1
|
Zhang ZE, Kim A, Suboc N, Mancuso N, Gazal S. Efficient count-based models improve power and robustness for large-scale single-cell eQTL mapping. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.18.25320755. [PMID: 40093202 PMCID: PMC11908335 DOI: 10.1101/2025.01.18.25320755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Population-scale single-cell transcriptomic technologies (scRNA-seq) enable characterizing variant effects on gene regulation at the cellular level (e.g., single-cell eQTLs; sc-eQTLs). However, existing sc-eQTL mapping approaches are either not designed for analyzing sparse counts in scRNA-seq data or can become intractable in extremely large datasets. Here, we propose jaxQTL, a flexible and efficient sc-eQTL mapping framework using highly efficient count-based models given pseudobulk data. Using extensive simulations, we demonstrated that jaxQTL with a negative binomial model outperformed other models in identifying sc-eQTLs, while maintaining a calibrated type I error. We applied jaxQTL across 14 cell types of OneK1K scRNA-seq data (N=982), and identified 11-16% more eGenes compared with existing approaches, primarily driven by jaxQTL ability to identify lowly expressed eGenes. We observed that fine-mapped sc-eQTLs were further from transcription starting site (TSS) than fine-mapped eQTLs identified in all cells (bulk-eQTLs; P=1x10-4) and more enriched in cell-type-specific enhancers (P=3x10-10), suggesting that sc-eQTLs improve our ability to identify distal eQTLs that are missed in bulk tissues. Overall, the genetic effect of fine-mapped sc-eQTLs were largely shared across cell types, with cell-type-specificity increasing with distance to TSS. Lastly, we observed that sc-eQTLs explain more SNP-heritability (h2 ) than bulk-eQTLs (9.90 ± 0.88% vs. 6.10 ± 0.76% when meta-analyzed across 16 blood and immune-related traits), improving but not closing the missing link between GWAS and eQTLs. As an example, we highlight that sc-eQTLs in T cells (unlike bulk-eQTLs) can successfully nominate IL6ST as a candidate gene for rheumatoid arthritis. Overall, jaxQTL provides an efficient and powerful approach using count-based models to identify missing disease-associated eQTLs.
Collapse
Affiliation(s)
- Zixuan Eleanor Zhang
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
| | - Artem Kim
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
| | - Noah Suboc
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
| | - Nicholas Mancuso
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
- Department of Quantitative and Computational Biology, University of Southern California
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California
| | - Steven Gazal
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
- Department of Quantitative and Computational Biology, University of Southern California
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California
| |
Collapse
|
2
|
Li J, Cui J, Wu L, Liu YB, Wang Q. Machine learning and molecular subtype analyses provide insights into PANoptosis-associated genes in rheumatoid arthritis. Arthritis Res Ther 2023; 25:233. [PMID: 38041172 PMCID: PMC10691119 DOI: 10.1186/s13075-023-03222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND PANoptosis represents a newly identified form of programmed cell death that plays a significant role in the autoimmune diseases. Rheumatoid arthritis (RA) is characterized by the presence of autoantibodies. Nevertheless, the specific biomarkers and molecular mechanisms responsible for the apoptotic characteristics of RA remain largely uninvestigated. METHODS We utilized 8 synovial tissue RA datasets. We selected genes associated with PANoptosis from the GeneCard database. By employing the limma, WGCNA, and machine learning algorithms we identified core genes. We utilized consensus clustering analysis to identify distinct PANoptosis subtypes of RA. Boruta algorithm was employed to construct a PANoptosis signature score. The sensitivity of distinct subtypes to drug treatment was verified using an independent dataset. RESULTS The SPP1 emerged as the significant gene, with its elevated expression in RA patients. We identified two PANoptosis RA subtypes. Cluster 1 showed high expression of Tregs, resting dendritic cells, and resting mast cells. Cluster 2 exhibited high expression of CD4 memory T cells and follicular helper T cells. Cluster 2 exhibited a higher degree of sensitivity towards immune checkpoint therapy. Employing the Boruta algorithm, a subtype score was devised for 37 PANoptosis genes, successfully discerning the subtypes (AUC = 0.794), wherein patients with elevated scores demonstrated enhanced responsiveness to Rituximab treatment. CONCLUSION Our analysis revealed that SPP1 holds potential biomarker for the diagnosis of RA. Cluster 2 exhibited enhanced sensitivity to immune checkpoint therapy, higher PANoptosis scores, and improved responsiveness to drug treatment. This study offers potential implications in the realm of diagnosis and treatment.
Collapse
Affiliation(s)
- Jing Li
- Department of Anesthesiology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Jun Cui
- Department of Anesthesiology, The Hospital of Sinochem Second Construction Group Co, LTD, Taiyuan, China
| | - Li Wu
- Department of Anesthesiology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Ya-Bing Liu
- Department of Anesthesiology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China.
| | - Qi Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, 030000, China.
| |
Collapse
|
3
|
Small A, Lowe K, Wechalekar MD. Immune checkpoints in rheumatoid arthritis: progress and promise. Front Immunol 2023; 14:1285554. [PMID: 38077329 PMCID: PMC10704353 DOI: 10.3389/fimmu.2023.1285554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is one of the most prevalent autoimmune inflammatory conditions, and while the mechanisms driving pathogenesis are yet to be completely elucidated, self-reactive T cells and immune checkpoint pathways have a clear role. In this review, we provide an overview of the importance of checkpoint pathways in the T cell response and describe the involvement of these in RA development and progression. We discuss the relationship between immune checkpoint therapy in cancer and autoimmune adverse events, draw parallels with the involvement of immune checkpoints in RA pathobiology, summarise emerging research into some of the lesser-known pathways, and the potential of targeting checkpoint-related pathways in future treatment approaches to RA management.
Collapse
Affiliation(s)
- Annabelle Small
- Department of Rheumatology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Katie Lowe
- Department of Rheumatology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Mihir D Wechalekar
- Department of Rheumatology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Rheumatology, Flinders Medical Centre, Adelaide, SA, Australia
| |
Collapse
|
4
|
RNA methylation in immune cells. Adv Immunol 2022; 155:39-94. [PMID: 36357012 DOI: 10.1016/bs.ai.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
5
|
Cell-type-specific cis-eQTLs in eight human brain cell types identify novel risk genes for psychiatric and neurological disorders. Nat Neurosci 2022; 25:1104-1112. [PMID: 35915177 DOI: 10.1038/s41593-022-01128-z] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/22/2022] [Indexed: 12/22/2022]
Abstract
To date, most expression quantitative trait loci (eQTL) studies, which investigate how genetic variants contribute to gene expression, have been performed in heterogeneous brain tissues rather than specific cell types. In this study, we performed an eQTL analysis using single-nuclei RNA sequencing from 192 individuals in eight brain cell types derived from the prefrontal cortex, temporal cortex and white matter. We identified 7,607 eGenes, a substantial fraction (46%, 3,537/7,607) of which show cell-type-specific effects, with strongest effects in microglia. Cell-type-level eQTLs affected more constrained genes and had larger effect sizes than tissue-level eQTLs. Integration of brain cell type eQTLs with genome-wide association studies (GWAS) revealed novel relationships between expression and disease risk for neuropsychiatric and neurodegenerative diseases. For most GWAS loci, a single gene co-localized in a single cell type, providing new clues into disease etiology. Our findings demonstrate substantial contrast in genetic regulation of gene expression among brain cell types and reveal potential mechanisms by which disease risk genes influence brain disorders.
Collapse
|
6
|
Sghiri R, Benhassine H, Baccouche K, Ghozzi M, Jriri S, Shakoor Z, Almogren A, Slama F, Idriss N, Benlamine Z, Bouajina E, Zemni R. A CD40 variant is associated with systemic bone loss among patients with rheumatoid arthritis. Clin Rheumatol 2022; 41:1851-1858. [PMID: 35107652 DOI: 10.1007/s10067-021-05998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Little is known about genes predisposing to systemic bone loss (SBL) in rheumatoid arthritis (RA). Therefore, we examined the association between SBL and variants of genes playing a critical role in both immune response and bone homeostasis among patients with RA. METHODS IRAK-1 rs3027898, IRAK-2 rs3844283, IRAK-2 rs708035, IFIH1 rs1990760, CD40 rs48104850, TNFAIP3 rs2230926, and miR146-a rs2910164 were genotyped in 176 adult RA patients. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry (DXA). RESULTS Low BMD was observed in 116 (65.9%) patients. Among them, 60 (34.1%) had low femoral neck (FN) Z score, 72 (40.9%) had low total femur (TF) Z score, and 105 (59.6%) had low lumbar spine (LS) Z score. Among all the SNPs assessed, only CD40 rs4810485 was found to be associated with reduced TF Z score with the CD40 rs4810485 T allele protecting against reduced TF Z score (OR = 0.40, 95% CI = 0.23-0.68, p = 0.0005). This association was confirmed in the multivariate logistic regression analysis (OR = 0.31, 95% CI = 0.16-0.59, p = 3.84 × 10-4). Moreover, median FN BMD was reduced among RA patients with CD40 rs4810485 GG genotype compared to RA patients harbouring CD40 rs4810485 TT and GT genotypes (0.788 ± 0.136 versus 0.826 ± 0.146 g/cm2, p = 0.001). IRAK-1 rs3027898, IRAK-2 rs3844283, rs708035, IFIH rs1990760, TNFAIP3 rs2230926, and miR146-a rs2910164 were not found to be associated with SBL. CONCLUSION This study for the first time ever demonstrated an association between a CD40 genetic variant and SBL among patients with RA. KEY POINTS • CD40 rs4810485 GG genotype is associated with decreased BMD among patients with RA. • CD40 rs4810485 might serve as a genetic marker for SBL in RA. • CD40 genetic variations might be integrated in future development of more effective therapeutic interventions for prevention of SBL in RA.
Collapse
Affiliation(s)
- Rim Sghiri
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Hana Benhassine
- Immunogenetics Unit, Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | | | - Meriem Ghozzi
- Immunogenetics Unit, Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Sarra Jriri
- Department of Rheumatology, Farhat Hached Hospital, Sousse, Tunisia
| | - Zahid Shakoor
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Adel Almogren
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Foued Slama
- Immunogenetics Unit, Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Nadia Idriss
- Immunogenetics Unit, Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Zeineb Benlamine
- Immunogenetics Unit, Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Elyes Bouajina
- Department of Rheumatology, Farhat Hached Hospital, Sousse, Tunisia
| | - Ramzi Zemni
- Immunogenetics Unit, Faculty of Medicine, University of Sousse, Sousse, Tunisia
| |
Collapse
|
7
|
Zou M, Jiang D, Wu T, Zhang X, Zhao Y, Wu D, Sun W, Cui J, Moreland L, Li G. Post-GWAS functional studies reveal an RA-associated CD40-induced NF-kB signal transduction and transcriptional regulation network targeted by class II HDAC inhibitors. Hum Mol Genet 2021; 30:823-835. [PMID: 33517445 PMCID: PMC8161515 DOI: 10.1093/hmg/ddab032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
Currently, it remains difficult to identify which single nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) are functional and how various functional SNPs (fSNPs) interact and contribute to disease susceptibility. GWAS have identified a CD40 locus that is associated with rheumatoid arthritis (RA). We previously used two techniques developed in our laboratory, single nucleotide polymorphism-next-generation sequencing (SNP-seq) and flanking restriction enhanced DNA pulldown-mass spectrometry (FREP-MS), to determine that the RA risk gene RBPJ regulates CD40 expression via a fSNP at the RA-associated CD40 locus. In the present work, by applying the same approach, we report the identification of six proteins that regulate RBPJ expression via binding to two fSNPs on the RA-associated RBPJ locus. Using these findings, together with the published data, we constructed an RA-associated signal transduction and transcriptional regulation network (STTRN) that functionally connects multiple RA-associated risk genes via transcriptional regulation networks (TRNs) linked by CD40-induced nuclear factor kappa B (NF-kB) signaling. Remarkably, this STTRN provides insight into the potential mechanism of action for the histone deacetylase inhibitor givinostat, an approved therapy for systemic juvenile idiopathic arthritis. Thus, the generation of disease-associated STTRNs based on post-GWAS functional studies is demonstrated as a novel and effective approach to apply GWAS for mechanistic studies and target identification.
Collapse
Affiliation(s)
- Meijuan Zou
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Danli Jiang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ting Wu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Medicine, Xiangya School of Medicine, Central South University, Changsha 410083, China
| | - Xiaoyu Zhang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yihan Zhao
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Di Wu
- Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wei Sun
- Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Jing Cui
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Larry Moreland
- Department of Medicine, Division of Rheumatology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Gang Li
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Medicine, Division of Cardiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| |
Collapse
|
8
|
Tsuchiya H, Ota M, Sumitomo S, Ishigaki K, Suzuki A, Sakata T, Tsuchida Y, Inui H, Hirose J, Kochi Y, Kadono Y, Shirahige K, Tanaka S, Yamamoto K, Fujio K. Parsing multiomics landscape of activated synovial fibroblasts highlights drug targets linked to genetic risk of rheumatoid arthritis. Ann Rheum Dis 2021; 80:440-450. [PMID: 33139312 DOI: 10.1136/annrheumdis-2020-218189] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Synovial fibroblasts (SFs) are one of the major components of the inflamed synovium in rheumatoid arthritis (RA). We aimed to gain insight into the pathogenic mechanisms of SFs through elucidating the genetic contribution to molecular regulatory networks under inflammatory condition. METHODS SFs from RA and osteoarthritis (OA) patients (n=30 each) were stimulated with eight different cytokines (interferon (IFN)-α, IFN-γ, tumour necrosis factor-α, interleukin (IL)-1β, IL-6/sIL-6R, IL-17, transforming growth factor-β1, IL-18) or a combination of all 8 (8-mix). Peripheral blood mononuclear cells were fractioned into five immune cell subsets (CD4+ T cells, CD8+ T cells, B cells, natural killer (NK) cells, monocytes). Integrative analyses including mRNA expression, histone modifications (H3K27ac, H3K4me1, H3K4me3), three-dimensional (3D) genome architecture and genetic variations of single nucleotide polymorphisms (SNPs) were performed. RESULTS Unstimulated RASFs differed markedly from OASFs in the transcriptome and epigenome. Meanwhile, most of the responses to stimulations were shared between the diseases. Activated SFs expressed pathogenic genes, including CD40 whose induction by IFN-γ was significantly affected by an RA risk SNP (rs6074022). On chromatin remodelling in activated SFs, RA risk loci were enriched in clusters of enhancers (super-enhancers; SEs) induced by synergistic proinflammatory cytokines. An RA risk SNP (rs28411362), located in an SE under synergistically acting cytokines, formed 3D contact with the promoter of metal-regulatory transcription factor-1 (MTF1) gene, whose binding motif showed significant enrichment in stimulation specific-SEs. Consistently, inhibition of MTF1 suppressed cytokine and chemokine production from SFs and ameliorated mice model of arthritis. CONCLUSIONS Our findings established the dynamic landscape of activated SFs and yielded potential therapeutic targets associated with genetic risk of RA.
Collapse
Affiliation(s)
- Haruka Tsuchiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shuji Sumitomo
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuyoshi Ishigaki
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Toyonori Sakata
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yumi Tsuchida
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Inui
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Hirose
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuta Kochi
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuho Kadono
- Department of Orthopaedic Surgery, Saitama Medical University, Saitama, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Transcriptional Regulation of CD40 Expression by 4 Ribosomal Proteins via a Functional SNP on a Disease-Associated CD40 Locus. Genes (Basel) 2020; 11:genes11121526. [PMID: 33371207 PMCID: PMC7767238 DOI: 10.3390/genes11121526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023] Open
Abstract
Previously, using FREP-MS, we identified a protein complex including eight proteins that specifically bind to the functional SNP (fSNP) rs6032664 at a CD40 locus associated with autoimmune diseases. Among these eight proteins, four are ribosomal proteins RPL26, RPL4, RPL8, and RPS9 that normally make up the ribosomal subunits involved in the cellular process of protein translation. So far, no publication has shown these ribosomal proteins function as transcriptional regulators. In this work, we demonstrate that four ribosomal proteins: RPL26, RPL4, RPL8, and RPS9 are bona fide CD40 transcriptional regulators via binding to rs6032664. In addition, we show that suppression of CD40 expression by RPL26 RNAi knockdown inactivates NF-κB p65 by dephosphorylation via NF-κB signaling pathway in fibroblast-like synoviocytes (FLS), which further reduces the transcription of disease-associated risk genes such as STAT4, CD86, TRAF1 and ICAM1 as the direct targets of NF-κB p65. Based on these findings, a disease-associated risk gene transcriptional regulation network (TRN) is generated, in which decreased expression of, at least, RPL26 results in the downregulation of risk genes: STAT4, CD86, TRAF1 and ICAM1, as well as the two proinflammatory cytokines: IL1β and IL6 via CD40-induced NF-κB signaling. We believe that further characterization of this disease-associated TRN in the CD40-induced NF-κB signaling by identifying both the upstream and downstream regulators will potentially enable us to identify the best targets for drug development.
Collapse
|
10
|
Jiang C, Trudeau SJ, Cheong TC, Guo R, Teng M, Wang LW, Wang Z, Pighi C, Gautier-Courteille C, Ma Y, Jiang S, Wang C, Zhao B, Paillard L, Doench JG, Chiarle R, Gewurz BE. CRISPR/Cas9 Screens Reveal Multiple Layers of B cell CD40 Regulation. Cell Rep 2020; 28:1307-1322.e8. [PMID: 31365872 PMCID: PMC6684324 DOI: 10.1016/j.celrep.2019.06.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/06/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023] Open
Abstract
CD40 has major roles in B cell development, activation, and germinal center responses. CD40 hypoactivity causes immunodeficiency whereas its overexpression causes autoimmunity and lymphomagenesis. To systematically identify B cell autonomous CD40 regulators, we use CRISPR/Cas9 genome-scale screens in Daudi B cells stimulated by multimeric CD40 ligand. These highlight known CD40 pathway components and reveal multiple additional mechanisms regulating CD40. The nuclear ubiquitin ligase FBXO11 supports CD40 expression by targeting repressors CTBP1 and BCL6. FBXO11 knockout decreases primary B cell CD40 abundance and impairs class-switch recombination, suggesting that frequent lymphoma monoallelic FBXO11 mutations may balance BCL6 increase with CD40 loss. At the mRNA level, CELF1 controls exon splicing critical for CD40 activity, while the N6-adenosine methyltransferase WTAP negatively regulates CD40 mRNA abundance. At the protein level, ESCRT negatively regulates activated CD40 levels while the negative feedback phosphatase DUSP10 limits downstream MAPK responses. These results serve as a resource for future studies and highlight potential therapeutic targets. CD40 is critical for B cell development, germinal center formation, somatic hypermutation, and class-switch recombination. Increased CD40 abundance is associated with autoimmunity and cancer, whereas CD40 hypoactivity causes immunodeficiency. Jiang et al. performed a genome-wide CRISPR/Cas9 screen to reveal key B cell factors that control CD40 abundance and that regulate CD40 responses.
Collapse
Affiliation(s)
- Chang Jiang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen J Trudeau
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Taek-Chin Cheong
- Department of Pathology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Liang Wei Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Zhonghao Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chiara Pighi
- Department of Pathology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Carole Gautier-Courteille
- Biosit, Université de Rennes 1, 35043 Rennes, France; Centre National de la Recherche Scientifique UMR 6290, Institut de Génétique et Développement de Rennes, 35043 Rennes, France
| | - Yijie Ma
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sizun Jiang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Chong Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Bo Zhao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Luc Paillard
- Biosit, Université de Rennes 1, 35043 Rennes, France; Centre National de la Recherche Scientifique UMR 6290, Institut de Génétique et Développement de Rennes, 35043 Rennes, France
| | - John G Doench
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Roberto Chiarle
- Department of Pathology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
11
|
Pucino V, Gardner DH, Fisher BA. Rationale for CD40 pathway blockade in autoimmune rheumatic disorders. THE LANCET. RHEUMATOLOGY 2020; 2:e292-e301. [PMID: 38273474 DOI: 10.1016/s2665-9913(20)30038-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/15/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
CD40 and its ligand CD40L (CD154) belong to the tumor necrosis factor receptor superfamily and are expressed by a variety of immune and non-immune cells. CD40L plays a central role in co-stimulation and regulation of the immune response via activation of cells expressing CD40. Imbalance of the CD40-CD40L co-stimulatory pathway has been reported in many autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, and Sjögren's syndrome, thus supporting its role in the breach of immune tolerance that is typical of these diseases. Targeting CD40-CD40L signalling might represent a novel therapeutic option for several autoimmune disorders.
Collapse
Affiliation(s)
- Valentina Pucino
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK; National Institute for Health Research, Birmingham Biomedical Research Centre and Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - David H Gardner
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Benjamin A Fisher
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK; National Institute for Health Research, Birmingham Biomedical Research Centre and Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| |
Collapse
|
12
|
Shi Z, Feng L, Lian Z, Liu J, Chen H, Du Q, Zhang Y, Zhang Q, Yang M, Zhou H. Decreased mRNA Expressions of CD40L in Patients with Neuromyelitis Optica Spectrum Disorder. J Mol Neurosci 2020; 70:610-617. [PMID: 31925706 DOI: 10.1007/s12031-019-01467-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 12/10/2019] [Indexed: 02/08/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease that preferentially affects central nerve system. Herein, we evaluated changes of CD40L and CD40 mRNA expressions in NMOSD and controls to explore their potential roles in development of NMOSD. The expressions of CD40L and CD40 mRNA in peripheral blood mononuclear cells (PBMCs) from patients with NMOSD and healthy controls were detected by quantitative real-time PCR (qPCR). Kruskal-Wallis tests were used to compare expression levels of CD40L and CD40 mRNA between groups, and Spearman correlation analysis was performed to evaluate correlation between mRNA expression levels and annual relapse rate (ARR) of NMOSD. A total of 71 patients with NMOSD and 42 gender- and age-matched healthy volunteers were recruited in our study. Compared with healthy controls, expression of CD40L mRNA was significantly decreased in untreated patients with NMOSD, and similar trends were observed also in CD40 mRNA expression although the difference was not significant. Other than that, immunosuppressants not only successfully increased CD40L and CD40 mRNA levels during remission of NMOSD, but also corrected the negative correlation between CD40L mRNA expression and annual relapse rate (ARR) of patients NMOSD. These results favored the long-term prognosis of NMOSD patients. Our results suggest that decreased expressions of CD40L mRNA may be involved in developing of NMOSD and the proper CD40L mRNA levels benefit to prevent attacks of NMOSD. Nevertheless, the relationship between protein and mRNA expressions of CD40L and their underlying roles in the pathogenesis of NMOSD remains to be further studied.
Collapse
Affiliation(s)
- Ziyan Shi
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Ling Feng
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Zhiyun Lian
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Ju Liu
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Hongxi Chen
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Qin Du
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Ying Zhang
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Qin Zhang
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Mu Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China. .,Translational Centre for Oncoimmunology, Sichuan Cancer Hospital and research Institute, Sichuan Cancer Center, No.55 South Renmin Road, Chengdu, 610000, China.
| | - Hongyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
13
|
Machaj F, Rosik J, Szostak B, Pawlik A. The evolution in our understanding of the genetics of rheumatoid arthritis and the impact on novel drug discovery. Expert Opin Drug Discov 2019; 15:85-99. [PMID: 31661990 DOI: 10.1080/17460441.2020.1682992] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Rheumatoid arthritis (RA) is an autoimmune disease that is characterized by chronic inflammation of the joints and affects 1% of the population. Polymorphisms of genes that encode proteins that primarily participate in inflammation may influence RA occurrence or become useful biomarkers for certain types of anti-rheumatic treatment.Areas covered: The authors summarize the recent progress in our understanding of the genetics of RA. In the last few years, multiple variants of genes that are associated with RA risk have been identified. The development of new technologies and the detection of new potential therapeutic targets that contribute to novel drug discovery are also described.Expert opinion: There is still the need to search for new genes which may be a potential target for RA therapy. The challenge is to develop appropriate strategies for achieving insight into the molecular pathways involved in RA pathogenesis. Understanding the genetics, immunogenetics, epigenetics and immunology of RA could help to identify new targets for RA therapy. The development of new technologies has enabled the detection of a number of new genes, particularly genes associated with proinflammatory cytokines and chemokines, B- and T-cell activation pathways, signal transducers and transcriptional activators, which might be potential therapeutic targets in RA.
Collapse
Affiliation(s)
- Filip Machaj
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
14
|
Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 2019; 365:365/6460/eaav7188. [PMID: 31604244 PMCID: PMC7241648 DOI: 10.1126/science.aav7188] [Citation(s) in RCA: 714] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 08/06/2019] [Indexed: 02/02/2023]
Abstract
We analyzed genetic data of 47,429 multiple sclerosis (MS) and 68,374 control subjects and established a reference map of the genetic architecture of MS that includes 200 autosomal susceptibility variants outside the major histocompatibility complex (MHC), one chromosome X variant, and 32 variants within the extended MHC. We used an ensemble of methods to prioritize 551 putative susceptibility genes that implicate multiple innate and adaptive pathways distributed across the cellular components of the immune system. Using expression profiles from purified human microglia, we observed enrichment for MS genes in these brain-resident immune cells, suggesting that these may have a role in targeting an autoimmune process to the central nervous system, although MS is most likely initially triggered by perturbation of peripheral immune responses.
Collapse
Affiliation(s)
- International Multiple Sclerosis Genetics Consortium
- Correspondence to: Philip L. De Jager, MD PhD, Center for Translational & Computational Neuroimmunology, Multiple Sclerosis Center, Department of Neurology, Columbia University Medical Center, 630 W 168th Street P&S Box 16, New York, NY 10032, T: 212.305.3609,
| |
Collapse
|
15
|
Mousa TG, Omar HH, Emad R, Salama MI, Omar W, Fawzy M, Hassoba HM. The association of CD40 polymorphism (rs1883832C/T) and soluble CD40 with the risk of systemic lupus erythematosus among Egyptian patients. Clin Rheumatol 2018; 38:777-784. [DOI: 10.1007/s10067-018-4349-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/09/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022]
|
16
|
Brown MA, Wordsworth BP. Genetics in ankylosing spondylitis - Current state of the art and translation into clinical outcomes. Best Pract Res Clin Rheumatol 2018; 31:763-776. [PMID: 30509439 DOI: 10.1016/j.berh.2018.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/10/2018] [Accepted: 08/22/2018] [Indexed: 12/20/2022]
Abstract
Ankylosing spondylitis (AS) is the prototypic form of axial spondyloarthritis (axSpA). It is highly heritable, with studies conducted in twins and in unrelated cases and controls showing that the heritability for AS is much higher than those for inflammatory bowel disease or rheumatoid arthritis. To date, 116 loci have been identified, contributing to 28% of the genetic variation in the disease. These loci provide important clues into pathogenic pathways in the disease that have led to therapeutic advances such as the repositioning of IL-17 inhibitors in the disease. Much more research is currently required to determine the functional mechanisms by which the genetic associations operate, from which it is likely that novel therapeutic approaches will be developed.
Collapse
Affiliation(s)
- Matthew A Brown
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, Australia.
| | - B Paul Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Li G, Martínez-Bonet M, Wu D, Yang Y, Cui J, Nguyen HN, Cunin P, Levescot A, Bai M, Westra HJ, Okada Y, Brenner MB, Raychaudhuri S, Hendrickson EA, Maas RL, Nigrovic PA. High-throughput identification of noncoding functional SNPs via type IIS enzyme restriction. Nat Genet 2018; 50:1180-1188. [PMID: 30013183 PMCID: PMC6072570 DOI: 10.1038/s41588-018-0159-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/04/2018] [Indexed: 02/06/2023]
Abstract
Genome-wide association studies (GWAS) have identified many disease-associated noncoding variants, but cannot distinguish functional single-nucleotide polymorphisms (fSNPs) from others that reside incidentally within risk loci. To address this challenge, we developed an unbiased high-throughput screen that employs type IIS enzymatic restriction to identify fSNPs that allelically modulate the binding of regulatory proteins. We coupled this approach, termed SNP-seq, with flanking restriction enhanced pulldown (FREP) to identify regulation of CD40 by three disease-associated fSNPs via four regulatory proteins, RBPJ, RSRC2 and FUBP-1/TRAP150. Applying this approach across 27 loci associated with juvenile idiopathic arthritis, we identified 148 candidate fSNPs, including two that regulate STAT4 via the regulatory proteins SATB2 and H1.2. Together, these findings establish the utility of tandem SNP-seq/FREP to bridge the gap between GWAS and disease mechanism.
Collapse
Affiliation(s)
- Gang Li
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Cardiology and The Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Marta Martínez-Bonet
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Di Wu
- Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yu Yang
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Cardiology and The Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jing Cui
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hung N Nguyen
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pierre Cunin
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anaïs Levescot
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ming Bai
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Harm-Jan Westra
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Michael B Brenner
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- School of Biological Sciences, University of Manchester, Manchester, UK
| | - Eric A Hendrickson
- Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Richard L Maas
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter A Nigrovic
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
18
|
Bojadzic D, Buchwald P. Toward Small-Molecule Inhibition of Protein-Protein Interactions: General Aspects and Recent Progress in Targeting Costimulatory and Coinhibitory (Immune Checkpoint) Interactions. Curr Top Med Chem 2018; 18:674-699. [PMID: 29848279 PMCID: PMC6067980 DOI: 10.2174/1568026618666180531092503] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/27/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
Abstract
Protein-Protein Interactions (PPIs) that are part of the costimulatory and coinhibitory (immune checkpoint) signaling are critical for adequate T cell response and are important therapeutic targets for immunomodulation. Biologics targeting them have already achieved considerable clinical success in the treatment of autoimmune diseases or transplant recipients (e.g., abatacept, belatacept, and belimumab) as well as cancer (e.g., ipilimumab, nivolumab, pembrolizumab, atezolizumab, durvalumab, and avelumab). In view of such progress, there have been only relatively limited efforts toward developing small-molecule PPI inhibitors (SMPPIIs) targeting these cosignaling interactions, possibly because they, as all other PPIs, are difficult to target by small molecules and were not considered druggable. Nevertheless, substantial progress has been achieved during the last decade. SMPPIIs proving the feasibility of such approaches have been identified through various strategies for a number of cosignaling interactions including CD40-CD40L, OX40-OX40L, BAFFR-BAFF, CD80-CD28, and PD-1-PD-L1s. Here, after an overview of the general aspects and challenges of SMPPII-focused drug discovery, we review them briefly together with relevant structural, immune-signaling, physicochemical, and medicinal chemistry aspects. While so far only a few of these SMPPIIs have shown activity in animal models (DRI-C21045 for CD40-D40L, KR33426 for BAFFR-BAFF) or reached clinical development (RhuDex for CD80-CD28, CA-170 for PD-1-PD-L1), there is proof-of-principle evidence for the feasibility of such approaches in immunomodulation. They can result in products that are easier to develop/ manufacture and are less likely to be immunogenic or encounter postmarket safety events than corresponding biologics, and, contrary to them, can even become orally bioavailable.
Collapse
Affiliation(s)
- Damir Bojadzic
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
19
|
Revealing pathway cross-talk related to diabetes mellitus by Monte Carlo Cross-Validation analysis. Open Life Sci 2017. [DOI: 10.1515/biol-2017-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractObjectiveTo explore potential functional biomarkers in diabetes mellitus (DM) by utilizing gene pathway cross-talk.MethodsFirstly, potential disrupted pathways that were enriched by differentially expressed genes (DEGs) were identified based on biological pathways downloaded from the Ingenuity Pathways Analysis (IPA) database. In addition, we quantified the pathway crosstalk for each pair of pathways based on Discriminating Score (DS). Random forest (RF) classification was then employed to find the top 10 pairs of pathways with a high area under the curve (AUC) value between DM samples versus normal samples based on 10-fold cross-validation. Finally, a Monte Carlo Cross-Validation was applied to demonstrate the identified pairs of pathways by a mutual information analysis.ResultsA total of 247 DEGs in normal and disease samples were identified. Based on the F-test, 50 disrupted pathways were obtained with false discovery rate (FDR) < 0.01. Simultaneously, after calculating the DS, the top 10 pairs of pathways were selected based on a higher AUC value as measured by RF classification. From the Monte Carlo Cross-Validation, we considered the top 10 pairs of pathways with higher AUC values ranked for all 50 bootstraps as the most frequently detected ones.ConclusionThe pairs of pathways identified in our study might be key regulators in DM.
Collapse
|
20
|
Abstract
Inflammatory bowel disease (IBD), including Crohn disease and ulcerative colitis, is characterized by chronic intestinal inflammation due to a complex interaction of genetic determinants, disruption of mucosal barriers, aberrant inflammatory signals, loss of tolerance, and environmental triggers. Importantly, the incidence of pediatric IBD is rising, particularly in children younger than 10 years. In this review, we discuss the clinical presentation of these patients and highlight environmental exposures that may affect disease risk, particularly among people with a background genetic risk. With regard to both children and adults, we review advancements in understanding the intestinal epithelium, the mucosal immune system, and the resident microbiota, describing how dysfunction at any level can lead to diseases like IBD. We conclude with future directions for applying advances in IBD genetics to better understand pathogenesis and develop therapeutics targeting key pathogenic nodes.
Collapse
Affiliation(s)
- Joanna M Peloquin
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease and.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114.,Harvard Medical School, Boston, Massachusetts 02115; , , ,
| | - Gautam Goel
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114.,Harvard Medical School, Boston, Massachusetts 02115; , , ,
| | - Eduardo J Villablanca
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease and.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114.,Harvard Medical School, Boston, Massachusetts 02115; , , ,
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease and.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114.,Harvard Medical School, Boston, Massachusetts 02115; , , , .,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142.,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
21
|
Chan M, Ahmadi A, Yao S, Sato-Kaneko F, Messer K, Pu M, Nguyen B, Hayashi T, Corr M, Carson DA, Cottam HB, Shukla NM. Identification of Biologically Active Pyrimido[5,4-b]indoles That Prolong NF-κB Activation without Intrinsic Activity. ACS COMBINATORIAL SCIENCE 2017; 19:533-543. [PMID: 28657707 DOI: 10.1021/acscombsci.7b00080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Most vaccine adjuvants directly stimulate and activate antigen presenting cells but do not sustain immunostimulation of these cells. A high throughput screening (HTS) strategy was designed to identify compounds that would sustain NF-κB activation by a stimulus from the Toll-like receptor (TLR)4 ligand, lipopolysaccharide (LPS). Several pilot studies optimized the parameters and conditions for a cell based NF-κB reporter assay in human monocytic THP-1 cells. The final assay evaluated prolongation of LPS induced NF-κB activation at 12 h. The dynamic range of the assay was confirmed in a pilot screen of 14 631 compounds and subsequently in a main extensive screen with 166 304 compounds. Hit compounds were identified using an enrichment strategy based on unsupervised chemoinformatic clustering, and also by a naı̈ve "Top X" approach. A total of 2011 compounds were then rescreened for levels of coactivation with LPS at 5 h and 12 h, which provided kinetic profiles. Of the 407 confirmed hits, compounds that showed correlation of the kinetic profiles with the structural similarities led to identification of four chemotypes: pyrimido[5,4-b]indoles, 4H-chromene-3-carbonitriles, benzo[d][1,3]dioxol-2-ylureas, and tetrahydrothieno[2,3-c]pyridines, which were segregated by 5 h and 12 h kinetic characteristics. Unlike the TLR4 agonistic pyrimidoindoles identified in previous studies, the revealed pyrimidoindoles in the present work did not intrinsically stimulate TLR4 nor induce NF-κB but rather prolonged NF-κB signaling induced by LPS. A 42-member combinatorial library was synthesized which led to identification of potent N3-alkyl substituted pyrimidoindoles that were not only active in vitro but also enhanced antibody responses in vivo when used as a coadjuvant. The novel HTS strategy led to identification of compounds that are intrinsically quiescent but functionally prolong stimulation by a TLR4 ligand and thereby potentiate vaccine efficacy.
Collapse
Affiliation(s)
- Michael Chan
- Moores
UCSD Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Alast Ahmadi
- Moores
UCSD Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Shiyin Yao
- Moores
UCSD Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Fumi Sato-Kaneko
- Moores
UCSD Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Karen Messer
- Division
of Biostatistics, University of California San Diego, La Jolla, California 92093, United States
| | - Minya Pu
- Division
of Biostatistics, University of California San Diego, La Jolla, California 92093, United States
| | - Brandon Nguyen
- Moores
UCSD Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Tomoko Hayashi
- Moores
UCSD Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Maripat Corr
- Department
of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Dennis A. Carson
- Moores
UCSD Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Howard B. Cottam
- Moores
UCSD Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Nikunj M. Shukla
- Moores
UCSD Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
22
|
Guo Y, Walsh AM, Fearon U, Smith MD, Wechalekar MD, Yin X, Cole S, Orr C, McGarry T, Canavan M, Kelly S, Lin TA, Liu X, Proudman SM, Veale DJ, Pitzalis C, Nagpal S. CD40L-Dependent Pathway Is Active at Various Stages of Rheumatoid Arthritis Disease Progression. THE JOURNAL OF IMMUNOLOGY 2017; 198:4490-4501. [PMID: 28455435 DOI: 10.4049/jimmunol.1601988] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/24/2017] [Indexed: 01/13/2023]
Abstract
The inflammatory CD40-CD40L pathway is implicated in various autoimmune diseases, but the activity status of this pathway in various stages of rheumatoid arthritis (RA) progression is unknown. In this study, we used gene signatures of CD40L stimulation derived from human immature dendritic cells and naive B cells to assess the expression of CD40-downstream genes in synovial tissues from anti-citrullinated protein Ab-positive arthralgia, undifferentiated arthritis (UA), early RA, and established RA cohorts in comparison with healthy donors. Interestingly, the expression of CD40LG and active full-length CD40 was increased in the disease tissues, whereas that of a dominant-negative CD40 isoform was decreased. Gene set variation analysis revealed that CD40L-responsive genes in immature dendritic cells and naive B cells were significantly enriched in synovial tissues from UA, early RA, and established RA patients. Additionally, CD40L-induced naive B cell genes were also significantly enriched in synovial tissues from arthralgia patients. In our efforts to characterize downstream mediators of CD40L signaling, we have identified GPR120 and KDM6B as novel components of the pathway. In conclusion, our data suggest that therapeutic CD40-CD40L blocking agents may prove efficacious not only in early and established RA, but also in inhibiting the progression of the disease from arthralgia or UA to RA.
Collapse
Affiliation(s)
- Yanxia Guo
- Immunology, Janssen Research, Spring House, PA 19477;
| | - Alice M Walsh
- Immunology, Janssen Research, Spring House, PA 19477
| | - Ursula Fearon
- St. Vincent's University Hospital, Dublin 4, Ireland
| | - Malcolm D Smith
- Rheumatology Unit, Repatriation General Hospital, Adelaide, South Australia 5041, Australia.,Flinders University, Adelaide, South Australia 5041, Australia
| | - Mihir D Wechalekar
- Rheumatology Unit, Repatriation General Hospital, Adelaide, South Australia 5041, Australia.,Flinders University, Adelaide, South Australia 5041, Australia
| | - Xuefeng Yin
- Immunology, Janssen Research, Spring House, PA 19477
| | - Suzanne Cole
- Immunology, Janssen Research, Spring House, PA 19477
| | - Carl Orr
- St. Vincent's University Hospital, Dublin 4, Ireland
| | - Trudy McGarry
- St. Vincent's University Hospital, Dublin 4, Ireland
| | - Mary Canavan
- St. Vincent's University Hospital, Dublin 4, Ireland
| | - Stephan Kelly
- Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Tai-An Lin
- Immunology, Janssen Research, Spring House, PA 19477
| | - Xuejun Liu
- Immunology, Janssen Research, Spring House, PA 19477
| | - Susanna M Proudman
- Rheumatology Unit, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia; and.,Discipline of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia
| | | | | | - Sunil Nagpal
- Immunology, Janssen Research, Spring House, PA 19477;
| |
Collapse
|
23
|
Kim K, Bang SY, Lee HS, Bae SC. Update on the genetic architecture of rheumatoid arthritis. Nat Rev Rheumatol 2016; 13:13-24. [PMID: 27811914 DOI: 10.1038/nrrheum.2016.176] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human genetic studies into rheumatoid arthritis (RA) have uncovered more than 100 genetic loci associated with susceptibility to RA and have refined the RA-association model for HLA variants. The majority of RA-risk variants are highly shared across multiple ancestral populations and are located in noncoding elements that might have allele-specific regulatory effects in relevant tissues. Emerging multi-omics data, high-density genotype data and bioinformatic approaches are enabling researchers to use RA-risk variants to identify functionally relevant cell types and biological pathways that are involved in impaired immune processes and disease phenotypes. This Review summarizes reported RA-risk loci and the latest insights from human genetic studies into RA pathogenesis, including how genetic data has helped to identify currently available drugs that could be repurposed for patients with RA and the role of genetics in guiding the development of new drugs.
Collapse
Affiliation(s)
- Kwangwoo Kim
- Department of Biology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222-1 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222-1 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222-1 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| |
Collapse
|
24
|
Zuo Q, Lu S, Du Z, Friis T, Yao J, Crawford R, Prasadam I, Xiao Y. Characterization of nano-structural and nano-mechanical properties of osteoarthritic subchondral bone. BMC Musculoskelet Disord 2016; 17:367. [PMID: 27558702 PMCID: PMC4997740 DOI: 10.1186/s12891-016-1226-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 08/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although articular cartilage is the primary tissues affected by osteoarthritis (OA), the underlying subchondral bone also undergoes noticeable changes. Despite the growing body of research into the biophysical and mechanical properties of OA bone there are few studies that have analysed the structure of the subchondral sclerosis at the nanoscale. In this study, the composition and nano-structural changes of human osteoarthritis (OA) subchondral bone were investigated to better understand the site-specific changes. METHODS OA bone samples were collected from patients undergoing total knee replacement surgery and graded according to disease severity (grade I: mild OA; grade IV: severe OA). Transmission electron microscopy (TEM), Electron Diffraction, and Elemental Analysis techniques were used to explore the cross-banding pattern, nature of mineral phase and orientation of the crystal lattice. Subchondral bone nano-hydroxyapatite powders were prepared and characterised using high resolution transmission electron microscopy (HR-TEM) and fourier transform infrared spectroscopy (FTIR). Subchondal bone mechanical properties were investigated using a nano-indentation method. RESULTS In grade I subchondral bone samples, a regular periodic fibril banding pattern was observed and the c-axis orientation of the apatite crystals was parallel to the long axis of the fibrils. By contrast, in grade IV OA bone samples, the bulk of fibrils formed a random and undulated arrangement accompanied by a circular oriented pattern of apatite crystals. Fibrils in grade IV bone showed non-hierarchical intra-fibrillar mineralization and higher calcium (Ca) to phosphorous (P) (Ca/P) ratios. Grade IV OA bone showed higher crystallinity of the mineral content, increased modulus and hardness compared with grade I OA bone. CONCLUSIONS The findings from this study suggest that OA subchondral sclerotic bone has an altered mineralization process which results in nano-structural changes of apatite crystals that is likely to account for the compromised mechanical properties of OA subchondral bones.
Collapse
Affiliation(s)
- Qiliang Zuo
- Ministry Education Key Laboratory for Oral Biomedical Engineering, School of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China.,Xiamen Dental Hospital, Xiamen, Fujian Province, China.,Institute of Health and Biomedical Innovation, School of Chemistry, Physics, Mechanical Engineering, Queensland University of Technology, Brisbane, Australia
| | - Shifeier Lu
- Institute of Health and Biomedical Innovation, School of Chemistry, Physics, Mechanical Engineering, Queensland University of Technology, Brisbane, Australia
| | - Zhibin Du
- Institute of Health and Biomedical Innovation, School of Chemistry, Physics, Mechanical Engineering, Queensland University of Technology, Brisbane, Australia
| | - Thor Friis
- Institute of Health and Biomedical Innovation, School of Chemistry, Physics, Mechanical Engineering, Queensland University of Technology, Brisbane, Australia
| | - Jiangwu Yao
- Xiamen Dental Hospital, Xiamen, Fujian Province, China
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, School of Chemistry, Physics, Mechanical Engineering, Queensland University of Technology, Brisbane, Australia.,Orthopedic Department, Prince Charles Hospital, Brisbane, Australia
| | - Indira Prasadam
- Institute of Health and Biomedical Innovation, School of Chemistry, Physics, Mechanical Engineering, Queensland University of Technology, Brisbane, Australia. .,Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Qld, 4059, Australia.
| | - Yin Xiao
- Ministry Education Key Laboratory for Oral Biomedical Engineering, School of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China. .,Xiamen Dental Hospital, Xiamen, Fujian Province, China. .,Institute of Health and Biomedical Innovation, School of Chemistry, Physics, Mechanical Engineering, Queensland University of Technology, Brisbane, Australia. .,Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Qld, 4059, Australia.
| |
Collapse
|
25
|
Peloquin JM, Goel G, Kong L, Huang H, Haritunians T, Sartor RB, Daly MJ, Newberry RD, McGovern DP, Yajnik V, Lira SA, Xavier RJ. Characterization of candidate genes in inflammatory bowel disease-associated risk loci. JCI Insight 2016; 1:e87899. [PMID: 27668286 DOI: 10.1172/jci.insight.87899] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
GWAS have linked SNPs to risk of inflammatory bowel disease (IBD), but a systematic characterization of disease-associated genes has been lacking. Prior studies utilized microarrays that did not capture many genes encoded within risk loci or defined expression quantitative trait loci (eQTLs) using peripheral blood, which is not the target tissue in IBD. To address these gaps, we sought to characterize the expression of IBD-associated risk genes in disease-relevant tissues and in the setting of active IBD. Terminal ileal (TI) and colonic mucosal tissues were obtained from patients with Crohn's disease or ulcerative colitis and from healthy controls. We developed a NanoString code set to profile 678 genes within IBD risk loci. A subset of patients and controls were genotyped for IBD-associated risk SNPs. Analyses included differential expression and variance analysis, weighted gene coexpression network analysis, and eQTL analysis. We identified 116 genes that discriminate between healthy TI and colon samples and uncovered patterns in variance of gene expression that highlight heterogeneity of disease. We identified 107 coexpressed gene pairs for which transcriptional regulation is either conserved or reversed in an inflammation-independent or -dependent manner. We demonstrate that on average approximately 60% of disease-associated genes are differentially expressed in inflamed tissue. Last, we identified eQTLs with either genotype-only effects on expression or an interaction effect between genotype and inflammation. Our data reinforce tissue specificity of expression in disease-associated candidate genes, highlight genes and gene pairs that are regulated in disease-relevant tissue and inflammation, and provide a foundation to advance the understanding of IBD pathogenesis.
Collapse
Affiliation(s)
- Joanna M Peloquin
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease.,Center for Computational and Integrative Biology
| | - Gautam Goel
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease.,Center for Computational and Integrative Biology
| | - Lingjia Kong
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease.,Center for Computational and Integrative Biology
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - R Balfour Sartor
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Rodney D Newberry
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dermot P McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Vijay Yajnik
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease
| | - Sergio A Lira
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease.,Center for Computational and Integrative Biology.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
26
|
Liao KP. Cardiovascular disease in patients with rheumatoid arthritis. Trends Cardiovasc Med 2016; 27:136-140. [PMID: 27612551 DOI: 10.1016/j.tcm.2016.07.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/18/2016] [Accepted: 07/29/2016] [Indexed: 01/13/2023]
Abstract
The risk of cardiovascular disease (CVD) in patients with rheumatoid arthritis (RA) is 1.5-2-fold higher than age- and sex-matched individuals from the general population. This excess risk is attributed to the systemic chronic inflammation which is a hallmark of RA. Challenges to optimizing CV risk management in RA include the need for improved methods to predict CV risk, and defining the target risk factor(s) to reduce CV risk. Lessons learned from RA studies can also inform CV risk prevention in the general population, where inflammation also has an important role in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Katherine P Liao
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women׳s Hospital, 75 Francis St, PBB-B3, Boston, MA 02115.
| |
Collapse
|
27
|
Richard AC, Peters JE, Lee JC, Vahedi G, Schäffer AA, Siegel RM, Lyons PA, Smith KGC. Targeted genomic analysis reveals widespread autoimmune disease association with regulatory variants in the TNF superfamily cytokine signalling network. Genome Med 2016; 8:76. [PMID: 27435189 PMCID: PMC4952362 DOI: 10.1186/s13073-016-0329-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/21/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Tumour necrosis factor (TNF) superfamily cytokines and their receptors regulate diverse immune system functions through a common set of signalling pathways. Genetic variants in and expression of individual TNF superfamily cytokines, receptors and signalling proteins have been associated with autoimmune and inflammatory diseases, but their interconnected biology has been largely unexplored. METHODS We took a hypothesis-driven approach using available genome-wide datasets to identify genetic variants regulating gene expression in the TNF superfamily cytokine signalling network and the association of these variants with autoimmune and autoinflammatory disease. Using paired gene expression and genetic data, we identified genetic variants associated with gene expression, expression quantitative trait loci (eQTLs), in four peripheral blood cell subsets. We then examined whether eQTLs were dependent on gene expression level or the presence of active enhancer chromatin marks. Using these eQTLs as genetic markers of the TNF superfamily signalling network, we performed targeted gene set association analysis in eight autoimmune and autoinflammatory disease genome-wide association studies. RESULTS Comparison of TNF superfamily network gene expression and regulatory variants across four leucocyte subsets revealed patterns that differed between cell types. eQTLs for genes in this network were not dependent on absolute gene expression levels and were not enriched for chromatin marks of active enhancers. By examining autoimmune disease risk variants among our eQTLs, we found that risk alleles can be associated with either increased or decreased expression of co-stimulatory TNF superfamily cytokines, receptors or downstream signalling molecules. Gene set disease association analysis revealed that eQTLs for genes in the TNF superfamily pathway were associated with six of the eight autoimmune and autoinflammatory diseases examined, demonstrating associations beyond single genome-wide significant hits. CONCLUSIONS This systematic analysis of the influence of regulatory genetic variants in the TNF superfamily network reveals widespread and diverse roles for these cytokines in susceptibility to a number of immune-mediated diseases.
Collapse
Affiliation(s)
- Arianne C. Richard
- />Department of Medicine and Cambridge Institute for Medical Research, The University of Cambridge, Box 139, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
- />Autoimmunity Branch, National Institute for Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - James E. Peters
- />Department of Medicine and Cambridge Institute for Medical Research, The University of Cambridge, Box 139, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - James C. Lee
- />Department of Medicine and Cambridge Institute for Medical Research, The University of Cambridge, Box 139, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Golnaz Vahedi
- />Department of Genetics, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Alejandro A. Schäffer
- />Computational Biology Branch, National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894 USA
| | - Richard M. Siegel
- />Autoimmunity Branch, National Institute for Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Paul A. Lyons
- />Department of Medicine and Cambridge Institute for Medical Research, The University of Cambridge, Box 139, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Kenneth G. C. Smith
- />Department of Medicine and Cambridge Institute for Medical Research, The University of Cambridge, Box 139, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| |
Collapse
|
28
|
Yarwood A, Eyre S, Worthington J. Genetic susceptibility to rheumatoid arthritis and its implications for novel drug discovery. Expert Opin Drug Discov 2016; 11:805-13. [PMID: 27267163 DOI: 10.1080/17460441.2016.1195366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Over 100 susceptibility loci have now been identified for rheumatoid arthritis (RA), several of which are already the targets of approved RA therapies providing proof of concept for the use of genetics in novel drug development for RA. Determining how these loci contribute to disease will be key to elucidating the mechanisms driving disease development, which has the potential for major impact on therapeutic development. AREAS COVERED Here the authors review the use of genetics in drug discovery, including the use of 'omics' data to prioritise potential drug targets at susceptibility loci using RA as an exemplar. They discuss the current state of RA genetics its impact on stratified medicine, and how the findings from RA genetics studies can be used to inform drug discovery. EXPERT OPINION It is anticipated that functional characterisation of disease variants will provide biological validation of a gene as a drug target, providing safer targets, with an increased likelihood of efficacy. In the future, techniques such as genome editing may represent a plausible option for RA therapy. Technologies such as genome-wide chromatin conformation capture Hi-C and CRISPR will be crucial to inform our understanding of how diseases develop and in developing new treatments.
Collapse
Affiliation(s)
- Annie Yarwood
- a Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre , The University of Manchester , Manchester , UK
| | - Steve Eyre
- a Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre , The University of Manchester , Manchester , UK
| | - Jane Worthington
- a Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre , The University of Manchester , Manchester , UK.,b NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester NHS Foundation Trust , Manchester Academic Health Science Centre , Manchester , UK
| |
Collapse
|
29
|
Messemaker TC, Huizinga TW, Kurreeman F. Immunogenetics of rheumatoid arthritis: Understanding functional implications. J Autoimmun 2015. [DOI: 10.1016/j.jaut.2015.07.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Chen JM, Guo J, Wei CD, Wang CF, Luo HC, Wei YS, Lan Y. The association of CD40 polymorphisms with CD40 serum levels and risk of systemic lupus erythematosus. BMC Genet 2015; 16:121. [PMID: 26474561 PMCID: PMC4608213 DOI: 10.1186/s12863-015-0279-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/09/2015] [Indexed: 12/13/2022] Open
Abstract
Background Current evidence shows that the CD40–CD40 ligand (CD40–CD40L) system plays a crucial role in the development, progression and outcome of systemic lupus erythematosus (SLE). The aim of this study was to investigate whether a CD40 gene single nucleotide polymorphism (SNP) is associated with SLE and CD40 expression in the Chinese population. We included controls (n = 220) and patients with either SLE (n =205) in the study. Methods The gene polymorphism was measured using Snapshot SNP genotyping assays and confirmed by sequencing. We analyzed three single nucleotide polymorphisms of CD40 gene rs1883832C/T, rs1569723A/C and rs4810485G/T in 205 patients with SLE and 220 age-and sex-matched controls. Soluble CD40 (sCD40) levels were measured by ELISA. Results There were significant differences in the genotype and allele frequencies of CD40 gene rs1883832C/T polymorphism between the group of patients with SLE and the control group (P < 0.05). sCD40 levels were increased in patients with SLE compared with controls (P < 0.01). Moreover, genotypes carrying the CD40 rs1883832 C/T variant allele were associated with increased CD40 levels compared to the homozygous wild-type genotype in patients with SLE. The rs1883832C/T polymorphism of CD40 and its sCD40 levels were associated with SLE in the Chinese population. Conclusions Our results suggest that CD40 gene may play a role in the development of SLE in the Chinese population.
Collapse
Affiliation(s)
- Jian-Ming Chen
- Department of Laboratory Medicine, Affiliated hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Jing Guo
- Department of Dermatology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Chuan-Dong Wei
- Department of Laboratory Medicine, Affiliated hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Chun-Fang Wang
- Department of Laboratory Medicine, Affiliated hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Hong-Cheng Luo
- Department of Laboratory Medicine, Affiliated hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Ye-Sheng Wei
- Department of Laboratory Medicine, Affiliated hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Yan Lan
- Department of Dermatology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
31
|
Li YR, Li J, Zhao SD, Bradfield JP, Mentch FD, Maggadottir SM, Hou C, Abrams DJ, Chang D, Gao F, Guo Y, Wei Z, Connolly JJ, Cardinale CJ, Bakay M, Glessner JT, Li D, Kao C, Thomas KA, Qiu H, Chiavacci RM, Kim CE, Wang F, Snyder J, Richie MD, Flatø B, Førre Ø, Denson LA, Thompson SD, Becker ML, Guthery SL, Latiano A, Perez E, Resnick E, Russell RK, Wilson DC, Silverberg MS, Annese V, Lie BA, Punaro M, Dubinsky MC, Monos DS, Strisciuglio C, Staiano A, Miele E, Kugathasan S, Ellis JA, Munro JE, Sullivan KE, Wise CA, Chapel H, Cunningham-Rundles C, Grant SFA, Orange JS, Sleiman PMA, Behrens EM, Griffiths AM, Satsangi J, Finkel TH, Keinan A, Prak ETL, Polychronakos C, Baldassano RN, Li H, Keating BJ, Hakonarson H. Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases. Nat Med 2015; 21:1018-1027. [PMID: 26301688 PMCID: PMC4863040 DOI: 10.1038/nm.3933] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 07/23/2015] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies (GWASs) have identified hundreds of susceptibility genes, including shared associations across clinically distinct autoimmune diseases. We performed an inverse χ(2) meta-analysis across ten pediatric-age-of-onset autoimmune diseases (pAIDs) in a case-control study including more than 6,035 cases and 10,718 shared population-based controls. We identified 27 genome-wide significant loci associated with one or more pAIDs, mapping to in silico-replicated autoimmune-associated genes (including IL2RA) and new candidate loci with established immunoregulatory functions such as ADGRL2, TENM3, ANKRD30A, ADCY7 and CD40LG. The pAID-associated single-nucleotide polymorphisms (SNPs) were functionally enriched for deoxyribonuclease (DNase)-hypersensitivity sites, expression quantitative trait loci (eQTLs), microRNA (miRNA)-binding sites and coding variants. We also identified biologically correlated, pAID-associated candidate gene sets on the basis of immune cell expression profiling and found evidence of genetic sharing. Network and protein-interaction analyses demonstrated converging roles for the signaling pathways of type 1, 2 and 17 helper T cells (TH1, TH2 and TH17), JAK-STAT, interferon and interleukin in multiple autoimmune diseases.
Collapse
Affiliation(s)
- Yun R Li
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jin Li
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sihai D Zhao
- Department of Biostatistics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan P Bradfield
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Frank D Mentch
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - S Melkorka Maggadottir
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cuiping Hou
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Debra J Abrams
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Diana Chang
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, USA
- Program in Computational Biology and Medicine, Cornell University, Ithaca, New York, USA
| | - Feng Gao
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, USA
| | - Yiran Guo
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - John J Connolly
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christopher J Cardinale
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marina Bakay
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joseph T Glessner
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Dong Li
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Charlly Kao
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kelly A Thomas
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Haijun Qiu
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rosetta M Chiavacci
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cecilia E Kim
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Fengxiang Wang
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - James Snyder
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marylyn D Richie
- Department of Biochemistry and Molecular Biology, Eberly College of Science, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Berit Flatø
- Department of Rheumatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Øystein Førre
- Department of Rheumatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Lee A Denson
- Division of Gastroenterology, The Center for Inflammatory Bowel Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Susan D Thompson
- Divison of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mara L Becker
- Division of Rheumatology, Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| | - Stephen L Guthery
- Department of Pediatrics, University of Utah School of Medicine and Primary Children's Medical Center, Salt Lake City, Utah, USA
| | - Anna Latiano
- Division of Gastroenterology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Elena Perez
- Division of Pediatric Allergy and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Elena Resnick
- Institute of Immunology and Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | - Richard K Russell
- Department of Paediatric Gastroenterology, Yorkhill Hospital for Sick Children, Glasgow, Scotland, UK
| | - David C Wilson
- Paediatric Gastroenterology and Nutrition, Royal Hospital for Sick Children, University of Edinburgh, Ediburgh, UK
| | - Mark S Silverberg
- Mount Sinai Hospital IBD Centre, University of Toronto, Toronto, Ontario, Canada
| | - Vito Annese
- Unit of Gastroenterology, Department of Medical and Surgical Specialties, Careggi University Hospital, Florence, Italy
| | - Benedicte A Lie
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Marilynn Punaro
- Department of Rheumatology, Texas Scottish Rite Hospital for Children, Dallas, Texas, USA
| | - Marla C Dubinsky
- Department of Pediatrics, Pediatric IBD Center, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Dimitri S Monos
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Caterina Strisciuglio
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Annamaria Staiano
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Erasmo Miele
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Subra Kugathasan
- Department of Pediatrics, Emory University School of Medicine and Children's Health Care of Atlanta, Atlanta, Georgia, USA
| | - Justine A Ellis
- Genes, Environment and Complex Disease, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Jane E Munro
- Pediatric Rheumatology Unit, Royal Children's Hospital, Parkville, Victoria, Australia
- Arthritis and Rheumatology Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carol A Wise
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, Texas, USA
| | - Helen Chapel
- Department of Clinical Immunology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Struan F A Grant
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jordan S Orange
- Section of Immunology, Allergy, and Rheumatology, Department of Pediatric Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Patrick M A Sleiman
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward M Behrens
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anne M Griffiths
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jack Satsangi
- Gastrointestinal Unit, Division of Medical Sciences, School of Molecular and Clinical Medicine, University of Edinburgh, Edinburgh, UK
| | - Terri H Finkel
- Department of Pediatrics, Nemours Children's Hospital, Orlando, Florida, USA
| | - Alon Keinan
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, USA
- Program in Computational Biology and Medicine, Cornell University, Ithaca, New York, USA
| | - Eline T Luning Prak
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Constantin Polychronakos
- Departments of Pediatrics and Human Genetics, McGill University Health Centre Research Institute, Montréal, Québec, Canada
| | - Robert N Baldassano
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Gastroenterology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hongzhe Li
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brendan J Keating
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Pulmonary Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
Sadeghi H, Gupta Y, Möller S, Samavedam UK, Behnen M, Kasprick A, Bieber K, Müller S, Kalies K, de Castro Marques A, Recke A, Schmidt E, Zillikens D, Laskay T, Mariani J, Ibrahim SM, Ludwig RJ. The retinoid-related orphan receptor alpha is essential for the end-stage effector phase of experimental epidermolysis bullosa acquisita. J Pathol 2015; 237:111-22. [DOI: 10.1002/path.4556] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 04/13/2015] [Accepted: 04/23/2015] [Indexed: 12/25/2022]
Affiliation(s)
| | - Yask Gupta
- Department of Dermatology; University of Lübeck; Germany
| | - Steffen Möller
- Department of Dermatology; University of Lübeck; Germany
| | | | - Martina Behnen
- Institute for Medical Microbiology and Hygiene; University of Lübeck; Germany
| | - Anika Kasprick
- Department of Dermatology; University of Lübeck; Germany
| | - Katja Bieber
- Department of Dermatology; University of Lübeck; Germany
| | - Susen Müller
- Department of Dermatology; University of Lübeck; Germany
| | | | | | - Andreas Recke
- Department of Dermatology; University of Lübeck; Germany
| | - Enno Schmidt
- Department of Dermatology; University of Lübeck; Germany
| | | | - Tamás Laskay
- Institute for Medical Microbiology and Hygiene; University of Lübeck; Germany
| | - Jean Mariani
- Sorbonne Universités; UPMC Univ Paris 06, UMR 8256 B2A Biological Adaptation and Ageing Paris France
- CNRS; UMR 8256 B2A Biological Adaptation and Ageing Paris France
| | | | - Ralf J Ludwig
- Department of Dermatology; University of Lübeck; Germany
| |
Collapse
|
33
|
The MS Risk Allele of CD40 Is Associated with Reduced Cell-Membrane Bound Expression in Antigen Presenting Cells: Implications for Gene Function. PLoS One 2015; 10:e0127080. [PMID: 26068105 PMCID: PMC4465929 DOI: 10.1371/journal.pone.0127080] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 04/10/2015] [Indexed: 12/31/2022] Open
Abstract
Human genetic and animal studies have implicated the costimulatory molecule CD40 in the development of multiple sclerosis (MS). We investigated the cell specific gene and protein expression variation controlled by the CD40 genetic variant(s) associated with MS, i.e. the T-allele at rs1883832. Previously we had shown that the risk allele is expressed at a lower level in whole blood, especially in people with MS. Here, we have defined the immune cell subsets responsible for genotype and disease effects on CD40 expression at the mRNA and protein level. In cell subsets in which CD40 is most highly expressed, B lymphocytes and dendritic cells, the MS-associated risk variant is associated with reduced CD40 cell-surface protein expression. In monocytes and dendritic cells, the risk allele additionally reduces the ratio of expression of full-length versus truncated CD40 mRNA, the latter encoding secreted CD40. We additionally show that MS patients, regardless of genotype, express significantly lower levels of CD40 cell-surface protein compared to unaffected controls in B lymphocytes. Thus, both genotype-dependent and independent down-regulation of cell-surface CD40 is a feature of MS. Lower expression of a co-stimulator of T cell activation, CD40, is therefore associated with increased MS risk despite the same CD40 variant being associated with reduced risk of other inflammatory autoimmune diseases. Our results highlight the complexity and likely individuality of autoimmune pathogenesis, and could be consistent with antiviral and/or immunoregulatory functions of CD40 playing an important role in protection from MS.
Collapse
|
34
|
Citro A, Scrivo R, Martini H, Martire C, De Marzio P, Vestri AR, Sidney J, Sette A, Barnaba V, Valesini G. CD8+ T Cells Specific to Apoptosis-Associated Antigens Predict the Response to Tumor Necrosis Factor Inhibitor Therapy in Rheumatoid Arthritis. PLoS One 2015; 10:e0128607. [PMID: 26061065 PMCID: PMC4465029 DOI: 10.1371/journal.pone.0128607] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/28/2015] [Indexed: 12/27/2022] Open
Abstract
CD8+ T cells specific to caspase-cleaved antigens derived from apoptotic T cells (apoptotic epitopes) represent a principal player in chronic immune activation, which is known to amplify immunopathology in various inflammatory diseases. The purpose of the present study was to investigate the relationship involving these autoreactive T cells, the rheumatoid arthritis immunopathology, and the response to tumor necrosis factor-α inhibitor therapy. The frequency of autoreactive CD8+ T cells specific to various apoptotic epitopes, as detected by both enzyme-linked immunospot assay and dextramers of major histocompatibility complex class I molecules complexed with relevant apoptotic epitopes, was longitudinally analyzed in the peripheral blood of rheumatoid arthritis patients who were submitted to etanercept treatment (or other tumor necrosis factor inhibitors as a control). The percentage of apoptotic epitope-specific CD8+ T cells was significantly higher in rheumatoid arthritis patients than in healthy donors, and correlated with the disease activity. More important, it was significantly more elevated in responders to tumor necrosis factor-α inhibitor therapy than in non-responders before the start of therapy; it significantly dropped only in the former following therapy. These data indicate that apoptotic epitope-specific CD8+ T cells may be involved in rheumatoid arthritis immunopathology through the production of inflammatory cytokines and that they may potentially represent a predictive biomarker of response to tumor necrosis factor-α inhibitor therapy to validate in a larger cohort of patients.
Collapse
Affiliation(s)
- Alessandra Citro
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161 Rome, Italy
| | - Rossana Scrivo
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161 Rome, Italy
| | - Helene Martini
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161 Rome, Italy
| | - Carmela Martire
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161 Rome, Italy
| | - Paolo De Marzio
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161 Rome, Italy
| | - Anna Rita Vestri
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Rome, Italy
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, San Diego, California 92121, United States of America
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, San Diego, California 92121, United States of America
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, 00185 Rome, Italy
- * E-mail:
| | - Guido Valesini
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
35
|
Skallerup P, Thamsborg S, Jørgensen C, Mejer H, Göring H, Archibald A, Fredholm M, Nejsum P. Detection of a quantitative trait locus associated with resistance to infection with Trichuris suis in pigs. Vet Parasitol 2015; 210:264-9. [DOI: 10.1016/j.vetpar.2015.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 11/25/2022]
|
36
|
Song Y, Buchwald P. TNF superfamily protein-protein interactions: feasibility of small- molecule modulation. Curr Drug Targets 2015; 16:393-408. [PMID: 25706111 PMCID: PMC4408546 DOI: 10.2174/1389450116666150223115628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 01/09/2023]
Abstract
The tumor necrosis factor (TNF) superfamily (TNFSF) contains about thirty structurally related receptors (TNFSFRs) and about twenty protein ligands that bind to one or more of these receptors. Almost all of these cell surface protein-protein interactions (PPIs) represent high-value therapeutic targets for inflammatory or immune modulation in autoimmune diseases, transplant recipients, or cancers, and there are several biologics including antibodies and fusion proteins targeting them that are in various phases of clinical development. Small-molecule inhibitors or activators could represent possible alternatives if the difficulties related to the targeting of protein-protein interactions by small molecules can be addressed. Compounds proving the feasibility of such approaches have been identified through different drug discovery approaches for a number of these TNFSFR-TNFSF type PPIs including CD40-CD40L, BAFFR-BAFF, TRAIL-DR5, and OX40-OX40L. Corresponding structural, signaling, and medicinal chemistry aspects are briefly reviewed here. While none of these small-molecule modulators identified so far seems promising enough to be pursued for clinical development, they provide proof-of-principle evidence that these interactions are susceptible to small-molecule modulation and can serve as starting points toward the identification of more potent and selective candidates.
Collapse
Affiliation(s)
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, 1450 NW 10 Ave (R-134), Miami, FL 33136, USA.
| |
Collapse
|
37
|
Qi C, Tian S, Wang J, Ma H, Qian K, Zhang X. Co-expression of CD40/CD40L On XG1 Multiple Myeloma Cells Promotes IL-6 Autocrine Function. Cancer Invest 2014; 33:6-15. [DOI: 10.3109/07357907.2014.988340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Castaldi PJ, Cho MH, Zhou X, Qiu W, Mcgeachie M, Celli B, Bakke P, Gulsvik A, Lomas DA, Crapo JD, Beaty TH, Rennard S, Harshfield B, Lange C, Singh D, Tal-Singer R, Riley JH, Quackenbush J, Raby BA, Carey VJ, Silverman EK, Hersh CP. Genetic control of gene expression at novel and established chronic obstructive pulmonary disease loci. Hum Mol Genet 2014; 24:1200-10. [PMID: 25315895 DOI: 10.1093/hmg/ddu525] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Genetic risk loci have been identified for a wide range of diseases through genome-wide association studies (GWAS), but the relevant functional mechanisms have been identified for only a small proportion of these GWAS-identified loci. By integrating results from the largest current GWAS of chronic obstructive disease (COPD) with expression quantitative trait locus (eQTL) analysis in whole blood and sputum from 121 subjects with COPD from the ECLIPSE Study, this analysis identifies loci that are simultaneously associated with COPD and the expression of nearby genes (COPD eQTLs). After integrative analysis, 19 COPD eQTLs were identified, including all four previously identified genome-wide significant loci near HHIP, FAM13A, and the 15q25 and 19q13 loci. For each COPD eQTL, fine mapping and colocalization analysis to identify causal shared eQTL and GWAS variants identified a subset of sites with moderate-to-strong evidence of harboring at least one shared variant responsible for both the eQTL and GWAS signals. Transcription factor binding site (TFBS) analysis confirms that multiple COPD eQTL lead SNPs disrupt TFBS, and enhancer enrichment analysis for loci with the strongest colocalization signals showed enrichment for blood-related cell types (CD3 and CD4+ T cells, lymphoblastoid cell lines). In summary, integrative eQTL and GWAS analysis confirms that genetic control of gene expression plays a key role in the genetic architecture of COPD and identifies specific blood-related cell types as likely participants in the functional pathway from GWAS-associated variant to disease phenotype.
Collapse
Affiliation(s)
- Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, USA, Division of General Internal Medicine and Primary Care and
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, USA, Pulmonary and Critical Care Division, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, USA, Pulmonary and Critical Care Division, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, USA
| | - Michael Mcgeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, USA
| | - Bartolome Celli
- Division of General Internal Medicine and Primary Care and Pulmonary and Critical Care Division, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Per Bakke
- Haukeland University Hospital, Bergen, Norway
| | | | | | - James D Crapo
- Department of Medicine, National Jewish Health, Denver
| | - Terri H Beaty
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Stephen Rennard
- Division of Pulmonary and Critical Care Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin Harshfield
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, USA
| | | | - Dave Singh
- University of Manchester, Manchester, UK
| | | | | | - John Quackenbush
- Harvard School of Public Health, Boston, MA, USA, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Benjamin A Raby
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, USA, Pulmonary and Critical Care Division, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Vincent J Carey
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, USA, Pulmonary and Critical Care Division, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, USA, Pulmonary and Critical Care Division, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| |
Collapse
|
39
|
Shimabukuro-Vornhagen A, Zoghi S, Liebig TM, Wennhold K, Chemitz J, Draube A, Kochanek M, Blaschke F, Pallasch C, Holtick U, Scheid C, Theurich S, Hallek M, von Bergwelt-Baildon MS. Inhibition of protein geranylgeranylation specifically interferes with CD40-dependent B cell activation, resulting in a reduced capacity to induce T cell immunity. THE JOURNAL OF IMMUNOLOGY 2014; 193:5294-305. [PMID: 25311809 DOI: 10.4049/jimmunol.1203436] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ab-independent effector functions of B cells, such as Ag presentation and cytokine production, have been shown to play an important role in a variety of immune-mediated conditions such as autoimmune diseases, transplant rejection, and graft-versus-host disease. Most current immunosuppressive treatments target T cells, are relatively unspecific, and result in profound immunosuppression that places patients at an increased risk of developing severe infections and cancer. Therapeutic strategies, which interfere with B cell activation, could therefore be a useful addition to the current immunosuppressive armamentarium. Using a transcriptomic approach, we identified upregulation of genes that belong to the mevalonate pathway as a key molecular event following CD40-mediated activation of B cells. Inhibition of 3-hydroxy-3-methylglutaryl CoA reductase, the rate-limiting enzyme of the mevalonate pathway, by lipophilic statins such as simvastatin and atorvastatin resulted in a specific inhibition of B cell activation via CD40 and impaired their ability to act as stimulatory APCs for allospecific T cells. Mechanistically, the inhibitory effect resulted from the inhibition of protein geranylgeranylation subsequent to the depletion of mevalonate, the metabolic precursor for geranylgeranyl. Thus, inhibition of geranylgeranylation either directly through geranylgeranyl transferase inhibitors or indirectly through statins represents a promising therapeutic approach for the treatment of diseases in which Ag presentation by B cells plays a role.
Collapse
Affiliation(s)
- Alexander Shimabukuro-Vornhagen
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany; Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany; Intensive Care Unit and Laboratory for Department I of Internal Medicine, University Hospital of Cologne, 50924 Cologne, Germany;
| | - Shahram Zoghi
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany
| | - Tanja M Liebig
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany
| | - Kerstin Wennhold
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany
| | - Jens Chemitz
- Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany
| | - Andreas Draube
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany
| | - Matthias Kochanek
- Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany; Intensive Care Unit and Laboratory for Department I of Internal Medicine, University Hospital of Cologne, 50924 Cologne, Germany
| | - Florian Blaschke
- Department of Cardiology, Charité Campus Virchow-Klinikum, 13353 Berlin, Germany; and Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Christian Pallasch
- Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany
| | - Udo Holtick
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany; Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany
| | - Christof Scheid
- Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany
| | - Sebastian Theurich
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany; Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany
| | - Michael Hallek
- Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany; Intensive Care Unit and Laboratory for Department I of Internal Medicine, University Hospital of Cologne, 50924 Cologne, Germany
| | - Michael S von Bergwelt-Baildon
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany; Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany; Intensive Care Unit and Laboratory for Department I of Internal Medicine, University Hospital of Cologne, 50924 Cologne, Germany
| |
Collapse
|
40
|
Genome-wide association studies to advance our understanding of critical cell types and pathways in rheumatoid arthritis: recent findings and challenges. Curr Opin Rheumatol 2014; 26:85-92. [PMID: 24276088 DOI: 10.1097/bor.0000000000000012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW A significant number of loci implicated in rheumatoid arthritis (RA) susceptibility have been highlighted by genome-wide association studies (GWAS). Here, we review the recent advances of GWAS in understanding the genetic architecture of RA, and place these findings in the context of RA pathogenesis. RECENT FINDINGS Although the interpretation of GWAS findings in the context of the disease biology remains challenging, interesting observations can be highlighted. Integration of GWAS results with cell-type specific gene expression or epigenetic marks have highlighted regulatory T cells and CD4 memory T cells as critical cell types in RA. In addition, many genes in RA loci are involved in the nuclear factor-kappaB signaling pathway or the Janus kinase (JAK)-signal transducers and activators of transcription (STAT) signaling pathway. The observation that these pathways are targeted by several approved drugs used to treat the symptoms of RA highlights the promises of human genetics to provide insights in the disease biology, and help identify new therapeutic targets. SUMMARY These findings highlight the promises and need of future studies investigating causal genes and underlined mechanisms in GWAS loci to advance our understanding of RA.
Collapse
|
41
|
Belkhir R, Gestermann N, Koutero M, Seror R, Tost J, Mariette X, Miceli-Richard C. Upregulation of membrane-bound CD40L on CD4+ T cells in women with primary Sjögren's syndrome. Scand J Immunol 2014; 79:37-42. [PMID: 24117612 DOI: 10.1111/sji.12121] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 09/25/2013] [Indexed: 01/21/2023]
Abstract
Epigenetic deregulation of genes encoded on the X chromosome as reported for CD40L in lupus could explain the female predominance of autoimmune diseases. We compared CD40L expression on CD4(+) T cells from primary Sjögren's syndrome (pSS) women and healthy controls and investigated DNA methylation patterns of the promoter and enhancer regions of CD40L. The expression of CD40L on activated CD4(+) T cells was higher in patients with pSS than controls after phorbolmyristate acetate and ionomycin activation (P = 0.02). CD40L mRNA level in CD4(+) T cells did not differ between patients with pSS and controls and was similar in both groups in cultures treated with the demethylating agent 5-azacytidine C. Pyrosequencing analysis revealed no significant differences in methylation profiles between patients and controls. Inducible membrane-bound CD40L on CD4(+) T cells is increased in patients with pSS but was not related to epigenetic deregulation by demethylation patterns of the regulatory regions of CD40L.
Collapse
Affiliation(s)
- R Belkhir
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1012, Le Kremlin Bicêtre, France; Université Paris-Sud, Hôpitaux Universitaires Paris-Sud, AP-HP, Le Kremlin Bicêtre, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Scally SW, Petersen J, Law SC, Dudek NL, Nel HJ, Loh KL, Wijeyewickrema LC, Eckle SBG, van Heemst J, Pike RN, McCluskey J, Toes RE, La Gruta NL, Purcell AW, Reid HH, Thomas R, Rossjohn J. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. ACTA ACUST UNITED AC 2013; 210:2569-82. [PMID: 24190431 PMCID: PMC3832918 DOI: 10.1084/jem.20131241] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Rheumatoid arthritis (RA) is strongly associated with the human leukocyte antigen (HLA)-DRB1 locus that possesses the shared susceptibility epitope (SE) and the citrullination of self-antigens. We show how citrullinated aggrecan and vimentin epitopes bind to HLA-DRB1*04:01/04. Citrulline was accommodated within the electropositive P4 pocket of HLA-DRB1*04:01/04, whereas the electronegative P4 pocket of the RA-resistant HLA-DRB1*04:02 allomorph interacted with arginine or citrulline-containing epitopes. Peptide elution studies revealed P4 arginine-containing peptides from HLA-DRB1*04:02, but not from HLA-DRB1*04:01/04. Citrullination altered protease susceptibility of vimentin, thereby generating self-epitopes that are presented to T cells in HLA-DRB1*04:01(+) individuals. Using HLA-II tetramers, we observed citrullinated vimentin- and aggrecan-specific CD4(+) T cells in the peripheral blood of HLA-DRB1*04:01(+) RA-affected and healthy individuals. In RA patients, autoreactive T cell numbers correlated with disease activity and were deficient in regulatory T cells relative to healthy individuals. These findings reshape our understanding of the association between citrullination, the HLA-DRB1 locus, and T cell autoreactivity in RA.
Collapse
Affiliation(s)
- Stephen W Scally
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhernakova A, Withoff S, Wijmenga C. Clinical implications of shared genetics and pathogenesis in autoimmune diseases. Nat Rev Endocrinol 2013; 9:646-59. [PMID: 23959365 DOI: 10.1038/nrendo.2013.161] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many endocrine diseases, including type 1 diabetes mellitus, Graves disease, Addison disease and Hashimoto disease, originate as an autoimmune reaction that affects disease-specific target organs. These autoimmune diseases are characterized by the development of specific autoantibodies and by the presence of autoreactive T cells. They are caused by a complex genetic predisposition that is attributable to multiple genetic variants, each with a moderate-to-low effect size. Most of the genetic variants associated with a particular autoimmune endocrine disease are shared between other systemic and organ-specific autoimmune and inflammatory diseases, such as rheumatoid arthritis, coeliac disease, systemic lupus erythematosus and psoriasis. Here, we review the shared and specific genetic background of autoimmune diseases, summarize their treatment options and discuss how identifying the genetic and environmental factors that predispose patients to an autoimmune disease can help in the diagnosis and monitoring of patients, as well as the design of new treatments.
Collapse
Affiliation(s)
- Alexandra Zhernakova
- University of Groningen, University Medical Centre Groningen, Department of Genetics, PO Box 30001, 9700 RB Groningen, Netherlands
| | | | | |
Collapse
|
44
|
Plenge RM, Scolnick EM, Altshuler D. Validating therapeutic targets through human genetics. Nat Rev Drug Discov 2013; 12:581-94. [PMID: 23868113 DOI: 10.1038/nrd4051] [Citation(s) in RCA: 468] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
More than 90% of the compounds that enter clinical trials fail to demonstrate sufficient safety and efficacy to gain regulatory approval. Most of this failure is due to the limited predictive value of preclinical models of disease, and our continued ignorance regarding the consequences of perturbing specific targets over long periods of time in humans. 'Experiments of nature' - naturally occurring mutations in humans that affect the activity of a particular protein target or targets - can be used to estimate the probable efficacy and toxicity of a drug targeting such proteins, as well as to establish causal rather than reactive relationships between targets and outcomes. Here, we describe the concept of dose-response curves derived from experiments of nature, with an emphasis on human genetics as a valuable tool to prioritize molecular targets in drug development. We discuss empirical examples of drug-gene pairs that support the role of human genetics in testing therapeutic hypotheses at the stage of target validation, provide objective criteria to prioritize genetic findings for future drug discovery efforts and highlight the limitations of a target validation approach that is anchored in human genetics.
Collapse
Affiliation(s)
- Robert M Plenge
- Division of Rheumatology, Immunology and Allergy, Brigham And Women's Hospital, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
45
|
Scheinman R. NF-κB and Rheumatoid Arthritis: Will Understanding Genetic Risk Lead to a Therapeutic Reward? ACTA ACUST UNITED AC 2013; 4:93-110. [PMID: 24678426 DOI: 10.1615/forumimmundisther.2013008408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
NF-κB has long been known to play an important role in autoimmune diseases such as rheumatoid arthritis (RA). Indeed, as our understanding of how NF-κB is utilized has increased, we have been hard put to find a process not associated with this transcription factor family in some way. However, new data originating, in part, from genome-wide association studies have demonstrated that very specific alterations in components of the NF-κB pathway are sufficient to confer increased risk of developing disease. Here we review the data which have identified specific components of the NF-κB pathway, and consider what is known of their mechanisms of action and how these mechanisms might play into the disease process. In addition, the use of genetic information to predict RA is considered.
Collapse
Affiliation(s)
- Robert Scheinman
- University of Colorado Denver, School of Pharmacy, Department of Pharmaceutical Sciences, Aurora, CO 80045;
| |
Collapse
|