1
|
Tan S, Zhang Q, Zhan R, Luo S, Han Y, Yu B, Muss C, Pingault V, Marlin S, Delahaye A, Peters S, Perne C, Kreiß M, Spataro N, Trujillo-Quintero JP, Racine C, Tran-Mau-Them F, Phornphutkul C, Besterman AD, Martinez J, Wang X, Tian X, Srivastava S, Urion DK, Madden JA, Saif HA, Morrow MM, Begtrup A, Li X, Jurgensmeyer S, Leahy P, Zhou S, Li F, Hu Z, Tan J, Xia K, Guo H. Monoallelic loss-of-function variants in GSK3B lead to autism and developmental delay. Mol Psychiatry 2025; 30:1952-1965. [PMID: 39472663 DOI: 10.1038/s41380-024-02806-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 04/24/2025]
Abstract
De novo variants adjacent to the canonical splicing sites or in the well-defined splicing-related regions are more likely to impair splicing but remain under-investigated in autism spectrum disorder (ASD). By analyzing large, recent ASD genome sequencing cohorts, we find a significant burden of de novo potential splicing-disrupting variants (PSDVs) in 5048 probands compared to 4090 unaffected siblings. We identified 55 genes with recurrent de novo PSDVs that were highly intolerant to variation. Forty-six of these genes have not been strongly implicated in ASD or other neurodevelopmental disorders previously, including GSK3B. Through international, multicenter collaborations, we assembled genotype and phenotype data for 15 individuals with GSK3B variants and identified common phenotypes including developmental delay, ASD, sleeping disturbance, and aggressive behavior. Using available single-cell transcriptomic data, we show that GSK3B is enriched in dorsal progenitors and intermediate forms of excitatory neurons in the developing brain. We showed that Gsk3b knockdown in mouse excitatory neurons interferes with dendrite arborization and spine maturation which could not be rescued by de novo missense variants identified from affected individuals. In summary, our findings suggest that PSDVs may play an important role in the genetic etiology of ASD and allow for the prioritization of new ASD candidate genes. Importantly, we show that genetic variation resulting in GSK3B loss-of-function can lead to a neurodevelopmental disorder with core features of ASD and developmental delay.
Collapse
Affiliation(s)
- Senwei Tan
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qiumeng Zhang
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Rui Zhan
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Si Luo
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yaoling Han
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Bin Yu
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Candace Muss
- Department of Genetics, Nemours Children's Hospital, Wilmington, DE, USA
| | - Veronique Pingault
- Service de Médecine Génomique des maladies rares, AP-HP, Hôpital Necker; Université Paris Cité, Inserm, Institut Imagine; and Laboratoire de Biologie Médicale Multi-Sites SeqOIA, Paris, France
| | - Sandrine Marlin
- Centre de Référence «Surdités Génétiques», Fédération de Génétique; Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Laboratory of Embryology and Genetics of Malformations, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Andrée Delahaye
- Service de Médecine Génomique des maladies rares, AP-HP, Hôpital Necker; Université Paris Cité, Inserm, Institut Imagine; and Laboratoire de Biologie Médicale Multi-Sites SeqOIA, Paris, France
| | - Sophia Peters
- Institute of Human Genetics, School of Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Claudia Perne
- Institute of Human Genetics, School of Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Martina Kreiß
- Institute of Human Genetics, School of Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Nino Spataro
- Center for Genomic Medicine, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Juan Pablo Trujillo-Quintero
- Center for Genomic Medicine, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Caroline Racine
- Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Frederic Tran-Mau-Them
- Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Chanika Phornphutkul
- Division of Human Genetics, Department of Pediatrics, Warren Alpert Medical School of Brown University, Hasbro Children's Hospital, Providence, RI, USA
| | - Aaron D Besterman
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, USA
- Rady Children's Hospital, San Diego, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Julian Martinez
- Departments of Human Genetics, Pediatrics and Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Xiuxia Wang
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoyu Tian
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - David K Urion
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jill A Madden
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Hind Al Saif
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Virginia Commonwealth, Richmond, VA, USA
| | | | | | - Xing Li
- Departments of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Sarah Jurgensmeyer
- Division of Genetics, Genomics and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Peter Leahy
- Division of Genetics, Genomics and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Shimin Zhou
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Faxiang Li
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhengmao Hu
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China.
- MOE Key Lab of Rare Pediatric Diseases, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, China.
- Furong Laboratory, Changsha, Hunan, China.
| | - Hui Guo
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China.
- Furong Laboratory, Changsha, Hunan, China.
| |
Collapse
|
2
|
Zhao Y, Lan T, Zhong G, Hagen J, Pan H, Chung WK, Shen Y. A probabilistic graphical model for estimating selection coefficient of nonsynonymous variants from human population sequence data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2023.12.11.23299809. [PMID: 38168397 PMCID: PMC10760286 DOI: 10.1101/2023.12.11.23299809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Accurately predicting the effect of missense variants is important in discovering disease risk genes and clinical genetic diagnostics. Commonly used computational methods predict pathogenicity, which does not capture the quantitative impact on fitness in humans. We developed a method, MisFit, to estimate missense fitness effect using a graphical model. MisFit jointly models the effect at a molecular level (𝑑) and a population level (selection coefficient, 𝑠), assuming that in the same gene, missense variants with similar 𝑑 have similar 𝑠. We trained it by maximizing probability of observed allele counts in 236,017 European individuals. We show that 𝑠 is informative in predicting allele frequency across ancestries and consistent with the fraction of de novo mutations in sites under strong selection. Further, 𝑠 outperforms previous methods in prioritizing de novo missense variants in individuals with neurodevelopmental disorders. In conclusion, MisFit accurately predicts 𝑠 and yields new insights from genomic data.
Collapse
Affiliation(s)
- Yige Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
- The Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY 10032
| | - Tian Lan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Guojie Zhong
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
- The Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY 10032
| | - Jake Hagen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
- . Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Hongbing Pan
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032
| | - Wendy K. Chung
- . Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032
- JP Sulzberger Columbia Genome Center, Columbia University, New York, NY 10032
| |
Collapse
|
3
|
Gao S, Shan C, Zhang R, Wang T. Genetic advances in neurodevelopmental disorders. MEDICAL REVIEW (2021) 2025; 5:139-151. [PMID: 40224365 PMCID: PMC11987507 DOI: 10.1515/mr-2024-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/14/2024] [Indexed: 04/15/2025]
Abstract
Neurodevelopmental disorders (NDDs) are a group of highly heterogeneous diseases that affect children's social, cognitive, and emotional functioning. The etiology is complicated with genetic factors playing an important role. During the past decade, large-scale whole exome sequencing (WES) and whole genome sequencing (WGS) have vastly advanced the genetic findings of NDDs. Various forms of variants have been reported to contribute to NDDs, such as de novo mutations (DNMs), copy number variations (CNVs), rare inherited variants (RIVs), and common variation. By far, over 200 high-risk NDD genes have been identified, which are involved in biological processes including synaptic function, transcriptional and epigenetic regulation. In addition, monogenic, oligogenic, polygenetic, and omnigenic models have been proposed to explain the genetic architecture of NDDs. However, the majority of NDD patients still do not have a definitive genetic diagnosis. In the future, more types of risk factors, as well as noncoding variants, are await to be identified, and including their interplay mechanisms are key to resolving the etiology and heterogeneity of NDDs.
Collapse
Affiliation(s)
- Shilin Gao
- Department of Neuroscience, Neuroscience Research Institute, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
| | - Chaoyi Shan
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Rong Zhang
- Department of Neuroscience, Neuroscience Research Institute, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
| | - Tianyun Wang
- Department of Neuroscience, Neuroscience Research Institute, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Autism Research Center, Peking University Health Science Center, Beijing, China
| |
Collapse
|
4
|
Witke W, Di Domenico M, Maggi L, Di Nardo A, Stein V, Pilo Boyl P. Autism spectrum disorder related phenotypes in a mouse model lacking the neuronal actin binding protein profilin 2. Front Cell Neurosci 2025; 19:1540989. [PMID: 40078324 PMCID: PMC11897305 DOI: 10.3389/fncel.2025.1540989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction Profilin 2 (PFN2) is an actin binding protein highly expressed in the brain that participates in actin dynamics. It has been shown in vitro and in vivo that in neurons it functions both post-synaptically to shape and maintain dendritic arborizations and spine density and plasticity, as well as pre-synaptically to regulate vesicle exocytosis. PFN2 was also found in protein complexes with proteins that have been implicated in or are causative of autism spectrum disorder. Methods We employ a genetically engineered knock-out mouse line for Pfn2 that we previously generated to study the mouse social, vocal and motor behavior in comparison to wild type control littermates. We also study neuronal physiology in the knock-out mouse model by means of cellular and field electrophysiological recordings in cerebellar Purkinje cells and in the Schaffer collaterals. Lastly, we study anatomical features of the cerebellum using immunofluorescence stainings. Results We show that PFN2 deficiency reproduces a number of autistic-like phenotypes in the mouse, such as social behavior impairment, stereotypic behavior, altered vocal communication, and deficits in motor performance and coordination. Our studies correlate the behavioral phenotypes with increased excitation/inhibition ratio in the brain, due to brain-wide hyperactivity of glutamatergic neurons and increased glutamate release not compensated by enhanced GABAergic neurotransmission. Consequently, lack of PFN2 caused seizures behavior and age-dependent loss of cerebellar Purkinje cells, comorbidities observed in a subset of autistic patients, which can be attributed to the effect of excessive glutamatergic neurotransmission. Discussion Our data directly link altered pre-synaptic actin dynamics to autism spectrum disorder in the mouse model and support the hypothesis that synaptic dysfunctions that asymmetrically increase the excitatory drive in neuronal circuits can lead to autistic-like phenotypes. Our findings inspire to consider novel potential pathways for therapeutic approaches in ASD.
Collapse
Affiliation(s)
- Walter Witke
- Institute of Genetics, University of Bonn, Bonn, Germany
| | | | - Laura Maggi
- Dipartimento di Fisiologia e Farmacologia, Research Center of Neuroscience “CRiN-Daniel Bovet”, University Sapienza Rome, Rome, Italy
| | | | - Valentin Stein
- Institute of Physiology II, Faculty of Medicine, University of Bonn, Bonn, Germany
| | | |
Collapse
|
5
|
Jeong R, Bulyk ML. Meta-analysis reveals transcription factors and DNA binding domain variants associated with congenital heart defect and orofacial cleft. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.30.25321274. [PMID: 39974057 PMCID: PMC11838631 DOI: 10.1101/2025.01.30.25321274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Many structural birth defect patients lack genetic diagnoses because there are many disease genes as yet to be discovered. We applied a gene burden test incorporating de novo predicted-loss-of-function (pLoF) and likely damaging missense variants together with inherited pLoF variants to a collection of congenital heart defect (CHD) and orofacial cleft (OC) parent-offspring trio cohorts (n = 3,835 and 1,844, respectively). We identified 17 novel candidate CHD genes and 10 novel candidate OC genes, of which many were known developmental disorder genes. Shorter genes were more powered in a "de novo only" analysis as compared to analysis including inherited pLoF variants. TFs were enriched among the significant genes; 14 and 8 transcription factor (TF) genes showed significant variant burden for CHD and OC, respectively. In total, 30 affected children had a de novo missense variant in a DNA binding domain of a known CHD, OC, and other developmental disorder TF genes. Our results suggest candidate pathogenic variants in CHD and OC and their potentially pleiotropic effects in other developmental disorders.
Collapse
Affiliation(s)
- Raehoon Jeong
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Bioinformatics and Integrative Genomics Graduate Program, Harvard University, Cambridge, MA 02138, USA
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Bioinformatics and Integrative Genomics Graduate Program, Harvard University, Cambridge, MA 02138, USA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Qiu Z, Du A. Revisiting the genetic architecture of autism spectrum disorders in the genomic era: Insights from East Asian studies. Curr Opin Neurobiol 2025; 90:102936. [PMID: 39616786 DOI: 10.1016/j.conb.2024.102936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 02/21/2025]
Abstract
This review delves into the genetic landscape of Autism Spectrum Disorder (ASD) in the genomic era, with a special focus on insights from East Asian populations. We analyze a spectrum of genetic research, including whole-exome and whole-genome sequencing, to elucidate both the challenges and advancements in comprehending the genetic foundations of ASD. Critical findings from this review highlight the identification of de novo variants, particularly noting the significant role of rare variants that differ from the common variants identified in earlier research. The review emphasizes the importance of large, diverse, and meticulously maintained ASD cohorts, which are essential for advancing genetic studies and developing potential therapeutic interventions. Through collaborative international efforts, we argue for a global perspective necessary to grasp the intricate genetic factors underlying ASD.
Collapse
Affiliation(s)
- Zilong Qiu
- Department of Neurology, Songjiang Hospital, Songjiang Research Institute, MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ailian Du
- Department of Neurology, Songjiang Hospital, Songjiang Research Institute, MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Jung S, Caballero M, Olfson E, Newcorn JH, Fernandez TV, Mahjani B. Rare Variant Analyses in Ancestrally Diverse Cohorts Reveal Novel ADHD Risk Genes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.14.25320294. [PMID: 39867378 PMCID: PMC11759603 DOI: 10.1101/2025.01.14.25320294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder, but its genetic architecture remains incompletely characterized. Rare coding variants, which can profoundly impact gene function, represent an underexplored dimension of ADHD risk. In this study, we analyzed large-scale DNA sequencing datasets from ancestrally diverse cohorts and observed significant enrichment of rare protein-truncating and deleterious missense variants in highly evolutionarily constrained genes. This analysis identified 15 high-confidence ADHD risk genes, including the previously implicated KDM5B. Integrating these findings with genome-wide association study (GWAS) data revealed nine enriched pathways, with strong involvement in synapse organization, neuronal development, and chromatin regulation. Protein-protein interaction analyses identified chromatin regulators as central network hubs, and single-cell transcriptomic profiling confirmed their expression in neurons and glial cells, with distinct patterns in oligodendrocyte subtypes. These findings advance our understanding of the genetic architecture of ADHD, uncover core molecular mechanisms, and provide promising directions for future therapeutic development.
Collapse
Affiliation(s)
- Seulgi Jung
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madison Caballero
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Olfson
- Child Study Center, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Jeffrey H. Newcorn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas V. Fernandez
- Child Study Center, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Behrang Mahjani
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Avila MN, Jung S, Satterstrom FK, Fu JM, Levy T, Sloofman LG, Klei L, Pichardo T, Stevens CR, Cusick CM, Ames JL, Campos GS, Cerros H, Chaskel R, Costa CIS, Cuccaro ML, Del Pilar Lopez A, Fernandez M, Ferro E, Galeano L, Girardi ACDES, Griswold AJ, Hernandez LC, Lourenço N, Ludena Y, Nuñez DL, Oyama R, Peña KP, Pessah I, Schmidt R, Sweeney HM, Tolentino L, Wang JYT, Albores-Gallo L, Croen LA, Cruz-Fuentes CS, Hertz-Picciotto I, Kolevzon A, Lattig MC, Mayo L, Passos-Bueno MR, Pericak-Vance MA, Siper PM, Tassone F, Trelles MP, Talkowski ME, Daly MJ, Mahjani B, De Rubeis S, Cook EH, Roeder K, Betancur C, Devlin B, Buxbaum JD. Deleterious coding variation associated with autism is consistent across populations, as exemplified by admixed Latin American populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.12.27.24319460. [PMID: 39830258 PMCID: PMC11741445 DOI: 10.1101/2024.12.27.24319460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The past decade has seen remarkable progress in identifying genes that, when impacted by deleterious coding variation, confer high risk for autism spectrum disorder (ASD), intellectual disability, and other developmental disorders. However, most underlying gene discovery efforts have focused on individuals of European ancestry, limiting insights into genetic risks across diverse populations. To help address this, the Genomics of Autism in Latin American Ancestries Consortium (GALA) was formed, presenting here the largest sequencing study of ASD in Latin American individuals (n>15,000). We identified 35 genome-wide significant (FDR < 0.05) ASD risk genes, with substantial overlap with findings from European cohorts, and highly constrained genes showing consistent signal across populations. The results provide support for emerging (e.g., MARK2, YWHAG, PACS1, RERE, SPEN, GSE1, GLS, TNPO3, ANKRD17) and established ASD genes, and for the utility of genetic testing approaches for deleterious variants in diverse populations, while also demonstrating the ongoing need for more inclusive genetic research and testing. We conclude that the biology of ASD is universal and not impacted to any detectable degree by ancestry.
Collapse
Affiliation(s)
- Marina Natividad Avila
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Seulgi Jung
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - F Kyle Satterstrom
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jack M Fu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tess Levy
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Laura G Sloofman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Thariana Pichardo
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christine R Stevens
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Caroline M Cusick
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jennifer L Ames
- Division of Research, Kaiser Permanente Northern, Pleasanton, California, USA
| | - Gabriele S Campos
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Biociência, Universidade de São Paulo, São Paulo, Brasil
| | - Hilda Cerros
- Division of Research, Kaiser Permanente Northern, Pleasanton, California, USA
| | - Roberto Chaskel
- Facultad de Medicina, Universidad de los Andes, Bogota, Colombia
- Instituto Colombiano del Sistema Nervioso, Clinica Montserrat, Bogota, Colombia
| | - Claudia I S Costa
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Biociência, Universidade de São Paulo, São Paulo, Brasil
| | - Michael L Cuccaro
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Magdalena Fernandez
- Instituto Colombiano del Sistema Nervioso, Clinica Montserrat, Bogota, Colombia
| | - Eugenio Ferro
- Instituto Colombiano del Sistema Nervioso, Clinica Montserrat, Bogota, Colombia
| | - Liliana Galeano
- Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Ana Cristina D E S Girardi
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Biociência, Universidade de São Paulo, São Paulo, Brasil
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Luis C Hernandez
- Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Naila Lourenço
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Biociência, Universidade de São Paulo, São Paulo, Brasil
| | - Yunin Ludena
- MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis, Davis, California, USA
| | - Diana L Nuñez
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- National Center of Posttraumatic Stress Disorders, VA CT Healthcare Center, West Haven, Connecticut, USA
| | - Rosa Oyama
- Centro Ann Sullivan del Peru, Lima, Peru
| | - Katherine P Peña
- Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Isaac Pessah
- MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis, Davis, California, USA
| | - Rebecca Schmidt
- MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis, Davis, California, USA
| | | | | | - Jaqueline Y T Wang
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Biociência, Universidade de São Paulo, São Paulo, Brasil
| | - Lilia Albores-Gallo
- Hospital Psiquiátrico Infantil Dr. Juan N. Navarro, Ciudad de México, Mexico
- Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern, Pleasanton, California, USA
- Kaiser Permanente School of Medicine, Pasadena, California, USA
| | - Carlos S Cruz-Fuentes
- Departamento de Genética, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz México, Ciudad de México, Mexico
| | - Irva Hertz-Picciotto
- MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis, Davis, California, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Maria C Lattig
- Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | | | - Maria Rita Passos-Bueno
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Biociência, Universidade de São Paulo, São Paulo, Brasil
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Paige M Siper
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Flora Tassone
- MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis, Davis, California, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Davis, California, USA
| | - M Pilar Trelles
- Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark J Daly
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Behrang Mahjani
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Edwin H Cook
- Department of Psychiatry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Kathryn Roeder
- Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Catalina Betancur
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris, France
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
9
|
Jung S, Caballero M, Kępińska A, Smout S, Munk-Olsen T, Robakis TK, Bergink V, Mahjani B. Genetic Architecture of Postpartum Psychosis: From Common to Rare Genetic Variation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.09.24318732. [PMID: 39711717 PMCID: PMC11661424 DOI: 10.1101/2024.12.09.24318732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Postpartum psychosis is a severe psychiatric condition marked by the abrupt onset of psychosis, mania, or psychotic depression following childbirth. Despite evidence for a strong genetic basis, the roles of common and rare genetic variation remain poorly understood. Leveraging data from Swedish national registers and genomic data from the All of Us Research Program, we estimated family-based heritability at 55% and WGS-based heritability at 37%, with an overrepresentation on the X chromosome. Rare coding variant analysis identified DNMT1 and HMGCR as potential risk genes (q < 0.1). Analysis of 240,009 samples from All of Us demonstrated significant associations between these genes and multiple psychiatric disorders, supporting their biological relevance. Additionally, 17% of bipolar disorder, 21% of schizophrenia, and 16-25% of multiple autoimmune disorder risk genes overlapped with postpartum psychosis. These findings reveal unique genetic contributions and shared pathways, providing a foundation for understanding pathophysiology and advancing therapeutic strategies.
Collapse
Affiliation(s)
- Seulgi Jung
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madison Caballero
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adrianna Kępińska
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shelby Smout
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Trine Munk-Olsen
- Department of Clinical Research, Research Unit Children and Adolescent Psychiatry, University of Southern Denmark, Denmark
| | - Thalia K. Robakis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Behrang Mahjani
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Mediane DH, Basu S, Cahill EN, Anastasiades PG. Medial prefrontal cortex circuitry and social behaviour in autism. Neuropharmacology 2024; 260:110101. [PMID: 39128583 DOI: 10.1016/j.neuropharm.2024.110101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Autism spectrum disorder (ASD) has proven to be highly enigmatic due to the diversity of its underlying genetic causes and the huge variability in symptom presentation. Uncovering common phenotypes across people with ASD and pre-clinical models allows us to better understand the influence on brain function of the many different genetic and cellular processes thought to contribute to ASD aetiology. One such feature of ASD is the convergent evidence implicating abnormal functioning of the medial prefrontal cortex (mPFC) across studies. The mPFC is a key part of the 'social brain' and may contribute to many of the changes in social behaviour observed in people with ASD. Here we review recent evidence for mPFC involvement in both ASD and social behaviours. We also highlight how pre-clinical mouse models can be used to uncover important cellular and circuit-level mechanisms that may underly atypical social behaviours in ASD. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Diego H Mediane
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Shinjini Basu
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Emma N Cahill
- Department of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Paul G Anastasiades
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom.
| |
Collapse
|
11
|
Souaiaia T, Wu HM, Ori APS, Choi SW, Hoggart CJ, O'Reilly PF. Striking Departures from Polygenic Architecture in the Tails of Complex Traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624155. [PMID: 39605697 PMCID: PMC11601658 DOI: 10.1101/2024.11.18.624155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Understanding the genetic architecture of human traits is of key biological, medical and evolutionary importance[1]. Despite much progress, little is known about how genetic architecture varies across the trait continuum and, in particular, if it differs in the tails of complex traits, where disease often occurs. Here, applying a novel approach based on polygenic scores, we reveal striking departures from polygenic architecture across 148 quantitative trait tails, consistent with distinct concentrations of high-impact rare alleles in one or both tails of most of the traits. We demonstrate replication of these results across ancestries, cohorts, repeat measures, and using an orthogonal family-based approach[2]. Furthermore, trait tails with inferred enrichment of rare alleles are associated with more exome study hits, reduced fecundity, advanced paternal age, and lower predictive accuracy of polygenic scores. Finally, we find evidence of ongoing selection consistent with the observed departures in polygenicity and demonstrate, via simulation, that traits under stabilising selection are expected to have tails enriched for rare, large-effect alleles. Overall, our findings suggest that while common variants of small effect likely account for most of the heritability in complex traits[3], rare variants of large effect are often more important in the trait tails, particularly among individuals at highest risk of disease. Our study has implications for rare variant discovery, the utility of polygenic scores, the study of selection in humans, and for the relative importance of common and rare variants to complex traits and diseases.
Collapse
Affiliation(s)
- Tade Souaiaia
- Department of Cellular Biology, Suny Downstate Health Sciences University, Brooklyn, NY, USA
| | - Hei Man Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, NY, NY, USA
| | - Anil P S Ori
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, NY, NY, USA
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Shing Wan Choi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, NY, NY, USA
| | - Clive J Hoggart
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, NY, NY, USA
| | - Paul F O'Reilly
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, NY, NY, USA
| |
Collapse
|
12
|
Qiao L, Welch CL, Hernan R, Wynn J, Krishnan US, Zalieckas JM, Buchmiller T, Khlevner J, De A, Farkouh-Karoleski C, Wagner AJ, Heydweiller A, Mueller AC, de Klein A, Warner BW, Maj C, Chung D, McCulley DJ, Schindel D, Potoka D, Fialkowski E, Schulz F, Kipfmuller F, Lim FY, Magielsen F, Mychaliska GB, Aspelund G, Reutter HM, Needelman H, Schnater JM, Fisher JC, Azarow K, Elfiky M, Nöthen MM, Danko ME, Li M, Kosiński P, Wijnen RMH, Cusick RA, Soffer SZ, Cochius-Den Otter SCM, Schaible T, Crombleholme T, Duron VP, Donahoe PK, Sun X, High FA, Bendixen C, Brosens E, Shen Y, Chung WK. Common variants increase risk for congenital diaphragmatic hernia within the context of de novo variants. Am J Hum Genet 2024; 111:2362-2381. [PMID: 39332409 PMCID: PMC11568762 DOI: 10.1016/j.ajhg.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/29/2024] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a severe congenital anomaly often accompanied by other structural anomalies and/or neurobehavioral manifestations. Rare de novo protein-coding variants and copy-number variations contribute to CDH in the population. However, most individuals with CDH remain genetically undiagnosed. Here, we perform integrated de novo and common-variant analyses using 1,469 CDH individuals, including 1,064 child-parent trios and 6,133 ancestry-matched, unaffected controls for the genome-wide association study. We identify candidate CDH variants in 15 genes, including eight novel genes, through deleterious de novo variants. We further identify two genomic loci contributing to CDH risk through common variants with similar effect sizes among Europeans and Latinx. Both loci are in putative transcriptional regulatory regions of developmental patterning genes. Estimated heritability in common variants is ∼19%. Strikingly, there is no significant difference in estimated polygenic risk scores between isolated and complex CDH or between individuals harboring deleterious de novo variants and individuals without these variants. The data support a polygenic model as part of the CDH genetic architecture.
Collapse
Affiliation(s)
- Lu Qiao
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rebecca Hernan
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Usha S Krishnan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jill M Zalieckas
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Terry Buchmiller
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julie Khlevner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aliva De
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Amy J Wagner
- Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Andreas Heydweiller
- Department of General, Visceral, Vascular, and Thoracic Surgery, Unit of Pediatric Surgery, University Hospital Bonn, Bonn, Germany
| | - Andreas C Mueller
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Brad W Warner
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Dai Chung
- Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN 37232, USA
| | - David J McCulley
- Department of Pediatrics, San Diego Medical School, University of California, San Diego, San Diego, CA 92092, USA
| | | | | | | | - Felicitas Schulz
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Florian Kipfmuller
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Foong-Yen Lim
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Frank Magielsen
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | | | - Gudrun Aspelund
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Heiko Martin Reutter
- Neonatology and Pediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Howard Needelman
- University of Nebraska Medical Center College of Medicine, Omaha, NE 68114, USA
| | - J Marco Schnater
- Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Jason C Fisher
- New York University Grossman School of Medicine, Hassenfeld Children's Hospital at NYU Langone, New York, NY 10016, USA
| | - Kenneth Azarow
- Oregon Health and Science University, Portland, OR 97239, USA
| | | | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Melissa E Danko
- Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN 37232, USA
| | - Mindy Li
- Rush University Medical Center, Chicago, IL 60612, USA
| | - Przemyslaw Kosiński
- Department of Obstetrics, Perinatology and Gynecology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Rene M H Wijnen
- Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Robert A Cusick
- University of Nebraska Medical Center College of Medicine, Omaha, NE 68114, USA
| | | | - Suzan C M Cochius-Den Otter
- Department of Neonatology and Pediatric Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Thomas Schaible
- Department of Neonatology, University Children's Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Vincent P Duron
- Department of Surgery (Pediatrics), Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Xin Sun
- Department of Pediatrics, San Diego Medical School, University of California, San Diego, San Diego, CA 92092, USA
| | - Frances A High
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Charlotte Bendixen
- Department of General, Visceral, Vascular, and Thoracic Surgery, Unit of Pediatric Surgery, University Hospital Bonn, Bonn, Germany
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA; JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Qiu JJ, Chang XY, Zhang N, Guo LP, Wang S, Gu WY, Yin YM, Shi ZW, Hua KQ. Genetic variation and molecular profiling of congenital malformations of the female genital tract based on whole-genome sequencing. World J Pediatr 2024; 20:1179-1195. [PMID: 39251565 DOI: 10.1007/s12519-024-00839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Congenital malformations of the female genital tract (CM-FGT) are characterized by abnormal development of the fallopian tubes, uterus, and vagina, often accompanied by malformations in the urinary system, bones and hearing. However, no definitive pathogenic genes and molecular genetic causes have been identified. METHODS We present the largest whole-genome sequencing study of CM-FGT to date, analyzing 590 individuals in China: 95 patients, 442 case-controls, and 53 familial controls. RESULTS Among the patients, 5.3% carried known CM-FGT-related variants. Pedigree and case-control analyses in two dimensions of coding and non-coding regulatory regions revealed seven novel de novo copy number variations, 12 rare single-nucleotide variations, and 10 rare 3' untranslated region (UTR) mutations in genes related to CM-FGT, particularly highlighting ASH1L as a pathogenic gene. Single-cell sequencing data showed that the majority of CM-FGT-related risk genes are spatiotemporally specifically expressed early in uterus development. CONCLUSIONS In conclusion, this study identified novel variants related to CM-FGT, particularly highlighting ASH1L as a pathogenic gene. The findings provide insights into the genetic variants underlying CM-FGT, with single-cell sequencing data revealing spatiotemporal specific expression patterns of key risk genes early in uterine development. This study significantly advances the understanding of CM-FGT etiology and genetic landscape, offering new opportunities for prenatal screening.
Collapse
Affiliation(s)
- Jun-Jun Qiu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai, 200011, China
| | - Xing-Yu Chang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai, 200011, China
| | - Ning Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai, 200011, China
| | - Luo-Pei Guo
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai, 200011, China
| | - Shuai Wang
- Data and Analysis Center for Genetic Diseases, Chigene Translational Medicine Research Center, Beijing, 100032, China
| | - Wei-Yue Gu
- Data and Analysis Center for Genetic Diseases, Chigene Translational Medicine Research Center, Beijing, 100032, China
| | - Yi-Meng Yin
- Translational Research Institute of Brain and Brain-Like Intelligence, School of Medicine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, China.
| | - Zhi-Wen Shi
- Data and Analysis Center for Genetic Diseases, Chigene Translational Medicine Research Center, Beijing, 100032, China.
| | - Ke-Qin Hua
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai, 200011, China.
| |
Collapse
|
14
|
Chang S, Liu JJ, Zhao Y, Pang T, Zheng X, Song Z, Zhang A, Gao X, Luo L, Guo Y, Liu J, Yang L, Lu L. Whole-genome sequencing identifies novel genes for autism in Chinese trios. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2368-2381. [PMID: 39126614 DOI: 10.1007/s11427-023-2564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/16/2024] [Indexed: 08/12/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with high genetic heritability but heterogeneity. Fully understanding its genetics requires whole-genome sequencing (WGS), but the ASD studies utilizing WGS data in Chinese population are limited. In this study, we present a WGS study for 334 individuals, including 112 ASD patients and their non-ASD parents. We identified 146 de novo variants in coding regions in 85 cases and 60 inherited variants in coding regions. By integrating these variants with an association model, we identified 33 potential risk genes (P<0.001) enriched in neuron and regulation related biological process. Besides the well-known ASD genes (SCN2A, NF1, SHANK3, CHD8 etc.), several high confidence genes were highlighted by a series of functional analyses, including CTNND1, DGKZ, LRP1, DDN, ZNF483, NR4A2, SMAD6, INTS1, and MRPL12, with more supported evidence from GO enrichment, expression and network analysis. We also integrated RNA-seq data to analyze the effect of the variants on the gene expression and found 12 genes in the individuals with the related variants had relatively biased expression. We further presented the clinical phenotypes of the proband carrying the risk genes in both our samples and Caucasian samples to show the effect of the risk genes on phenotype. Regarding variants in non-coding regions, a total of 74 de novo variants and 30 inherited variants were predicted as pathogenic with high confidence, which were mapped to specific genes or regulatory features. The number of de novo variants found in patient was significantly associated with the parents' ages at the birth of the child, and gender with trend. We also identified small de novo structural variants in ASD trios. The results in this study provided important evidence for understanding the genetic mechanism of ASD.
Collapse
Affiliation(s)
- Suhua Chang
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
- Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, 100191, China
| | - Jia Jia Liu
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
- School of Nursing, Peking University, Beijing, 100191, China
| | - Yilu Zhao
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | - Tao Pang
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | - Xiangyu Zheng
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | | | - Anyi Zhang
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | - Xuping Gao
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | - Lingxue Luo
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | - Yanqing Guo
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China.
| | - Jing Liu
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China.
| | - Li Yang
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China.
| | - Lin Lu
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China.
- Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, 100191, China.
- National Institute on Drug Dependence, Peking University, Beijing, 100191, China.
| |
Collapse
|
15
|
Kim SW, Lee H, Song DY, Lee GH, Ji J, Park JW, Han JH, Lee JW, Byun HJ, Son JH, Kim YR, Lee Y, Kim J, Jung A, Lee J, Kim E, Kim SH, Lee JH, Satterstrom FK, Girirajan S, Børglum AD, Grove J, Kim E, Werling DM, Yoo HJ, An JY. Whole genome sequencing analysis identifies sex differences of familial pattern contributing to phenotypic diversity in autism. Genome Med 2024; 16:114. [PMID: 39334436 PMCID: PMC11429951 DOI: 10.1186/s13073-024-01385-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Whole-genome sequencing (WGS) analyses have found higher genetic burden in autistic females compared to males, supporting higher liability threshold in females. However, genomic evidence of sex differences has been limited to European ancestry to date and little is known about how genetic variation leads to autism-related traits within families across sex. METHODS To address this gap, we present WGS data of Korean autism families (n = 2255) and a Korean general population sample (n = 2500), the largest WGS data of East Asian ancestry. We analyzed sex differences in genetic burden and compared with cohorts of European ancestry (n = 15,839). Further, with extensively collected family-wise Korean autism phenotype data (n = 3730), we investigated sex differences in phenotypic scores and gene-phenotype associations within family. RESULTS We observed robust female enrichment of de novo protein-truncating variants in autistic individuals across cohorts. However, sex differences in polygenic burden varied across cohorts and we found that the differential proportion of comorbid intellectual disability and severe autism symptoms mainly drove these variations. In siblings, males of autistic females exhibited the most severe social communication deficits. Female siblings exhibited lower phenotypic severity despite the higher polygenic burden than male siblings. Mothers also showed higher tolerance for polygenic burden than fathers, supporting higher liability threshold in females. CONCLUSIONS Our findings indicate that genetic liability in autism is both sex- and phenotype-dependent, expanding the current understanding of autism's genetic complexity. Our work further suggests that family-based assessments of sex differences can help unravel underlying sex-differential liability in autism.
Collapse
Affiliation(s)
- Soo-Whee Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Hyeji Lee
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Da Yea Song
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gang-Hee Lee
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Jungeun Ji
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Jung Woo Park
- Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
| | - Jae Hyun Han
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Psychiatry, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Jee Won Lee
- Department of Psychiatry, Soonchunhyang University College of Medicine, Cheonan, South Korea
| | - Hee Jung Byun
- Department of Psychiatry, Seoul Metropolitan Children's Hospital, Seoul, Republic of Korea
| | - Ji Hyun Son
- Department of Psychiatry, Seoul Metropolitan Children's Hospital, Seoul, Republic of Korea
| | - Ye Rim Kim
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoojeong Lee
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jaewon Kim
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ashish Jung
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Junehawk Lee
- Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
| | - Eunha Kim
- School of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - So Hyun Kim
- Department of Psychology, Korea University, Seoul, Republic of Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - F Kyle Satterstrom
- Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, BiRC, Aarhus University, Aarhus, Denmark
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
| | - Donna M Werling
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Hee Jeong Yoo
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea.
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea.
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Han S. Bayesian Rare Variant Analysis Identifies Novel Schizophrenia Putative Risk Genes. J Pers Med 2024; 14:822. [PMID: 39202013 PMCID: PMC11355493 DOI: 10.3390/jpm14080822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
The genetics of schizophrenia is so complex that it involves both common variants and rare variants. Rare variant association studies of schizophrenia are challenging because statistical methods for rare variant analysis are under-powered due to the rarity of rare variants. The recent Schizophrenia Exome meta-analysis (SCHEMA) consortium, the largest consortium in this field to date, has successfully identified 10 schizophrenia risk genes from ultra-rare variants by burden test, while more risk genes remain to be discovered by more powerful rare variant association test methods. In this study, we use a recently developed Bayesian rare variant association method that is powerful for detecting sparse rare risk variants that implicates 88 new candidate risk genes associated with schizophrenia from the SCHEMA case-control sample. These newly identified genes are significantly enriched in autism risk genes and GO enrichment analysis indicates that new candidate risk genes are involved in mechanosensory behavior, regulation of cell size, neuron projection morphogenesis, and plasma-membrane-bounded cell projection morphogenesis, that may provide new insights on the etiology of schizophrenia.
Collapse
Affiliation(s)
- Shengtong Han
- School of Dentistry, Marquette University, Milwaukee, WI 53201-1881, USA
| |
Collapse
|
17
|
Whiffin N. Improving estimates of loss-of-function constraint for short genes. Nat Genet 2024; 56:1544-1545. [PMID: 39009668 DOI: 10.1038/s41588-024-01829-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Affiliation(s)
- Nicola Whiffin
- Big Data Institute and Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
18
|
Zeng T, Spence JP, Mostafavi H, Pritchard JK. Bayesian estimation of gene constraint from an evolutionary model with gene features. Nat Genet 2024; 56:1632-1643. [PMID: 38977852 DOI: 10.1038/s41588-024-01820-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 05/29/2024] [Indexed: 07/10/2024]
Abstract
Measures of selective constraint on genes have been used for many applications, including clinical interpretation of rare coding variants, disease gene discovery and studies of genome evolution. However, widely used metrics are severely underpowered at detecting constraints for the shortest ~25% of genes, potentially causing important pathogenic mutations to be overlooked. Here we developed a framework combining a population genetics model with machine learning on gene features to enable accurate inference of an interpretable constraint metric, shet. Our estimates outperform existing metrics for prioritizing genes important for cell essentiality, human disease and other phenotypes, especially for short genes. Our estimates of selective constraint should have wide utility for characterizing genes relevant to human disease. Finally, our inference framework, GeneBayes, provides a flexible platform that can improve the estimation of many gene-level properties, such as rare variant burden or gene expression differences.
Collapse
Affiliation(s)
- Tony Zeng
- Department of Genetics, Stanford University, Stanford, CA, USA.
| | | | - Hakhamanesh Mostafavi
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Population Health, New York University, New York, NY, USA
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
19
|
Olfson E, Farhat LC, Liu W, Vitulano LA, Zai G, Lima MO, Parent J, Polanczyk GV, Cappi C, Kennedy JL, Fernandez TV. Rare de novo damaging DNA variants are enriched in attention-deficit/hyperactivity disorder and implicate risk genes. Nat Commun 2024; 15:5870. [PMID: 38997333 PMCID: PMC11245598 DOI: 10.1038/s41467-024-50247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Research demonstrates the important role of genetic factors in attention-deficit/hyperactivity disorder (ADHD). DNA sequencing of families provides a powerful approach for identifying de novo (spontaneous) variants, leading to the discovery of hundreds of clinically informative risk genes for other childhood neurodevelopmental disorders. This approach has yet to be extensively leveraged in ADHD. We conduct whole-exome DNA sequencing in 152 families, comprising a child with ADHD and both biological parents, and demonstrate a significant enrichment of rare and ultra-rare de novo gene-damaging mutations in ADHD cases compared to unaffected controls. Combining these results with a large independent case-control DNA sequencing cohort (3206 ADHD cases and 5002 controls), we identify lysine demethylase 5B (KDM5B) as a high-confidence risk gene for ADHD and estimate that 1057 genes contribute to ADHD risk. Using our list of genes harboring ultra-rare de novo damaging variants, we show that these genes overlap with previously reported risk genes for other neuropsychiatric conditions and are enriched in several canonical biological pathways, suggesting early neurodevelopmental underpinnings of ADHD. This work provides insight into the biology of ADHD and demonstrates the discovery potential of DNA sequencing in larger parent-child trio cohorts.
Collapse
Affiliation(s)
- Emily Olfson
- Child Study Center, Yale University, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| | - Luis C Farhat
- Child Study Center, Yale University, New Haven, CT, USA
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Wenzhong Liu
- Child Study Center, Yale University, New Haven, CT, USA
| | | | - Gwyneth Zai
- Tanenbaum Centre, Molecular Brain Sciences Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Monicke O Lima
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Justin Parent
- University of Rhode Island, Kingston, RI, USA
- Bradley/Hasbro Children's Research Center, E.P. Bradley Hospital, Providence, RI, USA
- Alpert Medical School of Brown University, Providence, RI, USA
| | - Guilherme V Polanczyk
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Carolina Cappi
- Department of Psychiatry at Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - James L Kennedy
- Tanenbaum Centre, Molecular Brain Sciences Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Thomas V Fernandez
- Child Study Center, Yale University, New Haven, CT, USA.
- Department of Psychiatry, Yale University, New Haven, CT, USA.
| |
Collapse
|
20
|
Guerra M, Medici V, La Sala G, Farini D. Unravelling the Cerebellar Involvement in Autism Spectrum Disorders: Insights into Genetic Mechanisms and Developmental Pathways. Cells 2024; 13:1176. [PMID: 39056758 PMCID: PMC11275240 DOI: 10.3390/cells13141176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Autism spectrum disorders (ASDs) are complex neurodevelopmental conditions characterized by deficits in social interaction and communication, as well as repetitive behaviors. Although the etiology of ASD is multifactorial, with both genetic and environmental factors contributing to its development, a strong genetic basis is widely recognized. Recent research has identified numerous genetic mutations and genomic rearrangements associated with ASD-characterizing genes involved in brain development. Alterations in developmental programs are particularly harmful during critical periods of brain development. Notably, studies have indicated that genetic disruptions occurring during the second trimester of pregnancy affect cortical development, while disturbances in the perinatal and early postnatal period affect cerebellar development. The developmental defects must be viewed in the context of the role of the cerebellum in cognitive processes, which is now well established. The present review emphasizes the genetic complexity and neuropathological mechanisms underlying ASD and aims to provide insights into the cerebellar involvement in the disorder, focusing on recent advances in the molecular landscape governing its development in humans. Furthermore, we highlight when and in which cerebellar neurons the ASD-associated genes may play a role in the development of cortico-cerebellar circuits. Finally, we discuss improvements in protocols for generating cerebellar organoids to recapitulate the long period of development and maturation of this organ. These models, if generated from patient-induced pluripotent stem cells (iPSC), could provide a valuable approach to elucidate the contribution of defective genes to ASD pathology and inform diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Marika Guerra
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (M.G.); (V.M.)
| | - Vanessa Medici
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (M.G.); (V.M.)
| | - Gina La Sala
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), 00015 Monterotondo Scalo, Italy
| | - Donatella Farini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
21
|
Dalton GD, Siecinski SK, Nikolova VD, Cofer GP, Hornburg KJ, Qi Y, Johnson GA, Jiang YH, Moy SS, Gregory SG. Transcriptome analysis identifies an ASD-Like phenotype in oligodendrocytes and microglia from C58/J amygdala that is dependent on sex and sociability. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:14. [PMID: 38898502 PMCID: PMC11188533 DOI: 10.1186/s12993-024-00240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders with higher incidence in males and is characterized by atypical verbal/nonverbal communication, restricted interests that can be accompanied by repetitive behavior, and disturbances in social behavior. This study investigated brain mechanisms that contribute to sociability deficits and sex differences in an ASD animal model. METHODS Sociability was measured in C58/J and C57BL/6J mice using the 3-chamber social choice test. Bulk RNA-Seq and snRNA-Seq identified transcriptional changes in C58/J and C57BL/6J amygdala within which DMRseq was used to measure differentially methylated regions in amygdala. RESULTS C58/J mice displayed divergent social strata in the 3-chamber test. Transcriptional and pathway signatures revealed immune-related biological processes differ between C58/J and C57BL/6J amygdala. Hypermethylated and hypomethylated genes were identified in C58/J versus C57BL/6J amygdala. snRNA-Seq data in C58/J amygdala identified differential transcriptional signatures within oligodendrocytes and microglia characterized by increased ASD risk gene expression and predicted impaired myelination that was dependent on sex and sociability. RNA velocity, gene regulatory network, and cell communication analysis showed diminished oligodendrocyte/microglia differentiation. Findings were verified using Bulk RNA-Seq and demonstrated oxytocin's beneficial effects on myelin gene expression. LIMITATIONS Our findings are significant. However, limitations can be noted. The cellular mechanisms linking reduced oligodendrocyte differentiation and reduced myelination to an ASD phenotype in C58/J mice need further investigation. Additional snRNA-Seq and spatial studies would determine if effects in oligodendrocytes/microglia are unique to amygdala or if this occurs in other brain regions. Oxytocin's effects need further examination to understand its' potential as an ASD therapeutic. CONCLUSIONS Our work demonstrates the C58/J mouse model's utility in evaluating the influence of sex and sociability on the transcriptome in concomitant brain regions involved in ASD. Our single-nucleus transcriptome analysis elucidates potential pathological roles of oligodendrocytes and microglia in ASD. This investigation provides details regarding regulatory features disrupted in these cell types, including transcriptional gene dysregulation, aberrant cell differentiation, altered gene regulatory networks, and changes to key pathways that promote microglia/oligodendrocyte differentiation. Our studies provide insight into interactions between genetic risk and epigenetic processes associated with divergent affiliative behavior and lack of positive sociability.
Collapse
Affiliation(s)
- George D Dalton
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Stephen K Siecinski
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Viktoriya D Nikolova
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Gary P Cofer
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | | | - Yi Qi
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | - Yong-Hui Jiang
- Department of Genetics, Neuroscience, and Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sheryl S Moy
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA.
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurology, Molecular Genetics and Microbiology Duke Molecular Physiology Institute, 300 N. Duke Street, DUMC 104775, Durham, NC, 27701, USA.
| |
Collapse
|
22
|
Nóbrega IDS, Teles e Silva AL, Yokota-Moreno BY, Sertié AL. The Importance of Large-Scale Genomic Studies to Unravel Genetic Risk Factors for Autism. Int J Mol Sci 2024; 25:5816. [PMID: 38892002 PMCID: PMC11172008 DOI: 10.3390/ijms25115816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Autism spectrum disorder (ASD) is a common and highly heritable neurodevelopmental disorder. During the last 15 years, advances in genomic technologies and the availability of increasingly large patient cohorts have greatly expanded our knowledge of the genetic architecture of ASD and its neurobiological mechanisms. Over two hundred risk regions and genes carrying rare de novo and transmitted high-impact variants have been identified. Additionally, common variants with small individual effect size are also important, and a number of loci are now being uncovered. At the same time, these new insights have highlighted ongoing challenges. In this perspective article, we summarize developments in ASD genetic research and address the enormous impact of large-scale genomic initiatives on ASD gene discovery.
Collapse
Affiliation(s)
| | | | | | - Andréa Laurato Sertié
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, Rua Comendador Elias Jafet, 755. Morumbi, São Paulo 05653-000, Brazil; (I.d.S.N.); (A.L.T.e.S.); (B.Y.Y.-M.)
| |
Collapse
|
23
|
Zhang Y, Ahsan MU, Wang K. Noncoding de novo mutations in SCN2A are associated with autism spectrum disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.05.24306908. [PMID: 38766206 PMCID: PMC11100849 DOI: 10.1101/2024.05.05.24306908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Coding de novo mutations (DNMs) contribute to the risk for autism spectrum disorders (ASD), but the contribution of noncoding DNMs remains relatively unexplored. Here we use whole genome sequencing (WGS) data of 12,411 individuals (including 3,508 probands and 2,218 unaffected siblings) from 3,357 families collected in Simons Foundation Powering Autism Research for Knowledge (SPARK) to detect DNMs associated with ASD, while examining Simons Simplex Collection (SSC) with 6383 individuals from 2274 families to replicate the results. For coding DNMs, SCN2A reached exome-wide significance (p=2.06×10-11) in SPARK. The 618 known dominant ASD genes as a group are strongly enriched for coding DNMs in cases than sibling controls (fold change=1.51, p =1.13×10-5 for SPARK; fold change=1.86, p =2.06×10-9 for SSC). For noncoding DNMs, we used two methods to assess statistical significance: a point-based test that analyzes sites with a Combined Annotation Dependent Depletion (CADD) score ≥15, and a segment-based test that analyzes 1kb genomic segments with segment-specific background mutation rates (inferred from expected rare mutations in Gnocchi genome constraint scores). The point-based test identified SCN2A as marginally significant (p=6.12×10-4) in SPARK, yet segment-based test identified CSMD1, RBFOX1 and CHD13 as exome-wide significant. We did not identify significant enrichment of noncoding DNMs (in all 1kb segments or those with Gnocchi>4) in the 618 known ASD genes as a group in cases than sibling controls. When combining evidence from both coding and noncoding DNMs, we found that SCN2A with 11 coding and 5 noncoding DNMs exhibited the strongest significance (p=4.15×10-13). In summary, we identified both coding and noncoding DNMs in SCN2A associated with ASD, while nominating additional candidates for further examination in future studies.
Collapse
Affiliation(s)
- Yuan Zhang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mian Umair Ahsan
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Luo T, Pan J, Zhu Y, Wang X, Li K, Zhao G, Li B, Hu Z, Xia K, Li J. Association between de novo variants of nuclear-encoded mitochondrial-related genes and undiagnosed developmental disorder and autism. QJM 2024; 117:269-276. [PMID: 37930872 PMCID: PMC11014680 DOI: 10.1093/qjmed/hcad249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Evidence suggests that mitochondrial abnormalities increase the risk of two neurodevelopmental disorders: undiagnosed developmental disorder (UDD) and autism spectrum disorder (ASD). However, which nuclear-encoded mitochondrial-related genes (NEMGs) were associated with UDD-ASD is unclear. AIM To explore the association between de novo variants (DNVs) of NEMGs and UDD-ASD. DESIGN Comprehensive analysis based on DNVs of NEMGs identified in patients (31 058 UDD probands and 10 318 ASD probands) and 4262 controls. METHODS By curating NEMGs and cataloging publicly published DNVs in NEMGs, we compared the frequency of DNVs in cases and controls. We also applied a TADA-denovo model to highlight disease-associated NEMGs and characterized them based on gene intolerance, functional networks and expression patterns. RESULTS Compared with levels in 4262 controls, an excess of protein-truncating variants and deleterious missense variants in 1421 cataloged NEMGs from 41 376 patients (31 058 UDD and 10 318 ASD probands) was observed. Overall, 3.23% of de novo deleterious missense variants and 3.20% of de novo protein-truncating variants contributed to 1.1% and 0.39% of UDD-ASD cases, respectively. We prioritized 130 disease-associated NEMGs and showed distinct expression patterns in the developing human brain. Disease-associated NEMGs expression was enriched in both excitatory and inhibitory neuronal lineages from the developing human cortex. CONCLUSIONS Rare genetic alterations of disease-associated NEMGs may play a role in UDD-ASD development and lay the groundwork for a better understanding of the biology of UDD-ASD.
Collapse
Affiliation(s)
- T Luo
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - J Pan
- Department of Birth Health and Genetics, The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning 530022, China
| | - Y Zhu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - X Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - K Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - G Zhao
- 4National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008,China
- Bioinformatics Center, Furong Laboratory & Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - B Li
- 4National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008,China
- Bioinformatics Center, Furong Laboratory & Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Z Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - K Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- MOE Key Lab of Rare Pediatric Diseases & School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 410008, China
| | - J Li
- 4National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008,China
- Bioinformatics Center, Furong Laboratory & Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
25
|
Zeng T, Spence JP, Mostafavi H, Pritchard JK. Bayesian estimation of gene constraint from an evolutionary model with gene features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.19.541520. [PMID: 37292653 PMCID: PMC10245655 DOI: 10.1101/2023.05.19.541520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Measures of selective constraint on genes have been used for many applications including clinical interpretation of rare coding variants, disease gene discovery, and studies of genome evolution. However, widely-used metrics are severely underpowered at detecting constraint for the shortest ∼25% of genes, potentially causing important pathogenic mutations to be overlooked. We developed a framework combining a population genetics model with machine learning on gene features to enable accurate inference of an interpretable constraint metric, shet. Our estimates outperform existing metrics for prioritizing genes important for cell essentiality, human disease, and other phenotypes, especially for short genes. Our new estimates of selective constraint should have wide utility for characterizing genes relevant to human disease. Finally, our inference framework, GeneBayes, provides a flexible platform that can improve estimation of many gene-level properties, such as rare variant burden or gene expression differences.
Collapse
Affiliation(s)
- Tony Zeng
- Department of Genetics, Stanford University, Stanford CA
| | | | | | - Jonathan K. Pritchard
- Department of Genetics, Stanford University, Stanford CA
- Department of Biology, Stanford University, Stanford CA
| |
Collapse
|
26
|
Caballero M, Satterstrom FK, Buxbaum JD, Mahjani B. Identification of moderate effect size genes in autism spectrum disorder through a novel gene pairing approach. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.03.24305278. [PMID: 38633780 PMCID: PMC11023658 DOI: 10.1101/2024.04.03.24305278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Autism Spectrum Disorder (ASD) arises from complex genetic and environmental factors, with inherited genetic variation playing a substantial role. This study introduces a novel approach to uncover moderate effect size (MES) genes in ASD, which individually do not meet the ASD liability threshold but collectively contribute when paired with specific other MES genes. Analyzing 10,795 families from the SPARK dataset, we identified 97 MES genes forming 50 significant gene pairs, demonstrating a substantial association with ASD when considered in tandem, but not individually. Our method leverages familial inheritance patterns and statistical analyses, refined by comparisons against control cohorts, to elucidate these gene pairs' contribution to ASD liability. Furthermore, expression profile analyses of these genes in brain tissues underscore their relevance to ASD pathology. This study underscores the complexity of ASD's genetic landscape, suggesting that gene combinations, beyond high impact single-gene mutations, significantly contribute to the disorder's etiology and heterogeneity. Our findings pave the way for new avenues in understanding ASD's genetic underpinnings and developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Madison Caballero
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - F Kyle Satterstrom
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Joseph D. Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Behrang Mahjani
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Xie Y, Wu R, Li H, Dong W, Zhou G, Zhao H. Statistical methods for assessing the effects of de novo variants on birth defects. Hum Genomics 2024; 18:25. [PMID: 38486307 PMCID: PMC10938830 DOI: 10.1186/s40246-024-00590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
With the development of next-generation sequencing technology, de novo variants (DNVs) with deleterious effects can be identified and investigated for their effects on birth defects such as congenital heart disease (CHD). However, statistical power is still limited for such studies because of the small sample size due to the high cost of recruiting and sequencing samples and the low occurrence of DNVs. DNV analysis is further complicated by genetic heterogeneity across diseased individuals. Therefore, it is critical to jointly analyze DNVs with other types of genomic/biological information to improve statistical power to identify genes associated with birth defects. In this review, we discuss the general workflow, recent developments in statistical methods, and future directions for DNV analysis.
Collapse
Affiliation(s)
- Yuhan Xie
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Ruoxuan Wu
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
| | - Hongyu Li
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
| | - Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Geyu Zhou
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
28
|
Ng JK, Chen Y, Akinwe TM, Heins HB, Mehinovic E, Chang Y, Payne ZL, Manuel JG, Karchin R, Turner TN. Proteome-Wide Assessment of Clustering of Missense Variants in Neurodevelopmental Disorders Versus Cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.02.24302238. [PMID: 38352539 PMCID: PMC10863034 DOI: 10.1101/2024.02.02.24302238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Missense de novo variants (DNVs) and missense somatic variants contribute to neurodevelopmental disorders (NDDs) and cancer, respectively. Proteins with statistical enrichment based on analyses of these variants exhibit convergence in the differing NDD and cancer phenotypes. Herein, the question of why some of the same proteins are identified in both phenotypes is examined through investigation of clustering of missense variation at the protein level. Our hypothesis is that missense variation is present in different protein locations in the two phenotypes leading to the distinct phenotypic outcomes. We tested this hypothesis in 1D protein space using our software CLUMP. Furthermore, we newly developed 3D-CLUMP that uses 3D protein structures to spatially test clustering of missense variation for proteome-wide significance. We examined missense DNVs in 39,883 parent-child sequenced trios with NDDs and missense somatic variants from 10,543 sequenced tumors covering five TCGA cancer types and two COSMIC pan-cancer aggregates of tissue types. There were 57 proteins with proteome-wide significant missense variation clustering in NDDs when compared to cancers and 79 proteins with proteome-wide significant missense clustering in cancers compared to NDDs. While our main objective was to identify differences in patterns of missense variation, we also identified a novel NDD protein BLTP2. Overall, our study is innovative, provides new insights into differential missense variation in NDDs and cancer at the protein-level, and contributes necessary information toward building a framework for thinking about prognostic and therapeutic aspects of these proteins.
Collapse
Affiliation(s)
- Jeffrey K. Ng
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yilin Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Titilope M. Akinwe
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Molecular Genetics & Genomics Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hillary B. Heins
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elvisa Mehinovic
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yoonhoo Chang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Human & Statistical Genetics Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zachary L. Payne
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Molecular Genetics & Genomics Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Juana G. Manuel
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachel Karchin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Tychele N. Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
29
|
Dalton GD, Siecinski SK, Nikolova VD, Cofer GP, Hornburg K, Qi Y, Johnson GA, Jiang YH, Moy SS, Gregory SG. Transcriptome Analysis Identifies An ASD-Like Phenotype In Oligodendrocytes And Microglia From C58/J Amygdala That Is Dependent On Sex and Sociability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575733. [PMID: 38293238 PMCID: PMC10827122 DOI: 10.1101/2024.01.15.575733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders with higher incidence in males and is characterized by atypical verbal/nonverbal communication, restricted interests that can be accompanied by repetitive behavior, and disturbances in social behavior. This study investigated brain mechanisms that contribute to sociability deficits and sex differences in an ASD animal model. Methods Sociability was measured in C58/J and C57BL/6J mice using the 3-chamber social choice test. Bulk RNA-Seq and snRNA-Seq identified transcriptional changes in C58/J and C57BL/6J amygdala within which DMRseq was used to measure differentially methylated regions in amygdala. Results C58/J mice displayed divergent social strata in the 3-chamber test. Transcriptional and pathway signatures revealed immune-related biological processes differ between C58/J and C57BL/6J amygdala. Hypermethylated and hypomethylated genes were identified in C58/J versus C57BL/6J amygdala. snRNA-Seq data in C58/J amygdala identified differential transcriptional signatures within oligodendrocytes and microglia characterized by increased ASD risk gene expression and predicted impaired myelination that was dependent on sex and sociability. RNA velocity, gene regulatory network, and cell communication analysis showed diminished oligodendrocyte/microglia differentiation. Findings were verified using bulk RNA-Seq and demonstrated oxytocin's beneficial effects on myelin gene expression. Limitations Our findings are significant. However, limitations can be noted. The cellular mechanisms linking reduced oligodendrocyte differentiation and reduced myelination to an ASD phenotype in C58/J mice need further investigation. Additional snRNA-Seq and spatial studies would determine if effects in oligodendrocytes/microglia are unique to amygdala or if this occurs in other brain regions. Oxytocin's effects need further examination to understand its potential as an ASD therapeutic. Conclusions Our work demonstrates the C58/J mouse model's utility in evaluating the influence of sex and sociability on the transcriptome in concomitant brain regions involved in ASD. Our single-nucleus transcriptome analysis elucidates potential pathological roles of oligodendrocytes and microglia in ASD. This investigation provides details regarding regulatory features disrupted in these cell types, including transcriptional gene dysregulation, aberrant cell differentiation, altered gene regulatory networks, and changes to key pathways that promote microglia/oligodendrocyte differentiation. Our studies provide insight into interactions between genetic risk and epigenetic processes associated with divergent affiliative behavior and lack of positive sociability.
Collapse
|
30
|
Atamian A, Birtele M, Hosseini N, Nguyen T, Seth A, Del Dosso A, Paul S, Tedeschi N, Taylor R, Coba MP, Samarasinghe R, Lois C, Quadrato G. Human cerebellar organoids with functional Purkinje cells. Cell Stem Cell 2024; 31:39-51.e6. [PMID: 38181749 PMCID: PMC11417151 DOI: 10.1016/j.stem.2023.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/30/2023] [Accepted: 11/30/2023] [Indexed: 01/07/2024]
Abstract
Research on human cerebellar development and disease has been hampered by the need for a human cell-based system that recapitulates the human cerebellum's cellular diversity and functional features. Here, we report a human organoid model (human cerebellar organoids [hCerOs]) capable of developing the complex cellular diversity of the fetal cerebellum, including a human-specific rhombic lip progenitor population that have never been generated in vitro prior to this study. 2-month-old hCerOs form distinct cytoarchitectural features, including laminar organized layering, and create functional connections between inhibitory and excitatory neurons that display coordinated network activity. Long-term culture of hCerOs allows healthy survival and maturation of Purkinje cells that display molecular and electrophysiological hallmarks of their in vivo counterparts, addressing a long-standing challenge in the field. This study therefore provides a physiologically relevant, all-human model system to elucidate the cell-type-specific mechanisms governing cerebellar development and disease.
Collapse
Affiliation(s)
- Alexander Atamian
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Marcella Birtele
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Negar Hosseini
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tuan Nguyen
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Anoothi Seth
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ashley Del Dosso
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sandeep Paul
- Spatial Genomics, 145 Vista Avenue Suite 111, Pasadena, CA 91107, USA
| | - Neil Tedeschi
- Spatial Genomics, 145 Vista Avenue Suite 111, Pasadena, CA 91107, USA
| | - Ryan Taylor
- Spatial Genomics, 145 Vista Avenue Suite 111, Pasadena, CA 91107, USA
| | - Marcelo P Coba
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Ranmal Samarasinghe
- Department of Clinical Neurophysiology and Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Giorgia Quadrato
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
31
|
Wang S, Wang B, Drury V, Drake S, Sun N, Alkhairo H, Arbelaez J, Duhn C, Bal VH, Langley K, Martin J, Hoekstra PJ, Dietrich A, Xing J, Heiman GA, Tischfield JA, Fernandez TV, Owen MJ, O'Donovan MC, Thapar A, State MW, Willsey AJ. Rare X-linked variants carry predominantly male risk in autism, Tourette syndrome, and ADHD. Nat Commun 2023; 14:8077. [PMID: 38057346 PMCID: PMC10700338 DOI: 10.1038/s41467-023-43776-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/18/2023] [Indexed: 12/08/2023] Open
Abstract
Autism spectrum disorder (ASD), Tourette syndrome (TS), and attention-deficit/hyperactivity disorder (ADHD) display strong male sex bias, due to a combination of genetic and biological factors, as well as selective ascertainment. While the hemizygous nature of chromosome X (Chr X) in males has long been postulated as a key point of "male vulnerability", rare genetic variation on this chromosome has not been systematically characterized in large-scale whole exome sequencing studies of "idiopathic" ASD, TS, and ADHD. Here, we take advantage of informative recombinations in simplex ASD families to pinpoint risk-enriched regions on Chr X, within which rare maternally-inherited damaging variants carry substantial risk in males with ASD. We then apply a modified transmission disequilibrium test to 13,052 ASD probands and identify a novel high confidence ASD risk gene at exome-wide significance (MAGEC3). Finally, we observe that rare damaging variants within these risk regions carry similar effect sizes in males with TS or ADHD, further clarifying genetic mechanisms underlying male vulnerability in multiple neurodevelopmental disorders that can be exploited for systematic gene discovery.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Vanessa Drury
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Sam Drake
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Nawei Sun
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Hasan Alkhairo
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Juan Arbelaez
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Clif Duhn
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Vanessa H Bal
- Graduate School of Applied and Professional Psychology, Rutgers University, New Brunswick, NJ, USA
| | - Kate Langley
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, Wales, UK
- School of Psychology, Cardiff University School of Medicine, Cardiff, Wales, UK
| | - Joanna Martin
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, Wales, UK
| | - Pieter J Hoekstra
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, The Netherlands
- Accare Child Study Center, Groningen, The Netherlands
| | - Andrea Dietrich
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, The Netherlands
- Accare Child Study Center, Groningen, The Netherlands
| | - Jinchuan Xing
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Gary A Heiman
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Jay A Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Thomas V Fernandez
- Yale Child Study Center and Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, Wales, UK
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, Wales, UK
| | - Anita Thapar
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, Wales, UK
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - A Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
32
|
Wang J, Yu J, Wang M, Zhang L, Yang K, Du X, Wu J, Wang X, Li F, Qiu Z. Discovery and Validation of Novel Genes in a Large Chinese Autism Spectrum Disorder Cohort. Biol Psychiatry 2023; 94:792-803. [PMID: 37393044 DOI: 10.1016/j.biopsych.2023.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder that causes impairments in social communication and stereotypical behaviors, often accompanied by developmental delay or intellectual disability. A growing body of evidence suggests that ASD is highly heritable, and genetic studies have defined numerous risk genes. However, most studies have been conducted with individuals of European and Hispanic ancestry, and there is a lack of genetic analyses of ASD in the East Asian population. METHODS We performed whole-exome sequencing on 772 Chinese ASD trios and combined the data with a previous study of 369 Chinese ASD trios, identifying de novo variants in 1141 ASD trios. We used single-cell RNA sequencing analysis to identify the cell types in which ASD-related genes were enriched. In addition, we validated the function of a candidate high-functioning autism gene in mouse models using genetic approaches. RESULTS Our findings showed that ASD without developmental delay or intellectual disability carried fewer disruptive de novo variants than ASD with developmental delay or intellectual disability. Moreover, we identified 9 novel ASD candidate genes that were not present in the current ASD gene database. We further validated one such novel ASD candidate gene, SLC35G1, by showing that mice harboring a heterozygous deletion of Slc35g1 exhibited defects in interactive social behaviors. CONCLUSIONS Our work nominates novel ASD candidate genes and emphasizes the importance of genome-wide genetic studies with ASD cohorts of different ancestries to reveal the comprehensive genetic architecture of ASD.
Collapse
Affiliation(s)
- Jincheng Wang
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research, Institute of Autism, and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Juehua Yu
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research, Institute of Autism, and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengdi Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lingli Zhang
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research, Institute of Autism, and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kan Yang
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research, Institute of Autism, and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiujuan Du
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research, Institute of Autism, and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoqun Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Fei Li
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research, Institute of Autism, and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zilong Qiu
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research, Institute of Autism, and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; Songjiang Research Institute, Songjiang District Central Hospital, and Institute of Autism, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Clinical Neuroscience Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
33
|
Fernandez TV, Williams ZP, Kline T, Rajendran S, Augustine F, Wright N, Sullivan CAW, Olfson E, Abdallah SB, Liu W, Hoffman EJ, Gupta AR, Singer HS. Primary complex motor stereotypies are associated with de novo damaging DNA coding mutations that identify KDM5B as a risk gene. PLoS One 2023; 18:e0291978. [PMID: 37788244 PMCID: PMC10547198 DOI: 10.1371/journal.pone.0291978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/10/2023] [Indexed: 10/05/2023] Open
Abstract
Motor stereotypies are common in children with autism spectrum disorder (ASD), intellectual disability, or sensory deprivation, as well as in typically developing children ("primary" stereotypies, pCMS). The precise pathophysiological mechanism for motor stereotypies is unknown, although genetic etiologies have been suggested. In this study, we perform whole-exome DNA sequencing in 129 parent-child trios with pCMS and 853 control trios (118 cases and 750 controls after quality control). We report an increased rate of de novo predicted-damaging DNA coding variants in pCMS versus controls, identifying KDM5B as a high-confidence risk gene and estimating 184 genes conferring risk. Genes harboring de novo damaging variants in pCMS probands show significant overlap with those in Tourette syndrome, ASD, and those in ASD probands with high versus low stereotypy scores. An exploratory analysis of these pCMS gene expression patterns finds clustering within the cortex and striatum during early mid-fetal development. Exploratory gene ontology and network analyses highlight functional convergence in calcium ion transport, demethylation, cell signaling, cell cycle and development. Continued sequencing of pCMS trios will identify additional risk genes and provide greater insights into biological mechanisms of stereotypies across diagnostic boundaries.
Collapse
Affiliation(s)
- Thomas V. Fernandez
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States America
| | - Zsanett P. Williams
- Department of Psychiatry, Vanderbilt University School of Nursing, Nashville, TN, United States America
| | - Tina Kline
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States America
| | - Shreenath Rajendran
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States America
| | - Farhan Augustine
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States America
| | - Nicole Wright
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
| | - Catherine A. W. Sullivan
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States America
| | - Emily Olfson
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
| | - Sarah B. Abdallah
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
| | - Wenzhong Liu
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
| | - Ellen J. Hoffman
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
| | - Abha R. Gupta
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States America
| | - Harvey S. Singer
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States America
| |
Collapse
|
34
|
Yuan B, Wang M, Wu X, Cheng P, Zhang R, Zhang R, Yu S, Zhang J, Du Y, Wang X, Qiu Z. Identification of de novo Mutations in the Chinese Autism Spectrum Disorder Cohort via Whole-Exome Sequencing Unveils Brain Regions Implicated in Autism. Neurosci Bull 2023; 39:1469-1480. [PMID: 36881370 PMCID: PMC10533446 DOI: 10.1007/s12264-023-01037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/30/2022] [Indexed: 03/08/2023] Open
Abstract
Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder characterized by deficits in social interactions and repetitive behaviors. Although hundreds of ASD risk genes, implicated in synaptic formation and transcriptional regulation, have been identified through human genetic studies, the East Asian ASD cohorts are still under-represented in genome-wide genetic studies. Here, we applied whole-exome sequencing to 369 ASD trios including probands and unaffected parents of Chinese origin. Using a joint-calling analytical pipeline based on GATK toolkits, we identified numerous de novo mutations including 55 high-impact variants and 165 moderate-impact variants, as well as de novo copy number variations containing known ASD-related genes. Importantly, combined with single-cell sequencing data from the developing human brain, we found that the expression of genes with de novo mutations was specifically enriched in the pre-, post-central gyrus (PRC, PC) and banks of the superior temporal (BST) regions in the human brain. By further analyzing the brain imaging data with ASD and healthy controls, we found that the gray volume of the right BST in ASD patients was significantly decreased compared to healthy controls, suggesting the potential structural deficits associated with ASD. Finally, we found a decrease in the seed-based functional connectivity between BST/PC/PRC and sensory areas, the insula, as well as the frontal lobes in ASD patients. This work indicated that combinatorial analysis with genome-wide screening, single-cell sequencing, and brain imaging data reveal the brain regions contributing to the etiology of ASD.
Collapse
Affiliation(s)
- Bo Yuan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Mengdi Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xinran Wu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China
| | - Peipei Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 China
| | - Ran Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Ran Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 China
| | - Shunying Yu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China
| | - Yasong Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 China
| | - Xiaoqun Wang
- Beijing Normal University, Beijing, 100875 China
| | - Zilong Qiu
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600 China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200032 China
| |
Collapse
|
35
|
Turner TN. Acorn: an R package for de novo variant analysis. BMC Bioinformatics 2023; 24:330. [PMID: 37660114 PMCID: PMC10475174 DOI: 10.1186/s12859-023-05457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND The study of de novo variation is important for assessing biological characteristics of new variation and for studies related to human phenotypes. Software programs exist to call de novo variants and programs also exist to test the burden of these variants in genomic regions; however, I am unaware of a program that fits in between these two aspects of de novo variant assessment. This intermediate space is important for assessing the quality of de novo variants and to understand the characteristics of the callsets. For this reason, I developed an R package called acorn. RESULTS Acorn is an R package that examines various features of de novo variants including subsetting the data by individual(s), variant type, or genomic region; calculating features including variant change counts, variant lengths, and presence/absence at CpG sites; and characteristics of parental age in relation to de novo variant counts. CONCLUSIONS Acorn is an R package that fills a critical gap in assessing de novo variants and will be of benefit to many investigators studying de novo variation.
Collapse
Affiliation(s)
- Tychele N Turner
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8232, St. Louis, MO, 63110, USA.
| |
Collapse
|
36
|
Cirnigliaro M, Chang TS, Arteaga SA, Pérez-Cano L, Ruzzo EK, Gordon A, Bicks LK, Jung JY, Lowe JK, Wall DP, Geschwind DH. The contributions of rare inherited and polygenic risk to ASD in multiplex families. Proc Natl Acad Sci U S A 2023; 120:e2215632120. [PMID: 37506195 PMCID: PMC10400943 DOI: 10.1073/pnas.2215632120] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/13/2023] [Indexed: 07/30/2023] Open
Abstract
Autism spectrum disorder (ASD) has a complex genetic architecture involving contributions from both de novo and inherited variation. Few studies have been designed to address the role of rare inherited variation or its interaction with common polygenic risk in ASD. Here, we performed whole-genome sequencing of the largest cohort of multiplex families to date, consisting of 4,551 individuals in 1,004 families having two or more autistic children. Using this study design, we identify seven previously unrecognized ASD risk genes supported by a majority of rare inherited variants, finding support for a total of 74 genes in our cohort and a total of 152 genes after combined analysis with other studies. Autistic children from multiplex families demonstrate an increased burden of rare inherited protein-truncating variants in known ASD risk genes. We also find that ASD polygenic score (PGS) is overtransmitted from nonautistic parents to autistic children who also harbor rare inherited variants, consistent with combinatorial effects in the offspring, which may explain the reduced penetrance of these rare variants in parents. We also observe that in addition to social dysfunction, language delay is associated with ASD PGS overtransmission. These results are consistent with an additive complex genetic risk architecture of ASD involving rare and common variation and further suggest that language delay is a core biological feature of ASD.
Collapse
Affiliation(s)
- Matilde Cirnigliaro
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Timothy S. Chang
- Movement Disorders Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Stephanie A. Arteaga
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Laura Pérez-Cano
- STALICLA Discovery and Data Science Unit, World Trade Center, Barcelona08039, Spain
| | - Elizabeth K. Ruzzo
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Aaron Gordon
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Lucy K. Bicks
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Jae-Yoon Jung
- Department of Pediatrics, Division of Systems Medicine, Stanford University, Stanford, CA94304
- Department of Biomedical Data Science, Stanford University, Stanford, CA94305
| | - Jennifer K. Lowe
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Dennis P. Wall
- Department of Pediatrics, Division of Systems Medicine, Stanford University, Stanford, CA94304
- Department of Biomedical Data Science, Stanford University, Stanford, CA94305
| | - Daniel H. Geschwind
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Movement Disorders Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
37
|
Zhong G, Choi YA, Shen Y. VBASS enables integration of single cell gene expression data in Bayesian association analysis of rare variants. Commun Biol 2023; 6:774. [PMID: 37491581 PMCID: PMC10368729 DOI: 10.1038/s42003-023-05155-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 07/18/2023] [Indexed: 07/27/2023] Open
Abstract
Rare or de novo variants have substantial contribution to human diseases, but the statistical power to identify risk genes by rare variants is generally low due to rarity of genotype data. Previous studies have shown that risk genes usually have high expression in relevant cell types, although for many conditions the identity of these cell types are largely unknown. Recent efforts in single cell atlas in human and model organisms produced large amount of gene expression data. Here we present VBASS, a Bayesian method that integrates single-cell expression and de novo variant (DNV) data to improve power of disease risk gene discovery. VBASS models disease risk prior as a function of expression profiles, approximated by deep neural networks. It learns the weights of neural networks and parameters of Gamma-Poisson likelihood models of DNV counts jointly from expression and genetics data. On simulated data, VBASS shows proper error rate control and better power than state-of-the-art methods. We applied VBASS to published datasets and identified more candidate risk genes with supports from literature or data from independent cohorts. VBASS can be generalized to integrate other types of functional genomics data in statistical genetics analysis.
Collapse
Affiliation(s)
- Guojie Zhong
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Irving Medical Center, New York, NY, USA
| | - Yoolim A Choi
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA.
- JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
38
|
Adams CJ, Conery M, Auerbach BJ, Jensen ST, Mathieson I, Voight BF. Regularized sequence-context mutational trees capture variation in mutation rates across the human genome. PLoS Genet 2023; 19:e1010807. [PMID: 37418489 PMCID: PMC10355397 DOI: 10.1371/journal.pgen.1010807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/19/2023] [Accepted: 06/01/2023] [Indexed: 07/09/2023] Open
Abstract
Germline mutation is the mechanism by which genetic variation in a population is created. Inferences derived from mutation rate models are fundamental to many population genetics methods. Previous models have demonstrated that nucleotides flanking polymorphic sites-the local sequence context-explain variation in the probability that a site is polymorphic. However, limitations to these models exist as the size of the local sequence context window expands. These include a lack of robustness to data sparsity at typical sample sizes, lack of regularization to generate parsimonious models and lack of quantified uncertainty in estimated rates to facilitate comparison between models. To address these limitations, we developed Baymer, a regularized Bayesian hierarchical tree model that captures the heterogeneous effect of sequence contexts on polymorphism probabilities. Baymer implements an adaptive Metropolis-within-Gibbs Markov Chain Monte Carlo sampling scheme to estimate the posterior distributions of sequence-context based probabilities that a site is polymorphic. We show that Baymer accurately infers polymorphism probabilities and well-calibrated posterior distributions, robustly handles data sparsity, appropriately regularizes to return parsimonious models, and scales computationally at least up to 9-mer context windows. We demonstrate application of Baymer in three ways-first, identifying differences in polymorphism probabilities between continental populations in the 1000 Genomes Phase 3 dataset, second, in a sparse data setting to examine the use of polymorphism models as a proxy for de novo mutation probabilities as a function of variant age, sequence context window size, and demographic history, and third, comparing model concordance between different great ape species. We find a shared context-dependent mutation rate architecture underlying our models, enabling a transfer-learning inspired strategy for modeling germline mutations. In summary, Baymer is an accurate polymorphism probability estimation algorithm that automatically adapts to data sparsity at different sequence context levels, thereby making efficient use of the available data.
Collapse
Affiliation(s)
- Christopher J. Adams
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mitchell Conery
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Benjamin J. Auerbach
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shane T. Jensen
- Department of Statistics and Data Science, The Wharton School at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Benjamin F. Voight
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
39
|
Zeng T, Spence JP, Mostafavi H, Pritchard JK. Bayesian estimation of gene constraint from an evolutionary model with gene features. RESEARCH SQUARE 2023:rs.3.rs-3012879. [PMID: 37398424 PMCID: PMC10312940 DOI: 10.21203/rs.3.rs-3012879/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Measures of selective constraint on genes have been used for many applications including clinical interpretation of rare coding variants, disease gene discovery, and studies of genome evolution. However, widely-used metrics are severely underpowered at detecting constraint for the shortest ~25% of genes, potentially causing important pathogenic mutations to be overlooked. We developed a framework combining a population genetics model with machine learning on gene features to enable accurate inference of an interpretable constraint metric, s het . Our estimates outperform existing metrics for prioritizing genes important for cell essentiality, human disease, and other phenotypes, especially for short genes. Our new estimates of selective constraint should have wide utility for characterizing genes relevant to human disease. Finally, our inference framework, GeneBayes, provides a flexible platform that can improve estimation of many gene-level properties, such as rare variant burden or gene expression differences.
Collapse
Affiliation(s)
- Tony Zeng
- Department of Genetics, Stanford University, Stanford CA
| | | | | | - Jonathan K. Pritchard
- Department of Genetics, Stanford University, Stanford CA
- Department of Biology, Stanford University, Stanford CA
| |
Collapse
|
40
|
Li Q, Zhao L, Zeng Y, Kuang Y, Guan Y, Chen B, Xu S, Tang B, Wu L, Mao X, Sun X, Shi J, Xu P, Diao F, Xue S, Bao S, Meng Q, Yuan P, Wang W, Ma N, Song D, Xu B, Dong J, Mu J, Zhang Z, Fan H, Gu H, Li Q, He L, Jin L, Wang L, Sang Q. Large-scale analysis of de novo mutations identifies risk genes for female infertility characterized by oocyte and early embryo defects. Genome Biol 2023; 24:68. [PMID: 37024973 PMCID: PMC10080761 DOI: 10.1186/s13059-023-02894-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/01/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Oocyte maturation arrest and early embryonic arrest are important reproductive phenotypes resulting in female infertility and cause the recurrent failure of assisted reproductive technology (ART). However, the genetic etiologies of these female infertility-related phenotypes are poorly understood. Previous studies have mainly focused on inherited mutations based on large pedigrees or consanguineous patients. However, the role of de novo mutations (DNMs) in these phenotypes remains to be elucidated. RESULTS To decipher the role of DNMs in ART failure and female infertility with oocyte and embryo defects, we explore the landscape of DNMs in 473 infertile parent-child trios and identify a set of 481 confident DNMs distributed in 474 genes. Gene ontology analysis reveals that the identified genes with DNMs are enriched in signaling pathways associated with female reproductive processes such as meiosis, embryonic development, and reproductive structure development. We perform functional assays on the effects of DNMs in a representative gene Tubulin Alpha 4a (TUBA4A), which shows the most significant enrichment of DNMs in the infertile parent-child trios. DNMs in TUBA4A disrupt the normal assembly of the microtubule network in HeLa cells, and microinjection of DNM TUBA4A cRNAs causes abnormalities in mouse oocyte maturation or embryo development, suggesting the pathogenic role of these DNMs in TUBA4A. CONCLUSIONS Our findings suggest novel genetic insights that DNMs contribute to female infertility with oocyte and embryo defects. This study also provides potential genetic markers and facilitates the genetic diagnosis of recurrent ART failure and female infertility.
Collapse
Affiliation(s)
- Qun Li
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
- Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Lin Zhao
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Yang Zeng
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Yanping Kuang
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Yichun Guan
- Department of Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, 200032, China
| | - Shiru Xu
- Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, 518001, Guangdong, China
| | - Bin Tang
- Reproductive Medicine Center, The First People's Hospital of Changde City, Changde, 415000, China
| | - Ling Wu
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xiaoyan Mao
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Juanzi Shi
- Reproductive Medicine Center, Northwest Women's and Children's Hospital, Xi'an, 710000, China
| | - Peng Xu
- Hainan Jinghua Hejing Hospital for Reproductive Medicine, Haikou, 570125, China
| | - Feiyang Diao
- Reproductive Medicine Center, Jiangsu Province Hospital, Nanjing, 210036, China
| | - Songguo Xue
- Reproductive Medicine Center, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Shihua Bao
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Qingxia Meng
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215000, China
| | - Ping Yuan
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wenjun Wang
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ning Ma
- Reproductive Medical Center, Maternal and Child Health Care Hospital of Hainan Province, Haikou, 570206, Hainan Province, China
| | - Di Song
- Naval Medical University, Changhai Hospital, Shanghai, China
| | - Bei Xu
- Reproductive Medicine Centre, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Dong
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jian Mu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Zhihua Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Huizhen Fan
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Hao Gu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Qiaoli Li
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Lin He
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
41
|
Mollon J, Almasy L, Jacquemont S, Glahn DC. The contribution of copy number variants to psychiatric symptoms and cognitive ability. Mol Psychiatry 2023; 28:1480-1493. [PMID: 36737482 PMCID: PMC10213133 DOI: 10.1038/s41380-023-01978-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
Copy number variants (CNVs) are deletions and duplications of DNA sequence. The most frequently studied CNVs, which are described in this review, are recurrent CNVs that occur in the same locations on the genome. These CNVs have been strongly implicated in neurodevelopmental disorders, namely autism spectrum disorder (ASD), intellectual disability (ID), and developmental delay (DD), but also in schizophrenia. More recent work has also shown that CNVs increase risk for other psychiatric disorders, namely, depression, bipolar disorder, and post-traumatic stress disorder. Many of the same CNVs are implicated across all of these disorders, and these neuropsychiatric CNVs are also associated with cognitive ability in the general population, as well as with structural and functional brain alterations. Neuropsychiatric CNVs also show incomplete penetrance, such that carriers do not always develop any psychiatric disorder, and may show only mild symptoms, if any. Variable expressivity, whereby the same CNVs are associated with many different phenotypes of varied severity, also points to highly complex mechanisms underlying disease risk in CNV carriers. Comprehensive and longitudinal phenotyping studies of individual CNVs have provided initial insights into these mechanisms. However, more work is needed to estimate and predict the effect of non-recurrent, ultra-rare CNVs, which also contribute to psychiatric and cognitive outcomes. Moreover, delineating the broader phenotypic landscape of neuropsychiatric CNVs in both clinical and general population cohorts may also offer important mechanistic insights.
Collapse
Affiliation(s)
- Josephine Mollon
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Laura Almasy
- Department of Genetics, Perelman School of Medicine, Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Sebastien Jacquemont
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
| |
Collapse
|
42
|
Zhao T, Zhu G, Dubey HV, Flaherty P. Identification of significant gene expression changes in multiple perturbation experiments using knockoffs. Brief Bioinform 2023; 24:bbad084. [PMID: 36892174 PMCID: PMC10025447 DOI: 10.1093/bib/bbad084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023] Open
Abstract
Large-scale multiple perturbation experiments have the potential to reveal a more detailed understanding of the molecular pathways that respond to genetic and environmental changes. A key question in these studies is which gene expression changes are important for the response to the perturbation. This problem is challenging because (i) the functional form of the nonlinear relationship between gene expression and the perturbation is unknown and (ii) identification of the most important genes is a high-dimensional variable selection problem. To deal with these challenges, we present here a method based on the model-X knockoffs framework and Deep Neural Networks to identify significant gene expression changes in multiple perturbation experiments. This approach makes no assumptions on the functional form of the dependence between the responses and the perturbations and it enjoys finite sample false discovery rate control for the selected set of important gene expression responses. We apply this approach to the Library of Integrated Network-Based Cellular Signature data sets which is a National Institutes of Health Common Fund program that catalogs how human cells globally respond to chemical, genetic and disease perturbations. We identified important genes whose expression is directly modulated in response to perturbation with anthracycline, vorinostat, trichostatin-a, geldanamycin and sirolimus. We compare the set of important genes that respond to these small molecules to identify co-responsive pathways. Identification of which genes respond to specific perturbation stressors can provide better understanding of the underlying mechanisms of disease and advance the identification of new drug targets.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Information Systems and Analytics, College of Business, Bryant University, Smithfield, 02917, RI, USA
- Center for Health and Behavioral Sciences, Bryant University, Smithfield, 02917, RI, USA
| | - Guangyu Zhu
- Department of Computer Science and Statistics, University of Rhode Island, Kingston, 02881, RI, USA
| | - Harsh Vardhan Dubey
- Department of Mathematics & Statistics, University of Massachusetts Amherst, Amherst, 01003, MA, USA
| | - Patrick Flaherty
- Department of Mathematics & Statistics, University of Massachusetts Amherst, Amherst, 01003, MA, USA
| |
Collapse
|
43
|
Pérez-Cano L, Azidane Chenlo S, Sabido-Vera R, Sirci F, Durham L, Guney E. Translating precision medicine for autism spectrum disorder: A pressing need. Drug Discov Today 2023; 28:103486. [PMID: 36623795 DOI: 10.1016/j.drudis.2023.103486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/01/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogenous group of neurodevelopmental disorders (NDDs) with a high unmet medical need. Currently, ASD is diagnosed according to behavior-based criteria that overlook clinical and genomic heterogeneity, thus repeatedly resulting in failed clinical trials. Here, we summarize the scientific evidence pointing to the pressing need to create a precision medicine framework for ASD and other NDDs. We discuss the role of omics and systems biology to characterize more homogeneous disease subtypes with different underlying pathophysiological mechanisms and to determine corresponding tailored treatments. Finally, we provide recent initiatives towards tackling the complexity in NDDs for precision medicine and cost-effective drug discovery.
Collapse
Affiliation(s)
- Laura Pérez-Cano
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain
| | - Sara Azidane Chenlo
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain
| | - Rubén Sabido-Vera
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain
| | - Francesco Sirci
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain
| | - Lynn Durham
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain; Drug Development Unit (DDU), STALICLA SA, Avenue de Sécheron 15, 1202 Geneva, Switzerland.
| | - Emre Guney
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain.
| |
Collapse
|
44
|
Hu C, Wang Y, Li C, Mei L, Zhou B, Li D, Li H, Xu Q, Xu X. Targeted sequencing and clinical strategies in children with autism spectrum disorder: A cohort study. Front Genet 2023; 14:1083779. [PMID: 37007974 PMCID: PMC10064793 DOI: 10.3389/fgene.2023.1083779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/05/2023] [Indexed: 03/19/2023] Open
Abstract
Objectives: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with genetic and clinical heterogeneity. Owing to the advancement of sequencing technologies, an increasing number of ASD-related genes have been reported. We designed a targeted sequencing panel (TSP) for ASD based on next-generation sequencing (NGS) to provide clinical strategies for genetic testing of ASD and its subgroups.Methods: TSP comprised 568 ASD-related genes and analyzed both single nucleotide variations (SNVs) and copy number variations (CNVs). The Autism Diagnostic Observation Schedule (ADOS) and the Griffiths Mental Development Scales (GMDS) were performed with the consent of ASD parents. Additional medical information of the selected cases was recorded.Results: A total of 160 ASD children were enrolled in the cohort (male to female ratio 3.6:1). The total detection yield was 51.3% for TSP (82/160), among which SNVs and CNVs accounted for 45.6% (73/160) and 8.1% (13/160), respectively, with 4 children having both SNVs and CNV variants (2.5%). The detection rate of disease-associated variants in females (71.4%) was significantly higher than that in males (45.6%, p = 0.007). Pathogenic and likely pathogenic variants were detected in 16.9% (27/160) of the cases. SHANK3, KMT2A, and DLGAP2 were the most frequent variants among these patients. Eleven children had de novo SNVs, 2 of whom had de novo ASXL3 variants with mild global developmental delay (DD) and minor dysmorphic facial features besides autistic symptoms. Seventy-one children completed both ADOS and GMDS, of whom 51 had DD/intellectual disability (ID). In this subgroup of ASD children with DD/ID, we found that children with genetic abnormalities had lower language competence than those without positive genetic findings (p = 0.028). There was no correlation between the severity of ASD and positive genetic findings.Conclusion: Our study revealed the potential of TSP, with lower cost and more efficient genetic diagnosis. We recommended that ASD children with DD or ID, especially those with lower language competence, undergo genetic testing. More precise clinical phenotypes may help in the decision-making of patients with genetic testing.
Collapse
Affiliation(s)
- Chunchun Hu
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
| | - Yi Wang
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
| | - Chunyang Li
- Department of Child Health Care, Xi’an Children’s Hospital, Xi’an, China
| | - Lianni Mei
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
| | - Bingrui Zhou
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
| | - Dongyun Li
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
| | - Huiping Li
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
| | - Qiong Xu
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
- *Correspondence: Xiu Xu, ; Qiong Xu,
| | - Xiu Xu
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
- *Correspondence: Xiu Xu, ; Qiong Xu,
| |
Collapse
|
45
|
Trost B, Thiruvahindrapuram B, Chan AJS, Engchuan W, Higginbotham EJ, Howe JL, Loureiro LO, Reuter MS, Roshandel D, Whitney J, Zarrei M, Bookman M, Somerville C, Shaath R, Abdi M, Aliyev E, Patel RV, Nalpathamkalam T, Pellecchia G, Hamdan O, Kaur G, Wang Z, MacDonald JR, Wei J, Sung WWL, Lamoureux S, Hoang N, Selvanayagam T, Deflaux N, Geng M, Ghaffari S, Bates J, Young EJ, Ding Q, Shum C, D'Abate L, Bradley CA, Rutherford A, Aguda V, Apresto B, Chen N, Desai S, Du X, Fong MLY, Pullenayegum S, Samler K, Wang T, Ho K, Paton T, Pereira SL, Herbrick JA, Wintle RF, Fuerth J, Noppornpitak J, Ward H, Magee P, Al Baz A, Kajendirarajah U, Kapadia S, Vlasblom J, Valluri M, Green J, Seifer V, Quirbach M, Rennie O, Kelley E, Masjedi N, Lord C, Szego MJ, Zawati MH, Lang M, Strug LJ, Marshall CR, Costain G, Calli K, Iaboni A, Yusuf A, Ambrozewicz P, Gallagher L, Amaral DG, Brian J, Elsabbagh M, Georgiades S, Messinger DS, Ozonoff S, Sebat J, Sjaarda C, Smith IM, Szatmari P, Zwaigenbaum L, Kushki A, Frazier TW, Vorstman JAS, Fakhro KA, Fernandez BA, Lewis MES, Weksberg R, Fiume M, Yuen RKC, Anagnostou E, et alTrost B, Thiruvahindrapuram B, Chan AJS, Engchuan W, Higginbotham EJ, Howe JL, Loureiro LO, Reuter MS, Roshandel D, Whitney J, Zarrei M, Bookman M, Somerville C, Shaath R, Abdi M, Aliyev E, Patel RV, Nalpathamkalam T, Pellecchia G, Hamdan O, Kaur G, Wang Z, MacDonald JR, Wei J, Sung WWL, Lamoureux S, Hoang N, Selvanayagam T, Deflaux N, Geng M, Ghaffari S, Bates J, Young EJ, Ding Q, Shum C, D'Abate L, Bradley CA, Rutherford A, Aguda V, Apresto B, Chen N, Desai S, Du X, Fong MLY, Pullenayegum S, Samler K, Wang T, Ho K, Paton T, Pereira SL, Herbrick JA, Wintle RF, Fuerth J, Noppornpitak J, Ward H, Magee P, Al Baz A, Kajendirarajah U, Kapadia S, Vlasblom J, Valluri M, Green J, Seifer V, Quirbach M, Rennie O, Kelley E, Masjedi N, Lord C, Szego MJ, Zawati MH, Lang M, Strug LJ, Marshall CR, Costain G, Calli K, Iaboni A, Yusuf A, Ambrozewicz P, Gallagher L, Amaral DG, Brian J, Elsabbagh M, Georgiades S, Messinger DS, Ozonoff S, Sebat J, Sjaarda C, Smith IM, Szatmari P, Zwaigenbaum L, Kushki A, Frazier TW, Vorstman JAS, Fakhro KA, Fernandez BA, Lewis MES, Weksberg R, Fiume M, Yuen RKC, Anagnostou E, Sondheimer N, Glazer D, Hartley DM, Scherer SW. Genomic architecture of autism from comprehensive whole-genome sequence annotation. Cell 2022; 185:4409-4427.e18. [PMID: 36368308 PMCID: PMC10726699 DOI: 10.1016/j.cell.2022.10.009] [Show More Authors] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/30/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022]
Abstract
Fully understanding autism spectrum disorder (ASD) genetics requires whole-genome sequencing (WGS). We present the latest release of the Autism Speaks MSSNG resource, which includes WGS data from 5,100 individuals with ASD and 6,212 non-ASD parents and siblings (total n = 11,312). Examining a wide variety of genetic variants in MSSNG and the Simons Simplex Collection (SSC; n = 9,205), we identified ASD-associated rare variants in 718/5,100 individuals with ASD from MSSNG (14.1%) and 350/2,419 from SSC (14.5%). Considering genomic architecture, 52% were nuclear sequence-level variants, 46% were nuclear structural variants (including copy-number variants, inversions, large insertions, uniparental isodisomies, and tandem repeat expansions), and 2% were mitochondrial variants. Our study provides a guidebook for exploring genotype-phenotype correlations in families who carry ASD-associated rare variants and serves as an entry point to the expanded studies required to dissect the etiology in the ∼85% of the ASD population that remain idiopathic.
Collapse
Affiliation(s)
- Brett Trost
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | | - Ada J S Chan
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Worrawat Engchuan
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Edward J Higginbotham
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jennifer L Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Livia O Loureiro
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Miriam S Reuter
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; CGEn, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Delnaz Roshandel
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Joe Whitney
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mehdi Zarrei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | | - Cherith Somerville
- Ted Rogers Centre for Heart Research, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Rulan Shaath
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mona Abdi
- Department of Human Genetics, Sidra Medicine, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Elbay Aliyev
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Rohan V Patel
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Giovanna Pellecchia
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Omar Hamdan
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Gaganjot Kaur
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Zhuozhi Wang
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jeffrey R MacDonald
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - John Wei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Wilson W L Sung
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sylvia Lamoureux
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ny Hoang
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Autism Research Unit, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Genetic Counselling, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Thanuja Selvanayagam
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Autism Research Unit, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Genetic Counselling, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Nicole Deflaux
- Verily Life Sciences, South San Francisco, CA 94080, USA
| | - Melissa Geng
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Siavash Ghaffari
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - John Bates
- Verily Life Sciences, South San Francisco, CA 94080, USA
| | - Edwin J Young
- Genome Diagnostics, Department of Paediatric Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Laboratory Medicine and Pathobiology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Qiliang Ding
- Ted Rogers Centre for Heart Research, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Carole Shum
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Lia D'Abate
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Clarrisa A Bradley
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Annabel Rutherford
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Vernie Aguda
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Beverly Apresto
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nan Chen
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sachin Desai
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiaoyan Du
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Matthew L Y Fong
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sanjeev Pullenayegum
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Kozue Samler
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ting Wang
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Karen Ho
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Tara Paton
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sergio L Pereira
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jo-Anne Herbrick
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Richard F Wintle
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | - Olivia Rennie
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Elizabeth Kelley
- Department of Psychology, Queen's University, Kingston, ON K7L 3N6, Canada; Department of Psychiatry, Queen's University, Kingston, ON K7L 7X3, Canada
| | - Nina Masjedi
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Catherine Lord
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Michael J Szego
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Ma'n H Zawati
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Michael Lang
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Lisa J Strug
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Statistical Sciences, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Christian R Marshall
- Genome Diagnostics, Department of Paediatric Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gregory Costain
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Pediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Kristina Calli
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Alana Iaboni
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada
| | - Afiqah Yusuf
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Patricia Ambrozewicz
- Autism Research Unit, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Psychology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Child, Youth and Family Services, The Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada; Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - David G Amaral
- MIND Institute, University of California, Davis, Sacramento, CA 95817, USA; Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA 95817, USA
| | - Jessica Brian
- Department of Pediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada; Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada
| | - Mayada Elsabbagh
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON L8N 3K7, Canada
| | | | - Sally Ozonoff
- MIND Institute, University of California, Davis, Sacramento, CA 95817, USA; Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA 95817, USA
| | - Jonathan Sebat
- Department of Psychiatry and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Calvin Sjaarda
- Department of Psychiatry, Queen's University, Kingston, ON K7L 7X3, Canada; Queen's Genomics Lab at Ongwanada, Queen's University, Kingston, ON K7M 8A6, Canada
| | - Isabel M Smith
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada; IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Peter Szatmari
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada; Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
| | - Lonnie Zwaigenbaum
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Azadeh Kushki
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Thomas W Frazier
- Autism Speaks, Princeton, NJ 08540, USA; Department of Psychology, John Carroll University, Cleveland, OH 44118, USA
| | - Jacob A S Vorstman
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar; Department of Genetic Medicine, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Bridget A Fernandez
- Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - M E Suzanne Lewis
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Pediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | | | - Ryan K C Yuen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Evdokia Anagnostou
- Department of Pediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada; Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada
| | - Neal Sondheimer
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Pediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - David Glazer
- Verily Life Sciences, South San Francisco, CA 94080, USA
| | | | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; McLaughlin Centre, Toronto, ON M5G 0A4, Canada.
| |
Collapse
|
46
|
Zhang H, Xu MS, Fan X, Chung WK, Shen Y. Predicting functional effect of missense variants using graph attention neural networks. NAT MACH INTELL 2022; 4:1017-1028. [PMID: 37484202 PMCID: PMC10361701 DOI: 10.1038/s42256-022-00561-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/07/2022] [Indexed: 11/16/2022]
Abstract
Accurate prediction of damaging missense variants is critically important for interpreting a genome sequence. Although many methods have been developed, their performance has been limited. Recent advances in machine learning and the availability of large-scale population genomic sequencing data provide new opportunities to considerably improve computational predictions. Here we describe the graphical missense variant pathogenicity predictor (gMVP), a new method based on graph attention neural networks. Its main component is a graph with nodes that capture predictive features of amino acids and edges weighted by co-evolution strength, enabling effective pooling of information from the local protein context and functionally correlated distal positions. Evaluation of deep mutational scan data shows that gMVP outperforms other published methods in identifying damaging variants in TP53, PTEN, BRCA1 and MSH2. Furthermore, it achieves the best separation of de novo missense variants in neuro developmental disorder cases from those in controls. Finally, the model supports transfer learning to optimize gain- and loss-of-function predictions in sodium and calcium channels. In summary, we demonstrate that gMVP can improve interpretation of missense variants in clinical testing and genetic studies.
Collapse
Affiliation(s)
- Haicang Zhang
- Department of Systems Biology, Columbia University, New York, NY, USA
| | | | - Xiao Fan
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- JP Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| |
Collapse
|
47
|
Zhong G, Shen Y. Statistical models of the genetic etiology of congenital heart disease. Curr Opin Genet Dev 2022; 76:101967. [PMID: 35939966 PMCID: PMC10586490 DOI: 10.1016/j.gde.2022.101967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 11/03/2022]
Abstract
Congenital heart disease (CHD) is a collection of anatomically and clinically heterogeneous structure anomalies of heart at birth. Finding genetic causes of CHD can not only shed light on developmental biology of heart, but also provide basis for improving clinical care and interventions. The optimal study design and analytical approaches to identify genetic causes depend on the underlying genetic architecture. A few well-known syndromes with CHD as core conditions, such as Noonan and CHARGE, have known monogenic causes. The genetic causes of most of CHD patients, however, are unknown and likely to be complex. In this review, we highlight recent studies that assume a complex genetic architecture of CHD with two main approaches. One is genomic sequencing studies aiming for identifying rare or de novo risk variants with large genetic effect. The other is genome-wide association studies optimized for common variants with moderate genetic effect.
Collapse
Affiliation(s)
- Guojie Zhong
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Integrated Program in Cellular, Molecular, and Biological Studies, Columbia University Irving Medical Center, New York, NY, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA; JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
48
|
Considering the Genetic Architecture of Hypoplastic Left Heart Syndrome. J Cardiovasc Dev Dis 2022; 9:jcdd9100315. [PMID: 36286267 PMCID: PMC9604382 DOI: 10.3390/jcdd9100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is among the most severe cardiovascular malformations and understanding its causes is crucial to making progress in prevention and treatment. Genetic analysis is a broadly useful tool for dissecting complex causal mechanisms and it is playing a significant role in HLHS research. However, unlike classical Mendelian disorders where a relatively small number of genes are largely determinative of the occurrence and severity of the disease, the picture in HLHS is complex. De novo single-gene and copy number variant (CNV) disorders make an important contribution, but there is emerging evidence for causal contributions from lower penetrance and common variation. Integrating this emerging knowledge into clinical diagnostics and translating the findings into effective prevention and treatment remain challenges for the future.
Collapse
|
49
|
Zhou X, Feliciano P, Shu C, Wang T, Astrovskaya I, Hall JB, Obiajulu JU, Wright JR, Murali SC, Xu SX, Brueggeman L, Thomas TR, Marchenko O, Fleisch C, Barns SD, Snyder LG, Han B, Chang TS, Turner TN, Harvey WT, Nishida A, O'Roak BJ, Geschwind DH, Michaelson JJ, Volfovsky N, Eichler EE, Shen Y, Chung WK. Integrating de novo and inherited variants in 42,607 autism cases identifies mutations in new moderate-risk genes. Nat Genet 2022; 54:1305-1319. [PMID: 35982159 PMCID: PMC9470534 DOI: 10.1038/s41588-022-01148-2] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 06/28/2022] [Indexed: 12/16/2022]
Abstract
To capture the full spectrum of genetic risk for autism, we performed a two-stage analysis of rare de novo and inherited coding variants in 42,607 autism cases, including 35,130 new cases recruited online by SPARK. We identified 60 genes with exome-wide significance (P < 2.5 × 10-6), including five new risk genes (NAV3, ITSN1, MARK2, SCAF1 and HNRNPUL2). The association of NAV3 with autism risk is primarily driven by rare inherited loss-of-function (LoF) variants, with an estimated relative risk of 4, consistent with moderate effect. Autistic individuals with LoF variants in the four moderate-risk genes (NAV3, ITSN1, SCAF1 and HNRNPUL2; n = 95) have less cognitive impairment than 129 autistic individuals with LoF variants in highly penetrant genes (CHD8, SCN2A, ADNP, FOXP1 and SHANK3) (59% vs 88%, P = 1.9 × 10-6). Power calculations suggest that much larger numbers of autism cases are needed to identify additional moderate-risk genes.
Collapse
Affiliation(s)
- Xueya Zhou
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | | | - Chang Shu
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Tianyun Wang
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center; Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
| | | | | | - Joseph U Obiajulu
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | | | - Shwetha C Murali
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | | | - Leo Brueggeman
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Taylor R Thomas
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | | | | | | | - Bing Han
- Simons Foundation, New York, NY, USA
| | - Timothy S Chang
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tychele N Turner
- Department of Genetics, Washington University, St. Louis, MO, USA
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrew Nishida
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Brian J O'Roak
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jacob J Michaelson
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA.
- Simons Foundation, New York, NY, USA.
- Department of Medicine, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
50
|
Antaki D, Guevara J, Maihofer AX, Klein M, Gujral M, Grove J, Carey CE, Hong O, Arranz MJ, Hervas A, Corsello C, Vaux KK, Muotri AR, Iakoucheva LM, Courchesne E, Pierce K, Gleeson JG, Robinson EB, Nievergelt CM, Sebat J. A phenotypic spectrum of autism is attributable to the combined effects of rare variants, polygenic risk and sex. Nat Genet 2022; 54:1284-1292. [PMID: 35654974 PMCID: PMC9474668 DOI: 10.1038/s41588-022-01064-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/28/2022] [Indexed: 01/21/2023]
Abstract
The genetic etiology of autism spectrum disorder (ASD) is multifactorial, but how combinations of genetic factors determine risk is unclear. In a large family sample, we show that genetic loads of rare and polygenic risk are inversely correlated in cases and greater in females than in males, consistent with a liability threshold that differs by sex. De novo mutations (DNMs), rare inherited variants and polygenic scores were associated with various dimensions of symptom severity in children and parents. Parental age effects on risk for ASD in offspring were attributable to a combination of genetic mechanisms, including DNMs that accumulate in the paternal germline and inherited risk that influences behavior in parents. Genes implicated by rare variants were enriched in excitatory and inhibitory neurons compared with genes implicated by common variants. Our results suggest that a phenotypic spectrum of ASD is attributable to a spectrum of genetic factors that impact different neurodevelopmental processes.
Collapse
Affiliation(s)
- Danny Antaki
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - James Guevara
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Marieke Klein
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Madhusudan Gujral
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine and Center for Integrative Sequencing, iSEQ, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Caitlin E Carey
- Harvard T.H. Chan School of Public Health, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Oanh Hong
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Maria J Arranz
- Research Laboratory Unit, Fundacio Docencia i Recerca Mutua, Terrassa, Spain
| | - Amaia Hervas
- Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
| | - Christina Corsello
- TEACCH Autism Program, University of North Carolina, Chapel Hill, NC, USA
| | | | - Alysson R Muotri
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics and Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, Center for Academic Research and Training in Anthropogeny, Archealization Center, Kavli Institute for Brain and Mind, La Jolla, CA, USA
| | - Lilia M Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eric Courchesne
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Autism Center of Excellence, University of California San Diego, La Jolla, CA, USA
| | - Karen Pierce
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Autism Center of Excellence, University of California San Diego, La Jolla, CA, USA
| | - Joseph G Gleeson
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Elise B Robinson
- Harvard T.H. Chan School of Public Health, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Jonathan Sebat
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|