1
|
Szczerba M, Ganesh A, Gil-Marqués ML, Briken V, Goldberg MB. NLRP11 is required for canonical NLRP3 and non-canonical inflammasome activation during human macrophage infection with mycobacteria. mBio 2025:e0081825. [PMID: 40272180 DOI: 10.1128/mbio.00818-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
The NLRP11 protein is only expressed in primates and participates in the activation of the canonical NLRP3 and non-canonical NLRP3 inflammasome activation after infection with gram-negative bacteria. Here, we generated a series of defined NLRP11 deletion mutants to further analyze the role of NLRP11 in NLRP3 inflammasome activation. Like the complete NLRP11 deletion mutant (NLRP11-/-), the NLRP11 mutant lacking the NAIP, C2TA, HET-E, and TP1 (NACHT) and leucine-rich repeat (LRR) domains (NLRP11∆N_LRR) showed reduced activation of the canonical NLRP3 inflammasome, whereas a pyrin domain mutant (NLRP11∆PYD) had no effect on NLRP3 activation. The NLRP11-/- and NLRP11∆N_LRR mutants, but not the NLRP11∆PYD mutant, also displayed reduced activation of caspase-4 during infection with the intracytosolic, gram-negative pathogen Shigella flexneri. We found that the human-adapted, acid-fast pathogen Mycobacterium tuberculosis and the opportunistic pathogen Mycobacterium kansasii both activate the non-canonical NLRP11 inflammasome in a caspase-4/caspase-5-dependent pathway. In conclusion, we show that NLRP11 functions in the non-canonical caspase-4/caspase-5 inflammasome activation pathway and the canonical NLRP3 inflammasome pathway and that NLRP11 is required for full recognition of mycobacteria by each of these pathways. Our work extends the spectrum of bacterial pathogen recognition by the non-canonical NLRP11-caspase4/caspase-5 pathway beyond gram-negative bacteria.IMPORTANCEThe activation of inflammasome complexes plays a crucial role in intracellular pathogen detection. NLRP11 and caspase-4 are essential for recognizing lipopolysaccharide (LPS), a molecule found in gram-negative bacteria such as the human pathogens Shigella spp., which activate both canonical NLRP3 and non-canonical inflammasome pathways. Through a series of deletion mutants, we demonstrate that the NACHT and LRR domains of NLRP11, but not its pyrin domain, are critical for detection of S. flexneri. Notably, our research reveals that the acid-fast bacterium M. tuberculosis is also detected by NLRP11 and caspase-4, despite not producing LPS. These findings significantly expand the range of pathogens recognized by NLRP11 and caspase-4 to now include acid-fast bacteria that do not contain LPS and underscore the versatility of these innate immune components in pathogen detection.
Collapse
Affiliation(s)
- Mateusz Szczerba
- Division of Infectious Diseases, Department of Medicine, Center for Bacterial Pathogenesis, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Akshaya Ganesh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - María Luisa Gil-Marqués
- Division of Infectious Diseases, Department of Medicine, Center for Bacterial Pathogenesis, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Marcia B Goldberg
- Division of Infectious Diseases, Department of Medicine, Center for Bacterial Pathogenesis, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Demont H, Remblière C, Culerrier R, Sauvaget M, Deslandes L, Bernoux M. Downstream signaling induced by several plant Toll/interleukin-1 receptor-containing immune proteins is stable at elevated temperature. Cell Rep 2025; 44:115326. [PMID: 39982818 DOI: 10.1016/j.celrep.2025.115326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/19/2024] [Accepted: 01/28/2025] [Indexed: 02/23/2025] Open
Abstract
Plant immunity and, in particular, immune responses induced by nucleotide-binding leucine-rich repeat receptors (NLRs) are often dampened above the optimal plant's growth range, but the underlying molecular mechanism remains elusive. N-terminal Toll/interleukin-1 receptor (TIR) domains are self-sufficient to trigger immune signaling. We showed that the conditional activation of two well-characterized TIR-containing NLRs (TNLs) or their corresponding TIR domains alone induce the same signaling route at permissive temperature (ENHANCED DISEASE SUSCEPTIBLITY 1 [EDS1]/helper NLRs that display an RPW8-like N-terminal CCR domain [RNL] requirement and activation of the salicylic acid sector) in Arabidopsis. Yet, this signaling pathway is maintained under elevated temperatures (30°C) when induced by TIRs only but not full-length TNLs. This work underlines the need to further study how NLRs are impacted by an increase in temperature, which is particularly important to improve the resilience of plant disease resistance in a warming climate.
Collapse
Affiliation(s)
- Héloïse Demont
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan, France
| | - Céline Remblière
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan, France
| | - Raphaël Culerrier
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan, France
| | - Madeline Sauvaget
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan, France
| | - Laurent Deslandes
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan, France
| | - Maud Bernoux
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan, France.
| |
Collapse
|
3
|
Salguero-Linares J, Armengot L, Ayet J, Ruiz-Solaní N, Saile SC, Salas-Gómez M, Fernandez E, Denolf L, Navarrete F, Krumbach J, Kaiser M, Stael S, Van Breusegem F, Gevaert K, Kaschani F, Petersen M, El Kasmi F, Valls M, Coll NS. Lack of AtMC1 catalytic activity triggers autoimmunity dependent on NLR stability. EMBO Rep 2025:10.1038/s44319-025-00426-4. [PMID: 40113992 DOI: 10.1038/s44319-025-00426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Plants utilize cell surface-localized pattern recognition receptors (PRRs) and intracellular nucleotide-binding leucine-rich repeat (NLR) receptors to detect non-self and elicit robust immune responses. Fine-tuning the homeostasis of these receptors is critical to prevent their hyperactivation. Here, we show that Arabidopsis plants lacking metacaspase 1 (AtMC1) display autoimmunity dependent on immune signalling components downstream of NLR and PRR activation. Overexpression of a catalytically inactive AtMC1 in an atmc1 background triggers severe autoimmunity partially dependent on the same immune signalling components. Overexpression of the E3 ligase SNIPER1, a master regulator of NLR homeostasis, fully reverts the AtMC1-dependent autoimmunity phenotype, inferring that a broad defect in NLR turnover may underlie the severe phenotype observed. Catalytically inactive AtMC1 localizes to punctate structures that are degraded through autophagy. Considering also previous evidence on the proteostatic functions of AtMC1, we speculate that Wt AtMC1 may either directly or indirectly control NLR protein levels, thereby preventing autoimmunity.
Collapse
Affiliation(s)
- Jose Salguero-Linares
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Spain
| | - Laia Armengot
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Spain
| | - Joel Ayet
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Spain
| | - Nerea Ruiz-Solaní
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Spain
| | - Svenja C Saile
- Center for Plant Molecular Biology (ZMBP), Eberhard Karls University of Tübingen, Tübingen, Germany
- Plant Health Institute of Montpellier (PHIM), Université de Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Marta Salas-Gómez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Spain
| | - Esperanza Fernandez
- VIB Center for Medical Biotechnology, VIB, B9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B9052, Ghent, Belgium
| | - Lode Denolf
- VIB Center for Medical Biotechnology, VIB, B9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B9052, Ghent, Belgium
| | - Fernando Navarrete
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Spain
| | - Jenna Krumbach
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Spain
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Potsdam-Golm, 14476, Germany
| | - Markus Kaiser
- Center of Medical Biotechnology (ZMB) University of Duisburg-Essen, Universitätsstr. 2, 45141, Essen, Germany
| | - Simon Stael
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, B9052, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, B9052, Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, B9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B9052, Ghent, Belgium
| | - Farnusch Kaschani
- Center of Medical Biotechnology (ZMB) University of Duisburg-Essen, Universitätsstr. 2, 45141, Essen, Germany
| | - Morten Petersen
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Farid El Kasmi
- Center for Plant Molecular Biology (ZMBP), Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Núria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), 08001, Barcelona, Spain.
| |
Collapse
|
4
|
Qiu L, Fang R, Jia Y, Xiong H, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Li C, Guo H, Liu L. The allelic mutation of NBS-LRR gene causes premature senescence in wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112395. [PMID: 39842697 DOI: 10.1016/j.plantsci.2025.112395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Premature senescence has a significant impact on the yield and quality of wheat crops. The process is controlled by multiple and intricate genetic pathways and regulatory elements, whereby the discovery of additional mutants provides important insights into the molecular basis of this important trait. Here, we developed a premature senescence wheat mutant je0874, its leaves started to show yellow before heading stage; with plant growth and development, the degree of yellowing worsened rapidly, and chlorophyll content in flag leaf was reduced by 93.8 % at 15 days after heading, all other leaves became dryness at the grain filling stage. In the mutant, the reactive oxygen species (ROS) and its metabolites increased up to 34.8-47.3 %, while activities of ROS scavenging enzymes were reduced by 62.7-96.7 %. Premature senescence resulted in a reduction of thousand grain weight by over 50 %. Genetic analysis showed the mutation of senescence was controlled by a single recessive gene, and target gene was finely mapped to a 338 kb region of the long arm of chromosome 2D. This region contained a total of 6 annotated genes, while only gene TraesFLD2D01G513900 carried a SNP mutation. The gene contained an NBS-LRR domain, we named it Taps1. Allelic mutants of Taps1 exhibited a lesion mimic phenotype, and the mutant allele resulted in cell death in tobacco, which represent a novel gene controlling wheat senescence. Two haplotypes were identified in 180 accessions, which did not lead to cell death. These results contribute to increase our understanding of the regulation of premature plant senescence.
Collapse
Affiliation(s)
- Lin Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China; Institute of Crop resources, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Rongmin Fang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yong Jia
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | - Hongchun Xiong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yongdun Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Linshu Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Jiayu Gu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Shirong Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yuping Ding
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | - Huijun Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China.
| | - Luxiang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China.
| |
Collapse
|
5
|
Wu N, Jiang W, Xiang Z, Asghar R, Akkaya MS. Assessment of Self-Activation and Inhibition of Wheat Coiled-Coil Domain Containing NLR Immune Receptor Yr10 CG. PLANTS (BASEL, SWITZERLAND) 2025; 14:278. [PMID: 39861631 PMCID: PMC11768854 DOI: 10.3390/plants14020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Plant immunity is largely governed by nucleotide-binding leucine-rich repeat receptor (NLR). Here, we examine the molecular activation and inhibition mechanisms of the wheat CC-type NLR Yr10CG, a previously proposed candidate for the Yr10 resistance gene. Though recent studies have identified YrNAM as the true Yr10 gene, Yr10CG remains an important NLR in understanding NLR-mediated immunity in wheat. In this study, we found that the overexpression of either the full-length Yr10CG or its CC domain in Nicotiana benthamiana did not trigger cell death, suggesting a robust autoinhibitory mechanism within Yr10CG. However, we observed that mutations in the conserved MHD motif, specifically D502G, activated Yr10CG and induced cell death. Structural modeling indicated that this mutation disrupted key interactions within the MHD motif, promoting local flexibility and activation. We further explored the effector recognition potential of Yr10CG by creating chimeric proteins with Sr50 domains, revealing that both the NB-ARC and LRR domains are necessary for effector recognition, while the CC domain likely functions in downstream immune signaling. Additionally, disrupting membrane localization through an L11E mutation abolished Yr10CG self-activation, suggesting a requirement for membrane association in immune activation. Our findings contribute to the understanding of CC-NLR activation and autoinhibition mechanisms, highlighting the potential of Yr10CG in NLR engineering for crop resistance improvement.
Collapse
Affiliation(s)
- Nan Wu
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (N.W.); (Z.X.); (R.A.)
| | - Wanqing Jiang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Zhaoxia Xiang
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (N.W.); (Z.X.); (R.A.)
| | - Raheel Asghar
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (N.W.); (Z.X.); (R.A.)
| | - Mahinur S. Akkaya
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (N.W.); (Z.X.); (R.A.)
| |
Collapse
|
6
|
Kong C, Yang Y, Qi T, Zhang S. Predictive genetic circuit design for phenotype reprogramming in plants. Nat Commun 2025; 16:715. [PMID: 39820378 PMCID: PMC11739397 DOI: 10.1038/s41467-025-56042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
Plants, with intricate molecular networks for environmental adaptation, offer groundbreaking potential for reprogramming with predictive genetic circuits. However, realizing this goal is challenging due to the long cultivation cycle of plants, as well as the lack of reproducible, quantitative methods and well-characterized genetic parts. Here, we establish a rapid (~10 days), quantitative, and predictive framework in plants. A group of orthogonal sensors, modular synthetic promoters, and NOT gates are constructed and quantitatively characterized. A predictive model is developed to predict the designed circuits' behavior accurately. Our versatile and robust framework, validated by constructing 21 two-input circuits with high prediction accuracy (R2 = 0.81), enables multi-state phenotype control in both Arabidopsis thaliana and Nicotiana benthamiana in response to chemical inducers. Our study achieves predictable design and application of synthetic circuits in plants, offering valuable tools for the rapid engineering of plant traits in biotechnology and agriculture.
Collapse
Affiliation(s)
- Ci Kong
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Beijing Life Science Academy, Beijing, China
| | - Yin Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Tiancong Qi
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuyi Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Pan C, Li X, Lu X, Hu J, Zhang C, Shi L, Zhu C, Guo Y, Wang X, Huang Z, Du Y, Liu L, Li J. Identification and Functional Analysis of the Ph-2 Gene Conferring Resistance to Late Blight ( Phytophthora infestans) in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:3572. [PMID: 39771270 PMCID: PMC11679936 DOI: 10.3390/plants13243572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Late blight is a destructive disease affecting tomato production. The identification and characterization of resistance (R) genes are critical for the breeding of late blight-resistant cultivars. The incompletely dominant gene Ph-2 confers resistance against the race T1 of Phytophthora infestans in tomatoes. Herein, we identified Solyc10g085460 (RGA1) as a candidate gene for Ph-2 through the analysis of sequences and post-inoculation expression levels of genes located within the fine mapping interval. The RGA1 was subsequently validated to be a Ph-2 gene through targeted knockout and complementation analyses. It encodes a CC-NBS-LRR disease resistance protein, and transient expression assays conducted in the leaves of Nicotiana benthamiana indicate that Ph-2 is predominantly localized within the nucleus. In comparison to its susceptible allele (ph-2), the transient expression of Ph-2 can elicit hypersensitive responses (HR) in N. benthamiana, and subsequent investigations indicate that the structural integrity of the Ph-2 protein is likely a requirement for inducing HR in this species. Furthermore, ethylene and salicylic acid hormonal signaling pathways may mediate the transmission of the Ph-2 resistance signal, with PR1- and HR-related genes potentially involved in the Ph-2-mediated resistance. Our results could provide a theoretical foundation for the molecular breeding of tomato varieties resistant to late blight and offer valuable insights into elucidating the interaction mechanism between tomatoes and P. infestans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Lei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.P.); (X.L.); (X.L.); (J.H.); (C.Z.); (L.S.); (C.Z.); (Y.G.); (X.W.); (Z.H.); (Y.D.)
| | - Junming Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.P.); (X.L.); (X.L.); (J.H.); (C.Z.); (L.S.); (C.Z.); (Y.G.); (X.W.); (Z.H.); (Y.D.)
| |
Collapse
|
8
|
Yang Y, Tan L, Xu X, Tang Q, Wang J, Xing S, Wang R, Zou T, Wang S, Zhu J, Li S, Liang Y, Deng Q, Li P. Activation and Autoinhibition Mechanisms of NLR Immune Receptor Pi36 in Rice. Int J Mol Sci 2024; 25:7301. [PMID: 39000408 PMCID: PMC11242311 DOI: 10.3390/ijms25137301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Nucleotide-binding and leucine-rich repeat receptors (NLRs) are the most important and largest class of immune receptors in plants. The Pi36 gene encodes a canonical CC-NBS-LRR protein that confers resistance to rice blast fungal infections. Here, we show that the CC domain of Pi36 plays a role in cell death induction. Furthermore, self-association is required for the CC domain-mediated cell death, and the self-association ability is correlated with the cell death level. In addition, the NB-ARC domain may suppress the activity of the CC domain through intramolecular interaction. The mutations D440G next to the RNBS-D motif and D503V in the MHD motif autoactivated Pi36, but the mutation K212 in the P-loop motif inhibited this autoactivation, indicating that nucleotide binding of the NB-ARC domain is essential for Pi36 activation. We also found that the LRR domain is required for D503V- and D440G-mediated Pi36 autoactivation. Interestingly, several mutations in the CC domain compromised the CC domain-mediated cell death without affecting the D440G- or D503V-mediated Pi36 autoactivation. The autoactivate Pi36 variants exhibited stronger self-associations than the inactive variants. Taken together, we speculated that the CC domain of Pi36 executes cell death activities, whereas the NB-ARC domain suppressed CC-mediated cell death via intermolecular interaction. The NB-ARC domain releases its suppression of the CC domain and strengthens the self-association of Pi36 to support the CC domain, possibly through nucleotide exchange.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Liu Tan
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Xingzhe Xu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Qiaoyi Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Q.T.); (J.W.); (R.W.); (S.L.); (Y.L.)
| | - Ji Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Q.T.); (J.W.); (R.W.); (S.L.); (Y.L.)
| | - Shiyue Xing
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Rui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Q.T.); (J.W.); (R.W.); (S.L.); (Y.L.)
| | - Ting Zou
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Q.T.); (J.W.); (R.W.); (S.L.); (Y.L.)
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Q.T.); (J.W.); (R.W.); (S.L.); (Y.L.)
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| |
Collapse
|
9
|
Park HJ, Kim M, Lee D, Kim HJ, Jung HW. CRISPR-Cas9 and beyond: identifying target genes for developing disease-resistant plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:369-377. [PMID: 38363032 DOI: 10.1111/plb.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Throughout the history of crop domestication, desirable traits have been selected in agricultural products. However, such selection often leads to crops and vegetables with weaker vitality and viability than their wild ancestors when exposed to adverse environmental conditions. Considering the increasing human population and climate change challenges, it is crucial to enhance crop quality and quantity. Accordingly, the identification and utilization of diverse genetic resources are imperative for developing disease-resistant plants that can withstand unexpected epidemics of plant diseases. In this review, we provide a brief overview of recent progress in genome-editing technologies, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) technologies. In particular, we classify disease-resistant mutants of Arabidopsis thaliana and several crop plants based on the roles or functions of the mutated genes in plant immunity and suggest potential target genes for molecular breeding of genome-edited disease-resistant plants. Genome-editing technologies are resilient tools for sustainable development and promising solutions for coping with climate change and population increases.
Collapse
Affiliation(s)
- H J Park
- Institute of Agricultural Life Science, Dong-A University, Busan, Korea
- Department of Biological Sciences and Research Center of Ecomimetics, Chonnam National University, Gwangju, Korea
| | - M Kim
- Department of Applied Bioscience, Dong-A University, Busan, Korea
| | - D Lee
- Department of Applied Bioscience, Dong-A University, Busan, Korea
| | - H J Kim
- Department of Molecular Genetics, Dong-A University, Busan, Korea
| | - H W Jung
- Institute of Agricultural Life Science, Dong-A University, Busan, Korea
- Department of Applied Bioscience, Dong-A University, Busan, Korea
- Department of Molecular Genetics, Dong-A University, Busan, Korea
| |
Collapse
|
10
|
Mei S, Song Y, Zhang Z, Cui H, Hou S, Miao W, Rong W. WRR4B contributes to a broad-spectrum disease resistance against powdery mildew in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2024; 25:e13415. [PMID: 38279853 PMCID: PMC10777751 DOI: 10.1111/mpp.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/29/2024]
Abstract
Oidium heveae HN1106, a powdery mildew (PM) that infects rubber trees, has been found to trigger disease resistance in Arabidopsis thaliana through ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1)-, PHYTOALEXIN DEFICIENT 4 (PAD4)- and salicylic acid (SA)-mediated signalling pathways. In this study, a typical TOLL-INTERLEUKIN 1 RECEPTOR, NUCLEOTIDE-BINDING, LEUCINE-RICH REPEAT (TIR-NB-LRR)-encoding gene, WHITE RUST RESISTANCE 4 (WRR4B), was identified to be required for the resistance against O. heveae in Arabidopsis. The expression of WRR4B was upregulated by O. heveae inoculation, and WRR4B positively regulated the expression of genes involved in SA biosynthesis, such as EDS1, PAD4, ICS1 (ISOCHORISMATE SYNTHASE 1), SARD1 (SYSTEMIC-ACQUIRED RESISTANCE DEFICIENT 1) and CBP60g (CALMODULIN-BINDING PROTEIN 60 G). Furthermore, WRR4B triggered self-amplification, suggesting that WRR4B mediated plant resistance through taking part in the SA-based positive feedback loop. In addition, WRR4B induced an EDS1-dependent hypersensitive response in Nicotiana benthamiana and contributed to disease resistance against three other PM species: Podosphaera xanthii, Erysiphe quercicola and Erysiphe neolycopersici, indicating that WRR4B is a broad-spectrum disease resistance gene against PMs.
Collapse
Affiliation(s)
- Shuangshuang Mei
- College of Plant ProtectionHainan UniversityHaikouHainanChina
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and PestsHainan University, Ministry of EducationHaikouHainanChina
| | - Yuxin Song
- College of Plant ProtectionHainan UniversityHaikouHainanChina
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and PestsHainan University, Ministry of EducationHaikouHainanChina
| | - Zuer Zhang
- College of Plant ProtectionHainan UniversityHaikouHainanChina
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and PestsHainan University, Ministry of EducationHaikouHainanChina
| | - Haitao Cui
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anShandongChina
| | - Shuguo Hou
- Institute of Advanced Agricultural SciencesPeking UniversityWeifangShandongChina
| | - Weiguo Miao
- College of Plant ProtectionHainan UniversityHaikouHainanChina
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and PestsHainan University, Ministry of EducationHaikouHainanChina
| | - Wei Rong
- College of Plant ProtectionHainan UniversityHaikouHainanChina
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and PestsHainan University, Ministry of EducationHaikouHainanChina
| |
Collapse
|
11
|
Crean EE, Bilstein-Schloemer M, Maekawa T, Schulze-Lefert P, Saur IML. A dominant-negative avirulence effector of the barley powdery mildew fungus provides mechanistic insight into barley MLA immune receptor activation. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5854-5869. [PMID: 37474129 PMCID: PMC10540733 DOI: 10.1093/jxb/erad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Nucleotide-binding leucine-rich repeat receptors (NLRs) recognize pathogen effectors to mediate plant disease resistance often involving host cell death. Effectors escape NLR recognition through polymorphisms, allowing the pathogen to proliferate on previously resistant host plants. The powdery mildew effector AVRA13-1 is recognized by the barley NLR MLA13 and activates host cell death. We demonstrate here that a virulent form of AVRA13, called AVRA13-V2, escapes MLA13 recognition by substituting a serine for a leucine residue at the C-terminus. Counterintuitively, this substitution in AVRA13-V2 resulted in an enhanced MLA13 association and prevented the detection of AVRA13-1 by MLA13. Therefore, AVRA13-V2 is a dominant-negative form of AVRA13 and has probably contributed to the breakdown of Mla13 resistance. Despite this dominant-negative activity, AVRA13-V2 failed to suppress host cell death mediated by the MLA13 autoactive MHD variant. Neither AVRA13-1 nor AVRA13-V2 interacted with the MLA13 autoactive variant, implying that the binding moiety in MLA13 that mediates association with AVRA13-1 is altered after receptor activation. We also show that mutations in the MLA13 coiled-coil domain, which were thought to impair Ca2+ channel activity and NLR function, instead resulted in MLA13 autoactive cell death. Our results constitute an important step to define intermediate receptor conformations during NLR activation.
Collapse
Affiliation(s)
- Emma E Crean
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
| | | | - Takaki Maekawa
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
- Department for Plant Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Germany
| | - Paul Schulze-Lefert
- Department for Plant Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Germany
| | - Isabel M L Saur
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Germany
| |
Collapse
|
12
|
Ruiz-Solaní N, Salguero-Linares J, Armengot L, Santos J, Pallarès I, van Midden KP, Phukkan UJ, Koyuncu S, Borràs-Bisa J, Li L, Popa C, Eisele F, Eisele-Bürger AM, Hill SM, Gutiérrez-Beltrán E, Nyström T, Valls M, Llamas E, Vilchez D, Klemenčič M, Ventura S, Coll NS. Arabidopsis metacaspase MC1 localizes in stress granules, clears protein aggregates, and delays senescence. THE PLANT CELL 2023; 35:3325-3344. [PMID: 37401663 PMCID: PMC10473220 DOI: 10.1093/plcell/koad172] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
Stress granules (SGs) are highly conserved cytoplasmic condensates that assemble in response to stress and contribute to maintaining protein homeostasis. These membraneless organelles are dynamic, disassembling once the stress is no longer present. Persistence of SGs due to mutations or chronic stress has been often related to age-dependent protein-misfolding diseases in animals. Here, we find that the metacaspase MC1 is dynamically recruited into SGs upon proteotoxic stress in Arabidopsis (Arabidopsis thaliana). Two predicted disordered regions, the prodomain and the 360 loop, mediate MC1 recruitment to and release from SGs. Importantly, we show that MC1 has the capacity to clear toxic protein aggregates in vivo and in vitro, acting as a disaggregase. Finally, we demonstrate that overexpressing MC1 delays senescence and this phenotype is dependent on the presence of the 360 loop and an intact catalytic domain. Together, our data indicate that MC1 regulates senescence through its recruitment into SGs and this function could potentially be linked to its remarkable protein aggregate-clearing activity.
Collapse
Affiliation(s)
- Nerea Ruiz-Solaní
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona 08028, Spain
| | - Jose Salguero-Linares
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
| | - Laia Armengot
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona 08028, Spain
| | - Jaime Santos
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Katarina P van Midden
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Ujjal J Phukkan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
| | - Seda Koyuncu
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Júlia Borràs-Bisa
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
| | - Liang Li
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
| | - Crina Popa
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
| | - Frederik Eisele
- Department of Microbiology and Immunology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden
| | - Anna Maria Eisele-Bürger
- Department of Microbiology and Immunology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden
| | - Sandra Malgrem Hill
- Department of Microbiology and Immunology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden
| | - Emilio Gutiérrez-Beltrán
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla and Consejo Superior de Investigaciones Científicas), 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Sevilla 41012, Spain
| | - Thomas Nyström
- Department of Microbiology and Immunology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona 08028, Spain
| | - Ernesto Llamas
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, Cologne D-50674, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
- Faculty of Medicine, University Hospital Cologne, Cologne 50931, Germany
| | - Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08001, Spain
| |
Collapse
|
13
|
Jiang R, Zhou S, Da X, Yan P, Wang K, Xu J, Mo X. OsMKK6 Regulates Disease Resistance in Rice. Int J Mol Sci 2023; 24:12678. [PMID: 37628859 PMCID: PMC10454111 DOI: 10.3390/ijms241612678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Mitogen-activated protein kinase cascades play important roles in various biological programs in plants, including immune responses, but the underlying mechanisms remain elusive. Here, we identified the lesion mimic mutant rsr25 (rust spots rice 25) and determined that the mutant harbored a loss-of-function allele for OsMKK6 (MITOGEN-ACTIVATED KINASE KINASE 6). rsr25 developed reddish-brown spots on its leaves at the heading stage, as well as on husks. Compared to the wild type, the rsr25 mutant exhibited enhanced resistance to the fungal pathogen Magnaporthe oryzae (M. oryzae) and to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo). OsMKK6 interacted with OsMPK4 (MITOGEN-ACTIVATED KINASE 4) in vivo, and OsMKK6 phosphorylated OsMPK4 in vitro. The Osmpk4 mutant is also a lesion mimic mutant, with reddish-brown spots on its leaves and husks. Pathogen-related genes were significantly upregulated in Osmpk4, and this mutant exhibited enhanced resistance to M. oryzae compared to the wild type. Our results indicate that OsMKK6 and OsMPK4 form a cascade that regulates immune responses in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China; (R.J.); (S.Z.); (X.D.); (P.Y.); (K.W.); (J.X.)
| |
Collapse
|
14
|
Jacob P, Hige J, Dangl JL. Is localized acquired resistance the mechanism for effector-triggered disease resistance in plants? NATURE PLANTS 2023; 9:1184-1190. [PMID: 37537398 DOI: 10.1038/s41477-023-01466-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/23/2023] [Indexed: 08/05/2023]
Abstract
Plant nucleotide-binding leucine-rich repeat receptors (NLRs) are intracellular immune receptors that are activated by their direct or indirect interactions with virulence effectors. NLR activation triggers a strong immune response and consequent disease resistance. However, the NLR-driven immune response can be targeted by virulence effectors. It is thus unclear how immune activation can occur concomitantly with virulence effector suppression of immunity. Recent observations suggest that the activation of effector-triggered immunity does not sustain defence gene expression in tissues in contact with the hemi-biotrophic pathogen Pseudomonas syringae pv. tomato. Instead, strong defence was observed on the border of the infection area. This response is reminiscent of localized acquired resistance (LAR). LAR is a strong defence response occurring in a ~2 mm area around cells in contact with the pathogen and probably serves to prevent the spread of pathogens. Here we propose that effector-triggered immunity is essentially a quarantining mechanism to prevent systemic pathogen spread and disease, and that the induction of LAR is a key component of this mechanism.
Collapse
Affiliation(s)
- Pierre Jacob
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Junko Hige
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Iakovidis M, Chung EH, Saile SC, Sauberzweig E, El Kasmi F. The emerging frontier of plant immunity's core hubs. FEBS J 2023; 290:3311-3335. [PMID: 35668694 DOI: 10.1111/febs.16549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022]
Abstract
The ever-growing world population, increasingly frequent extreme weather events and conditions, emergence of novel devastating crop pathogens and the social strive for quality food products represent a huge challenge for current and future agricultural production systems. To address these challenges and find realistic solutions, it is becoming more important by the day to understand the complex interactions between plants and the environment, mainly the associated organisms, but in particular pathogens. In the past several years, research in the fields of plant pathology and plant-microbe interactions has enabled tremendous progress in understanding how certain receptor-based plant innate immune systems function to successfully prevent infections and diseases. In this review, we highlight and discuss some of these new ground-breaking discoveries and point out strategies of how pathogens counteract the function of important core convergence hubs of the plant immune system. For practical reasons, we specifically place emphasis on potential applications that can be detracted by such discoveries and what challenges the future of agriculture has to face, but also how these challenges could be tackled.
Collapse
Affiliation(s)
- Michail Iakovidis
- Horticultural Genetics and Biotechnology Department, Mediterranean Agricultural Institute of Chania, Greece
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, Korea
| | - Svenja C Saile
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| | - Elke Sauberzweig
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| | - Farid El Kasmi
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| |
Collapse
|
16
|
Ao K, Rohmann PFW, Huang S, Li L, Lipka V, Chen S, Wiermer M, Li X. Puncta-localized TRAF domain protein TC1b contributes to the autoimmunity of snc1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:591-612. [PMID: 36799433 DOI: 10.1111/tpj.16155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/07/2023] [Indexed: 05/04/2023]
Abstract
Immune receptors play important roles in the perception of pathogens and initiation of immune responses in both plants and animals. Intracellular nucleotide-binding domain leucine-rich repeat (NLR)-type receptors constitute a major class of receptors in vascular plants. In the Arabidopsis thaliana mutant suppressor of npr1-1, constitutive 1 (snc1), a gain-of-function mutation in the NLR gene SNC1 leads to SNC1 overaccumulation and constitutive activation of defense responses. From a CRISPR/Cas9-based reverse genetics screen in the snc1 autoimmune background, we identified that mutations in TRAF CANDIDATE 1b (TC1b), a gene encoding a protein with four tumor necrosis factor receptor-associated factor (TRAF) domains, can suppress snc1 phenotypes. TC1b does not appear to be a general immune regulator as it is not required for defense mediated by other tested immune receptors. TC1b also does not physically associate with SNC1, affect SNC1 accumulation, or affect signaling of the downstream helper NLRs represented by ACTIVATED DISEASE RESISTANCE PROTEIN 1-L2 (ADR1-L2), suggesting that TC1b impacts snc1 autoimmunity in a unique way. TC1b can form oligomers and localizes to punctate structures of unknown function. The puncta localization of TC1b strictly requires its coiled-coil (CC) domain, whereas the functionality of TC1b requires the four TRAF domains in addition to the CC. Overall, we uncovered the TRAF domain protein TC1b as a novel positive contributor to plant immunity.
Collapse
Affiliation(s)
- Kevin Ao
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Philipp F W Rohmann
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
- Biochemistry of Plant-Microbe Interactions, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Shuai Huang
- Department of Molecular Genetics, College of Arts and Sciences, Ohio State University, Columbus, Ohio, 43210, USA
| | - Lin Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
- Central Microscopy Facility of the Faculty of Biology and Psychology, University of Goettingen, D-37077, Goettingen, Germany
| | - She Chen
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
- Biochemistry of Plant-Microbe Interactions, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
17
|
Zhao JH, Huang YY, Wang H, Yang XM, Li Y, Pu M, Zhou SX, Zhang JW, Zhao ZX, Li GB, Hassan B, Hu XH, Chen X, Xiao S, Wu XJ, Fan J, Wang WM. Golovinomyces cichoracearum effector-associated nuclear localization of RPW8.2 amplifies its expression to boost immunity in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:367-382. [PMID: 36522832 DOI: 10.1111/nph.18682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Arabidopsis RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically induced by the powdery mildew (PM) fungus (Golovinomyces cichoracearum) in the infected epidermal cells to activate immunity. However, the mechanism of RPW8.2-induction is not well understood. Here, we identify a G. cichoracearum effector that interacts with RPW8.2, named Gc-RPW8.2 interacting protein 1 (GcR8IP1), by a yeast two-hybrid screen of an Arabidopsis cDNA library. GcR8IP1 is physically associated with RPW8.2 with its REALLY INTERESTING NEW GENE finger domain that is essential and sufficient for the association. GcR8IP1 was secreted and translocated into the nucleus of host cell infected with PM. Association of GcR8IP1 with RPW8.2 led to an increase in RPW8.2 in the nucleus. In turn, the nucleus-localized RPW8.2 promoted the activity of the RPW8.2 promoter, resulting in transcriptional self-amplification of RPW8.2 to boost immunity at infection sites. Additionally, ectopic expression or host-induced gene silencing of GcR8IP1 supported its role as a virulence factor in PM. Altogether, our results reveal a mechanism of RPW8.2-dependent defense strengthening via altered partitioning of RPW8.2 and transcriptional self-amplification triggered by a PM fungal effector, which exemplifies an atypical form of effector-triggered immunity.
Collapse
Affiliation(s)
- Jing-Hao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Xue-Mei Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Shi-Xin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Beenish Hassan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Xiao-Hong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, 20850, USA
| | - Xian-Jun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| |
Collapse
|
18
|
Baggs EL, Tiersma MB, Abramson BW, Michael TP, Krasileva KV. Characterization of defense responses against bacterial pathogens in duckweeds lacking EDS1. THE NEW PHYTOLOGIST 2022; 236:1838-1855. [PMID: 36052715 PMCID: PMC9828482 DOI: 10.1111/nph.18453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/19/2022] [Indexed: 05/19/2023]
Abstract
ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) mediates the induction of defense responses against pathogens in most angiosperms. However, it has recently been shown that a few species have lost EDS1. It is unknown how defense against disease unfolds and evolves in the absence of EDS1. We utilize duckweeds; a collection of aquatic species that lack EDS1, to investigate this question. We established duckweed-Pseudomonas pathosystems and used growth curves and microscopy to characterize pathogen-induced responses. Through comparative genomics and transcriptomics, we show that the copy number of infection-associated genes and the infection-induced transcriptional responses of duckweeds differ from other model species. Pathogen defense in duckweeds has evolved along different trajectories than in other plants, including genomic and transcriptional reprogramming. Specifically, the miAMP1 domain-containing proteins, which are absent in Arabidopsis, showed pathogen responsive upregulation in duckweeds. Despite such divergence between Arabidopsis and duckweed species, we found conservation of upregulation of certain genes and the role of hormones in response to disease. Our work highlights the importance of expanding the pool of model species to study defense responses that have evolved in the plant kingdom independent of EDS1.
Collapse
Affiliation(s)
- Erin L. Baggs
- Department of Plant and Microbial BiologyUniversity of California BerkeleyBerkeleyCA94720USA
| | - Meije B. Tiersma
- Department of Plant and Microbial BiologyUniversity of California BerkeleyBerkeleyCA94720USA
| | - Brad W. Abramson
- Plant Molecular and Cellular Biology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037USA
| | - Todd P. Michael
- Plant Molecular and Cellular Biology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037USA
| | - Ksenia V. Krasileva
- Department of Plant and Microbial BiologyUniversity of California BerkeleyBerkeleyCA94720USA
| |
Collapse
|
19
|
Abstract
Semidwarfing genes have greatly increased wheat yields globally, yet the widely used gibberellin (GA)-insensitive genes Rht-B1b and Rht-D1b have disadvantages for seedling emergence. Use of the GA-sensitive semidwarfing gene Rht13 avoids this pleiotropic effect. Here, we show that Rht13 encodes a nucleotide-binding site/leucine-rich repeat (NB-LRR) gene. A point mutation in the semidwarf Rht-B13b allele autoactivates the NB-LRR gene and causes a height reduction comparable with Rht-B1b and Rht-D1b in diverse genetic backgrounds. The autoactive Rht-B13b allele leads to transcriptional up-regulation of pathogenesis-related genes including class III peroxidases associated with cell wall remodeling. Rht13 represents a new class of reduced height (Rht) gene, unlike other Rht genes, which encode components of the GA signaling or metabolic pathways. This discovery opens avenues to use autoactive NB-LRR genes as semidwarfing genes in a range of crop species, and to apply Rht13 in wheat breeding programs using a perfect genetic marker.
Collapse
|
20
|
Kourelis J, Adachi H. Activation and Regulation of NLR Immune Receptor Networks. PLANT & CELL PHYSIOLOGY 2022; 63:1366-1377. [PMID: 35941738 DOI: 10.1093/pcp/pcac116] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Plants have many types of immune receptors that recognize diverse pathogen molecules and activate the innate immune system. The intracellular immune receptor family of nucleotide-binding domain leucine-rich repeat-containing proteins (NLRs) perceives translocated pathogen effector proteins and executes a robust immune response, including programmed cell death. Many plant NLRs have functionally specialized to sense pathogen effectors (sensor NLRs) or to execute immune signaling (helper NLRs). Sub-functionalized NLRs form a network-type receptor system known as the NLR network. In this review, we highlight the concept of NLR networks, discussing how they are formed, activated and regulated. Two main types of NLR networks have been described in plants: the ACTIVATED DISEASE RESISTANCE 1/N REQUIREMENT GENE 1 network and the NLR-REQUIRED FOR CELL DEATH network. In both networks, multiple helper NLRs function as signaling hubs for sensor NLRs and cell-surface-localized immune receptors. Additionally, the networks are regulated at the transcriptional and posttranscriptional levels, and are also modulated by other host proteins to ensure proper network activation and prevent autoimmunity. Plant pathogens in turn have converged on suppressing NLR networks, thereby facilitating infection and disease. Understanding the NLR immune system at the network level could inform future breeding programs by highlighting the appropriate genetic combinations of immunoreceptors to use while avoiding deleterious autoimmunity and suppression by pathogens.
Collapse
Affiliation(s)
- Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Hiroaki Adachi
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto, 617-0001 Japan
- JST-PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012 Japan
| |
Collapse
|
21
|
Zhang B, Liu M, Wang Y, Yuan W, Zhang H. Plant NLRs: Evolving with pathogen effectors and engineerable to improve resistance. Front Microbiol 2022; 13:1018504. [PMID: 36246279 PMCID: PMC9554439 DOI: 10.3389/fmicb.2022.1018504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Pathogens are important threats to many plants throughout their lifetimes. Plants have developed different strategies to overcome them. In the plant immunity system, nucleotide-binding domain and leucine-rich repeat-containing proteins (NLRs) are the most common components. And recent studies have greatly expanded our understanding of how NLRs function in plants. In this review, we summarize the studies on the mechanism of NLRs in the processes of effector recognition, resistosome formation, and defense activation. Typical NLRs are divided into three groups according to the different domains at their N termini and function in interrelated ways in immunity. Atypical NLRs contain additional integrated domains (IDs), some of which directly interact with pathogen effectors. Plant NLRs evolve with pathogen effectors and exhibit specific recognition. Meanwhile, some NLRs have been successfully engineered to confer resistance to new pathogens based on accumulated studies. In summary, some pioneering processes have been obtained in NLR researches, though more questions arise as a result of the huge number of NLRs. However, with a broadened understanding of the mechanism, NLRs will be important components for engineering in plant resistance improvement.
Collapse
|
22
|
Lu J, Liang W, Zhang N, van Wersch S, Li X. HSP90 Contributes to chs3-2D-Mediated Autoimmunity. FRONTIERS IN PLANT SCIENCE 2022; 13:888449. [PMID: 35720559 PMCID: PMC9204091 DOI: 10.3389/fpls.2022.888449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Plants employ multi-layered immune system to fight against pathogen infections. Different receptors are able to detect the invasion activities of pathogens, transduce signals to downstream components, and activate defense responses. Among those receptors, nucleotide-binding domain leucine-rich repeat containing proteins (NLRs) are the major intracellular ones. CHILLING SENSITIVE 3 (CHS3) is an Arabidopsis NLR with an additional Lin-11, Isl-1 and Mec-3 (LIM) domain at its C terminus. The gain-of-function mutant, chs3-2D, exhibiting severe dwarfism and constitutively activated defense responses, was selected as a genetic background in this study for a forward genetic screen. A mutant allele of hsp90.2 was isolated as a partial suppressor of chs3-2D, suggesting that HSP90 is required for CHS3-mediated defense signaling. In addition, HSP90 is also required for the autoimmunity of the Dominant Negative (DN)-SNIPER1 and gain-of-function ADR1-L2 D484V transgenic lines, suggesting a broad role for HSP90 in NLR-mediated defense. Overall, our work indicates a larger contribution of HSP90 not only at the sensor, but also the helper NLR levels.
Collapse
Affiliation(s)
- Junxing Lu
- College of Life Science, Chongqing Normal University, Chongqing, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Wanwan Liang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Nanbing Zhang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Solveig van Wersch
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
Díaz-Tatis PA, Ochoa JC, Rico EM, Rodríguez C, Medina A, Szurek B, Chavarriaga P, López CE. RXam2, a NLR from cassava (Manihot esculenta) contributes partially to the quantitative resistance to Xanthomonas phaseoli pv. manihotis. PLANT MOLECULAR BIOLOGY 2022; 109:313-324. [PMID: 34757519 DOI: 10.1007/s11103-021-01211-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
The overexpression of RXam2, a cassava NLR (nucleotide-binding leucine-rich repeat) gene, by stable transformation and gene expression induction mediated by dTALEs, reduce cassava bacterial blight symptoms. Cassava (Manihot esculenta) is a tropical root crop affected by different pathogens including Xanthomonas phaseoli pv. manihotis (Xpm), the causal agent of cassava bacterial blight (CBB). Previous studies have reported resistance to CBB as a quantitative and polygenic character. This study sought to validate the functional role of a NLR (nucleotide-binding leucine-rich repeat) associated with a QTL to Xpm strain CIO151 called RXam2. Transgenic cassava plants overexpressing RXam2 were generated and analyzed. Plants overexpressing RXam2 showed a reduction in bacterial growth to Xpm strains CIO151, 232 and 226. In addition, designer TALEs (dTALEs) were developed to specifically bind to the RXam2 promoter region. The Xpm strain transformed with dTALEs allowed the induction of the RXam2 gene expression after inoculation in cassava plants and was associated with a diminution in CBB symptoms. These findings suggest that RXam2 contributes to the understanding of the molecular basis of quantitative disease resistance.
Collapse
Affiliation(s)
- Paula A Díaz-Tatis
- Manihot Biotec, Departamento de Biología, Universidad Nacional de Colombia, Cra30 #45-03, Bogotá D.C., Colombia
- Grupo de Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Cra1 #47a15, Bogotá D.C., Colombia
| | - Juan C Ochoa
- Manihot Biotec, Departamento de Biología, Universidad Nacional de Colombia, Cra30 #45-03, Bogotá D.C., Colombia
- Department of Integrative Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479, Poznan, Poland
| | - Edgar M Rico
- Manihot Biotec, Departamento de Biología, Universidad Nacional de Colombia, Cra30 #45-03, Bogotá D.C., Colombia
| | - Catalina Rodríguez
- Manihot Biotec, Departamento de Biología, Universidad Nacional de Colombia, Cra30 #45-03, Bogotá D.C., Colombia
- Ludwig Maximilian University of Munich, Biozentrum Martinsried, Grosshaderner Strasse 4, Martinsried, Germany
| | - Adriana Medina
- Transformation Platform, Centro Internacional de Agricultura Tropical (CIAT), Km17 Cali-Palmira, Palmira, Colombia
| | - Boris Szurek
- UMR Interactions Plantes Microorganismes Environnement (IPME), IRD-CIRAD-Université, Montpellier, France
| | - Paul Chavarriaga
- Transformation Platform, Centro Internacional de Agricultura Tropical (CIAT), Km17 Cali-Palmira, Palmira, Colombia
| | - Camilo E López
- Manihot Biotec, Departamento de Biología, Universidad Nacional de Colombia, Cra30 #45-03, Bogotá D.C., Colombia.
| |
Collapse
|
24
|
Wu Z, Tian L, Liu X, Huang W, Zhang Y, Li X. The N-terminally truncated helper NLR NRG1C antagonizes immunity mediated by its full-length neighbors NRG1A and NRG1B. THE PLANT CELL 2022; 34:1621-1640. [PMID: 34871452 PMCID: PMC9048947 DOI: 10.1093/plcell/koab285] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/11/2021] [Indexed: 05/19/2023]
Abstract
Both plants and animals utilize nucleotide-binding leucine-rich repeat immune receptors (NLRs) to perceive the presence of pathogen-derived molecules and induce immune responses. NLR genes are far more abundant and diverse in vascular plants than in animals. Truncated NLRs, which lack one or more of the canonical domains, are also commonly encoded in plant genomes. However, little is known about their functions, especially the N-terminally truncated ones. Here, we show that the Arabidopsis thaliana N-terminally truncated helper NLR (hNLR) gene N REQUIREMENT GENE1 (NRG1C) is highly induced upon pathogen infection and in autoimmune mutants. The immune response and cell death conferred by some Toll/interleukin-1 receptor-type NLRs (TNLs) were compromised in Arabidopsis NRG1C overexpression lines. Detailed genetic analysis revealed that NRG1C antagonizes the immunity mediated by its full-length neighbors NRG1A and NRG1B. Biochemical tests suggested that NRG1C might interfere with the EDS1-SAG101 complex, which functions in immunity signaling together with NRG1A/1B. Interestingly, Brassicaceae NRG1Cs are functionally exchangeable and that the Nicotiana benthamiana N-terminally truncated hNLR NRG2 also antagonizes NRG1 activity. Together, our study uncovers an unexpected negative role of N-terminally truncated hNLRs in immunity in different plant species.
Collapse
Affiliation(s)
- Zhongshou Wu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Lei Tian
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xueru Liu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Weijie Huang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
25
|
Cocetta G, Landoni M, Pilu R, Repiso C, Nolasco J, Alajarin M, Ugena L, Levy CCB, Scatolino G, Villa D, Ferrante A. Priming Treatments with Biostimulants to Cope the Short-Term Heat Stress Response: A Transcriptomic Profile Evaluation. PLANTS 2022; 11:plants11091130. [PMID: 35567131 PMCID: PMC9101846 DOI: 10.3390/plants11091130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022]
Abstract
Plant stress induced by high temperature is a problem in wide areas of different regions in the world. The trend of global warming is going to enhance the effects of heat stress on crops in many cultivation areas. Heat stress impairs the stability of cell membranes and many biological processes involving both primary and secondary metabolism. Biostimulants are innovative agronomical tools that can be used as a strategy to counteract the detrimental effect of abiotic stresses, including heat stress. In this work, two biostimulants based on Ascophyllum nodosum extracts (named Phylgreen) and based on animal L-α amino acids (named Delfan Plus) were applied as priming treatments to Arabidopsis thaliana plants subjected to heat stress exposure. Plants at the vegetative stage were treated with biostimulants 12 h before high temperature exposure, which consisted of maintaining the plants at 37 ± 1 °C for 4 h. Transcriptional profiles, physiological, and biochemical analyses were performed to understand the mode of action of the biostimulants in protecting the plants exposed to short-term heat stress. At a physiological level, chlorophyll, chlorophyll a fluorescence, phenolic index, total anthocyanins, reactive oxygen species (ROS) were measured, and significant variations were observed immediately after stress. Both biostimulants were able to reduce the oxidative damage in leaves and cell membrane. Transcriptomic data revealed that upregulated genes were 626 in Phylgreen and 365 in Delfan Plus, while downregulated genes were 295 in Phylgreen and 312 in Delfan Plus. Bioinformatic analysis showed that the biostimulants protected the plants from heat stress by activating specific heat shock proteins (HPS), antioxidant systems, and ROS scavengers. The results revealed that the biostimulants effectively induced the activation of heat stress-associated genes belonging to different transcription factors and HSP families. Among the heat shock proteins, the most important was the AtHSP17 family and in particular, those influenced by treatments were AtHPS17.4 and AtHPS17.6A, B, showing the most relevant changes.
Collapse
Affiliation(s)
- Giacomo Cocetta
- DISAA—Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (R.P.); (A.F.)
- Correspondence: ; Tel.: +39-02-503-16612
| | - Michela Landoni
- Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy;
| | - Roberto Pilu
- DISAA—Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (R.P.); (A.F.)
| | - Carlos Repiso
- Tradecorp International, Via de los Poblados, 3. Edif. Onic 5, 6th Floor, 28033 Madrid, Spain; (C.R.); (J.N.); (M.A.); (L.U.); (C.C.B.L.)
| | - José Nolasco
- Tradecorp International, Via de los Poblados, 3. Edif. Onic 5, 6th Floor, 28033 Madrid, Spain; (C.R.); (J.N.); (M.A.); (L.U.); (C.C.B.L.)
| | - Marcos Alajarin
- Tradecorp International, Via de los Poblados, 3. Edif. Onic 5, 6th Floor, 28033 Madrid, Spain; (C.R.); (J.N.); (M.A.); (L.U.); (C.C.B.L.)
| | - Lydia Ugena
- Tradecorp International, Via de los Poblados, 3. Edif. Onic 5, 6th Floor, 28033 Madrid, Spain; (C.R.); (J.N.); (M.A.); (L.U.); (C.C.B.L.)
| | - Camila C. B. Levy
- Tradecorp International, Via de los Poblados, 3. Edif. Onic 5, 6th Floor, 28033 Madrid, Spain; (C.R.); (J.N.); (M.A.); (L.U.); (C.C.B.L.)
| | - Giacomo Scatolino
- Agricola 2000, scpa Via Trieste 9, 20067 Tribiano, MI, Italy; (G.S.); (D.V.)
| | - Daniele Villa
- Agricola 2000, scpa Via Trieste 9, 20067 Tribiano, MI, Italy; (G.S.); (D.V.)
| | - Antonio Ferrante
- DISAA—Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (R.P.); (A.F.)
| |
Collapse
|
26
|
Saile SC, Ackermann FM, Sunil S, Keicher J, Bayless A, Bonardi V, Wan L, Doumane M, Stöbbe E, Jaillais Y, Caillaud MC, Dangl JL, Nishimura MT, Oecking C, El Kasmi F. Arabidopsis ADR1 helper NLR immune receptors localize and function at the plasma membrane in a phospholipid dependent manner. THE NEW PHYTOLOGIST 2021; 232:2440-2456. [PMID: 34628646 DOI: 10.1111/nph.17788] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Activation of nucleotide-binding leucine-rich repeat receptors (NLRs) results in immunity and a localized cell death. NLR cell death activity requires oligomerization and in some cases plasma membrane (PM) localization. The exact mechanisms underlying PM localization of NLRs lacking predicted transmembrane domains or recognizable lipidation motifs remain elusive. We used confocal microscopy, genetically encoded molecular tools and protein-lipid overlay assays to determine whether PM localization of members of the Arabidopsis HeLo-/RPW8-like domain 'helper' NLR (RNL) family is mediated by the interaction with negatively charged phospholipids of the PM. Our results show that PM localization and stability of some RNLs and one CC-type NLR (CNL) depend on the direct interaction with PM phospholipids. Depletion of phosphatidylinositol-4-phosphate from the PM led to a mis-localization of the analysed NLRs and consequently inhibited their cell death activity. We further demonstrate homo- and hetero-association of members of the RNL family. Our results provide new insights into the molecular mechanism of NLR localization and defines an important role of phospholipids for CNL and RNL PM localization and consequently, for their function. We propose that RNLs interact with anionic PM phospholipids and that RNL-mediated cell death and immune responses happen at the PM.
Collapse
Affiliation(s)
- Svenja C Saile
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Frank M Ackermann
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Sruthi Sunil
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Jutta Keicher
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Adam Bayless
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | - Vera Bonardi
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Li Wan
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Mehdi Doumane
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69264, Lyon, France
| | - Eva Stöbbe
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69264, Lyon, France
| | - Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69264, Lyon, France
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Marc T Nishimura
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | - Claudia Oecking
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Farid El Kasmi
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
27
|
El Kasmi F. How activated NLRs induce anti-microbial defenses in plants. Biochem Soc Trans 2021; 49:2177-2188. [PMID: 34623378 PMCID: PMC8589443 DOI: 10.1042/bst20210242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022]
Abstract
Plants utilize cell-surface localized and intracellular leucine-rich repeat (LRR) immune receptors to detect pathogens and to activate defense responses, including transcriptional reprogramming and the initiation of a form of programmed cell death of infected cells. Cell death initiation is mainly associated with the activation of nucleotide-binding LRR receptors (NLRs). NLRs recognize the presence or cellular activity of pathogen-derived virulence proteins, so-called effectors. Effector-dependent NLR activation leads to the formation of higher order oligomeric complexes, termed resistosomes. Resistosomes can either form potential calcium-permeable cation channels at cellular membranes and initiate calcium influxes resulting in activation of immunity and cell death or function as NADases whose activity is needed for the activation of downstream immune signaling components, depending on the N-terminal domain of the NLR protein. In this mini-review, the current knowledge on the mechanisms of NLR-mediated cell death and resistance pathways during plant immunity is discussed.
Collapse
Affiliation(s)
- Farid El Kasmi
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen Germany
| |
Collapse
|
28
|
Bi G, Zhou JM. Regulation of Cell Death and Signaling by Pore-Forming Resistosomes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:239-263. [PMID: 33957051 DOI: 10.1146/annurev-phyto-020620-095952] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nucleotide-binding leucine-rich repeat receptors (NLRs) are the largest class of immune receptors in plants. They play a key role in the plant surveillance system by monitoring pathogen effectors that are delivered into the plant cell. Recent structural biology and biochemical analyses have uncovered how NLRs are activated to form oligomeric resistosomes upon the recognition of pathogen effectors. In the resistosome, the signaling domain of the NLR is brought to the center of a ringed structure to initiate immune signaling and regulated cell death (RCD). The N terminus of the coiled-coil (CC) domain of the NLR protein HOPZ-ACTIVATED RESISTANCE 1 likely forms a pore in the plasma membrane to trigger RCD in a way analogous to animal pore-forming proteins that trigger necroptosis or pyroptosis. NLRs that carry TOLL-INTERLEUKIN1-RECEPTOR as a signaling domain may also employ pore-forming resistosomes for RCD execution. In addition, increasing evidence supports intimate connections between NLRs and surface receptors in immune signaling. These new findings are rapidly advancing our understanding of the plant immune system.
Collapse
Affiliation(s)
- Guozhi Bi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China;
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China;
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Sun X, Lapin D, Feehan JM, Stolze SC, Kramer K, Dongus JA, Rzemieniewski J, Blanvillain-Baufumé S, Harzen A, Bautor J, Derbyshire P, Menke FLH, Finkemeier I, Nakagami H, Jones JDG, Parker JE. Pathogen effector recognition-dependent association of NRG1 with EDS1 and SAG101 in TNL receptor immunity. Nat Commun 2021; 12:3335. [PMID: 34099661 PMCID: PMC8185089 DOI: 10.1038/s41467-021-23614-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
Plants utilise intracellular nucleotide-binding, leucine-rich repeat (NLR) immune receptors to detect pathogen effectors and activate local and systemic defence. NRG1 and ADR1 "helper" NLRs (RNLs) cooperate with enhanced disease susceptibility 1 (EDS1), senescence-associated gene 101 (SAG101) and phytoalexin-deficient 4 (PAD4) lipase-like proteins to mediate signalling from TIR domain NLR receptors (TNLs). The mechanism of RNL/EDS1 family protein cooperation is not understood. Here, we present genetic and molecular evidence for exclusive EDS1/SAG101/NRG1 and EDS1/PAD4/ADR1 co-functions in TNL immunity. Using immunoprecipitation and mass spectrometry, we show effector recognition-dependent interaction of NRG1 with EDS1 and SAG101, but not PAD4. An EDS1-SAG101 complex interacts with NRG1, and EDS1-PAD4 with ADR1, in an immune-activated state. NRG1 requires an intact nucleotide-binding P-loop motif, and EDS1 a functional EP domain and its partner SAG101, for induced association and immunity. Thus, two distinct modules (NRG1/EDS1/SAG101 and ADR1/EDS1/PAD4) mediate TNL receptor defence signalling.
Collapse
Affiliation(s)
- Xinhua Sun
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Dmitry Lapin
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Joanna M Feehan
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Sara C Stolze
- Proteomics group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Katharina Kramer
- Proteomics group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Joram A Dongus
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jakub Rzemieniewski
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Servane Blanvillain-Baufumé
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Anne Harzen
- Proteomics group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jaqueline Bautor
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Iris Finkemeier
- Proteomics group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Institute of Biology and Biotechnology of Plants, University of Muenster, Muenster, Germany
| | - Hirofumi Nakagami
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Proteomics group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany.
| |
Collapse
|
30
|
Sun X, Lapin D, Feehan JM, Stolze SC, Kramer K, Dongus JA, Rzemieniewski J, Blanvillain-Baufumé S, Harzen A, Bautor J, Derbyshire P, Menke FLH, Finkemeier I, Nakagami H, Jones JDG, Parker JE. Pathogen effector recognition-dependent association of NRG1 with EDS1 and SAG101 in TNL receptor immunity. Nat Commun 2021; 12:3335. [PMID: 34099661 DOI: 10.1101/2020.12.21.423810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/30/2021] [Indexed: 05/21/2023] Open
Abstract
Plants utilise intracellular nucleotide-binding, leucine-rich repeat (NLR) immune receptors to detect pathogen effectors and activate local and systemic defence. NRG1 and ADR1 "helper" NLRs (RNLs) cooperate with enhanced disease susceptibility 1 (EDS1), senescence-associated gene 101 (SAG101) and phytoalexin-deficient 4 (PAD4) lipase-like proteins to mediate signalling from TIR domain NLR receptors (TNLs). The mechanism of RNL/EDS1 family protein cooperation is not understood. Here, we present genetic and molecular evidence for exclusive EDS1/SAG101/NRG1 and EDS1/PAD4/ADR1 co-functions in TNL immunity. Using immunoprecipitation and mass spectrometry, we show effector recognition-dependent interaction of NRG1 with EDS1 and SAG101, but not PAD4. An EDS1-SAG101 complex interacts with NRG1, and EDS1-PAD4 with ADR1, in an immune-activated state. NRG1 requires an intact nucleotide-binding P-loop motif, and EDS1 a functional EP domain and its partner SAG101, for induced association and immunity. Thus, two distinct modules (NRG1/EDS1/SAG101 and ADR1/EDS1/PAD4) mediate TNL receptor defence signalling.
Collapse
Affiliation(s)
- Xinhua Sun
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Dmitry Lapin
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Joanna M Feehan
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Sara C Stolze
- Proteomics group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Katharina Kramer
- Proteomics group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Joram A Dongus
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jakub Rzemieniewski
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Servane Blanvillain-Baufumé
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Anne Harzen
- Proteomics group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jaqueline Bautor
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Iris Finkemeier
- Proteomics group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Institute of Biology and Biotechnology of Plants, University of Muenster, Muenster, Germany
| | - Hirofumi Nakagami
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Proteomics group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany.
| |
Collapse
|
31
|
Du D, Zhang C, Xing Y, Lu X, Cai L, Yun H, Zhang Q, Zhang Y, Chen X, Liu M, Sang X, Ling Y, Yang Z, Li Y, Lefebvre B, He G. The CC-NB-LRR OsRLR1 mediates rice disease resistance through interaction with OsWRKY19. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1052-1064. [PMID: 33368943 PMCID: PMC8131040 DOI: 10.1111/pbi.13530] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/07/2020] [Indexed: 05/20/2023]
Abstract
Nucleotide-binding site-leucine-rich repeat (NB-LRR) resistance proteins are critical for plant resistance to pathogens; however, their mechanism of activation and signal transduction is still not well understood. We identified a mutation in an as yet uncharacterized rice coiled-coil (CC)-NB-LRR, Oryza sativa RPM1-like resistance gene 1 (OsRLR1), which leads to hypersensitive response (HR)-like lesions on the leaf blade and broad-range resistance to the fungal pathogen Pyricularia oryzae (syn. Magnaporthe oryzae) and the bacterial pathogen Xanthomonas oryzae pv. oryzae, together with strong growth reduction. Consistently, OsRLR1-overexpression lines showed enhanced resistance to both pathogens. Moreover, we found that OsRLR1 mediates the defence response through direct interaction in the nucleus with the transcription factor OsWRKY19. Down-regulation of OsWRKY19 in the rlr1 mutant compromised the HR-like phenotype and resistance response, and largely restored plant growth. OsWRKY19 binds to the promoter of OsPR10 to activate the defence response. Taken together, our data highlight the role of a new residue involved in the NB-LRR activation mechanism, allowing identification of a new NB-LRR downstream signalling pathway.
Collapse
Affiliation(s)
- Dan Du
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Changwei Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Yadi Xing
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
- Agricultural CollegeZhengzhou UniversityZhengzhouChina
| | - Xin Lu
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Linjun Cai
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Han Yun
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Qiuli Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Yingying Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Xinlong Chen
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Mingming Liu
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Xianchun Sang
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Yinghua Ling
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Zhenglin Yang
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Yunfeng Li
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| | - Benoit Lefebvre
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
- LIPM, INRAE, CNRSUniversité de ToulouseCastanet‐TolosanFrance
| | - Guanghua He
- Key Laboratory of Application and Safety Control of Genetically Modified CropsAcademy of Agricultural SciencesRice Research InstituteSouthwest UniversityChongqingChina
| |
Collapse
|
32
|
Nucleotide-Binding Leucine-Rich Repeat Genes CsRSF1 and CsRSF2 Are Positive Modulators in the Cucumis sativus Defense Response to Sphaerotheca fuliginea. Int J Mol Sci 2021; 22:ijms22083986. [PMID: 33924330 PMCID: PMC8069588 DOI: 10.3390/ijms22083986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
Cucumber powdery mildew caused by Sphaerotheca fuliginea is a leaf disease that seriously affects cucumber's yield and quality. This study aimed to report two nucleotide-binding site-leucine-rich repeats (NBS-LRR) genes CsRSF1 and CsRSF2, which participated in regulating the resistance of cucumber to S. fuliginea. The subcellular localization showed that the CsRSF1 protein was localized in the nucleus, cytoplasm, and cell membrane, while the CsRSF2 protein was localized in the cell membrane and cytoplasm. In addition, the transcript levels of CsRSF1 and CsRSF2 were different between resistant and susceptible cultivars after treatment with exogenous substances, such as abscisic acid (ABA), methyl jasmonate (MeJA), salicylic acid (SA), ethephon (ETH), gibberellin (GA) and hydrogen peroxide (H2O2). The expression analysis showed that the transcript levels of CsRSF1 and CsRSF2 were correlated with plant defense response against S. fuliginea. Moreover, the silencing of CsRSF1 and CsRSF2 impaired host resistance to S. fuliginea, but CsRSF1 and CsRSF2 overexpression improved resistance to S. fuliginea in cucumber. These results showed that CsRSF1 and CsRSF2 genes positively contributed to the resistance of cucumber to S. fuliginea. At the same time, CsRSF1 and CsRSF2 genes could also regulate the expression of defense-related genes. The findings of this study might help enhance the resistance of cucumber to S. fuliginea.
Collapse
|
33
|
Luan QL, Zhu YX, Ma S, Sun Y, Liu XY, Liu M, Balint-Kurti PJ, Wang GF. Maize metacaspases modulate the defense response mediated by the NLR protein Rp1-D21 likely by affecting its subcellular localization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:151-166. [PMID: 33107667 DOI: 10.1111/tpj.15047] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/03/2020] [Accepted: 09/15/2020] [Indexed: 05/22/2023]
Abstract
Plants usually employ resistance (R) genes to defend against the infection of pathogens, and most R genes encode intracellular nucleotide-binding, leucine-rich repeat (NLR) proteins. The recognition between R proteins and their cognate pathogens often triggers a rapid localized cell death at the pathogen infection sites, termed the hypersensitive response (HR). Metacaspases (MCs) belong to a cysteine protease family, structurally related to metazoan caspases. MCs play crucial roles in plant immunity. However, the underlying molecular mechanism and the link between MCs and NLR-mediated HR are not clear. In this study, we systematically investigated the MC gene family in maize and identified 11 ZmMCs belonging to two types. Further functional analysis showed that the type I ZmMC1 and ZmMC2, but not the type II ZmMC9, suppress the HR-inducing activity of the autoactive NLR protein Rp1-D21 and of its N-terminal coiled-coil (CCD21 ) signaling domain when transiently expressed in Nicotiana benthamiana. ZmMC1 and ZmMC2 physically associate with CCD21 in vivo. We further showed that ZmMC1 and ZmMC2, but not ZmMC9, are predominantly localized in a punctate distribution in both N. benthamiana and maize (Zea mays) protoplasts. Furthermore, the co-expression of ZmMC1 and ZmMC2 with Rp1-D21 and CCD21 causes their re-distribution from being uniformly distributed in the nucleocytoplasm to a punctate distribution co-localizing with ZmMC1 and ZmMC2. We reveal a novel role of plant MCs in modulating the NLR-mediated defense response and derive a model to explain it.
Collapse
Affiliation(s)
- Qing-Ling Luan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Yu-Xiu Zhu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Shijun Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Yang Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Xiao-Ying Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Mengjie Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Peter J Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27695, USA
- U.S. Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina, 27695, USA
| | - Guan-Feng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, PR China
| |
Collapse
|
34
|
Li T, Zhang Q, Jiang X, Li R, Dhar N. Cotton CC-NBS-LRR Gene GbCNL130 Confers Resistance to Verticillium Wilt Across Different Species. FRONTIERS IN PLANT SCIENCE 2021; 12:695691. [PMID: 34567025 PMCID: PMC8456104 DOI: 10.3389/fpls.2021.695691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/11/2021] [Indexed: 05/16/2023]
Abstract
Verticillium wilt (VW) is a destructive disease in cotton caused by Verticillium dahliae and has a significant impact on yield and quality. In the absence of safe and effective chemical control, VW is difficult to manage. Thus, at present, developing resistant varieties is the most economical and effective method of controlling Verticillium wilt of cotton. The CC-NBS-LRR (CNL) gene family is an important class of plant genes involved in disease resistance. This study identified 141 GbCNLs in Gossypium barbadense genome, with 37.5% (53 genes) GbCNLs enriched in 12 gene clusters (GC01-GC12) based on gene distribution in the chromosomes. Especially, seven GbCNLs from two largest clusters (GC11 and GC12) were significantly upregulated in the resistant cultivar (Hai No. 7124) and the susceptible (Giza No. 57). Virus-induced gene silencing of GbCNL130 in G. barbadense, one typical gene in the gene cluster 12 (GC12), significantly altered the response to VW, compromising plant resistance to V. dahliae. In contrast, GbCNL130 overexpression significantly increased the resistance to VW in the wild-type Arabidopsis thaliana. Based on our research findings presented here, we conclude that GbCNL130 promotes resistance to VW by activating the salicylic acid (SA)-dependent defense response pathway resulting in strong accumulation of reactive oxygen species and upregulation of pathogenesis-related (PR) genes. In conclusion, our study resulted in the discovery of a new CNL resistance gene in cotton, GbCNL130, that confers resistance to VW across different hosts.
Collapse
Affiliation(s)
- Tinggang Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
- *Correspondence: Tinggang Li,
| | - Qianqian Zhang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xilong Jiang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ran Li
- Institute of Plant Protection, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nikhilesh Dhar
- Department of Plant Pathology, University of California, Davis, Salinas, CA, United States
| |
Collapse
|
35
|
Abstract
Plants utilize a two-tiered immune system consisting of pattern recognition receptor (PRR)-triggered immunity (PTI) and effector-triggered immunity (ETI) to defend themselves against pathogenic microbes. The receptor protein kinase BAK1 plays a central role in multiple PTI signaling pathways in Arabidopsis However, double mutants made by BAK1 and its closest paralog BKK1 exhibit autoimmune phenotypes, including cell death resembling a typical nucleotide-binding leucine-rich repeat protein (NLR)-mediated ETI response. The molecular mechanisms of the cell death caused by the depletion of BAK1 and BKK1 are poorly understood. Here, we show that the cell-death phenotype of bak1 bkk1 is suppressed when a group of NLRs, ADR1s, are mutated, indicating the cell-death of bak1 bkk1 is the consequence of NLR activation. Furthermore, introduction of a Pseudomonas syringae effector HopB1, which proteolytically cleaves activated BAK1 and its paralogs via either gene transformation or bacterium-delivery, results in a cell-death phenotype in an ADR1s-dependent manner. Our study thus pinpoints that BAK1 and its paralogs are likely guarded by NLRs.
Collapse
|
36
|
Thordal-Christensen H. A holistic view on plant effector-triggered immunity presented as an iceberg model. Cell Mol Life Sci 2020; 77:3963-3976. [PMID: 32277261 PMCID: PMC7532969 DOI: 10.1007/s00018-020-03515-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
The immune system of plants is highly complex. It involves pattern-triggered immunity (PTI), which is signaled and manifested through branched multi-step pathways. To counteract this, pathogen effectors target and inhibit individual PTI steps. This in turn can cause specific plant cytosolic nucleotide-binding leucine-rich repeat (NLR) receptors to activate effector-triggered immunity (ETI). Plants and pathogens have many genes encoding NLRs and effectors, respectively. Yet, only a few segregate genetically as resistance (R) genes and avirulence (Avr) effector genes in wild-type populations. In an attempt to explain this contradiction, a model is proposed where far most of the NLRs, the effectors and the effector targets keep one another in a silent state. In this so-called "iceberg model", a few NLR-effector combinations are genetically visible above the surface, while the vast majority is hidden below. Besides, addressing the existence of many NLRs and effectors, the model also helps to explain why individual downregulation of many effectors causes reduced virulence and why many lesion-mimic mutants are found. Finally, the iceberg model accommodates genuine plant susceptibility factors as potential effector targets.
Collapse
Affiliation(s)
- Hans Thordal-Christensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
37
|
Zdrzałek R, Kamoun S, Terauchi R, Saitoh H, Banfield MJ. The rice NLR pair Pikp-1/Pikp-2 initiates cell death through receptor cooperation rather than negative regulation. PLoS One 2020; 15:e0238616. [PMID: 32931489 PMCID: PMC7491719 DOI: 10.1371/journal.pone.0238616] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Plant NLR immune receptors are multidomain proteins that can function as specialized sensor/helper pairs. Paired NLR immune receptors are generally thought to function via negative regulation, where one NLR represses the activity of the second and detection of pathogen effectors relieves this repression to initiate immunity. However, whether this mechanism is common to all NLR pairs is not known. Here, we show that the rice NLR pair Pikp-1/Pikp-2, which confers resistance to strains of the blast pathogen Magnaporthe oryzae (syn. Pyricularia oryzae) expressing the AVR-PikD effector, functions via receptor cooperation, with effector-triggered activation requiring both NLRs to trigger the immune response. To investigate the mechanism of Pikp-1/Pikp-2 activation, we expressed truncated variants of these proteins, and made mutations in previously identified NLR sequence motifs. We found that any domain truncation, in either Pikp-1 or Pikp-2, prevented cell death in the presence of AVR-PikD, revealing that all domains are required for activity. Further, expression of individual Pikp-1 or Pikp-2 domains did not result in cell death. Mutations in the conserved P-loop and MHD sequence motifs in both Pikp-1 and Pikp-2 prevented cell death activation, demonstrating that these motifs are required for the function of the two partner NLRs. Finally, we showed that Pikp-1 and Pikp-2 associate to form homo- and hetero-complexes in planta in the absence of AVR-PikD; on co-expression the effector binds to Pikp-1 generating a tri-partite complex. Taken together, we provide evidence that Pikp-1 and Pikp-2 form a fine-tuned system that is activated by AVR-PikD via receptor cooperation rather than negative regulation.
Collapse
Affiliation(s)
- Rafał Zdrzałek
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Centre, Iwate, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hiromasa Saitoh
- Laboratory of Plant Symbiotic and Parasitic Microbes, Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Mark J. Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
38
|
Saile SC, Jacob P, Castel B, Jubic LM, Salas-Gonzáles I, Bäcker M, Jones JDG, Dangl JL, El Kasmi F. Two unequally redundant "helper" immune receptor families mediate Arabidopsis thaliana intracellular "sensor" immune receptor functions. PLoS Biol 2020; 18:e3000783. [PMID: 32925907 PMCID: PMC7514072 DOI: 10.1371/journal.pbio.3000783] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/24/2020] [Accepted: 08/17/2020] [Indexed: 01/08/2023] Open
Abstract
Plant nucleotide-binding (NB) leucine-rich repeat (LRR) receptor (NLR) proteins function as intracellular immune receptors that perceive the presence of pathogen-derived virulence proteins (effectors) to induce immune responses. The 2 major types of plant NLRs that “sense” pathogen effectors differ in their N-terminal domains: these are Toll/interleukin-1 receptor resistance (TIR) domain-containing NLRs (TNLs) and coiled-coil (CC) domain-containing NLRs (CNLs). In many angiosperms, the RESISTANCE TO POWDERY MILDEW 8 (RPW8)-CC domain containing NLR (RNL) subclass of CNLs is encoded by 2 gene families, ACTIVATED DISEASE RESISTANCE 1 (ADR1) and N REQUIREMENT GENE 1 (NRG1), that act as “helper” NLRs during multiple sensor NLR-mediated immune responses. Despite their important role in sensor NLR-mediated immunity, knowledge of the specific, redundant, and synergistic functions of helper RNLs is limited. We demonstrate that the ADR1 and NRG1 families act in an unequally redundant manner in basal resistance, effector-triggered immunity (ETI) and regulation of defense gene expression. We define RNL redundancy in ETI conferred by some TNLs and in basal resistance against virulent pathogens. We demonstrate that, in Arabidopsis thaliana, the 2 RNL families contribute specific functions in ETI initiated by specific CNLs and TNLs. Time-resolved whole genome expression profiling revealed that RNLs and “classical” CNLs trigger similar transcriptome changes, suggesting that RNLs act like other CNLs to mediate ETI downstream of sensor NLR activation. Together, our genetic data confirm that RNLs contribute to basal resistance, are fully required for TNL signaling, and can also support defense activation during CNL-mediated ETI. This study shows that two intracellular plant Nod-like immune receptor (NLR-) subfamilies act with unequal redundancy in their roles in plant disease resistance to virulent and avirulent pathogens, in effector-triggered immunity induced gene expression and in immunity-associated cell death. This function is most likely in parallel with, and not downstream of, other canonical intracellular plant immune receptors.
Collapse
Affiliation(s)
- Svenja C. Saile
- Center for Plant Molecular Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Pierre Jacob
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Baptiste Castel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Lance M. Jubic
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Isai Salas-Gonzáles
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Marcel Bäcker
- Center for Plant Molecular Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | | | - Jeffery L. Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Farid El Kasmi
- Center for Plant Molecular Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
39
|
Lapin D, Bhandari DD, Parker JE. Origins and Immunity Networking Functions of EDS1 Family Proteins. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:253-276. [PMID: 32396762 DOI: 10.1146/annurev-phyto-010820-012840] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The EDS1 family of structurally unique lipase-like proteins EDS1, SAG101, and PAD4 evolved in seed plants, on top of existing phytohormone and nucleotide-binding-leucine-rich-repeat (NLR) networks, to regulate immunity pathways against host-adapted biotrophic pathogens. Exclusive heterodimers between EDS1 and SAG101 or PAD4 create essential surfaces for resistance signaling. Phylogenomic information, together with functional studies in Arabidopsis and tobacco, identify a coevolved module between the EDS1-SAG101 heterodimer and coiled-coil (CC) HET-S and LOP-B (CCHELO) domain helper NLRs that is recruited by intracellular Toll-interleukin1-receptor (TIR) domain NLR receptors to confer host cell death and pathogen immunity. EDS1-PAD4 heterodimers have a different and broader activity in basal immunity that transcriptionally reinforces local and systemic defenses triggered by various NLRs. Here, we consider EDS1 family protein functions across seed plant lineages in the context of networking with receptor and helper NLRs and downstream resistance machineries. The different modes of action and pathway connectivities of EDS1 family members go some way to explaining their central role in biotic stress resilience.
Collapse
Affiliation(s)
- Dmitry Lapin
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824, USA
| | - Deepak D Bhandari
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|
40
|
Wu Z, Tong M, Tian L, Zhu C, Liu X, Zhang Y, Li X. Plant E3 ligases SNIPER1 and SNIPER2 broadly regulate the homeostasis of sensor NLR immune receptors. EMBO J 2020; 39:e104915. [PMID: 32557679 PMCID: PMC7396873 DOI: 10.15252/embj.2020104915] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 11/09/2022] Open
Abstract
In both plants and animals, nucleotide-binding leucine-rich repeat (NLR) immune receptors perceive pathogen-derived molecules to trigger immunity. Global NLR homeostasis must be tightly controlled to ensure sufficient and timely immune output while avoiding aberrant activation, the mechanisms of which are largely unclear. In a previous reverse genetic screen, we identified two novel E3 ligases, SNIPER1 and its homolog SNIPER2, both of which broadly control the levels of NLR immune receptors in Arabidopsis. Protein levels of sensor NLRs (sNLRs) are inversely correlated with SNIPER1 amount and the interactions between SNIPER1 and sNLRs seem to be through the common nucleotide-binding (NB) domains of sNLRs. In support, SNIPER1 can ubiquitinate the NB domains of multiple sNLRs in vitro. Our study thus reveals a novel process of global turnover of sNLRs by two master E3 ligases for immediate attenuation of immune output to effectively avoid autoimmunity. Such unique mechanism can be utilized in the future for engineering broad-spectrum resistance in crops to fend off pathogens that damage our food supply.
Collapse
Affiliation(s)
- Zhongshou Wu
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Meixuezi Tong
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Lei Tian
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Chipan Zhu
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Xueru Liu
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Yuelin Zhang
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Xin Li
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
41
|
Xiong Y, Han Z, Chai J. Resistosome and inflammasome: platforms mediating innate immunity. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:47-55. [PMID: 32554225 DOI: 10.1016/j.pbi.2020.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The nucleotide-binding domain (NBD) and leucine-rich repeat (LRR) containing (NLR) proteins are intracellular immune receptors that sense pathogens or stress-associated signals in animals and plants. Direct or indirect binding of these stimuli to NLRs results in formation of higher-order large protein complexes termed inflammasomes in animals and resistosomes in plants to mediate immune signaling. Here we focus on plant NLRs and discuss the activation mechanism of the ZAR1 resistosome from Arabidopsis thaliana. We also outline the analogies and differences between the ZAR1 resistosome and the NLR inflammasomes, and discuss how the structural and biochemical information available on these two large types of protein complexes sheds light on signaling mechanisms of other plant NLRs.
Collapse
Affiliation(s)
- Yehui Xiong
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Zhifu Han
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Jijie Chai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China; Max Planck Institute for Plant Breeding Research, Cologne, Germany; Institute of Biochemistry, University of Cologne, Zuelpicher Strasse 47, 50674 Cologne, Germany.
| |
Collapse
|
42
|
Sukarta OC, Townsend PD, Llewelyn A, Dixon CH, Slootweg EJ, Pålsson LO, Takken FL, Goverse A, Cann MJ. A DNA-Binding Bromodomain-Containing Protein Interacts with and Reduces Rx1-Mediated Immune Response to Potato Virus X. PLANT COMMUNICATIONS 2020; 1:100086. [PMID: 32715296 PMCID: PMC7371201 DOI: 10.1016/j.xplc.2020.100086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 06/01/2023]
Abstract
Plant NLR proteins enable the immune system to recognize and respond to pathogen attack. An early consequence of immune activation is transcriptional reprogramming. Some NLRs have been shown to act in the nucleus and interact with transcription factors. The Rx1 NLR protein of potato binds and distorts double-stranded DNA. However, the components of the chromatin-localized Rx1 complex are largely unknown. Here, we report a physical and functional interaction between Rx1 and NbDBCP, a bromodomain-containing chromatin-interacting protein. NbDBCP accumulates in the nucleoplasm and nucleolus, interacts with chromatin, and redistributes Rx1 to the nucleolus in a subpopulation of imaged cells. Rx1 overexpression reduces the interaction between NbDBCP and chromatin. NbDBCP is a negative regulator of Rx1-mediated immune responses to potato virus X (PVX), and this activity requires an intact bromodomain. Previously, Rx1 has been shown to regulate the DNA-binding activity of a Golden2-like transcription factor, NbGlk1. Rx1 and NbDBCP act synergistically to reduce NbGlk1 DNA binding, suggesting a mode of action for NbDBCP's inhibitory effect on immunity. This study provides new mechanistic insight into the mechanism by which a chromatin-localized NLR complex co-ordinates immune signaling after pathogen perception.
Collapse
Affiliation(s)
- Octavina C.A. Sukarta
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Philip D. Townsend
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK
| | - Alexander Llewelyn
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK
| | - Christopher H. Dixon
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK
| | - Erik J. Slootweg
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Lars-Olof Pålsson
- Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK
| | - Frank L.W. Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Martin J. Cann
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
43
|
Wang J, Chai J. Molecular actions of NLR immune receptors in plants and animals. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1303-1316. [DOI: 10.1007/s11427-019-1687-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022]
|
44
|
Wang J, Chai J. Structural Insights into the Plant Immune Receptors PRRs and NLRs. PLANT PHYSIOLOGY 2020; 182:1566-1581. [PMID: 32047048 PMCID: PMC7140948 DOI: 10.1104/pp.19.01252] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/20/2020] [Indexed: 05/30/2023]
Abstract
Recent progresses made in structural analysis of plant PRRs and NLRs show the advancements in cryo-EM structural biology.
Collapse
Affiliation(s)
- Jizong Wang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jijie Chai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
45
|
Wang J, Tian W, Tao F, Wang J, Shang H, Chen X, Xu X, Hu X. TaRPM1 Positively Regulates Wheat High-Temperature Seedling-Plant Resistance to Puccinia striiformis f. sp. tritici. FRONTIERS IN PLANT SCIENCE 2020; 10:1679. [PMID: 32010164 PMCID: PMC6974556 DOI: 10.3389/fpls.2019.01679] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/28/2019] [Indexed: 05/13/2023]
Abstract
RPM1 is a CC-NBS-LRR protein that was first shown to be required for resistance to Pseudomonas syringae pv. maculicola in Arabidopsis thaliana. Our previous study showed that TaRPM1 gene in wheat was upregulated about six times following infection by Puccinia striiformis f. sp. tritici (Pst) under high temperature, compared with normal temperature. To study the function of TaRPM1 in wheat high-temperature seedling-plant (HTSP) resistance to Pst, the full length of TaRPM1 was cloned, with three copies each located on chromosomes 1A, 1B, and 1D. Transient expression of the TaRPM1-GFP fusion protein in Nicotiana benthamiana indicated that TaRPM1 localizes in the cytoplasm and nucleus. Profiling TaRPM1 expression indicated that TaRPM1 transcription was rapidly upregulated upon Pst inoculation under high temperature. In addition, TaRPM1 was induced by exogenous salicylic acid hormone application. Silencing TaRPM1 in wheat cultivar Xiaoyan 6 (XY 6) resulted in reduced HTSP resistance to Pst in terms of reduced number of necrotic cells and increased uredinial length, whereas no obvious phenotypic changes were observed in TaRPM1-silenced leaves under normal temperature. Related defense genes TaPR1 and TaPR2 were downregulated in TaRPM1-silenced plants under high temperature. We conclude that TaRPM1 is involved in HTSP resistance to Pst in XY 6.
Collapse
Affiliation(s)
- Jiahui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wei Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Fei Tao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jingjing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Hongsheng Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xianming Chen
- Agricultural Research Service, United States Department of Agriculture and Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Xiangming Xu
- Pest & Pathogen Ecology, NIAB East Malling Research, Kent, United Kingdom
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
46
|
van Wersch S, Tian L, Hoy R, Li X. Plant NLRs: The Whistleblowers of Plant Immunity. PLANT COMMUNICATIONS 2020; 1:100016. [PMID: 33404540 PMCID: PMC7747998 DOI: 10.1016/j.xplc.2019.100016] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 05/19/2023]
Abstract
The study of plant diseases is almost as old as agriculture itself. Advancements in molecular biology have given us much more insight into the plant immune system and how it detects the many pathogens plants may encounter. Members of the primary family of plant resistance (R) proteins, NLRs, contain three distinct domains, and appear to use several different mechanisms to recognize pathogen effectors and trigger immunity. Understanding the molecular process of NLR recognition and activation has been greatly aided by advancements in structural studies, with ZAR1 recently becoming the first full-length NLR to be visualized. Genetic and biochemical analysis identified many critical components for NLR activation and homeostasis control. The increased study of helper NLRs has also provided insights into the downstream signaling pathways of NLRs. This review summarizes the progress in the last decades on plant NLR research, focusing on the mechanistic understanding that has been achieved.
Collapse
Affiliation(s)
- Solveig van Wersch
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Labs, University of British Columbia, Vancouver, BC, Canada
| | - Lei Tian
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Labs, University of British Columbia, Vancouver, BC, Canada
| | - Ryan Hoy
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Labs, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
47
|
Baudin M, Schreiber KJ, Martin EC, Petrescu AJ, Lewis JD. Structure-function analysis of ZAR1 immune receptor reveals key molecular interactions for activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:352-370. [PMID: 31557357 DOI: 10.1111/tpj.14547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 05/26/2023]
Abstract
NLR (nucleotide-binding [NB] leucine-rich repeat [LRR] receptor) proteins are critical for inducing immune responses in response to pathogen proteins, and must be tightly modulated to prevent spurious activation in the absence of a pathogen. The ZAR1 NLR recognizes diverse effector proteins from Pseudomonas syringae, including HopZ1a, and Xanthomonas species. Receptor-like cytoplasmic kinases (RLCKs) such as ZED1, interact with ZAR1 and provide specificity for different effector proteins, such as HopZ1a. We previously developed a transient expression system in Nicotiana benthamiana that allowed us to demonstrate that ZAR1 function is conserved from the Brassicaceae to the Solanaceae. Here, we combined structural modelling of ZAR1, with molecular and functional assays in our transient system, to show that multiple intramolecular and intermolecular interactions modulate ZAR1 activity. We identified determinants required for the formation of the ZARCC oligomer and its activity. Lastly, we characterized intramolecular interactions between ZAR1 subdomains that participate in keeping ZAR1 immune complexes inactive. This work identifies molecular constraints on immune receptor function and activation.
Collapse
Affiliation(s)
- Maël Baudin
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, USA
| | - Karl J Schreiber
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, USA
| | - Eliza C Martin
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Andrei J Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Jennifer D Lewis
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, USA
- United States Department of Agriculture, Plant Gene Expression Center, Albany, USA
| |
Collapse
|
48
|
Schultz-Larsen T, Lenk A, Kalinowska K, Vestergaard LK, Pedersen C, Isono E, Thordal-Christensen H. The AMSH3 ESCRT-III-Associated Deubiquitinase Is Essential for Plant Immunity. Cell Rep 2019; 25:2329-2338.e5. [PMID: 30485803 DOI: 10.1016/j.celrep.2018.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/04/2018] [Accepted: 10/31/2018] [Indexed: 11/28/2022] Open
Abstract
Plant "nucleotide-binding leucine-rich repeat" receptor proteins (NLRs) detect alterations in host targets of pathogen effectors and trigger immune responses. The Arabidopsis thaliana mutant pen1 syp122 displays autoimmunity, and a mutant screen identified the deubiquitinase "associated molecule with the SH3 domain of STAM3" (AMSH3) to be required for this phenotype. AMSH3 has previously been implicated in ESCRT-mediated vacuolar targeting. Pathology experiments show that AMSH3 activity is required for immunity mediated by the CC-NLRs, RPS2 and RPM1. Co-expressing the autoactive RPM1D505V and the catalytically inactive ESCRT-III protein SKD1E232Q in Nicotiana benthamiana supports the requirement of ESCRT-associated functions for this CC-NLR-activated immunity. Meanwhile, loss of ESCRT function in A. thaliana is lethal, and we find that AMSH3 knockout-triggered seedling lethality is "enhanced disease susceptibility 1" (EDS1) dependent. Future studies may reveal whether AMSH3 is monitored by a TIR-NLR immunity receptor.
Collapse
Affiliation(s)
- Torsten Schultz-Larsen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Andrea Lenk
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Kamila Kalinowska
- Department of Plant Sciences, Technical University of Munich, 85456 Freising, Germany
| | - Lau Kræsing Vestergaard
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Carsten Pedersen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Erika Isono
- Department of Plant Sciences, Technical University of Munich, 85456 Freising, Germany; Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Hans Thordal-Christensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
49
|
Adachi H, Derevnina L, Kamoun S. NLR singletons, pairs, and networks: evolution, assembly, and regulation of the intracellular immunoreceptor circuitry of plants. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:121-131. [PMID: 31154077 DOI: 10.1016/j.pbi.2019.04.007] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/26/2019] [Accepted: 04/20/2019] [Indexed: 05/20/2023]
Abstract
NLRs are modular plant and animal proteins that are intracellular sensors of pathogen-associated molecules. Upon pathogen perception, NLRs trigger a potent broad-spectrum immune reaction known as the hypersensitive response. An emerging paradigm is that plant NLR immune receptors form networks with varying degrees of complexity. NLRs may have evolved from multifunctional singleton receptors, which combine pathogen detection (sensor activity) and immune signalling (helper or executor activity) into a single protein, to functionally specialized interconnected receptor pairs and networks. In this article, we highlight some of the recent advances in plant NLR biology by discussing models of NLR evolution, NLR complex formation, and how NLR (mis)regulation modulates immunity and autoimmunity. Multidisciplinary approaches are required to dissect the evolution, assembly, and regulation of the immune receptor circuitry of plants. With the new conceptual framework provided by the elucidation of the structure and activation mechanism of a plant NLR resistosome, this field is entering an exciting era of research.
Collapse
Affiliation(s)
- Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Lida Derevnina
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
50
|
Jubic LM, Saile S, Furzer OJ, El Kasmi F, Dangl JL. Help wanted: helper NLRs and plant immune responses. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:82-94. [PMID: 31063902 DOI: 10.1016/j.pbi.2019.03.013] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 05/09/2023]
Abstract
Plant nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins function as intracellular receptors in response to pathogens and activate effector-triggered immune responses (ETI). The activation of some sensor NLRs (sNLR) by their corresponding pathogen effector is well studied. However, the mechanisms by which the recently defined helper NLRs (hNLR) function to transduce sNLR activation into ETI-associated cell death and disease resistance remains poorly understood. We briefly summarize recent examples of sNLR activation and we then focus on hNLR requirements in sNLR-initiated immune responses. We further discuss how shared sequence homology with fungal self-incompatibility proteins and the mammalian mixed lineage kinase domain like pseudokinase (MLKL) proteins informs a plausible model for the structure and function of an ancient clade of plant hNLRs, called RNLs.
Collapse
Affiliation(s)
- Lance M Jubic
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Svenja Saile
- ZMBP-Plant Physiology, University of Tübingen, Tübingen, Germany
| | - Oliver J Furzer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Farid El Kasmi
- ZMBP-Plant Physiology, University of Tübingen, Tübingen, Germany.
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA; Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| |
Collapse
|