuwen EM, Viikari JS, Willems SM, Willemsen G, Schunkert H, Erdmann J, Samani NJ, Kaprio J, Lind L, Gieger C, Metspalu A, Slagboom PE, Groop L, van Duijn CM, Eriksson JG, Jula A, Salomaa V, Boomsma DI, Power C, Raitakari OT, Ingelsson E, Järvelin MR, Stefansson K, Franke L, Ikonen E, Kallioniemi O, Pietiäinen V, Lindgren CM, Thorsteinsdottir U, Palotie A, McCarthy MI, Morris AP, Prokopenko I, Ripatti S. The impact of low-frequency and rare variants on lipid levels. Nat Genet 2015; 47:589-97. [PMID: 25961943 PMCID: PMC4757735 DOI: 10.1038/ng.3300] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 04/16/2015] [Indexed: 12/18/2022]
Abstract
Using a genome-wide screen of 9.6 million genetic variants achieved through 1000 Genomes Project imputation in 62,166 samples, we identify association to lipid traits in 93 loci, including 79 previously identified loci with new lead SNPs and 10 new loci, 15 loci with a low-frequency lead SNP and 10 loci with a missense lead SNP, and 2 loci with an accumulation of rare variants. In six loci, SNPs with established function in lipid genetics (CELSR2, GCKR, LIPC and APOE) or candidate missense mutations with predicted damaging function (CD300LG and TM6SF2) explained the locus associations. The low-frequency variants increased the proportion of variance explained, particularly for low-density lipoprotein cholesterol and total cholesterol. Altogether, our results highlight the impact of low-frequency variants in complex traits and show that imputation offers a cost-effective alternative to resequencing.
Collapse
Affiliation(s)
- Ida Surakka
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Momoko Horikoshi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Antti-Pekka Sarin
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Vasiliki Lagou
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Letizia Marullo
- Department of Life Sciences and Biotechnology, Genetic Section, University of Ferrara, Ferrara, Italy
| | - Teresa Ferreira
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Benjamin Miraglio
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Sanna Timonen
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Johannes Kettunen
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Matti Pirinen
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Juha Karjalainen
- University of Croningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | | | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, EMGO institute for Health and Care research, VU University & VU medical center, Amsterdam, The Netherlands
| | - Aaron Isaacs
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Centre for Medical Systems Biology, Leiden, the Netherlands
| | - Claes Ladenvall
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| | - Marian Beekman
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Divisions of Endocrinology and Center for Basic and Translational Obesity Research, Children's Hospital, Boston, Massachusetts, USA
- The Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Janina S Ried
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, LE3 9QP, UK
- National Institute for Health Research (NIHR) Leicester Cardiovascular Disease Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Christina Willenborg
- Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e. V. (DZHK), Partnersite Hamburg, Lübeck, Kiel, Germany
| | - Stefan Gustafsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Harm-Jan Westra
- University of Croningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Matthew Blades
- Bioinformatics and Biostatistics Support Hub (B/BASH), University of Leicester, University Road, Leicester, UK
| | - Anton JM de Craen
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Eco J de Geus
- Department of Biological Psychology, EMGO institute for Health and Care research, VU University & VU medical center, Amsterdam, The Netherlands
| | - Joris Deelen
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München - Germany Research Center for Environmental Health, Neuherberg, Germany
| | - Anders Hamsten
- Cardiovascular Genetics and Genomics Group, Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Aki S. Havulinna
- Unit of Chronic Disease Epidemiology and Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Christian Hengstenberg
- Deutsches Herzzentrum München, Technische Universität München, München, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | | | - Elina Hyppönen
- Centre for Paediatric Epidemiology and Biostatistics, UCL Institute of Child Health, London, UK
- South Australian Health and Medical Research Institute, Adelaide, Australia
- School of population Health and Sansom Institute, University of South Australia, Adelaide, Australia
| | - Lennart C Karssen
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and School of Medicine, University of Tampere, Tampere, Finland
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
- Steno Diabetes Center A/S, Gentofte, Denmark
| | - Patrik KE Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - John-Patrick Mpindi
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Brenda WJH Penninx
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - Markus Perola
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Tune H Pers
- Divisions of Endocrinology and Center for Basic and Translational Obesity Research, Children's Hospital, Boston, Massachusetts, USA
- The Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Annette Peters
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München - Germany Research Center for Environmental Health, Neuherberg, Germany
- Deutsches Herzzentrum München, Technische Universität München, München, Germany
| | - Johan Rung
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Johannes H Smit
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Martin D Tobin
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, University Road, Leicester, UK
| | | | - Elisabeth M van Leeuwen
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jorma S Viikari
- Department of Medicine, University of Turku and Division of Medicine, Turku University Hospital, Turku, Finland
| | - Sara M Willems
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, EMGO institute for Health and Care research, VU University & VU medical center, Amsterdam, The Netherlands
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische Universität München, München, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Jeanette Erdmann
- Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e. V. (DZHK), Partnersite Hamburg, Lübeck, Kiel, Germany
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, LE3 9QP, UK
- National Institute for Health Research (NIHR) Leicester Cardiovascular Disease Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- Hjelt Institute, University of Helsinki, Helsinki, Finland
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Akademiska Sjukhuset, Uppsala, Sweden
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- The Institute of Molecular and Cell Biology of the University of Tartu, Tartu, Estonia
| | - P Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Leif Groop
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| | - Cornelia M van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Centre for Medical Systems Biology, Leiden, the Netherlands
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Centre, Helsinki, Finland
- Helsinki University Hospital, Unit of Primary Health Care, Helsinki, Finland
- Department of Health Promotion and Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Antti Jula
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland
| | - Veikko Salomaa
- Unit of Chronic Disease Epidemiology and Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Dorret I Boomsma
- Department of Biological Psychology, EMGO institute for Health and Care research, VU University & VU medical center, Amsterdam, The Netherlands
| | - Christine Power
- Centre for Paediatric Epidemiology and Biostatistics, UCL Institute of Child Health, London, UK
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Finland
| | - Erik Ingelsson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPE), Centre for Environment and Health, School of Public Health, Imperial College London, UK
- Institute of Health Sciences, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
- Department of Children and Young People and Families, National Institute for Health Welfare, Oulu, Finland
| | - Kari Stefansson
- deCODE Genetics/Amgen inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Lude Franke
- University of Croningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Elina Ikonen
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Vilja Pietiäinen
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- The Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland
- The Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Haartman Institute, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Andrew P Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Inga Prokopenko
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, UK
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- Hjelt Institute, University of Helsinki, Helsinki, Finland
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
30
|
Tsukumo Y, Tsukahara S, Furuno A, Iemura SI, Natsume T, Tomida A. The endoplasmic reticulum-localized protein TBL2 interacts with the 60S ribosomal subunit. Biochem Biophys Res Commun 2015; 462:383-8. [PMID: 25976671 DOI: 10.1016/j.bbrc.2015.04.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/30/2015] [Indexed: 12/31/2022]
Abstract
Transducin (beta)-like 2 (TBL2) is a poorly characterized protein comprising the N-terminal transmembrane region and the C-terminal WD40 domain. We previously showed that TBL2 is an endoplasmic reticulum (ER)-localized protein that interacts with PKR-like ER-resident kinase (PERK), and under ER stress, it mediates protein expression of activating transcription factor 4 (ATF4). However, further molecular characterization of TBL2 is useful to better understand the function of this molecule. Here, we show that TBL2 associates with the eukaryotic 60S ribosomal subunit but not with the 40S subunit. The association of TBL2 with the 60S subunit was ER stress independent while the TBL2-PERK interaction occurred upon ER stress. Immunoprecipitation analysis using TBL2 deletion mutants revealed that the WD40 domain was essential for the 60S subunit association. These results could provide an important clue to understanding how TBL2 is involved in the expression of specific proteins under ER stress conditions.
Collapse
Affiliation(s)
- Yoshinori Tsukumo
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Satomi Tsukahara
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Aki Furuno
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Shun-ichiro Iemura
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo 135-0064, Japan
| | - Tohru Natsume
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo 135-0064, Japan
| | - Akihiro Tomida
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
31
|
Affiliation(s)
- Takanari Gotoda
- Department of Biochemistry, Faculty of Medicine, Kyorin University
| |
Collapse
|
32
|
Moilanen AM, Rysä J, Kaikkonen L, Karvonen T, Mustonen E, Serpi R, Szabó Z, Tenhunen O, Bagyura Z, Näpänkangas J, Ohukainen P, Tavi P, Kerkelä R, Leósdóttir M, Wahlstrand B, Hedner T, Melander O, Ruskoaho H. WDR12, a Member of Nucleolar PeBoW-Complex, Is Up-Regulated in Failing Hearts and Causes Deterioration of Cardiac Function. PLoS One 2015; 10:e0124907. [PMID: 25915632 PMCID: PMC4411154 DOI: 10.1371/journal.pone.0124907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 03/09/2015] [Indexed: 01/13/2023] Open
Abstract
Aims In a recent genome-wide association study, WD-repeat domain 12 (WDR12) was associated with early-onset myocardial infarction (MI). However, the function of WDR12 in the heart is unknown. Methods and Results We characterized cardiac expression of WDR12, used adenovirus-mediated WDR12 gene delivery to examine effects of WDR12 on left ventricular (LV) remodeling, and analyzed relationship between MI associated WDR12 allele and cardiac function in human subjects. LV WDR12 protein levels were increased in patients with dilated cardiomyopathy and rats post-infarction. In normal adult rat hearts, WDR12 gene delivery into the anterior wall of the LV decreased interventricular septum diastolic and systolic thickness and increased the diastolic and systolic diameters of the LV. Moreover, LV ejection fraction (9.1%, P<0.05) and fractional shortening (12.2%, P<0.05) were declined. The adverse effects of WDR12 gene delivery on cardiac function were associated with decreased cellular proliferation, activation of p38 mitogen–activated protein kinase (MAPK)/heat shock protein (HSP) 27 pathway, and increased protein levels of Block of proliferation 1 (BOP1), essential for ribosome biogenesis. Post-infarction WDR12 gene delivery decreased E/A ratio (32%, P<0.05) suggesting worsening of diastolic function. In human subjects, MI associated WDR12 allele was associated significantly with diastolic dysfunction and left atrial size. Conclusions WDR12 triggers distinct deterioration of cardiac function in adult rat heart and the MI associated WDR12 variant is associated with diastolic dysfunction in human subjects.
Collapse
Affiliation(s)
- Anne-Mari Moilanen
- The Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Department of Pathology, The Institute of Diagnostics, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jaana Rysä
- The Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Leena Kaikkonen
- The Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Teemu Karvonen
- The Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Erja Mustonen
- The Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Raisa Serpi
- The Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Zoltán Szabó
- The Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Olli Tenhunen
- The Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Zsolt Bagyura
- Heart Center, Semmelweis University, Budapest, Hungary
| | - Juha Näpänkangas
- Department of Pathology, The Institute of Diagnostics, University of Oulu, Oulu, Finland
| | - Pauli Ohukainen
- The Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Pasi Tavi
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Risto Kerkelä
- The Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Margrét Leósdóttir
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Björn Wahlstrand
- Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Hedner
- Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olle Melander
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Heikki Ruskoaho
- The Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
33
|
The genome as pharmacopeia: Association of genetic dose with phenotypic response. Biochem Pharmacol 2015; 94:229-40. [DOI: 10.1016/j.bcp.2015.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/12/2015] [Accepted: 02/12/2015] [Indexed: 11/21/2022]
|
34
|
Kahali B, Liu YL, Daly AK, Day CP, Anstee QM, Speliotes EK. TM6SF2: catch-22 in the fight against nonalcoholic fatty liver disease and cardiovascular disease? Gastroenterology 2015; 148:679-84. [PMID: 25639710 DOI: 10.1053/j.gastro.2015.01.038] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Ann K Daly
- Newcastle University, Newcastle-upon-Tyne, UK
| | | | | | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Detection of high-impact variants on lipid traits is complicated by complex genetic architecture. Although genome-wide association studies (GWAS) successfully identified many novel genes associated with lipid traits, it was less successful in identifying variants with a large impact on the phenotype. This is not unexpected, as the more common variants detectable by GWAS typically have small effects. The availability of large familial datasets and sequence data has changed the paradigm for successful genomic discovery of the novel genes and pathogenic variants underlying lipid disorders. RECENT FINDINGS Novel loci with large effects have been successfully mapped in families, and next-generation sequencing allowed for the identification of the underlying lipid-associated variants of large effect size. The success of this strategy relies on the simplification of the underlying genetic variation by focusing on large single families segregating extreme lipid phenotypes. SUMMARY Rare, high-impact variants are expected to have large effects and be more relevant for medical and pharmaceutical applications. Family data have many advantages over population-based data because they allow for the efficient detection of high-impact variants with an exponentially smaller sample size and increased power for follow-up studies.
Collapse
Affiliation(s)
- Elisabeth Rosenthal
- Department of Medicine (Medical Genetics), University of Washington, Seattle, Seattle, Washington, USA
| | - Elizabeth Blue
- Department of Medicine (Medical Genetics), University of Washington, Seattle, Seattle, Washington, USA
| | - Gail P. Jarvik
- Department of Medicine (Medical Genetics), University of Washington, Seattle, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Seattle, Washington, USA
| |
Collapse
|
36
|
Thormaehlen AS, Schuberth C, Won HH, Blattmann P, Joggerst-Thomalla B, Theiss S, Asselta R, Duga S, Merlini PA, Ardissino D, Lander ES, Gabriel S, Rader DJ, Peloso GM, Pepperkok R, Kathiresan S, Runz H. Systematic cell-based phenotyping of missense alleles empowers rare variant association studies: a case for LDLR and myocardial infarction. PLoS Genet 2015; 11:e1004855. [PMID: 25647241 PMCID: PMC4409815 DOI: 10.1371/journal.pgen.1004855] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023] Open
Abstract
A fundamental challenge to contemporary genetics is to distinguish rare missense alleles that disrupt protein functions from the majority of alleles neutral on protein activities. High-throughput experimental tools to securely discriminate between disruptive and non-disruptive missense alleles are currently missing. Here we establish a scalable cell-based strategy to profile the biological effects and likely disease relevance of rare missense variants in vitro. We apply this strategy to systematically characterize missense alleles in the low-density lipoprotein receptor (LDLR) gene identified through exome sequencing of 3,235 individuals and exome-chip profiling of 39,186 individuals. Our strategy reliably identifies disruptive missense alleles, and disruptive-allele carriers have higher plasma LDL-cholesterol (LDL-C). Importantly, considering experimental data refined the risk of rare LDLR allele carriers from 4.5- to 25.3-fold for high LDL-C, and from 2.1- to 20-fold for early-onset myocardial infarction. Our study generates proof-of-concept that systematic functional variant profiling may empower rare variant-association studies by orders of magnitude. Exome sequencing has proven powerful to identify protein-coding variation across the human genome, unravel the basis of monogenic diseases and discover rare alleles that confer risk for complex disease. Nevertheless, two key challenges limit its application to complex phenotypes: first, most alleles identified in a population are extremely rare; and second, most alleles are neutral on protein activities. Consequently, association tests that rely on enumerating rare alleles in cases and controls (termed rare variant association studies, RVAS) are typically underpowered, as the many neutral alleles dampen signals that arise from the few alleles that disrupt protein functions. Strategies to securely discriminate disruptive from neutral variants are immature, in particular for missense variants. Here we show that the statistical power of RVAS improves dramatically if variants are stratified according to their in vitro ascertained functions. We establish scalable technology to objectively profile the biological effects of exome-identified missense variants in the low-density lipoprotein receptor (LDLR) through systematic overexpression and complementation experiments in cells. We demonstrate that carriers of LDLR alleles, which our experiments identify as “disruptive-missense”, have higher plasma LDL-C, and that considering in vitro data may make it possible to reduce RVAS sample sizes by more than 2-fold.
Collapse
Affiliation(s)
- Aenne S. Thormaehlen
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg/ EMBL, Heidelberg, Germany
| | - Christian Schuberth
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg/ EMBL, Heidelberg, Germany
| | - Hong-Hee Won
- Center of Human Genetic Research (CHGR), Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter Blattmann
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg/ EMBL, Heidelberg, Germany
- Cell Biology/Biophysics Unit, European Molecular Biological Laboratory, Heidelberg, Germany
| | - Brigitte Joggerst-Thomalla
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg/ EMBL, Heidelberg, Germany
| | - Susanne Theiss
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | - Eric S. Lander
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Stacey Gabriel
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Daniel J. Rader
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gina M. Peloso
- Center of Human Genetic Research (CHGR), Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Rainer Pepperkok
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg/ EMBL, Heidelberg, Germany
- Cell Biology/Biophysics Unit, European Molecular Biological Laboratory, Heidelberg, Germany
| | - Sekar Kathiresan
- Center of Human Genetic Research (CHGR), Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Division of Cardiology, Ospedale Niguarda, Milan, Italy
| | - Heiko Runz
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg/ EMBL, Heidelberg, Germany
- Center of Human Genetic Research (CHGR), Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
37
|
Piryaei M, Ghaderian SMH, Vakili H, Zaimkohan H, Mohammadi Ghahhari N, Mafi Golchin M. Analysis of rs6725887 in the WD Repeat Protein 12 in Association with Coronary Artery Disease in Iranian Patients. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2015; 4:160-6. [PMID: 26629484 PMCID: PMC4644527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although genetic variants that affect susceptibility to coronary artery disease (CAD) have been greatly known, a number of these single nucleotide polymorphisms (SNPs) remain to be analyzed in populations with different ethnicities. CAD is influenced by numerous genetic, environmental, and lifestyle factors, and is an important reason for mortality around the globe. In this study, a novel SNP (rs6725887) in the WD Repeat Protein 12 (WDR12) gene was selected to be examined in Iranian patients with CAD. Ninety eigth healthy controls and one hundred and one CAD patients were enrolled from Iranian population, and their clinical data were collected for further comparisons. After DNA extraction from each sample, genotypes were characterized by Taq Man probe real- time PCR assay. Statistical analyses were performed to evaluate genotype and allele frequencies and compared the values with clinical variables. Body mass index, blood pressure, fasting blood sugar, LDL, HDL, cholesterol, and triglyceride significantly differed in CAD and control groups. Genotype and allele frequencies of rs6725887 in CAD patients and controls showed no significant association in the distribution. However, clinical parameters of CAD patients like HDL, LDL, FBS, TG, DBP and SBP had significantly (P<0.05) higher levels compared to control group. The rs6725887 polymorphism is unlikely to play a key role in CAD risk in our population. Further additional samples are required for better appreciation of the influence of WDR12 SNP on CAD occurrence.
Collapse
Affiliation(s)
- Mohammad Piryaei
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sayyed Mohammad Hossein Ghaderian
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Corresponding author: Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. E-mails: ;
| | - Hossein Vakili
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hooshang Zaimkohan
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Maryam Mafi Golchin
- Department of Genetics and Anatomy, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
38
|
Deo RC, Musso G, Tasan M, Tang P, Poon A, Yuan C, Felix JF, Vasan RS, Beroukhim R, De Marco T, Kwok PY, MacRae CA, Roth FP. Prioritizing causal disease genes using unbiased genomic features. Genome Biol 2014; 15:534. [PMID: 25633252 PMCID: PMC4279789 DOI: 10.1186/s13059-014-0534-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 11/06/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of death in the developed world. Human genetic studies, including genome-wide sequencing and SNP-array approaches, promise to reveal disease genes and mechanisms representing new therapeutic targets. In practice, however, identification of the actual genes contributing to disease pathogenesis has lagged behind identification of associated loci, thus limiting the clinical benefits. RESULTS To aid in localizing causal genes, we develop a machine learning approach, Objective Prioritization for Enhanced Novelty (OPEN), which quantitatively prioritizes gene-disease associations based on a diverse group of genomic features. This approach uses only unbiased predictive features and thus is not hampered by a preference towards previously well-characterized genes. We demonstrate success in identifying genetic determinants for CVD-related traits, including cholesterol levels, blood pressure, and conduction system and cardiomyopathy phenotypes. Using OPEN, we prioritize genes, including FLNC, for association with increased left ventricular diameter, which is a defining feature of a prevalent cardiovascular disorder, dilated cardiomyopathy or DCM. Using a zebrafish model, we experimentally validate FLNC and identify a novel FLNC splice-site mutation in a patient with severe DCM. CONCLUSION Our approach stands to assist interpretation of large-scale genetic studies without compromising their fundamentally unbiased nature.
Collapse
Affiliation(s)
- Rahul C Deo
- />Cardiovascular Research Institute, University of California, San Francisco, CA 94158 USA
- />Department of Medicine, University of California, San Francisco, CA 94143 USA
- />Institute for Human Genetics, University of California, San Francisco, CA 94158 USA
- />California Institute for Quantitative Biosciences, San Francisco, CA 94143 USA
- />Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 USA
| | - Gabriel Musso
- />Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 USA
- />Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Murat Tasan
- />Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 USA
- />Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto and Lunenfeld Research Institute, Mt Sinai Hospital, Toronto, Ontario M5G 1X5 Canada
| | - Paul Tang
- />Institute for Human Genetics, University of California, San Francisco, CA 94158 USA
| | - Annie Poon
- />Institute for Human Genetics, University of California, San Francisco, CA 94158 USA
| | - Christiana Yuan
- />Cardiovascular Research Institute, University of California, San Francisco, CA 94158 USA
| | - Janine F Felix
- />Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Ramachandran S Vasan
- />Preventive Medicine and Cardiology Sections, and Department of Medicine, Boston University School of Medicine, Boston, MA 02118 USA
- />Framingham Heart Study, Boston University School of Medicine, Framingham, MA 01702 USA
| | - Rameen Beroukhim
- />Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- />Center for Cancer Genome Discovery and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
| | - Teresa De Marco
- />Department of Medicine, University of California, San Francisco, CA 94143 USA
| | - Pui-Yan Kwok
- />Cardiovascular Research Institute, University of California, San Francisco, CA 94158 USA
- />Institute for Human Genetics, University of California, San Francisco, CA 94158 USA
| | - Calum A MacRae
- />Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 USA
| | - Frederick P Roth
- />Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 USA
- />Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto and Lunenfeld Research Institute, Mt Sinai Hospital, Toronto, Ontario M5G 1X5 Canada
- />Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
- />The Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8 Canada
| |
Collapse
|
39
|
Akiyama K, Liang YQ, Isono M, Kato N. Investigation of Functional Genes at Homologous Loci Identified Based on Genome-wide Association Studies of Blood Lipids via High-fat Diet Intervention in Rats using an in vivo Approach. J Atheroscler Thromb 2014; 22:455-80. [PMID: 25445557 DOI: 10.5551/jat.27706] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM It is challenging to identify causal (or target) genes at individual loci detected using genome-wide association studies (GWAS). In order to follow up GWAS loci, we investigated functional genes at homologous loci identified using human lipid GWAS that responded to a high-fat, high-cholesterol diet (HFD) intervention in an animal model. METHODS The HFD intervention was carried out for four weeks in male rats of the spontaneously hypertensive rat strain. The liver and adipose tissues were subsequently excised for analyses of changes in the gene expression as compared to that observed in rats fed normal rat chow (n=8 per group). From 98 lipid-associated loci reported in previous GWAS, 280 genes with rat orthologs were initially selected as targets for the two-staged analysis involving screening with DNA microarray and validation with quantitative PCR (qPCR). Consequently, genes showing a differential expression due to HFD were examined for changes in the expression induced by atorvastatin, which was independently administered to the rats. RESULTS Using the HFD intervention in the rats, seven known (Abca1, Abcg5, Abcg8, Lpl, Nr1h3, Pcsk9 and Pltp) and three novel (Madd, Stac3 and Timd4) genes were identified as potential significant targets, with an additional list of 23 suggestive genes. Among these 33 genes, Stac3, Fads1 and six known genes exhibited nominally significant expression changes following treatment with atorvastatin. Six (of 33) genes overlapped with those previously detected in the expression QTL studies. CONCLUSIONS Our experimental in vivo approach increases the ability to identify target gene(s), when combined with other functional studies, thus improving understanding of the mechanisms by which GWAS variants act.
Collapse
Affiliation(s)
- Koichi Akiyama
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
40
|
Abstract
Hyperlipidemia is an important risk factor for cardiovascular disease globally, but there is still much mystery surrounding the topic of lipid regulation. Many studies have attempted to assess the underlying genetic basis of low-density lipoprotein (LDL) metabolism. Recently, multiple genome-wide association studies identified genes that strongly associate with plasma lipid concentration and cardiovascular disease. Compelling evidence linking the SORT1 gene to both LDL cholesterol (LDL-C) levels and the risk of coronary artery disease emerged from the data, prompting the search for the molecules and mechanisms responsible for this association. Three recent studies explored this relation through sortilin, the gene product of SORT1, and an intracellular trafficking molecule. Careful, hypothesis-driven experimental designs elucidated the potential mechanisms of sortilin's role in LDL-C metabolism. However, each study's conclusions differed in the details of SORT1's association to LDL-C and the subcellular mechanisms at work. Nevertheless, these 3 studies demonstrate how a complex disease such as hyperlipidemia can be evaluated from the scope of the genome down through the level of cellular regulation. Their findings serve as a platform for further study of LDL-C metabolism and hyperlipidemia while also providing lessons on how to better study other complex diseases.
Collapse
|
41
|
Khetarpal SA, Rader DJ. Genetics of lipid traits: Genome-wide approaches yield new biology and clues to causality in coronary artery disease. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2010-2020. [PMID: 24931102 DOI: 10.1016/j.bbadis.2014.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
A wealth of novel lipid loci have been identified through a variety of approaches focused on common and low-frequency variation and collaborative metaanalyses in multiethnic populations. Despite progress in identification of loci, the task of determining causal variants remains challenging. This work will undoubtedly be enhanced by improved understanding of regulatory DNA at a genomewide level as well as new methodologies for interrogating the relationships between noncoding SNPs and regulatory regions. Equally challenging is the identification of causal genes at novel loci. Some progress has been made for a handful of genes and comprehensive testing of candidate genes using multiple model systems is underway. Additional insights will be gleaned from focusing on low frequency and rare coding variation at candidate loci in large populations. This article is part of a Special Issue entitled: From Genome to Function.
Collapse
Affiliation(s)
| | - Daniel J Rader
- Perelman School of Medicine, University of Pennsylvania, USA.
| |
Collapse
|
42
|
Holmen OL, Zhang H, Fan Y, Hovelson DH, Schmidt EM, Zhou W, Guo Y, Zhang J, Langhammer A, Løchen ML, Ganesh SK, Vatten L, Skorpen F, Dalen H, Zhang J, Pennathur S, Chen J, Platou C, Mathiesen EB, Wilsgaard T, Njølstad I, Boehnke M, Chen YE, Abecasis GR, Hveem K, Willer CJ. Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk. Nat Genet 2014; 46:345-51. [PMID: 24633158 PMCID: PMC4169222 DOI: 10.1038/ng.2926] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/24/2014] [Indexed: 02/07/2023]
Abstract
Blood lipid levels are heritable, treatable risk factors for cardiovascular disease. We systematically assessed genome-wide coding variation to identify new genes influencing lipid traits, fine map known lipid loci and evaluate whether low-frequency variants with large effects exist for these traits. Using an exome array, we genotyped 80,137 coding variants in 5,643 Norwegians. We followed up 18 variants in 4,666 Norwegians and identified ten loci with coding variants associated with a lipid trait (P < 5 × 10(-8)). One variant in TM6SF2 (encoding p.Glu167Lys), residing in a known genome-wide association study locus for lipid traits, influences total cholesterol levels and is associated with myocardial infarction. Transient TM6SF2 overexpression or knockdown of Tm6sf2 in mice alters serum lipid profiles, consistent with the association observed in humans, identifying TM6SF2 as a functional gene within a locus previously known as NCAN-CILP2-PBX4 or 19p13. This study demonstrates that systematic assessment of coding variation can quickly point to a candidate causal gene.
Collapse
Affiliation(s)
- Oddgeir L. Holmen
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, Norway
- St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - He Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yanbo Fan
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Daniel H. Hovelson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ellen M. Schmidt
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Wei Zhou
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yanhong Guo
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ji Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Arnulf Langhammer
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, Norway
| | - Maja-Lisa Løchen
- Epidemiology of Chronic Diseases Research Group, Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Santhi K. Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lars Vatten
- Department of Public Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Frank Skorpen
- Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Håvard Dalen
- Department of Medicine, Levanger Hospital, Nord-Trøndelag Health Trust, Levanger, Norway
- MI Lab, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jifeng Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Subramaniam Pennathur
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jin Chen
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Carl Platou
- Department of Medicine, Levanger Hospital, Nord-Trøndelag Health Trust, Levanger, Norway
| | - Ellisiv B. Mathiesen
- Brain and Circulation Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Artic University of Norway, Tromsø, Norway
- Brain and Circulation Research Group, University Hospital of North Norway, Tromsø, Norway
| | - Tom Wilsgaard
- Epidemiology of Chronic Diseases Research Group, Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Inger Njølstad
- Epidemiology of Chronic Diseases Research Group, Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Michael Boehnke
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
| | - Y. Eugene Chen
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gonçalo R. Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
| | - Kristian Hveem
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, Norway
- Department of Medicine, Levanger Hospital, Nord-Trøndelag Health Trust, Levanger, Norway
| | - Cristen J. Willer
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
43
|
Affiliation(s)
- Federico Oldoni
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Richard J. Sinke
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan Albert Kuivenhoven
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
44
|
Shameer K, Denny JC, Ding K, Jouni H, Crosslin DR, de Andrade M, Chute CG, Peissig P, Pacheco JA, Li R, Bastarache L, Kho AN, Ritchie MD, Masys DR, Chisholm RL, Larson EB, McCarty CA, Roden DM, Jarvik GP, Kullo IJ. A genome- and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects. Hum Genet 2014; 133:95-109. [PMID: 24026423 PMCID: PMC3880605 DOI: 10.1007/s00439-013-1355-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/22/2013] [Indexed: 12/21/2022]
Abstract
Platelets are enucleated cell fragments derived from megakaryocytes that play key roles in hemostasis and in the pathogenesis of atherothrombosis and cancer. Platelet traits are highly heritable and identification of genetic variants associated with platelet traits and assessing their pleiotropic effects may help to understand the role of underlying biological pathways. We conducted an electronic medical record (EMR)-based study to identify common variants that influence inter-individual variation in the number of circulating platelets (PLT) and mean platelet volume (MPV), by performing a genome-wide association study (GWAS). We characterized genetic variants associated with MPV and PLT using functional, pathway and disease enrichment analyses; we assessed pleiotropic effects of such variants by performing a phenome-wide association study (PheWAS) with a wide range of EMR-derived phenotypes. A total of 13,582 participants in the electronic MEdical Records and GEnomic network had data for PLT and 6,291 participants had data for MPV. We identified five chromosomal regions associated with PLT and eight associated with MPV at genome-wide significance (P < 5E-8). In addition, we replicated 20 SNPs [out of 56 SNPs (α: 0.05/56 = 9E-4)] influencing PLT and 22 SNPs [out of 29 SNPs (α: 0.05/29 = 2E-3)] influencing MPV in a published meta-analysis of GWAS of PLT and MPV. While our GWAS did not find any new associations, our functional analyses revealed that genes in these regions influence thrombopoiesis and encode kinases, membrane proteins, proteins involved in cellular trafficking, transcription factors, proteasome complex subunits, proteins of signal transduction pathways, proteins involved in megakaryocyte development, and platelet production and hemostasis. PheWAS using a single-SNP Bonferroni correction for 1,368 diagnoses (0.05/1368 = 3.6E-5) revealed that several variants in these genes have pleiotropic associations with myocardial infarction, autoimmune, and hematologic disorders. We conclude that multiple genetic loci influence interindividual variation in platelet traits and also have significant pleiotropic effects; the related genes are in multiple functional pathways including those relevant to thrombopoiesis.
Collapse
Affiliation(s)
- Khader Shameer
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Joshua C. Denny
- Departments of Medicine and Biomedical Informatics, Vanderbilt University, Nashville, TN 37232, USA
| | - Keyue Ding
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Hayan Jouni
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - David R. Crosslin
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Christopher G. Chute
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Peggy Peissig
- Biomedical Informatics Research Center, Marshfield Clinic, Marshfield, WI, 54449, USA
| | - Jennifer A. Pacheco
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rongling Li
- Office of Population Genomics, National Human Genome Research Institute, 5635 Fishers Lane, Suite 3058, MSC 9307, Bethesda, MD, 20892, USA
| | - Lisa Bastarache
- Departments of Medicine and Biomedical Informatics, Vanderbilt University, Nashville, TN 37232, USA
| | - Abel N. Kho
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Marylyn D Ritchie
- Center for Systems Genomics, Pennsylvania State University, Eberly College of Science, The Huck Institutes of the Life Sciences, 512 Wartik Laboratory, University Park, PA 16802 USA
| | - Daniel R. Masys
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Room 416 Eskind Medical Library, Nashville, TN, 37232, USA
| | - Rex L. Chisholm
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eric B. Larson
- Group Health Research Institute, 1730 Minor Avenue, Suite 1600, Seattle, WA, 98101, USA
| | | | - Dan M. Roden
- Department of Pharmacology, Vanderbilt University School of Medicine, 1285 Medical Research Building IV, Nashville, TN, 37232, USA
| | - Gail P. Jarvik
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle WA 98195, USA
| | - Iftikhar J. Kullo
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
45
|
Cho HK, Ahn CS, Lee HS, Kim JK, Pai HS. Pescadillo plays an essential role in plant cell growth and survival by modulating ribosome biogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:393-405. [PMID: 23909681 DOI: 10.1111/tpj.12302] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 07/19/2013] [Accepted: 07/25/2013] [Indexed: 06/02/2023]
Abstract
Pescadillo (PES) is involved in diverse cellular processes such as embryonic development, ribosomal biogenesis, cell proliferation, and gene transcription in yeast and metazoans. In this study, we characterized cellular functions of plant PES in Nicotiana benthamiana, Arabidopsis, and tobacco BY-2 cells. A GFP fusion protein of PES is predominantly localized in the nucleolus, where its localization requires the N-terminal domain of PES. Silencing of plant PES led to growth arrest and acute cell death. PES interacts with plant homologs of BOP1 and WDR12 in the nucleolus, which are also nucleolar proteins involved in ribosome biogenesis of yeast and mammals. PES, BOP1, and WDR12 cofractionated with ribosome subunits. Depletion of any of these proteins led to defective biogenesis of the 60S ribosome large subunits and disruption of nucleolar morphology. PES-deficient plant cells also exhibited delayed maturation of 25S ribosomal RNA and suppressed global translation. During mitosis in tobacco BY-2 cells, PES is associated with the mitotic microtubules, including spindles and phragmoplasts, and PES deficiency disrupted spindle organization and chromosome arrangement. Collectively, these results suggest that plant PES has an essential role in cell growth and survival through its regulation of ribosome biogenesis and mitotic progression.
Collapse
Affiliation(s)
- Hui Kyung Cho
- Department of Systems Biology, Yonsei University, Seoul, 120-749, Korea
| | | | | | | | | |
Collapse
|
46
|
Abstract
Understanding of the roles of noncoding RNAs (ncRNAs) within complex organisms has fundamentally changed. It is increasingly possible to use ncRNAs as diagnostic and therapeutic tools in medicine. Regarding disease pathogenesis, it has become evident that confinement to the analysis of protein-coding regions of the human genome is insufficient because ncRNA variants have been associated with important human diseases. Thus, inclusion of noncoding genomic elements in pathogenetic studies and their consideration as therapeutic targets is warranted. We consider aspects of the evolutionary and discovery history of ncRNAs, as far as they are relevant for the identification and selection of ncRNAs with likely therapeutic potential. Novel therapeutic strategies are based on ncRNAs, and we discuss here RNA interference as a highly versatile tool for gene silencing. RNA interference-mediating RNAs are small, but only parts of a far larger spectrum encompassing ncRNAs up to many kilobasepairs in size. We discuss therapeutic options in cardiovascular medicine offered by ncRNAs and key issues to be solved before clinical translation. Convergence of multiple technical advances is highlighted as a prerequisite for the translational progress achieved in recent years. Regarding safety, we review properties of RNA therapeutics, which may immunologically distinguish them from their endogenous counterparts, all of which underwent sophisticated evolutionary adaptation to specific biological contexts. Although our understanding of the noncoding human genome is only fragmentary to date, it is already feasible to develop RNA interference against a rapidly broadening spectrum of therapeutic targets and to translate this to the clinical setting under certain restrictions.
Collapse
Affiliation(s)
- Wolfgang Poller
- From the Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Juliane Tank
- From the Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Skurk
- From the Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Gast
- From the Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
47
|
Fredericks WJ, Yin H, Lal P, Puthiyaveettil R, Malkowicz SB, Fredericks NJ, Tomaszewski J, Rauscher FJ, Malkowicz SB. Ectopic expression of the TERE1 (UBIAD1) protein inhibits growth of renal clear cell carcinoma cells: altered metabolic phenotype associated with reactive oxygen species, nitric oxide and SXR target genes involved in cholesterol and lipid metabolism. Int J Oncol 2013; 43:638-52. [PMID: 23759948 DOI: 10.3892/ijo.2013.1985] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/21/2013] [Indexed: 11/05/2022] Open
Abstract
Current studies of the TERE1 (UBIAD1) protein emphasize its multifactorial influence on the cell, in part due to its broad sub-cellular distribution to mitochondria, endoplasmic reticulum and golgi. However, the profound effects of TERE1 relate to its prenyltransferase activity for synthesis of the bioactive quinones menaquinone and COQ10. Menaquinone (aka, vitamin K-2) serves multiple roles: as a carrier in mitochondrial electron transport, as a ligand for SXR nuclear hormone receptor activation, as a redox modulator, and as an alkylator of cellular targets. We initially described the TERE1 (UBIAD1) protein as a tumor suppressor based upon reduced expression in urological cancer specimens and the inhibition of growth of tumor cell lines/xenografts upon ectopic expression. To extend this potential tumor suppressor role for the TERE1 protein to renal cell carcinoma (RCC), we applied TERE1 immunohistochemistry to a TMA panel of 28 RCC lesions and determined that in 57% of RCC lesions, TERE1 expression was reduced (36%) or absent (21%). Ectopic TERE1 expression caused an 80% decrease in growth of Caki-1 and Caki-2 cell lines, a significantly decreased colony formation, and increased caspase 3/7 activity in a panel of RCC cell lines. Furthermore, TERE1 expression increased mitochondrial oxygen consumption and hydrogen production, oxidative stress and NO production. Based on the elevated cholesterol and altered metabolic phenotype of RCC, we also examined the effects of TERE1 and the interacting protein TBL2 on cellular cholesterol. Ectopic TERE1 or TBL2 expression in Caki-1, Caki-2 and HEK 293 cells reduced cholesterol by up to 40%. RT-PCR analysis determined that TERE1 activated several SXR targets known to regulate lipid metabolism, consistent with predictions based on its role in menaquinone synthesis. Loss of TERE1 may contribute to the altered lipid metabolic phenotype associated with progression in RCC via an uncoupling of ROS/RNS and SXR signaling from apoptosis by elevation of cholesterol.
Collapse
Affiliation(s)
- William J Fredericks
- Division of Urology, Department of Surgery, University of Pennsylvania and Veterans Affairs Medical Center Philadelphia, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|