1
|
Yang R, Hunker O, Wise M, Bleichert F. Multiple mechanisms for licensing human replication origins. Nature 2024; 636:488-498. [PMID: 39604729 PMCID: PMC11910750 DOI: 10.1038/s41586-024-08237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
Loading of replicative helicases is obligatory for the assembly of DNA replication machineries. The eukaryotic MCM2-7 replicative helicase motor is deposited onto DNA by the origin recognition complex (ORC) and co-loader proteins as a head-to-head double hexamer to license replication origins. Although extensively studied in budding yeast1-4, the mechanisms of origin licensing in multicellular eukaryotes remain poorly defined. Here we use biochemical reconstitution and electron microscopy to reconstruct the human MCM loading pathway. We find that unlike in yeast, the ORC6 subunit of the ORC is not essential for-but enhances-human MCM loading. Electron microscopy analyses identify several intermediates en route to MCM double hexamer formation in the presence and absence of ORC6, including a DNA-loaded, closed-ring MCM single hexamer intermediate that can mature into a head-to-head double hexamer through multiple mechanisms. ORC6 and ORC3 facilitate the recruitment of the ORC to the dimerization interface of the first hexamer into MCM-ORC (MO) complexes that are distinct from the yeast MO complex5,6 and may orient the ORC for second MCM hexamer loading. Additionally, MCM double hexamer formation can proceed through dimerization of independently loaded MCM single hexamers, promoted by a propensity of human MCM2-7 hexamers to self-dimerize. This flexibility in human MCM loading may provide resilience against cellular replication stress, and the reconstitution system will enable studies addressing outstanding questions regarding DNA replication initiation and replication-coupled events in the future.
Collapse
Affiliation(s)
- Ran Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Olivia Hunker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Marleigh Wise
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Franziska Bleichert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Çetinkaya D, Doğan Ari AB, Kiliç E. Meier-Gorlin syndrome type 7: a rare cause of primordial dwarfism: two new cases and literature review. Clin Dysmorphol 2024; 33:167-170. [PMID: 38934085 DOI: 10.1097/mcd.0000000000000504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Affiliation(s)
- Duygu Çetinkaya
- Department of Pediatric Genetics, University of Health Sciences, Ankara Bilkent City Children's Hospital, Ankara, Turkey
| | | | | |
Collapse
|
3
|
Burkhalter MD, Stiff T, Maerz LD, Casar Tena T, Wiese H, Gerhards J, Sailer SA, Vu LAT, Duong Phu M, Donow C, Alupei M, Iben S, Groth M, Wiese S, Church JA, Jeggo PA, Philipp M. Cilia defects upon loss of WDR4 are linked to proteasomal hyperactivity and ubiquitin shortage. Cell Death Dis 2024; 15:660. [PMID: 39251572 PMCID: PMC11384789 DOI: 10.1038/s41419-024-07042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
The WD repeat-containing protein 4 (WDR4) has repeatedly been associated with primary microcephaly, a condition of impaired brain and skull growth. Often, faulty centrosomes cause microcephaly, yet aberrant cilia may also be involved. Here, we show using a combination of approaches in human fibroblasts, zebrafish embryos and patient-derived cells that WDR4 facilitates cilium formation. Molecularly, we associated WDR4 loss-of-function with increased protein synthesis and concomitant upregulation of proteasomal activity, while ubiquitin precursor pools are reduced. Inhibition of proteasomal activity as well as supplementation with free ubiquitin restored normal ciliogenesis. Proteasome inhibition ameliorated microcephaly phenotypes. Thus, we propose that WDR4 loss-of-function impairs head growth and neurogenesis via aberrant cilia formation, initially caused by disturbed protein and ubiquitin homeostasis.
Collapse
Affiliation(s)
- Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Tom Stiff
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Lars D Maerz
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Teresa Casar Tena
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Heike Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Julian Gerhards
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Steffen A Sailer
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Linh Anna Trúc Vu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Max Duong Phu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Cornelia Donow
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Marius Alupei
- Department of Dermatology, Ulm University, 89081, Ulm, Germany
| | - Sebastian Iben
- Department of Dermatology, Ulm University, 89081, Ulm, Germany
| | - Marco Groth
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute, 07745, Jena, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Joseph A Church
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, 90033, USA
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany.
| |
Collapse
|
4
|
Yang R, Hunker O, Wise M, Bleichert F. Multiple pathways for licensing human replication origins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588796. [PMID: 38645015 PMCID: PMC11030351 DOI: 10.1101/2024.04.10.588796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The loading of replicative helicases constitutes an obligatory step in the assembly of DNA replication machineries. In eukaryotes, the MCM2-7 replicative helicase motor is deposited onto DNA by the origin recognition complex (ORC) and co-loader proteins as a head-to-head MCM double hexamer to license replication origins. Although extensively studied in the budding yeast model system, the mechanisms of origin licensing in higher eukaryotes remain poorly defined. Here, we use biochemical reconstitution and electron microscopy (EM) to reconstruct the human MCM loading pathway. Unexpectedly, we find that, unlike in yeast, ORC's Orc6 subunit is not essential for human MCM loading but can enhance loading efficiency. EM analyses identify several intermediates en route to MCM double hexamer formation in the presence and absence of Orc6, including an abundant DNA-loaded, closed-ring single MCM hexamer intermediate that can mature into a head-to-head double hexamer through different pathways. In an Orc6-facilitated pathway, ORC and a second MCM2-7 hexamer are recruited to the dimerization interface of the first hexamer through an MCM-ORC intermediate that is architecturally distinct from an analogous intermediate in yeast. In an alternative, Orc6-independent pathway, MCM double hexamer formation proceeds through dimerization of two independently loaded single MCM2-7 hexamers, promoted by a propensity of human MCM2-7 hexamers to dimerize without the help of other loading factors. This redundancy in human MCM loading pathways likely provides resilience against replication stress under cellular conditions by ensuring that enough origins are licensed for efficient DNA replication. Additionally, the biochemical reconstitution of human origin licensing paves the way to address many outstanding questions regarding DNA replication initiation and replication-coupled events in higher eukaryotes in the future.
Collapse
Affiliation(s)
| | | | - Marleigh Wise
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Franziska Bleichert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Lai B, Jiang H, Gao Y, Zhou X. Skeletal ciliopathy: pathogenesis and related signaling pathways. Mol Cell Biochem 2024; 479:811-823. [PMID: 37188988 DOI: 10.1007/s11010-023-04765-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Cilia are tiny organelles with conserved structures and components in eukaryotic cells. Ciliopathy is a set of diseases resulting from cilium dysfunction classified into first-order and second-order ciliopathy. With the advancement of clinical diagnosis and radiography, numerous skeletal phenotypes, including polydactyly, short limbs, short ribs, scoliosis, a narrow thorax, and numerous anomalies in bone and cartilage, have been discovered in ciliopathies. Mutation in genes encoding cilia core components or other cilia-related molecules have been found in skeletal ciliopathies. Meanwhile, various signaling pathways associated with cilia and skeleton development have been deemed to be significant for the occurrence and progression of diseases. Herein, we review the structure and key components of the cilium and summarize several skeletal ciliopathies with their presumable pathology. We also emphasize the signaling pathways involved in skeletal ciliopathies, which may assist in developing potential therapies for these diseases.
Collapse
Affiliation(s)
- Bowen Lai
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China
| | - Heng Jiang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China
| | - Yuan Gao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China.
| |
Collapse
|
6
|
Smits DJ, Schot R, Popescu CA, Dias KR, Ades L, Briere LC, Sweetser DA, Kushima I, Aleksic B, Khan S, Karageorgou V, Ordonez N, Sleutels FJGT, van der Kaay DCM, Van Mol C, Van Esch H, Bertoli-Avella AM, Roscioli T, Mancini GMS. De novo MCM6 variants in neurodevelopmental disorders: a recognizable phenotype related to zinc binding residues. Hum Genet 2023:10.1007/s00439-023-02569-7. [PMID: 37198333 DOI: 10.1007/s00439-023-02569-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
The minichromosome maintenance (MCM) complex acts as a DNA helicase during DNA replication, and thereby regulates cell cycle progression and proliferation. In addition, MCM-complex components localize to centrosomes and play an independent role in ciliogenesis. Pathogenic variants in genes coding for MCM components and other DNA replication factors have been linked to growth and developmental disorders as Meier-Gorlin syndrome and Seckel syndrome. Trio exome/genome sequencing identified the same de novo MCM6 missense variant p.(Cys158Tyr) in two unrelated individuals that presented with overlapping phenotypes consisting of intra-uterine growth retardation, short stature, congenital microcephaly, endocrine features, developmental delay and urogenital anomalies. The identified variant affects a zinc binding cysteine in the MCM6 zinc finger signature. This domain, and specifically cysteine residues, are essential for MCM-complex dimerization and the induction of helicase activity, suggesting a deleterious effect of this variant on DNA replication. Fibroblasts derived from the two affected individuals showed defects both in ciliogenesis and cell proliferation. We additionally traced three unrelated individuals with de novo MCM6 variants in the oligonucleotide binding (OB)-fold domain, presenting with variable (neuro)developmental features including autism spectrum disorder, developmental delay, and epilepsy. Taken together, our findings implicate de novo MCM6 variants in neurodevelopmental disorders. The clinical features and functional defects related to the zinc binding residue resemble those observed in syndromes related to other MCM components and DNA replication factors, while de novo OB-fold domain missense variants may be associated with more variable neurodevelopmental phenotypes. These data encourage consideration of MCM6 variants in the diagnostic arsenal of NDD.
Collapse
Affiliation(s)
- Daphne J Smits
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands.
| | - Rachel Schot
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Cristiana A Popescu
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Kerith-Rae Dias
- Neuroscience Research Australia (NeuRA), University of New South Wales, Sydney, Australia
| | - Lesley Ades
- Department of Clinical Genetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Lauren C Briere
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - David A Sweetser
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Itaru Kushima
- Medical Genomics Center, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | | | | | | | - Frank J G T Sleutels
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Daniëlle C M van der Kaay
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, 3000, Leuven, Belgium
| | | | - Tony Roscioli
- Neuroscience Research Australia (NeuRA), University of New South Wales, Sydney, Australia
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, Australia
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Prajapati A, Mehan S, Khan Z. The role of Smo-Shh/Gli signaling activation in the prevention of neurological and ageing disorders. Biogerontology 2023:10.1007/s10522-023-10034-1. [PMID: 37097427 DOI: 10.1007/s10522-023-10034-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Sonic hedgehog (Shh) signaling is an essential central nervous system (CNS) pathway involved during embryonic development and later life stages. Further, it regulates cell division, cellular differentiation, and neuronal integrity. During CNS development, Smo-Shh signaling is significant in the proliferation of neuronal cells such as oligodendrocytes and glial cells. The initiation of the downstream signalling cascade through the 7-transmembrane protein Smoothened (Smo) promotes neuroprotection and restoration during neurological disorders. The dysregulation of Smo-Shh is linked to the proteolytic cleavage of GLI (glioma-associated homolog) into GLI3 (repressor), which suppresses target gene expression, leading to the disruption of cell growth processes. Smo-Shh aberrant signalling is responsible for several neurological complications contributing to physiological alterations like increased oxidative stress, neuronal excitotoxicity, neuroinflammation, and apoptosis. Moreover, activating Shh receptors in the brain promotes axonal elongation and increases neurotransmitters released from presynaptic terminals, thereby exerting neurogenesis, anti-oxidation, anti-inflammatory, and autophagy responses. Smo-Shh activators have been shown in preclinical and clinical studies to help prevent various neurodegenerative and neuropsychiatric disorders. Redox signalling has been found to play a critical role in regulating the activity of the Smo-Shh pathway and influencing downstream signalling events. In the current study ROS, a signalling molecule, was also essential in modulating the SMO-SHH gli signaling pathway in neurodegeneration. As a result of this investigation, dysregulation of the pathway contributes to the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).Thus, Smo-Shh signalling activators could be a potential therapeutic intervention to treat neurocomplications of brain disorders.
Collapse
Affiliation(s)
- Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
8
|
Nielsen-Dandoroff E, Ruegg MSG, Bicknell LS. The expanding genetic and clinical landscape associated with Meier-Gorlin syndrome. Eur J Hum Genet 2023:10.1038/s41431-023-01359-z. [PMID: 37059840 PMCID: PMC10400559 DOI: 10.1038/s41431-023-01359-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/16/2023] Open
Abstract
High-throughput sequencing has become a standard first-tier approach for both diagnostics and research-based genetic testing. Consequently, this hypothesis-free testing manner has revealed the true breadth of clinical features for many established genetic disorders, including Meier-Gorlin syndrome (MGORS). Previously known as ear-patella short stature syndrome, MGORS is characterized by growth delay, microtia, and patella hypo/aplasia, as well as genital abnormalities, and breast agenesis in females. Following the initial identification of genetic causes in 2011, a total of 13 genes have been identified to date associated with MGORS. In this review, we summarise the genetic and clinical findings of each gene associated with MGORS and highlight molecular insights that have been made through studying patient variants. We note interesting observations arising across this group of genes as the number of patients has increased, such as the unusually high number of synonymous variants affecting splicing in CDC45 and a subgroup of genes that also cause craniosynostosis. We focus on the complicated molecular genetics for DONSON, where we examine potential genotype-phenotype patterns using the first 3D structural model of DONSON. The canonical role of all proteins associated with MGORS are involved in different stages of DNA replication and in addition to summarising how patient variants impact on this process, we discuss the potential contribution of non-canonical roles of these proteins to the pathophysiology of MGORS.
Collapse
Affiliation(s)
| | - Mischa S G Ruegg
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Louise S Bicknell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
9
|
Ter Brugge P, Moser SC, Bièche I, Kristel P, Ibadioune S, Eeckhoutte A, de Bruijn R, van der Burg E, Lutz C, Annunziato S, de Ruiter J, Masliah Planchon J, Vacher S, Courtois L, El-Botty R, Dahmani A, Montaudon E, Morisset L, Sourd L, Huguet L, Derrien H, Nemati F, Chateau-Joubert S, Larcher T, Salomon A, Decaudin D, Reyal F, Coussy F, Popova T, Wesseling J, Stern MH, Jonkers J, Marangoni E. Homologous recombination deficiency derived from whole-genome sequencing predicts platinum response in triple-negative breast cancers. Nat Commun 2023; 14:1958. [PMID: 37029129 PMCID: PMC10082194 DOI: 10.1038/s41467-023-37537-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
The high frequency of homologous recombination deficiency (HRD) is the main rationale of testing platinum-based chemotherapy in triple-negative breast cancer (TNBC), however, the existing methods to identify HRD are controversial and there is a medical need for predictive biomarkers. We assess the in vivo response to platinum agents in 55 patient-derived xenografts (PDX) of TNBC to identify determinants of response. The HRD status, determined from whole genome sequencing, is highly predictive of platinum response. BRCA1 promoter methylation is not associated with response, in part due to residual BRCA1 gene expression and homologous recombination proficiency in different tumours showing mono-allelic methylation. Finally, in 2 cisplatin sensitive tumours we identify mutations in XRCC3 and ORC1 genes that are functionally validated in vitro. In conclusion, our results demonstrate that the genomic HRD is predictive of platinum response in a large cohort of TNBC PDX and identify alterations in XRCC3 and ORC1 genes driving cisplatin response.
Collapse
Affiliation(s)
- Petra Ter Brugge
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Sarah C Moser
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ivan Bièche
- Genetics Department, Institut Curie, PSL University, 26 Rue d'Ulm, 75005, Paris, France
| | - Petra Kristel
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Sabrina Ibadioune
- Genetics Department, Institut Curie, PSL University, 26 Rue d'Ulm, 75005, Paris, France
| | - Alexandre Eeckhoutte
- INSERM U830, Institut Curie, PSL University, 75005, Paris, France
- Institut Curie, PSL University, 26 Rue d'Ulm, 75005, Paris, France
| | - Roebi de Bruijn
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Eline van der Burg
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Stefano Annunziato
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Julian de Ruiter
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Sophie Vacher
- Genetics Department, Institut Curie, PSL University, 26 Rue d'Ulm, 75005, Paris, France
| | - Laura Courtois
- Genetics Department, Institut Curie, PSL University, 26 Rue d'Ulm, 75005, Paris, France
| | - Rania El-Botty
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 Rue d'Ulm, 75005, Paris, France
| | - Ahmed Dahmani
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 Rue d'Ulm, 75005, Paris, France
| | - Elodie Montaudon
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 Rue d'Ulm, 75005, Paris, France
| | - Ludivine Morisset
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 Rue d'Ulm, 75005, Paris, France
| | - Laura Sourd
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 Rue d'Ulm, 75005, Paris, France
| | - Léa Huguet
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 Rue d'Ulm, 75005, Paris, France
| | - Heloise Derrien
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 Rue d'Ulm, 75005, Paris, France
| | - Fariba Nemati
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 Rue d'Ulm, 75005, Paris, France
| | | | | | - Anne Salomon
- Department of Pathology, Institut Curie, PSL University, 75005, Paris, France
| | - Didier Decaudin
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 Rue d'Ulm, 75005, Paris, France
| | - Fabien Reyal
- Department of Surgery, Institut Curie, PSL University, 75005, Paris, France
| | - Florence Coussy
- Department of Medical Oncology, Institut Curie, PSL University, 75005, Paris, France
| | - Tatiana Popova
- INSERM U830, Institut Curie, PSL University, 75005, Paris, France
- Institut Curie, PSL University, 26 Rue d'Ulm, 75005, Paris, France
| | - Jelle Wesseling
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Marc-Henri Stern
- Genetics Department, Institut Curie, PSL University, 26 Rue d'Ulm, 75005, Paris, France
- INSERM U830, Institut Curie, PSL University, 75005, Paris, France
- Institut Curie, PSL University, 26 Rue d'Ulm, 75005, Paris, France
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands.
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 Rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
10
|
Meier-Gorlin Syndrome: Clinical Misdiagnosis, Genetic Testing and Functional Analysis of ORC6 Mutations and the Development of a Prenatal Test. Int J Mol Sci 2022; 23:ijms23169234. [PMID: 36012502 PMCID: PMC9408996 DOI: 10.3390/ijms23169234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Meier−Gorlin syndrome (MGS) is a rare genetic developmental disorder that causes primordial proportional dwarfism, microtia, the absence of or hypoplastic patellae and other skeletal anomalies. Skeletal symptoms overlapping with other syndromes make MGS difficult to diagnose clinically. We describe a 3-year-old boy with short stature, recurrent respiratory infections, short-rib dysplasia, tower head and facial dysmorphisms who was admitted to the Tomsk Genetic Clinic to verify a clinical diagnosis of Jeune syndrome. Clinical exome sequencing revealed two variants (compound heterozygosity) in the ORC6 gene: c.2T>C(p.Met1Thr) and c.449+5G>A. In silico analysis showed the pathogenicity of these two mutations and predicted a decrease in donor splicing site strength for c.449+5G>A. An in vitro minigene assay indicated that variant c.449+5G>A causes complete skipping of exon 4 in the ORC6 gene. The parents requested urgent prenatal testing for MGS for the next pregnancy, but it ended in a miscarriage. Our results may help prevent MGS misdiagnosis in the future. We also performed in silico and functional analyses of ORC6 mutations and developed a restriction fragment length polymorphism and haplotype-based short-tandem-repeat assay for prenatal genetic testing for MGS. These findings should elucidate MGS etiology and improve the quality of genetic counselling for affected families.
Collapse
|
11
|
Min M, Song T, Sun M, Wang T, Tan J, Zhang J. Dhh signaling pathway regulates reconstruction of seminiferous tubule-like structure. Reprod Biol 2022; 22:100684. [PMID: 35987158 DOI: 10.1016/j.repbio.2022.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/05/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
The reconstruction of a tubule-like structure in vitro has provided a promising system to analyze factors that drive morphogenesis and the underlying mechanisms. In this study, we took advantage of the inhibitor cyclopamine and a smoothened agonist to detect the role of the Dhh signaling pathway in the reconstructed tubule-like structure. Sertoli cells did not show polarity, rounded peritubular myoid cells and scattered Leydig cells were observed, combined with less laminin and lower proliferation of Leydig, peritubular myoid, germ, and Sertoli cells. However, in the presence of SAG, elongated peritubular myoid cells gathered at the bottom of polarized Sertoli cells, and most of the Leydig cells gathered at the outer part of the elongated peritubular myoid cells. Moreover, SAG promoted the secretion of laminin, assisting in the formation of the basal membrane and promoting the proliferation of Leydig, peritubular myoid, and germ cells. The level of Gli1 was significantly downregulated when treated with cyclopamine, whereas it was significantly upregulated when treated with SAG. These results indicate that the Dhh signaling pathway regulates the reconstruction of tubule-like structures by regulating the expression of Gli1.
Collapse
Affiliation(s)
- Ming Min
- Department of Immunology, Zunyi Medical University, Zunyi, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China; People's Hospital of Qingbaijiang District, Qingbaijiang, 61300 Chengdu, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
| | - Mengdi Sun
- Department of Immunology, Zunyi Medical University, Zunyi, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
| | - Tingting Wang
- Department of Immunology, Zunyi Medical University, Zunyi, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, China.
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
12
|
Tingler M, Philipp M, Burkhalter MD. DNA Replication proteins in primary microcephaly syndromes. Biol Cell 2022; 114:143-159. [PMID: 35182397 DOI: 10.1111/boc.202100061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
Abstract
SCOPE Improper expansion of neural stem and progenitor cells during brain development manifests in primary microcephaly. It is characterized by a reduced head circumference, which correlates with a reduction in brain size. This often corresponds to a general underdevelopment of the brain and entails cognitive, behavioral and motoric retardation. In the past decade significant research efforts have been undertaken to identify genes and the molecular mechanisms underlying microcephaly. One such gene set encompasses factors required for DNA replication. Intriguingly, a growing body of evidence indicates that a substantial number of these genes mediate faithful centrosome and cilium function in addition to their canonical function in genome duplication. Here, we summarize, which DNA replication factors are associated with microcephaly syndromes and to which extent they impact on centrosomes and cilia. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Melanie Tingler
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, 72074, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, 72074, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, 72074, Germany
| |
Collapse
|
13
|
Sufu negatively regulates both initiations of centrosome duplication and DNA replication. Proc Natl Acad Sci U S A 2021; 118:2026421118. [PMID: 34260378 DOI: 10.1073/pnas.2026421118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centrosome duplication and DNA replication are two pivotal events that higher eukaryotic cells use to initiate proliferation. While DNA replication is initiated through origin licensing, centrosome duplication starts with cartwheel assembly and is partly controlled by CP110. However, the upstream coordinator for both events has been, until now, a mystery. Here, we report that suppressor of fused protein (Sufu), a negative regulator of the Hedgehog (Hh) pathway playing a significant role in restricting the trafficking and function of glioma-related (Gli) proteins, acts as an upstream switch by facilitating CP110 phosphorylation by CDK2, promoting intranuclear Cdt1 degradation and excluding prereplication complex (pre-RC) components from chromosomes, independent of its canonical function in the Hh pathway. We found that Sufu localizes to both the centrosome and the nucleus and that knockout of Sufu induces abnormalities including centrosome amplification, increased nuclear size, multipolar spindle formation, and polyploidy. Serum stimulation promotes the elimination of Sufu from the centrosome by vesicle release at the ciliary tip and from the nucleus via protein degradation, which allows centrosome duplication and DNA replication to proceed. Collectively, this work reveals a mechanism through which Sufu negatively regulates the G1-S transition.
Collapse
|
14
|
Primary cilia and the DNA damage response: linking a cellular antenna and nuclear signals. Biochem Soc Trans 2021; 49:829-841. [PMID: 33843966 DOI: 10.1042/bst20200751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022]
Abstract
The maintenance of genome stability involves integrated biochemical activities that detect DNA damage or incomplete replication, delay the cell cycle, and direct DNA repair activities on the affected chromatin. These processes, collectively termed the DNA damage response (DDR), are crucial for cell survival and to avoid disease, particularly cancer. Recent work has highlighted links between the DDR and the primary cilium, an antenna-like, microtubule-based signalling structure that extends from a centriole docked at the cell surface. Ciliary dysfunction gives rise to a range of complex human developmental disorders termed the ciliopathies. Mutations in ciliopathy genes have been shown to impact on several functions that relate to centrosome integrity, DNA damage signalling, responses to problems in DNA replication and the control of gene expression. This review covers recent findings that link cilia and the DDR and explores the various roles played by key genes in these two contexts. It outlines how proteins encoded by ciliary genes impact checkpoint signalling, DNA replication and repair, gene expression and chromatin remodelling. It discusses how these diverse activities may integrate nuclear responses with those that affect a structure of the cell periphery. Additional directions for exploration of the interplay between these pathways are highlighted, with a focus on new ciliary gene candidates that alter genome stability.
Collapse
|
15
|
Schmit M, Bielinsky AK. Congenital Diseases of DNA Replication: Clinical Phenotypes and Molecular Mechanisms. Int J Mol Sci 2021; 22:E911. [PMID: 33477564 PMCID: PMC7831139 DOI: 10.3390/ijms22020911] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
Deoxyribonucleic acid (DNA) replication can be divided into three major steps: initiation, elongation and termination. Each time a human cell divides, these steps must be reiteratively carried out. Disruption of DNA replication can lead to genomic instability, with the accumulation of point mutations or larger chromosomal anomalies such as rearrangements. While cancer is the most common class of disease associated with genomic instability, several congenital diseases with dysfunctional DNA replication give rise to similar DNA alterations. In this review, we discuss all congenital diseases that arise from pathogenic variants in essential replication genes across the spectrum of aberrant replisome assembly, origin activation and DNA synthesis. For each of these conditions, we describe their clinical phenotypes as well as molecular studies aimed at determining the functional mechanisms of disease, including the assessment of genomic stability. By comparing and contrasting these diseases, we hope to illuminate how the disruption of DNA replication at distinct steps affects human health in a surprisingly cell-type-specific manner.
Collapse
Affiliation(s)
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
16
|
McDaniel SL, Hollatz AJ, Branstad AM, Gaskill MM, Fox CA, Harrison MM. Tissue-Specific DNA Replication Defects in Drosophila melanogaster Caused by a Meier-Gorlin Syndrome Mutation in Orc4. Genetics 2020; 214:355-367. [PMID: 31818869 PMCID: PMC7017028 DOI: 10.1534/genetics.119.302938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
Meier-Gorlin syndrome is a rare recessive disorder characterized by a number of distinct tissue-specific developmental defects. Genes encoding members of the origin recognition complex (ORC) and additional proteins essential for DNA replication (CDC6, CDT1, GMNN, CDC45, MCM5, and DONSON) are mutated in individuals diagnosed with MGS. The essential role of ORC is to license origins during the G1 phase of the cell cycle, but ORC has also been implicated in several nonreplicative functions. Because of its essential role in DNA replication, ORC is required for every cell division during development. Thus, it is unclear how the Meier-Gorlin syndrome mutations in genes encoding ORC lead to the tissue-specific defects associated with the disease. To begin to address these issues, we used Cas9-mediated genome engineering to generate a Drosophila melanogaster model of individuals carrying a specific Meier-Gorlin syndrome mutation in ORC4 along with control strains. Together these strains provide the first metazoan model for an MGS mutation in which the mutation was engineered at the endogenous locus along with precisely defined control strains. Flies homozygous for the engineered MGS allele reach adulthood, but with several tissue-specific defects. Genetic analysis revealed that this Orc4 allele was a hypomorph. Mutant females were sterile, and phenotypic analyses suggested that defects in DNA replication was an underlying cause. By leveraging the well-studied Drosophila system, we provide evidence that a disease-causing mutation in Orc4 disrupts DNA replication, and we propose that in individuals with MGS defects arise preferentially in tissues with a high-replication demand.
Collapse
Affiliation(s)
- Stephen L McDaniel
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Allison J Hollatz
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Anna M Branstad
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Marissa M Gaskill
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Catherine A Fox
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| |
Collapse
|
17
|
|
18
|
Masai H. For 60th birthday of BBRC: DNA replication factors outside S phase. Biochem Biophys Res Commun 2019; 520:685-686. [PMID: 31761077 DOI: 10.1016/j.bbrc.2019.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
19
|
Casar Tena T, Maerz LD, Szafranski K, Groth M, Blätte TJ, Donow C, Matysik S, Walther P, Jeggo PA, Burkhalter MD, Philipp M. Resting cells rely on the DNA helicase component MCM2 to build cilia. Nucleic Acids Res 2019; 47:134-151. [PMID: 30329080 PMCID: PMC6326816 DOI: 10.1093/nar/gky945] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022] Open
Abstract
Minichromosome maintenance (MCM) proteins facilitate replication by licensing origins and unwinding the DNA double strand. Interestingly, the number of MCM hexamers greatly exceeds the number of firing origins suggesting additional roles of MCMs. Here we show a hitherto unanticipated function of MCM2 in cilia formation in human cells and zebrafish that is uncoupled from replication. Zebrafish depleted of MCM2 develop ciliopathy-phenotypes including microcephaly and aberrant heart looping due to malformed cilia. In non-cycling human fibroblasts, loss of MCM2 promotes transcription of a subset of genes, which cause cilia shortening and centriole overduplication. Chromatin immunoprecipitation experiments show that MCM2 binds to transcription start sites of cilia inhibiting genes. We propose that such binding may block RNA polymerase II-mediated transcription. Depletion of a second MCM (MCM7), which functions in complex with MCM2 during its canonical functions, reveals an overlapping cilia-deficiency phenotype likely unconnected to replication, although MCM7 appears to regulate a distinct subset of genes and pathways. Our data suggests that MCM2 and 7 exert a role in ciliogenesis in post-mitotic tissues.
Collapse
Affiliation(s)
- Teresa Casar Tena
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Lars D Maerz
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Karol Szafranski
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Tamara J Blätte
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Cornelia Donow
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Sabrina Matysik
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Martin D Burkhalter
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Melanie Philipp
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
20
|
Thomas S, Boutaud L, Reilly ML, Benmerah A. Cilia in hereditary cerebral anomalies. Biol Cell 2019; 111:217-231. [DOI: 10.1111/boc.201900012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Sophie Thomas
- Laboratory of Embryology and Genetics of Human MalformationINSERM UMR 1163Paris Descartes UniversityImagine Institute 75015 Paris France
| | - Lucile Boutaud
- Laboratory of Embryology and Genetics of Human MalformationINSERM UMR 1163Paris Descartes UniversityImagine Institute 75015 Paris France
| | - Madeline Louise Reilly
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163Paris Descartes UniversityImagine Institute 75015 Paris France
- Paris Diderot University 75013 Paris France
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163Paris Descartes UniversityImagine Institute 75015 Paris France
| |
Collapse
|
21
|
Abstract
DNA replication starts with the opening of DNA at sites called DNA replication origins. From the single sequence-specific DNA replication origin of the small Escherichia coli genome, up to thousands of origins that are necessary to replicate the large human genome, strict sequence specificity has been lost. Nevertheless, genome-wide analyses performed in the recent years, using different mapping methods, demonstrated that there are precise locations along the metazoan genome from which replication initiates. These sites contain relaxed sequence consensus and epigenetic features. There is flexibility in the choice of origins to be used during a given cell cycle, probably imposed by evolution and developmental constraints. Here, we will briefly describe their main features.
Collapse
|
22
|
Ting CY, Bhatia NS, Lim JY, Goh CYJ, Vasanwala RF, Ong CCP, Seow WT, Yeow VKL, Ting TW, Ng ISL, Jamuar SS. Further delineation of CDC45-related Meier-Gorlin syndrome with craniosynostosis and review of literature. Eur J Med Genet 2019; 63:103652. [PMID: 30986546 DOI: 10.1016/j.ejmg.2019.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 11/19/2022]
Abstract
Meier-Gorlin syndrome (MGS) is a rare autosomal recessive disorder characterized by the triad of short stature, microtia and absent or small patellae. We report on a patient with MGS secondary to biallelic mutations in CDC45 detected on whole exome sequencing (WES). Patients with MGS caused by mutations in CDC45 display a distinct phenotype characterized by craniosynostosis and anorectal malformation. Our patient had craniosynostosis, anorectal malformation and short stature, but did not have the microtia or patella hypoplasia. Our report also highlights the value of WES in aiding diagnosis of patients with rare genetic diseases. In conclusion, our case report and review of the literature illustrates the unique features of CDC45-related MGS as well as the benefits of WES in reducing the diagnostic odyssey for patients with rare genetic disorders.
Collapse
Affiliation(s)
- Chun Yi Ting
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore.
| | - Neha Singh Bhatia
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore; Division of Genetics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Jiin Ying Lim
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore.
| | - Chew-Yin Jasmine Goh
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore; Division of Nursing, KK Women's and Children's Hospital, Singapore.
| | - Rashida Farhad Vasanwala
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore; Paediatrics Academic Clinical Programme, Duke-NUS Medical School, Singapore.
| | | | - Wan Tew Seow
- Neurosurgery Service, KK Women's and Children's Hospital, Singapore.
| | - Vincent Kok-Leng Yeow
- Department of Plastic, Reconstructive and Aesthetic Surgery, KK Women's and Children's Hospital, Singapore.
| | - Teck Wah Ting
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore; Paediatrics Academic Clinical Programme, Duke-NUS Medical School, Singapore.
| | - Ivy Swee-Lian Ng
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore; Paediatrics Academic Clinical Programme, Duke-NUS Medical School, Singapore.
| | - Saumya Shekhar Jamuar
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore; Paediatrics Academic Clinical Programme, Duke-NUS Medical School, Singapore; Institute of Precision Medicine, SingHealth Duke-NUS Medical School, Singapore.
| |
Collapse
|
23
|
Maerz LD, Casar Tena T, Gerhards J, Donow C, Jeggo PA, Philipp M. Analysis of cilia dysfunction phenotypes in zebrafish embryos depleted of Origin recognition complex factors. Eur J Hum Genet 2019; 27:772-782. [PMID: 30696958 DOI: 10.1038/s41431-019-0338-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 12/15/2022] Open
Abstract
Meier-Gorlin syndrome (MGS) is a rare, congenital primordial microcephalic dwarfism disorder. MGS is caused by genetic variants of components of the origin recognition complex (ORC) consisting of ORC1-6 and the pre-replication complex, which together enable origin firing and hence genome replication. In addition, ORC1 has previously been shown to play a role in ciliogenesis. Here, we extend this work and investigate the function of ORC1 and two other members of the complex on cilia at an organismal level. Knockdown experiments in zebrafish confirmed the impact of ORC1 on cilia. ORC1-deficiency confers defects anticipated to arise from impaired cilia function such as formation of oedema, kidney cysts, curved bodies and left-right asymmetry defects. We found ORC1 furthermore required for cilium formation in zebrafish and demonstrate that ciliopathy phenotypes in ORC1-depleted zebrafish could not be rescued by reconstitution with ORC1 bearing a genetic variant previously identified in MGS patients. Loss-of-function of Orc4 and Orc6, respectively, conferred similar ciliopathy phenotypes and cilium shortening in zebrafish, suggesting that several, if not all, components of the ORC regulate ciliogenesis downstream to or in addition to their canonical function in replication initiation. This study presents the first in vivo evidence of an influence of the MGS genes of the ORC family on cilia, and consolidates the possibility that cilia dysfunction could contribute to the clinical manifestation of ORC-deficient MGS.
Collapse
Affiliation(s)
- Lars D Maerz
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Teresa Casar Tena
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Julian Gerhards
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Cornelia Donow
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Melanie Philipp
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
24
|
Courtot L, Hoffmann JS, Bergoglio V. The Protective Role of Dormant Origins in Response to Replicative Stress. Int J Mol Sci 2018; 19:ijms19113569. [PMID: 30424570 PMCID: PMC6274952 DOI: 10.3390/ijms19113569] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Genome stability requires tight regulation of DNA replication to ensure that the entire genome of the cell is duplicated once and only once per cell cycle. In mammalian cells, origin activation is controlled in space and time by a cell-specific and robust program called replication timing. About 100,000 potential replication origins form on the chromatin in the gap 1 (G1) phase but only 20⁻30% of them are active during the DNA replication of a given cell in the synthesis (S) phase. When the progress of replication forks is slowed by exogenous or endogenous impediments, the cell must activate some of the inactive or "dormant" origins to complete replication on time. Thus, the many origins that may be activated are probably key to protect the genome against replication stress. This review aims to discuss the role of these dormant origins as safeguards of the human genome during replicative stress.
Collapse
Affiliation(s)
- Lilas Courtot
- CRCT, Université de Toulouse, Inserm, CNRS, UPS; Equipe labellisée Ligue Contre le Cancer, Laboratoire d'excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037 Toulouse, France.
| | - Jean-Sébastien Hoffmann
- CRCT, Université de Toulouse, Inserm, CNRS, UPS; Equipe labellisée Ligue Contre le Cancer, Laboratoire d'excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037 Toulouse, France.
| | - Valérie Bergoglio
- CRCT, Université de Toulouse, Inserm, CNRS, UPS; Equipe labellisée Ligue Contre le Cancer, Laboratoire d'excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037 Toulouse, France.
| |
Collapse
|
25
|
Vanlerberghe C, Boutry N, Petit F. Genetics of patella hypoplasia/agenesis. Clin Genet 2018; 94:43-53. [PMID: 29322497 DOI: 10.1111/cge.13209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 12/31/2022]
Abstract
The patella is a sesamoid bone, crucial for knee stability. When absent or hypoplastic, recurrent knee subluxations, patellofemoral dysfunction and early gonarthrosis may occur. Patella hypoplasia/agenesis may be isolated or observed in syndromic conditions, either as the main clinical feature (Nail-patella syndrome, small patella syndrome), as a clue feature which can help diagnosis assessment, or as a background feature that may be disregarded. Even in the latter, the identification of patella anomalies is important for an appropriate patient management. We review the clinical characteristics of these rare diseases, provide guidance to facilitate the diagnosis and discuss how the genes involved could affect patella development.
Collapse
Affiliation(s)
- C Vanlerberghe
- Univ. Lille, EA7364 RADEME, Lille, France.,CHU Lille, Clinique de Génétique Médicale, Lille, France
| | - N Boutry
- Univ. Lille, EA7364 RADEME, Lille, France.,CHU Lille, Service de Radiopédiatrie, Lille, France
| | - F Petit
- Univ. Lille, EA7364 RADEME, Lille, France.,CHU Lille, Clinique de Génétique Médicale, Lille, France
| |
Collapse
|
26
|
Wheatley DN. The primary cilium - once a "rudimentary" organelle that is now a ubiquitous sensory cellular structure involved in many pathological disorders. J Cell Commun Signal 2018; 12:211-216. [PMID: 29218455 PMCID: PMC5842197 DOI: 10.1007/s12079-017-0436-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 11/26/2022] Open
Abstract
This article looks mostly at the steps that have led to the primary cilium finding its place in our understanding of cell biology, developmental biology, and medical syndromes due to its aberrations. It is a personal account that stresses, if nothing else, the value of the adage "stick to your guns". My obsession with this organelle, following on from fascination with the centriole, has led to a whole career devoted to determining the nature and role of primary cilia in basic cell biology, which has proved much more important than had been appreciated for almost a century. They are heavily involved in very many aspects of cell physiology that have much wider implications with regard to human biology and probably throughout the animal kingdom. That aberrations, to the surprise of many researchers in their structure or functioning has led to their being implicated or perhaps deeply involved in an extraordinary range of medical conditions. This invitation allows me to raise crucial questions that need answers regarding the regulation of their genesis, their cache of both intracellular and extracellular signal, and their association with a multitude of development processes from embryo to adult status.
Collapse
Affiliation(s)
- Denys N Wheatley
- BioMedES, Leggat, Keithall, Inverurie, AB51 0LX, Aberdeenshire, UK.
| |
Collapse
|
27
|
Arbi M, Pefani DE, Taraviras S, Lygerou Z. Controlling centriole numbers: Geminin family members as master regulators of centriole amplification and multiciliogenesis. Chromosoma 2017; 127:151-174. [PMID: 29243212 DOI: 10.1007/s00412-017-0652-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/18/2023]
Abstract
To ensure that the genetic material is accurately passed down to daughter cells during mitosis, dividing cells must duplicate their chromosomes and centrosomes once and only once per cell cycle. The same key steps-licensing, duplication, and segregation-control both the chromosome and the centrosome cycle, which must occur in concert to safeguard genome integrity. Aberrations in genome content or centrosome numbers lead to genomic instability and are linked to tumorigenesis. Such aberrations, however, can also be part of the normal life cycle of specific cell types. Multiciliated cells best exemplify the deviation from a normal centrosome cycle. They are post-mitotic cells which massively amplify their centrioles, bypassing the rule for once-per-cell-cycle centriole duplication. Hundreds of centrioles dock to the apical cell surface and generate motile cilia, whose concerted movement ensures fluid flow across epithelia. The early steps that control the generation of multiciliated cells have lately started to be elucidated. Geminin and the vertebrate-specific GemC1 and McIdas are distantly related coiled-coil proteins, initially identified as cell cycle regulators associated with the chromosome cycle. Geminin is required to ensure once-per-cell-cycle genome replication, while McIdas and GemC1 bind to Geminin and are implicated in DNA replication control. Recent findings highlight Geminin family members as early regulators of multiciliogenesis. GemC1 and McIdas specify the multiciliate cell fate by forming complexes with the E2F4/5 transcription factors to switch on a gene expression program leading to centriole amplification and cilia formation. Positive and negative interactions among Geminin family members may link cell cycle control to centriole amplification and multiciliogenesis, acting close to the point of transition from proliferation to differentiation. We review key steps of centrosome duplication and amplification, present the role of Geminin family members in the centrosome and chromosome cycle, and discuss links with disease.
Collapse
Affiliation(s)
- Marina Arbi
- Laboratory of Biology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece
| | - Dafni-Eleftheria Pefani
- Laboratory of Biology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece.,CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Stavros Taraviras
- Laboratory of Physiology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece
| | - Zoi Lygerou
- Laboratory of Biology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece.
| |
Collapse
|
28
|
Sanchez JC, Kwan EX, Pohl TJ, Amemiya HM, Raghuraman MK, Brewer BJ. Defective replication initiation results in locus specific chromosome breakage and a ribosomal RNA deficiency in yeast. PLoS Genet 2017; 13:e1007041. [PMID: 29036220 PMCID: PMC5658192 DOI: 10.1371/journal.pgen.1007041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 10/26/2017] [Accepted: 09/21/2017] [Indexed: 01/23/2023] Open
Abstract
A form of dwarfism known as Meier-Gorlin syndrome (MGS) is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5). These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS (Geminin and CDC45). The identity of the causative MGS genetic variants strongly suggests that some aspect of replication is amiss in MGS patients; however, little evidence has been obtained regarding what aspect of chromosome replication is faulty. Since the site of one of the missense mutations in the human ORC4 alleles is conserved between humans and yeast, we sought to determine in what way this single amino acid change affects the process of chromosome replication, by introducing the comparable mutation into yeast (orc4Y232C). We find that yeast cells with the orc4Y232C allele have a prolonged S-phase, due to compromised replication initiation at the ribosomal DNA (rDNA) locus located on chromosome XII. The inability to initiate replication at the rDNA locus results in chromosome breakage and a severely reduced rDNA copy number in the survivors, presumably helping to ensure complete replication of chromosome XII. Although reducing rDNA copy number may help ensure complete chromosome replication, orc4Y232C cells struggle to meet the high demand for ribosomal RNA synthesis. This finding provides additional evidence linking two essential cellular pathways-DNA replication and ribosome biogenesis.
Collapse
Affiliation(s)
- Joseph C. Sanchez
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Elizabeth X. Kwan
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Thomas J. Pohl
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Haley M. Amemiya
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - M. K. Raghuraman
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Bonita J. Brewer
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
29
|
Shima N, Pederson KD. Dormant origins as a built-in safeguard in eukaryotic DNA replication against genome instability and disease development. DNA Repair (Amst) 2017; 56:166-173. [PMID: 28641940 PMCID: PMC5547906 DOI: 10.1016/j.dnarep.2017.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
DNA replication is a prerequisite for cell proliferation, yet it can be increasingly challenging for a eukaryotic cell to faithfully duplicate its genome as its size and complexity expands. Dormant origins now emerge as a key component for cells to successfully accomplish such a demanding but essential task. In this perspective, we will first provide an overview of the fundamental processes eukaryotic cells have developed to regulate origin licensing and firing. With a special focus on mammalian systems, we will then highlight the role of dormant origins in preventing replication-associated genome instability and their functional interplay with proteins involved in the DNA damage repair response for tumor suppression. Lastly, deficiencies in the origin licensing machinery will be discussed in relation to their influence on stem cell maintenance and human diseases.
Collapse
Affiliation(s)
- Naoko Shima
- The University of Minnesota, Twin Cities, Department of Genetics, Cell Biology and Development, Masonic Cancer Center, 6-160 Jackson Hall, 321 Church St SE., Minneapolis, MN 55455, United States.
| | - Kayla D Pederson
- The University of Minnesota, Twin Cities, Department of Genetics, Cell Biology and Development, Masonic Cancer Center, 6-160 Jackson Hall, 321 Church St SE., Minneapolis, MN 55455, United States
| |
Collapse
|
30
|
Walz G. Role of primary cilia in non-dividing and post-mitotic cells. Cell Tissue Res 2017; 369:11-25. [PMID: 28361305 PMCID: PMC5487853 DOI: 10.1007/s00441-017-2599-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/20/2017] [Accepted: 02/27/2017] [Indexed: 12/12/2022]
Abstract
The essential role of primary (non-motile) cilia during the development of multi-cellular tissues and organs is well established and is underlined by severe disease manifestations caused by mutations in cilia-associated molecules that are collectively termed ciliopathies. However, the role of primary cilia in non-dividing and terminally differentiated, post-mitotic cells is less well understood. Although the prevention of cells from re-entering the cell cycle may represent a major chore, primary cilia have recently been linked to DNA damage responses, autophagy and mitochondria. Given this connectivity, primary cilia in non-dividing cells are well positioned to form a signaling hub outside of the nucleus. Such a center could integrate information to initiate responses and to maintain cellular homeostasis if cell survival is jeopardized. These more discrete functions may remain undetected until differentiated cells are confronted with emergencies.
Collapse
Affiliation(s)
- Gerd Walz
- Renal Division, Department of Medicine, University Freiburg Medical Center, Hugstetter Strasse 55, 79106, Freiburg, Germany.
| |
Collapse
|
31
|
Tammana D, Tammana TVS. Human DNA helicase, RuvBL1 and its Chlamydomonas homologue, CrRuvBL1 plays an important role in ciliogenesis. Cytoskeleton (Hoboken) 2017; 74:251-259. [PMID: 28574207 DOI: 10.1002/cm.21377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 01/23/2023]
Abstract
Several nuclear and nucleic acid-binding proteins were detected in the proteomic analyses of ciliary fractions from various organisms. Yet very little is known about the role of these proteins in ciliogenesis and ciliary signaling. In an attempt to characterize the role of these nuclear proteins, we identified a hypothetical protein from Chlamydomonas reinhardtii, CrRuvBL1, which is homologous to human DNA helicase, HsRuvBL1. CrRuvBL1 localizes to flagella and nucleus in vegetative Chlamydomonas cells. It accumulates in the nucleus specifically during initial stages of flagellar assembly and cell division indicating its role in these processes. Mammalian counterpart of this protein, HsRuvBL1, was found to be present at the basal bodies and in the primary cilium of quiescent Retinal Pigment Epithelial (RPE1) cells. In interphase cells, HsRuvBL1 is present at centrioles while the protein localizes on spindle fibers, spindle poles and midbodies, which are important structures formed during different phases of cell division. Depletion of HsRuvBL1 by using siRNAs leads to complete loss of primary cilia in RPE1 cells. Together these results suggest that nuclear proteins play an important role in ciliogenesis.
Collapse
Affiliation(s)
- Damayanti Tammana
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronic City, Phase 1, Bangalore, 560100, India
| | - Trinadh Venkata Satish Tammana
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronic City, Phase 1, Bangalore, 560100, India
| |
Collapse
|
32
|
Blumenfeld B, Ben-Zimra M, Simon I. Perturbations in the Replication Program Contribute to Genomic Instability in Cancer. Int J Mol Sci 2017; 18:E1138. [PMID: 28587102 PMCID: PMC5485962 DOI: 10.3390/ijms18061138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/08/2017] [Accepted: 05/21/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer and genomic instability are highly impacted by the deoxyribonucleic acid (DNA) replication program. Inaccuracies in DNA replication lead to the increased acquisition of mutations and structural variations. These inaccuracies mainly stem from loss of DNA fidelity due to replication stress or due to aberrations in the temporal organization of the replication process. Here we review the mechanisms and impact of these major sources of error to the replication program.
Collapse
Affiliation(s)
- Britny Blumenfeld
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| | - Micha Ben-Zimra
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
- Pharmacology and Experimental Therapeutics Unit, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
33
|
Hiraga SI, Ly T, Garzón J, Hořejší Z, Ohkubo YN, Endo A, Obuse C, Boulton SJ, Lamond AI, Donaldson AD. Human RIF1 and protein phosphatase 1 stimulate DNA replication origin licensing but suppress origin activation. EMBO Rep 2017; 18:403-419. [PMID: 28077461 PMCID: PMC5331243 DOI: 10.15252/embr.201641983] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 01/13/2023] Open
Abstract
The human RIF1 protein controls DNA replication, but the molecular mechanism is largely unknown. Here, we demonstrate that human RIF1 negatively regulates DNA replication by forming a complex with protein phosphatase 1 (PP1) that limits phosphorylation-mediated activation of the MCM replicative helicase. We identify specific residues on four MCM helicase subunits that show hyperphosphorylation upon RIF1 depletion, with the regulatory N-terminal domain of MCM4 being particularly strongly affected. In addition to this role in limiting origin activation, we discover an unexpected new role for human RIF1-PP1 in mediating efficient origin licensing. Specifically, during the G1 phase of the cell cycle, RIF1-PP1 protects the origin-binding ORC1 protein from untimely phosphorylation and consequent degradation by the proteasome. Depletion of RIF1 or inhibition of PP1 destabilizes ORC1, thereby reducing origin licensing. Consistent with reduced origin licensing, RIF1-depleted cells exhibit increased spacing between active origins. Human RIF1 therefore acts as a PP1-targeting subunit that regulates DNA replication positively by stimulating the origin licensing step, and then negatively by counteracting replication origin activation.
Collapse
Affiliation(s)
- Shin-Ichiro Hiraga
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Tony Ly
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Javier Garzón
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Zuzana Hořejší
- The Francis Crick Institute, Clare Hall Laboratories, South Mimms, UK
| | - Yoshi-Nobu Ohkubo
- Graduate School of Life Science, Hokkaido University, Sapporo Hokkaido, Japan
| | - Akinori Endo
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Chikashi Obuse
- Graduate School of Life Science, Hokkaido University, Sapporo Hokkaido, Japan
| | - Simon J Boulton
- The Francis Crick Institute, Clare Hall Laboratories, South Mimms, UK
| | - Angus I Lamond
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Anne D Donaldson
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
34
|
Patel SS, Tomar S, Sharma D, Mahindroo N, Udayabanu M. Targeting sonic hedgehog signaling in neurological disorders. Neurosci Biobehav Rev 2017; 74:76-97. [PMID: 28088536 DOI: 10.1016/j.neubiorev.2017.01.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/29/2016] [Accepted: 01/07/2017] [Indexed: 12/13/2022]
Abstract
Sonic hedgehog (Shh) signaling influences neurogenesis and neural patterning during the development of central nervous system. Dysregulation of Shh signaling in brain leads to neurological disorders like autism spectrum disorder, depression, dementia, stroke, Parkinson's diseases, Huntington's disease, locomotor deficit, epilepsy, demyelinating disease, neuropathies as well as brain tumors. The synthesis, processing and transport of Shh ligand as well as the localization of its receptors and signal transduction in the central nervous system has been carefully reviewed. Further, we summarize the regulation of small molecule modulators of Shh pathway with potential in neurological disorders. In conclusion, further studies are warranted to demonstrate the potential of positive and negative regulators of the Shh pathway in neurological disorders.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat 173234, Himachal Pradesh, India
| | - Sunil Tomar
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Diksha Sharma
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Neeraj Mahindroo
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Malairaman Udayabanu
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat 173234, Himachal Pradesh, India.
| |
Collapse
|
35
|
O'Driscoll M. The pathological consequences of impaired genome integrity in humans; disorders of the DNA replication machinery. J Pathol 2017; 241:192-207. [PMID: 27757957 DOI: 10.1002/path.4828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 12/13/2022]
Abstract
Accurate and efficient replication of the human genome occurs in the context of an array of constitutional barriers, including regional topological constraints imposed by chromatin architecture and processes such as transcription, catenation of the helical polymer and spontaneously generated DNA lesions, including base modifications and strand breaks. DNA replication is fundamentally important for tissue development and homeostasis; differentiation programmes are intimately linked with stem cell division. Unsurprisingly, impairments of the DNA replication machinery can have catastrophic consequences for genome stability and cell division. Functional impacts on DNA replication and genome stability have long been known to play roles in malignant transformation through a variety of complex mechanisms, and significant further insights have been gained from studying model organisms in this context. Congenital hypomorphic defects in components of the DNA replication machinery have been and continue to be identified in humans. These disorders present with a wide range of clinical features. Indeed, in some instances, different mutations in the same gene underlie different clinical presentations. Understanding the origin and molecular basis of these features opens a window onto the range of developmental impacts of suboptimal DNA replication and genome instability in humans. Here, I will briefly overview the basic steps involved in DNA replication and the key concepts that have emerged from this area of research, before switching emphasis to the pathological consequences of defects within the DNA replication network; the human disorders. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mark O'Driscoll
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
36
|
Abramowicz I, Carpenter G, Alfieri M, Colnaghi R, Outwin E, Parent P, Thauvin-Robinet C, Iaconis D, Franco B, O'Driscoll M. Oral-facial-digital syndrome type I cells exhibit impaired DNA repair; unanticipated consequences of defective OFD1 outside of the cilia network. Hum Mol Genet 2017; 26:19-32. [PMID: 27798113 DOI: 10.1093/hmg/ddw364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/18/2016] [Indexed: 02/11/2024] Open
Abstract
Defects in OFD1 underlie the clinically complex ciliopathy, Oral-Facial-Digital syndrome Type I (OFD Type I). Our understanding of the molecular, cellular and clinical consequences of impaired OFD1 originates from its characterised roles at the centrosome/basal body/cilia network. Nonetheless, the first described OFD1 interactors were components of the TIP60 histone acetyltransferase complex. We find that OFD1 can also localise to chromatin and its reduced expression is associated with mis-localization of TIP60 in patient-derived cell lines. TIP60 plays important roles in controlling DNA repair. OFD Type I cells exhibit reduced histone acetylation and altered chromatin dynamics in response to DNA double strand breaks (DSBs). Furthermore, reduced OFD1 impaired DSB repair via homologous recombination repair (HRR). OFD1 loss also adversely impacted upon the DSB-induced G2-M checkpoint, inducing a hypersensitive and prolonged arrest. Our findings show that OFD Type I patient cells have pronounced defects in the DSB-induced histone modification, chromatin remodelling and DSB-repair via HRR; effectively phenocopying loss of TIP60. These data extend our knowledge of the molecular and cellular consequences of impaired OFD1, demonstrating that loss of OFD1 can negatively impact upon important nuclear events; chromatin plasticity and DNA repair.
Collapse
Affiliation(s)
- Iga Abramowicz
- Human DNA damage Response Disorders Group, Genome Damage & Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Gillian Carpenter
- Human DNA damage Response Disorders Group, Genome Damage & Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | | | - Rita Colnaghi
- Human DNA damage Response Disorders Group, Genome Damage & Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Emily Outwin
- Human DNA damage Response Disorders Group, Genome Damage & Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Philippe Parent
- Service de Génétique, Centre Hospitalier Universitaire de Brest, France
| | | | | | - Brunella Franco
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Department of Medical Translational Sciences, Federico II University, Naples, Italy
| | - Mark O'Driscoll
- Human DNA damage Response Disorders Group, Genome Damage & Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| |
Collapse
|
37
|
Abstract
The centrosome is the main microtubule organizing center of animal cells. It contributes to spindle assembly and orientation during mitosis and to ciliogenesis in interphase. Numerical and structural defects in this organelle are known to be associated with developmental disorders such as dwarfism and microcephaly, but only recently, the molecular mechanisms linking centrosome aberrations to altered physiology are being elucidated. Defects in centrosome number or structure have also been described in cancer. These opposite clinical outcomes--arising from reduced proliferation and overproliferation respectively--can be explained in light of the tissue- and developmental-specific requirements for centrosome functions. The pathological outcomes of centrosome deficiencies have become clearer when considering its consequences. Among them, there are genetic instability (mainly aneuploidy, a defect in chromosome number), defects in the symmetry of cell division (important for cell fate specification and tissue architecture) and impaired ciliogenesis. In this review, we discuss the origins and the consequences of centrosome flaws, with particular attention on how they contribute to developmental diseases.
Collapse
Affiliation(s)
- Maddalena Nano
- Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, 75005, Paris, France
| | - Renata Basto
- Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, 75005, Paris, France.
| |
Collapse
|
38
|
Fenwick AL, Kliszczak M, Cooper F, Murray J, Sanchez-Pulido L, Twigg SRF, Goriely A, McGowan SJ, Miller KA, Taylor IB, Logan C, Bozdogan S, Danda S, Dixon J, Elsayed SM, Elsobky E, Gardham A, Hoffer MJV, Koopmans M, McDonald-McGinn DM, Santen GWE, Savarirayan R, de Silva D, Vanakker O, Wall SA, Wilson LC, Yuregir OO, Zackai EH, Ponting CP, Jackson AP, Wilkie AOM, Niedzwiedz W, Bicknell LS. Mutations in CDC45, Encoding an Essential Component of the Pre-initiation Complex, Cause Meier-Gorlin Syndrome and Craniosynostosis. Am J Hum Genet 2016; 99:125-38. [PMID: 27374770 PMCID: PMC5005452 DOI: 10.1016/j.ajhg.2016.05.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/09/2016] [Indexed: 11/19/2022] Open
Abstract
DNA replication precisely duplicates the genome to ensure stable inheritance of genetic information. Impaired licensing of origins of replication during the G1 phase of the cell cycle has been implicated in Meier-Gorlin syndrome (MGS), a disorder defined by the triad of short stature, microtia, and a/hypoplastic patellae. Biallelic partial loss-of-function mutations in multiple components of the pre-replication complex (preRC; ORC1, ORC4, ORC6, CDT1, or CDC6) as well as de novo stabilizing mutations in the licensing inhibitor, GMNN, cause MGS. Here we report the identification of mutations in CDC45 in 15 affected individuals from 12 families with MGS and/or craniosynostosis. CDC45 encodes a component of both the pre-initiation (preIC) and CMG helicase complexes, required for initiation of DNA replication origin firing and ongoing DNA synthesis during S-phase itself, respectively, and hence is functionally distinct from previously identified MGS-associated genes. The phenotypes of affected individuals range from syndromic coronal craniosynostosis to severe growth restriction, fulfilling diagnostic criteria for Meier-Gorlin syndrome. All mutations identified were biallelic and included synonymous mutations altering splicing of physiological CDC45 transcripts, as well as amino acid substitutions expected to result in partial loss of function. Functionally, mutations reduce levels of full-length transcripts and protein in subject cells, consistent with partial loss of CDC45 function and a predicted limited rate of DNA replication and cell proliferation. Our findings therefore implicate the preIC as an additional protein complex involved in the etiology of MGS and connect the core cellular machinery of genome replication with growth, chondrogenesis, and cranial suture homeostasis.
Collapse
Affiliation(s)
- Aimee L Fenwick
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Maciej Kliszczak
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Fay Cooper
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Jennie Murray
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Luis Sanchez-Pulido
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Stephen R F Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Anne Goriely
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Simon J McGowan
- Computational Biology Research Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Kerry A Miller
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Indira B Taylor
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Clare Logan
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Sevcan Bozdogan
- Department of Medical Genetics, Mersin University, Mersin, 33343 Cukurova, Turkey
| | - Sumita Danda
- Department of Clinical Genetics, Christian Medical College and Hospital, Vellore, Tamil Nadu 632004, India
| | - Joanne Dixon
- Genetic Health Service NZ-South Island Hub, Christchurch Hospital, Christchurch, Canterbury 8140, New Zealand
| | - Solaf M Elsayed
- Children's Hospital, Ain Shams University, Cairo 11566, Egypt
| | - Ezzat Elsobky
- Children's Hospital, Ain Shams University, Cairo 11566, Egypt
| | - Alice Gardham
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Mariette J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Marije Koopmans
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Donna M McDonald-McGinn
- Clinical Genetics, The Children's Hospital of Philadelphia, 34th & Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Ravi Savarirayan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Deepthi de Silva
- Department of Physiology, Faculty of Medicine, University of Kelaniya, Ragama, Gampaha GQ 11010, Sri Lanka
| | - Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Steven A Wall
- Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Louise C Wilson
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Ozge Ozalp Yuregir
- Genetic Diagnosis Center, Adana Numune Training and Research Hospital, Cukurova, Adana, 01170, Turkey
| | - Elaine H Zackai
- Clinical Genetics, The Children's Hospital of Philadelphia, 34th & Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Chris P Ponting
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Andrew P Jackson
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Wojciech Niedzwiedz
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Louise S Bicknell
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK; Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, Otago 9016, New Zealand.
| |
Collapse
|
39
|
Johnson CA, Collis SJ. Ciliogenesis and the DNA damage response: a stressful relationship. Cilia 2016; 5:19. [PMID: 27335639 PMCID: PMC4916530 DOI: 10.1186/s13630-016-0040-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/22/2016] [Indexed: 01/27/2023] Open
Abstract
Both inherited and sporadic mutations can give rise to a plethora of human diseases. Through myriad diverse cellular processes, sporadic mutations can arise through a failure to accurately replicate the genetic code or by inaccurate separation of duplicated chromosomes into daughter cells. The human genome has therefore evolved to encode a large number of proteins that work together with regulators of the cell cycle to ensure that it remains error-free. This is collectively known as the DNA damage response (DDR), and genome stability mechanisms involve a complex network of signalling and processing factors that ensure redundancy and adaptability of these systems. The importance of genome stability mechanisms is best illustrated by the dramatic increased risk of cancer in individuals with underlying disruption to genome maintenance mechanisms. Cilia are microtubule-based sensory organelles present on most vertebrate cells, where they facilitate transduction of external signals into the cell. When not embedded within the specialised ciliary membrane, components of the primary cilium's basal body help form the microtubule organising centre that controls cellular trafficking and the mitotic segregation of chromosomes. Ciliopathies are a collection of diseases associated with functional disruption to cilia function through a variety of different mechanisms. Ciliopathy phenotypes can vary widely, and although some cellular overgrowth phenotypes are prevalent in a subset of ciliopathies, an increased risk of cancer is not noted as a clinical feature. However, recent studies have identified surprising genetic and functional links between cilia-associated proteins and genome maintenance factors. The purpose of this mini-review is to therefore highlight some of these discoveries and discuss their implications with regards to functional crosstalk between the DDR and ciliogenesis pathways, and how this may impact on the development of human disease.
Collapse
Affiliation(s)
- Colin A. Johnson
- />Section of Ophthalmology and Neurosciences, Wellcome Trust Brenner Building, Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds, LS9 7TF UK
| | - Spencer J. Collis
- />Genome Stability Group, Department of Oncology and Metabolism, Academic Unit of Molecular Oncology, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX UK
| |
Collapse
|
40
|
Petrakis TG, Komseli ES, Papaioannou M, Vougas K, Polyzos A, Myrianthopoulos V, Mikros E, Trougakos IP, Thanos D, Branzei D, Townsend P, Gorgoulis VG. Exploring and exploiting the systemic effects of deregulated replication licensing. Semin Cancer Biol 2016; 37-38:3-15. [PMID: 26707000 DOI: 10.1016/j.semcancer.2015.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/10/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023]
Abstract
Maintenance and accurate propagation of the genetic material are key features for physiological development and wellbeing. The replication licensing machinery is crucial for replication precision as it ensures that replication takes place once per cell cycle. Thus, the expression status of the components comprising the replication licensing apparatus is tightly regulated to avoid re-replication; a form of replication stress that leads to genomic instability, a hallmark of cancer. In the present review we discuss the mechanistic basis of replication licensing deregulation, which leads to systemic effects, exemplified by its role in carcinogenesis and a variety of genetic syndromes. In addition, new insights demonstrate that above a particular threshold, the replication licensing factor Cdc6 acts as global transcriptional regulator, outlining new lines of exploration. The role of the putative replication licensing factor ChlR1/DDX11, mutated in the Warsaw Breakage Syndrome, in cancer is also considered. Finally, future perspectives focused on the potential therapeutic advantage by targeting replication licensing factors, and particularly Cdc6, are discussed.
Collapse
Affiliation(s)
- Theodoros G Petrakis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Eirini-Stavroula Komseli
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Marilena Papaioannou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Kostas Vougas
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | | | - Emmanuel Mikros
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Athens, Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece
| | - Dimitris Thanos
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dana Branzei
- FIRC (Fondazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Paul Townsend
- Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece; Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
41
|
Stiff T, Casar Tena T, O'Driscoll M, Jeggo PA, Philipp M. ATR promotes cilia signalling: links to developmental impacts. Hum Mol Genet 2016; 25:1574-87. [PMID: 26908596 PMCID: PMC4805311 DOI: 10.1093/hmg/ddw034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/05/2016] [Indexed: 01/18/2023] Open
Abstract
Mutations in ATR(ataxia telangiectasia and RAD3-related) cause Seckel syndrome (ATR-SS), a microcephalic primordial dwarfism disorder. Hitherto, the clinical manifestation of ATR deficiency has been attributed to its canonical role in DNA damage response signalling following replication fork stalling/collapse. Here, we show that ATR regulates cilia-dependent signalling in a manner that can be uncoupled from its function during replication. ATR-depleted or patient-derived ATR-SS cells form cilia of slightly reduced length but are dramatically impaired in cilia-dependent signalling functions, including growth factor and Sonic hedgehog signalling. To better understand the developmental impact of ATR loss of function, we also used zebrafish as a model. Zebrafish embryos depleted of Atr resembled ATR-SS morphology, showed a modest but statistically significant reduction in cilia length and other morphological features indicative of cilia dysfunction. Additionally, they displayed defects in left-right asymmetry including ambiguous expression of southpaw, incorrectly looped hearts and randomized localization of internal organs including the pancreas, features typically conferred by cilia dysfunction. Our findings reveal a novel role for ATR in cilia signalling distinct from its canonical function during replication and strengthen emerging links between cilia function and development.
Collapse
Affiliation(s)
- Tom Stiff
- Double Strand Break Repair Laboratory and
| | - Teresa Casar Tena
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Mark O'Driscoll
- Human DNA Damage Response Disorders Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK and
| | | | - Melanie Philipp
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
42
|
Geister KA, Brinkmeier ML, Cheung LY, Wendt J, Oatley MJ, Burgess DL, Kozloff KM, Cavalcoli JD, Oatley JM, Camper SA. LINE-1 Mediated Insertion into Poc1a (Protein of Centriole 1 A) Causes Growth Insufficiency and Male Infertility in Mice. PLoS Genet 2015; 11:e1005569. [PMID: 26496357 PMCID: PMC4619696 DOI: 10.1371/journal.pgen.1005569] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022] Open
Abstract
Skeletal dysplasias are a common, genetically heterogeneous cause of short stature that can result from disruptions in many cellular processes. We report the identification of the lesion responsible for skeletal dysplasia and male infertility in the spontaneous, recessive mouse mutant chagun. We determined that Poc1a, encoding protein of the centriole 1a, is disrupted by the insertion of a processed Cenpw cDNA, which is flanked by target site duplications, suggestive of a LINE-1 retrotransposon-mediated event. Mutant fibroblasts have impaired cilia formation and multipolar spindles. Male infertility is caused by defective spermatogenesis early in meiosis and progressive germ cell loss. Spermatogonial stem cell transplantation studies revealed that Poc1a is essential for normal function of both Sertoli cells and germ cells. The proliferative zone of the growth plate is small and disorganized because chondrocytes fail to re-align after cell division and undergo increased apoptosis. Poc1a and several other genes associated with centrosome function can affect the skeleton and lead to skeletal dysplasias and primordial dwarfisms. This mouse mutant reveals how centrosome dysfunction contributes to defects in skeletal growth and male infertility.
Collapse
Affiliation(s)
- Krista A. Geister
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michelle L. Brinkmeier
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Leonard Y. Cheung
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jennifer Wendt
- Roche NimbleGen, Inc., Research and Development, Madison, Wisconsin, United States of America
| | - Melissa J. Oatley
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Daniel L. Burgess
- Roche NimbleGen, Inc., Research and Development, Madison, Wisconsin, United States of America
| | - Kenneth M. Kozloff
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - James D. Cavalcoli
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jon M. Oatley
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Sally A. Camper
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
43
|
de Munnik SA, Hoefsloot EH, Roukema J, Schoots J, Knoers NVAM, Brunner HG, Jackson AP, Bongers EMHF. Meier-Gorlin syndrome. Orphanet J Rare Dis 2015; 10:114. [PMID: 26381604 PMCID: PMC4574002 DOI: 10.1186/s13023-015-0322-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 08/18/2015] [Indexed: 11/12/2022] Open
Abstract
Meier-Gorlin syndrome (MGS) is a rare autosomal recessive primordial dwarfism disorder, characterized by microtia, patellar applasia/hypoplasia, and a proportionate short stature. Associated clinical features encompass feeding problems, congenital pulmonary emphysema, mammary hypoplasia in females and urogenital anomalies, such as cryptorchidism and hypoplastic labia minora and majora. Typical facial characteristics during childhood comprise a small mouth with full lips and micro-retrognathia. During ageing, a narrow, convex nose becomes more prominent. The diagnosis MGS should be considered in patients with at least two of the three features of the clinical triad of microtia, patellar anomalies, and pre- and postnatal growth retardation. In patients with short stature and/or microtia, the patellae should be assessed with care by ultrasonography before age 6 or radiography thereafter. Mutations in one of five genes (ORC1, ORC4, ORC6, CDT1, and CDC6) of the pre-replication complex, involved in DNA-replication, are detected in approximately 67-78 % of patients with MGS. Patients with ORC1 and ORC4 mutations appear to have the most severe short stature and microcephaly. Management should be directed towards in-depth investigation, treatment and prevention of associated problems, such as growth retardation, feeding problems, hearing loss, luxating patellae, knee pain, gonarthrosis, and possible pulmonary complications due to congenital pulmonary emphysema with or without broncho- or laryngomalacia. Growth hormone treatment is ineffective in most patients with MGS, but may be effective in patients in whom growth continues to decrease after the first year of life (usually growth velocity normalizes after the first year) and with low levels of IGF1. At present, few data is available about reproduction of females with MGS, but the risk of premature labor might be increased. Here, we propose experience-based guidelines for the regular care and treatment of MGS patients.
Collapse
Affiliation(s)
- Sonja A de Munnik
- Department of Human Genetics 836, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Elisabeth H Hoefsloot
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Jolt Roukema
- Department of Pediatrics, Division of Respiratory Medicine, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands.
| | - Jeroen Schoots
- Department of Human Genetics 836, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Nine V A M Knoers
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Han G Brunner
- Department of Human Genetics 836, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Andrew P Jackson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK.
| | - Ernie M H F Bongers
- Department of Human Genetics 836, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
44
|
Primordial dwarfism: overview of clinical and genetic aspects. Mol Genet Genomics 2015; 291:1-15. [PMID: 26323792 DOI: 10.1007/s00438-015-1110-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/21/2015] [Indexed: 01/16/2023]
Abstract
Primordial dwarfism is a group of genetic disorders which include Seckel Syndrome, Silver-Russell Syndrome, Microcephalic Osteodysplastic Primordial Dwarfism types I/III, II and Meier-Gorlin Syndrome. This genetic disorder group is characterized by intra-uterine growth retardation and post-natal growth abnormalities which occur as a result of disorganized molecular and genomic changes in embryonic stage and, thus, it represents a unique area to study growth and developmental abnormalities. Lot of research has been carried out on different aspects; however, a consolidated review that discusses an overall spectrum of this disorder is not accessible. Recent research in this area points toward important molecular and cellular mechanisms in human body that regulate the complexity of growth process. Studies have emerged that have clearly associated with a number of abnormal chromosomal, genetic and epigenetic alterations that can predispose an embryo to develop PD-associated developmental defects. Finding and associating such fundamental changes to its subtypes will help in re-examination of alleged functions at both cellular and developmental levels and thus reveal the intrinsic mechanism that leads to a balanced growth. Although such findings have unraveled a subtle understanding of growth process, we further require active research in terms of identification of reliable biomarkers for different subtypes as an immediate requirement for clinical utilization. It is hoped that further study will advance the understanding of basic mechanisms regulating growth relevant to human health. Therefore, this review has been written with an aim to present an overview of chromosomal, molecular and epigenetic modifications reported to be associated with different subtypes of this heterogenous disorder. Further, latest findings with respect to clinical and molecular genetics research have been summarized to aid the medical fraternity in their clinical utility, for diagnosing disorders where there are overlapping physical attributes and simultaneously inform about the latest developments in PD biology.
Collapse
|
45
|
Morris-Rosendahl DJ, Kaindl AM. What next-generation sequencing (NGS) technology has enabled us to learn about primary autosomal recessive microcephaly (MCPH). Mol Cell Probes 2015; 29:271-81. [PMID: 26050940 DOI: 10.1016/j.mcp.2015.05.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 11/27/2022]
Abstract
The impact that next-generation sequencing technology (NGS) is having on many aspects of molecular and cell biology, is becoming increasingly apparent. One of the most noticeable outcomes of the new technology in human genetics, has been the accelerated rate of identification of disease-causing genes. Especially for rare, heterogeneous disorders, such as autosomal recessive primary microcephaly (MCPH), the handful of genes previously known to harbour disease-causing mutations, has grown at an unprecedented rate within a few years. Knowledge of new genes mutated in MCPH over the last four years has contributed to our understanding of the disorder at both the clinical and cellular levels. The functions of proteins such as WDR62, CASC5, PHC1, CDK6, CENP-E, CENP-F, CEP63, ZNF335, PLK4 and TUBGPC, have been added to the complex network of critical cellular processes known to be involved in brain growth and size. In addition to the importance of mitotic spindle assembly and structure, centrosome and centriole function and DNA repair and damage response, new mechanisms involving kinetochore-associated proteins and chromatin remodelling complexes have been elucidated. Two of the major contributions to our clinical knowledge are the realisation that primary microcephaly caused by mutations in genes at the MCPH loci is seldom an isolated clinical feature and is often accompanied either by additional cortical malformations or primordial dwarfism. Gene-phenotype correlations are being revisited, with a new dimension of locus heterogeneity and phenotypic variability being revealed.
Collapse
Affiliation(s)
- Deborah J Morris-Rosendahl
- Clinical Genetics and Genomics, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité University Medicine, Berlin, Germany; Institute of Cell Biology and Neurobiology, Charité University Medicine, Berlin, Germany
| |
Collapse
|
46
|
Abstract
Skeletal dysplasias result from disruptions in normal skeletal growth and development and are a major contributor to severe short stature. They occur in approximately 1/5,000 births, and some are lethal. Since the most recent publication of the Nosology and Classification of Genetic Skeletal Disorders, genetic causes of 56 skeletal disorders have been uncovered. This remarkable rate of discovery is largely due to the expanded use of high-throughput genomic technologies. In this review, we discuss these recent discoveries and our understanding of the molecular mechanisms behind these skeletal dysplasia phenotypes. We also cover potential therapies, unusual genetic mechanisms, and novel skeletal syndromes both with and without known genetic causes. The acceleration of skeletal dysplasia genetics is truly spectacular, and these advances hold great promise for diagnostics, risk prediction, and therapeutic design.
Collapse
|
47
|
Beveridge RD, Staples CJ, Patil AA, Myers KN, Maslen S, Skehel JM, Boulton SJ, Collis SJ. The leukemia-associated Rho guanine nucleotide exchange factor LARG is required for efficient replication stress signaling. Cell Cycle 2014; 13:3450-9. [PMID: 25485589 DOI: 10.4161/15384101.2014.956529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We previously identified and characterized TELO2 as a human protein that facilitates efficient DNA damage response (DDR) signaling. A subsequent yeast 2-hybrid screen identified LARG; Leukemia-Associated Rho Guanine Nucleotide Exchange Factor (also known as Arhgef12), as a potential novel TELO2 interactor. LARG was previously shown to interact with Pericentrin (PCNT), which, like TELO2, is required for efficient replication stress signaling. Here we confirm interactions between LARG, TELO2 and PCNT and show that a sub-set of LARG co-localizes with PCNT at the centrosome. LARG-deficient cells exhibit replication stress signaling defects as evidenced by; supernumerary centrosomes, reduced replication stress-induced γH2AX and RPA nuclear foci formation, and reduced activation of the replication stress signaling effector kinase Chk1 in response to hydroxyurea. As such, LARG-deficient cells are sensitive to replication stress-inducing agents such as hydroxyurea and mitomycin C. Conversely we also show that depletion of TELO2 and the replication stress signaling kinase ATR leads to RhoA signaling defects. These data therefore reveal a level of crosstalk between the RhoA and DDR signaling pathways. Given that mutations in both ATR and PCNT can give rise to the related primordial dwarfism disorders of Seckel Syndrome and Microcephalic osteodysplastic primordial dwarfism type II (MOPDII) respectively, which both exhibit defects in ATR-dependent checkpoint signaling, these data also raise the possibility that mutations in LARG or disruption to RhoA signaling may be contributory factors to the etiology of a sub-set of primordial dwarfism disorders.
Collapse
Affiliation(s)
- Ryan D Beveridge
- a Genome Stability Group ; Department of Oncology ; Academic Unit of Molecular Oncology ; University of Sheffield Medical School ; Sheffield , UK
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Shawky RM, Elabd HSAE, Gamal R, Mohammad SA, Gad S. Meier-Gorlin syndrome: Report of an additional patient with congenital heart disease. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2014. [DOI: 10.1016/j.ejmhg.2014.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
49
|
Chavali PL, Pütz M, Gergely F. Small organelle, big responsibility: the role of centrosomes in development and disease. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130468. [PMID: 25047622 PMCID: PMC4113112 DOI: 10.1098/rstb.2013.0468] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The centrosome, a key microtubule organizing centre, is composed of centrioles, embedded in a protein-rich matrix. Centrosomes control the internal spatial organization of somatic cells, and as such contribute to cell division, cell polarity and migration. Upon exiting the cell cycle, most cell types in the human body convert their centrioles into basal bodies, which drive the assembly of primary cilia, involved in sensing and signal transduction at the cell surface. Centrosomal genes are targeted by mutations in numerous human developmental disorders, ranging from diseases exclusively affecting brain development, through global growth failure syndromes to diverse pathologies associated with ciliary malfunction. Despite our much-improved understanding of centrosome function in cellular processes, we know remarkably little of its role in the organismal context, especially in mammals. In this review, we examine how centrosome dysfunction impacts on complex physiological processes and speculate on the challenges we face when applying knowledge generated from in vitro and in vivo model systems to human development.
Collapse
Affiliation(s)
- Pavithra L Chavali
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Monika Pütz
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
50
|
Mirzaa GM, Vitre B, Carpenter G, Abramowicz I, Gleeson JG, Paciorkowski AR, Cleveland DW, Dobyns WB, O’Driscoll M. Mutations in CENPE define a novel kinetochore-centromeric mechanism for microcephalic primordial dwarfism. Hum Genet 2014; 133:1023-39. [PMID: 24748105 PMCID: PMC4415612 DOI: 10.1007/s00439-014-1443-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 03/31/2014] [Indexed: 11/30/2022]
Abstract
Defects in centrosome, centrosomal-associated and spindle-associated proteins are the most frequent cause of primary microcephaly (PM) and microcephalic primordial dwarfism (MPD) syndromes in humans. Mitotic progression and segregation defects, microtubule spindle abnormalities and impaired DNA damage-induced G2-M cell cycle checkpoint proficiency have been documented in cell lines from these patients. This suggests that impaired mitotic entry, progression and exit strongly contribute to PM and MPD. Considering the vast protein networks involved in coordinating this cell cycle stage, the list of potential target genes that could underlie novel developmental disorders is large. One such complex network, with a direct microtubule-mediated physical connection to the centrosome, is the kinetochore. This centromeric-associated structure nucleates microtubule attachments onto mitotic chromosomes. Here, we described novel compound heterozygous variants in CENPE in two siblings who exhibit a profound MPD associated with developmental delay, simplified gyri and other isolated abnormalities. CENPE encodes centromere-associated protein E (CENP-E), a core kinetochore component functioning to mediate chromosome congression initially of misaligned chromosomes and in subsequent spindle microtubule capture during mitosis. Firstly, we present a comprehensive clinical description of these patients. Then, using patient cells we document abnormalities in spindle microtubule organization, mitotic progression and segregation, before modeling the cellular pathogenicity of these variants in an independent cell system. Our cellular analysis shows that a pathogenic defect in CENP-E, a kinetochore-core protein, largely phenocopies PCNT-mutated microcephalic osteodysplastic primordial dwarfism-type II patient cells. PCNT encodes a centrosome-associated protein. These results highlight a common underlying pathomechanism. Our findings provide the first evidence for a kinetochore-based route to MPD in humans.
Collapse
Affiliation(s)
- Ghayda M. Mirzaa
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Benjamin Vitre
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gillian Carpenter
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, United Kingdom
| | - Iga Abramowicz
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, United Kingdom
| | - Joseph G. Gleeson
- Department of Neurosciences and Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Alex R. Paciorkowski
- Departments of Neurology, Pediatrics & Biomedical Genetics, Center for Neural Development & Disease, University of Rochester Medical Center, Rochester, NY, USA
| | - Don W. Cleveland
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - William B. Dobyns
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Mark O’Driscoll
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, United Kingdom
| |
Collapse
|