1
|
Abou Daya F, Mandigo T, Ober L, Patel D, Maher M, Math S, Tchio C, Walker JA, Saxena R, Melkani GC. Identifying links between cardiovascular disease and insomnia by modeling genes from a pleiotropic locus. Dis Model Mech 2025; 18:dmm052139. [PMID: 40176577 DOI: 10.1242/dmm.052139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 03/27/2025] [Indexed: 04/04/2025] Open
Abstract
Insomnia symptoms double the risk of cardiovascular disease (CVD), yet shared genetic pathways remain unclear. Genome-wide association studies identified a genetic locus (near ATP5G1, UBE2Z, SNF8, IGF2BP1 and GIP) linked to insomnia and CVD. We used Drosophila models to perform tissue-specific RNA interference knockdowns of four conserved orthologs (ATPsynC, lsn, Bruce and Imp) in neurons and the heart. Neuronal-specific knockdown of ATPsynC, Imp and lsn impaired sleep quantity and quality. In contrast, cardiac knockdown of ATPsynC and lsn reduced cardiac function and lifespan, with lsn knockdown also causing cardiac dilation and myofibrillar disorganization. Cross-tissue effects were evident: neuronal Imp knockdown compromised cardiac function, whereas cardiac ATPsynC and lsn knockdown increased sleep fragmentation and inflammation (marked by Upd3 elevation in the heart or head). Overexpression of Upd3 in neurons impaired cardiac function, and its overexpression in the heart disrupted sleep. Our findings reveal conserved genes mediating tissue-specific and cross-tissue interactions between sleep and cardiac function, providing novel insights into the genetic mechanisms linking insomnia and CVD through inflammation.
Collapse
Affiliation(s)
- Farah Abou Daya
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Torrey Mandigo
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02114, USA
| | - Lily Ober
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dev Patel
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Matthew Maher
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Suraj Math
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Cynthia Tchio
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - James A Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02114, USA
| | - Richa Saxena
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02114, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Girish C Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- UAB Nathan Shock Center, Birmingham, AL 35294, USA
| |
Collapse
|
2
|
Abou Daya F, Mandigo T, Patel D, Math S, Ober L, Maher M, Melkani G, Walker J, Saxena R. Drosophila Modeling Identifies Increased Sleep as a Link Between Insomnia and Cardiovascular Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647668. [PMID: 40291700 PMCID: PMC12026989 DOI: 10.1101/2025.04.07.647668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Insomnia is a common sleep disorder associated with negative long-term health outcomes. Mendelian randomization studies have found that insomnia significantly increases the risk of cardiovascular disease (CVD). To better understand the link between sleep and heart health, we identify genes associated with both insomnia and CVD. We model the disruption of the Drosophila melanogaster orthologs in neurons and cardiac tissue to characterize their cell-autonomous and non-cell-autonomous role in regulating sleep and cardiac physiology. We identify three genes that function in neurons and the heart to cell-autonomously regulate the function of each tissue. We find that the disruption of insomnia- and CVD-associated Drosophila orthologs in the heart most often lead to increased nighttime sleep. Inversely, disruptions in neurons that lead to increased sleep most often result in an elevated heart rate. To confirm the association between increased sleep and cardiac function, we performed a genetic correlation analysis from human data between long sleep-related traits and adverse cardiac outcomes. Significant correlations were found between most long sleep traits and heart failure, coronary artery disease, or myocardial infarction, reinforcing our findings in the fly linking increased or excessive sleep and altered cardiac health.
Collapse
|
3
|
Yadav A, Ouyang X, Barkley M, Watson JC, Madamanchi K, Kramer J, Zhang J, Melkani G. Regulation of lipid dysmetabolism and neuroinflammation linked with Alzheimer's disease through modulation of Dgat2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638929. [PMID: 40027815 PMCID: PMC11870505 DOI: 10.1101/2025.02.18.638929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder marked by amyloid-β (Aβ) plaque accumulation, cognitive decline, lipid dysregulation, and neuroinflammation. While mutations in the Amyloid Precursor Protein (APP) and Aβ42 accumulation contribute to AD, the mechanisms linking Aβ to lipid metabolism and neuroinflammation remain unclear. Using Drosophila models, we show that App NLG and Aβ42 expression causes locomotor deficits, disrupted sleep, memory impairments, lipid accumulation, synaptic loss, and neuroinflammation. Similar lipid and inflammatory changes are observed in the App NLG-F knock-in mouse model, reinforcing their role in AD pathogenesis. We identify diacylglycerol O-acyltransferase 2 (Dgat2), a key lipid metabolism enzyme, as a modulator of AD phenotypes. In Drosophila and mouse AD models, Dgat2 levels and its transcription factors are altered. Dgat2 knockdown in Drosophila reduced lipid accumulation, restored synaptic integrity, improved locomotor and cognitive function, and mitigated neuroinflammation. Additionally, Dgat2 modulation improved sleep and circadian rhythms. In App NLG-F mice, Dgat2 inhibition decreased neuroinflammation and reduced AD risk gene expression. These findings highlight the intricate link between amyloid pathology, lipid dysregulation, and neuroinflammation, suggesting that targeting Dgat2 may offer a novel therapeutic approach for AD. Conserved lipid homeostasis mechanisms across species provide valuable translational insights.
Collapse
|
4
|
Gill S, Mandigo TR, Elmali AD, Leger BS, Yang B, Tran S, Laosuntisuk K, Lane JM, Bannister D, Aonbangkhen C, Ormerod KG, Mahama B, Schuch KN, Elya C, Akhund-Zade J, Math SR, LoRocco NC, Seo S, Maher M, Kanca O, Bebek N, Karadeniz D, Senel GB, Courage C, Lehesjoki AE, Winkelman JW, Bellen HJ, de Bivort B, Hart AC, Littleton JT, Baykan B, Doherty CJ, Melkani GC, Prober DA, Woo CM, Saxena R, Schreiber SL, Walker JA. A conserved role for ALG10/ALG10B and the N -glycosylation pathway in the sleep-epilepsy axis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.11.24318624. [PMID: 39711723 PMCID: PMC11661338 DOI: 10.1101/2024.12.11.24318624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Congenital disorders of glycosylation (CDG) comprise a class of inborn errors of metabolism resulting from pathogenic variants in genes coding for enzymes involved in the asparagine-linked glycosylation of proteins. Unexpectedly to date, no CDG has been described for ALG10 , encoding the alpha-1,2-glucosyltransferase catalyzing the final step of lipid-linked oligosaccharide biosynthesis. Genome-wide association studies (GWAS) of human traits in the UK Biobank revealed significant SNP associations with short sleep duration, reduced napping frequency, later sleep timing and evening diurnal preference as well as cardiac traits at a genomic locus containing a pair of paralogous enzymes ALG10 and ALG10B . Modeling Alg10 loss in Drosophila, we identify an essential role for the N -glycosylation pathway in maintaining appropriate neuronal firing activity, healthy sleep, preventing seizures, and cardiovascular homeostasis. We further confirm the broader relevance of neurological findings associated with Alg10 from humans and flies using zebrafish and nematodes and demonstrate conserved biochemical roles for N -glycosylation in Arabidopsis . We report a human subject homozygous for variants in both ALG10 and ALG10B arising from a consanguineous marriage, with epilepsy, brain atrophy, and sleep abnormalities as predicted by the fly phenotype. Quantitative glycoproteomic analysis in our Drosophila model identifies potential key molecular targets for neurological symptoms of CDGs.
Collapse
|
5
|
Moraes RCM, Roth JR, Mao H, Crawley SR, Xu BP, Watson JC, Melkani GC. Apolipoprotein E Induces Lipid Accumulation Through Dgat2 That Is Prevented with Time-Restricted Feeding in Drosophila. Genes (Basel) 2024; 15:1376. [PMID: 39596576 PMCID: PMC11594465 DOI: 10.3390/genes15111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Apolipoprotein E (ApoE) is the leading genetic risk factor for late-onset Alzheimer's disease (AD), which is the leading cause of dementia worldwide. Most people have two ApoE-ε3 (ApoE3) alleles, while ApoE-ε2 (ApoE2) is protective from AD, and ApoE-ε4 (ApoE4) confers AD risk. How these alleles modulate AD risk is not clearly defined, and ApoE's role in lipid metabolism is also not fully known. Lipid droplets increase in AD. However, how ApoE contributes to lipid accumulation in the brain remains unknown. Methods: Here, we use Drosophila to study the effects of ApoE alleles on lipid accumulation in the brain and muscle in a cell-autonomous and non-cell-autonomous manner. Results: We report that pan-neuronal expression of each ApoE allele induces lipid accumulation specifically in the brain, but not in the muscle. However, this was not the case when expressed with muscle-specific drivers. ApoE2- and ApoE3-induced lipid accumulation is dependent on the expression of Dgat2, a key regulator of triacylglycerol production, while ApoE4 still induces lipid accumulation even with knock-down of Dgat2. Additionally, we find that implementation of time-restricted feeding (TRF), a dietary intervention in which food access only occurs in the active period (day), prevents ApoE-induced lipid accumulation in the brain of flies and modulates lipid metabolism genes. Conclusions: Altogether, our results demonstrate that ApoE induces lipid accumulation in the brain, that ApoE4 is unique in causing lipid accumulation independent of Dgat2, and that TRF prevents ApoE-induced lipid accumulation. These results support the idea that lipid metabolism is critical in AD, and that TRF could be a promising therapeutic approach to prevent ApoE-associated dysfunction in lipid metabolism.
Collapse
Affiliation(s)
- Ruan C. M. Moraes
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jonathan R. Roth
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hailey Mao
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Savannah R. Crawley
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Brittney P. Xu
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John C. Watson
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Girish C. Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- UAB Nathan Shock Center, 1300 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Melkani Y, Pant A, Guo Y, Melkani GC. Automated assessment of cardiac dynamics in aging and dilated cardiomyopathy Drosophila models using machine learning. Commun Biol 2024; 7:702. [PMID: 38849449 PMCID: PMC11161577 DOI: 10.1038/s42003-024-06371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
The Drosophila model is pivotal in deciphering the pathophysiological underpinnings of various human ailments, notably aging and cardiovascular diseases. Cutting-edge imaging techniques and physiology yield vast high-resolution videos, demanding advanced analysis methods. Our platform leverages deep learning to segment optical microscopy images of Drosophila hearts, enabling the quantification of cardiac parameters in aging and dilated cardiomyopathy (DCM). Validation using experimental datasets confirms the efficacy of our aging model. We employ two innovative approaches deep-learning video classification and machine-learning based on cardiac parameters to predict fly aging, achieving accuracies of 83.3% (AUC 0.90) and 79.1%, (AUC 0.87) respectively. Moreover, we extend our deep-learning methodology to assess cardiac dysfunction associated with the knock-down of oxoglutarate dehydrogenase (OGDH), revealing its potential in studying DCM. This versatile approach promises accelerated cardiac assays for modeling various human diseases in Drosophila and holds promise for application in animal and human cardiac physiology under diverse conditions.
Collapse
Affiliation(s)
- Yash Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Engineering Physics Department, College of Engineering, University of California, Berkeley, CA, USA
| | - Aniket Pant
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yiming Guo
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Girish C Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Abyadeh M, Gupta V, Paulo JA, Mahmoudabad AG, Shadfar S, Mirshahvaladi S, Gupta V, Nguyen CT, Finkelstein DI, You Y, Haynes PA, Salekdeh GH, Graham SL, Mirzaei M. Amyloid-beta and tau protein beyond Alzheimer's disease. Neural Regen Res 2024; 19:1262-1276. [PMID: 37905874 PMCID: PMC11467936 DOI: 10.4103/1673-5374.386406] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT The aggregation of amyloid-beta peptide and tau protein dysregulation are implicated to play key roles in Alzheimer's disease pathogenesis and are considered the main pathological hallmarks of this devastating disease. Physiologically, these two proteins are produced and expressed within the normal human body. However, under pathological conditions, abnormal expression, post-translational modifications, conformational changes, and truncation can make these proteins prone to aggregation, triggering specific disease-related cascades. Recent studies have indicated associations between aberrant behavior of amyloid-beta and tau proteins and various neurological diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as retinal neurodegenerative diseases like Glaucoma and age-related macular degeneration. Additionally, these proteins have been linked to cardiovascular disease, cancer, traumatic brain injury, and diabetes, which are all leading causes of morbidity and mortality. In this comprehensive review, we provide an overview of the connections between amyloid-beta and tau proteins and a spectrum of disorders.
Collapse
Affiliation(s)
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Sina Shadfar
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Shahab Mirshahvaladi
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Christine T.O. Nguyen
- Department of Optometry and Vision Sciences, School of Health Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Yuyi You
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Paul A. Haynes
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Ghasem H. Salekdeh
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Stuart L. Graham
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| |
Collapse
|
8
|
Wang H, Sun F. UNC-45A: A potential therapeutic target for malignant tumors. Heliyon 2024; 10:e31276. [PMID: 38803956 PMCID: PMC11128996 DOI: 10.1016/j.heliyon.2024.e31276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/31/2023] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Uncoordinated mutant number-45 myosin chaperone A (UNC-45A), a protein highly conserved throughout evolution, is ubiquitously expressed in somatic cells. It is correlated with tumorigenesis, proliferation, metastasis, and invasion of multiple malignant tumors. The current understanding of the role of UNC-45A in tumor progression is mainly related to the regulation of non-muscle myosin II (NM-II). However, many studies have suggested that the mechanisms by which UNC-45A is involved in tumor progression are far greater than those of NM-II regulation. UNC-45A can also promote tumor cell proliferation by regulating checkpoint kinase 1 (ChK1) phosphorylation or the transcriptional activity of nuclear receptors, and induces chemoresistance to paclitaxel in tumor cells by destabilizing microtubule activity. In this review, we discuss the recent advances illuminating the role of UNC-45A in tumor progression. We also put forward therapeutic strategies targeting UNC-45A, in the hope of paving the way the development of UNC-45A-targeted therapies for patients with malignant tumors.
Collapse
Affiliation(s)
- Hong Wang
- School of Nursing, Binzhou Medical University, Yantai, 264003, PR China
| | - Fude Sun
- Department of Anesthesiology, Yantai Penglai Traditional Chinese Medicine Hospital, Yantai, 265699, PR China
| |
Collapse
|
9
|
Mehanna R, Jankovic J. Systemic Symptoms in Huntington's Disease: A Comprehensive Review. Mov Disord Clin Pract 2024; 11:453-464. [PMID: 38529740 PMCID: PMC11078495 DOI: 10.1002/mdc3.14029] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Although Huntington's disease (HD) is usually thought of as a triad of motor, cognitive, and psychiatric symptoms, there is growing appreciation of HD as a systemic illness affecting the entire body. OBJECTIVES This review aims to draw attention to these systemic non-motor symptoms in HD. METHODS We identified relevant studies published in English by searching MEDLINE (from 1966 to September 2023), using the following subject headings: Huntington disease, autonomic, systemic, cardiovascular, respiratory, gastrointestinal, urinary, sexual and cutaneous, and additional specific symptoms. RESULTS Data from 123 articles were critically reviewed with focus on systemic features associated with HD, such as cardiovascular, respiratory, gastrointestinal, urinary, sexual and sweating. CONCLUSION This systematic review draws attention to a variety of systemic and autonomic co-morbidities in patients with HD. Not all of them correlate with the severity of the primary HD symptoms or CAG repeats. More research is needed to better understand the pathophysiology and treatment of systemic and autonomic dysfunction in HD.
Collapse
Affiliation(s)
- Raja Mehanna
- Department of NeurologyUniversity of Texas Health Science Center at Houston, McGovern Medical SchoolHoustonTXUSA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of NeurologyBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
10
|
Barwell T, Seroude L. Polyglutamine disease in peripheral tissues. Hum Mol Genet 2023; 32:3303-3311. [PMID: 37642359 DOI: 10.1093/hmg/ddad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
This year is a milestone anniversary of the discovery that Huntington's disease is caused by the presence of expanded polyglutamine repeats in the huntingtin gene leading to the formation of huntingtin aggregates. 30 years have elapsed and there is still no cure and the only FDA-approved treatment to alleviate the debilitating locomotor impairments presents several adverse effects. It has long been neglected that the huntingtin gene is almost ubiquitously expressed in many tissues outside of the nervous system. Growing evidence indicates that these peripheral tissues can contribute to the symptoms of the disease. New findings in Drosophila have shown that the selective expression of mutant huntingtin in muscle or fat is sufficient to cause detrimental effects in the absence of any neurodegeneration. In addition, it was discovered that a completely different tissue distribution of Htt aggregates in Drosophila muscles is responsible for a drastic aggravation of the detrimental effects. This review examines the peripheral tissues that express huntingtin with an added focus on the nature and distribution of the aggregates, if any.
Collapse
Affiliation(s)
- Taylor Barwell
- Department of Biology, Queen's University, 116 Barrie St, Kingston, ON K7L 3N6, Canada
| | - Laurent Seroude
- Department of Biology, Queen's University, 116 Barrie St, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
11
|
Roth JR, de Moraes RCM, Xu BP, Crawley SR, Khan MA, Melkani GC. Rapamycin reduces neuronal mutant huntingtin aggregation and ameliorates locomotor performance in Drosophila. Front Aging Neurosci 2023; 15:1223911. [PMID: 37823007 PMCID: PMC10562706 DOI: 10.3389/fnagi.2023.1223911] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease characterized by movement and cognitive dysfunction. HD is caused by a CAG expansion in exon 1 of the HTT gene that leads to a polyglutamine (PQ) repeat in the huntingtin protein, which aggregates in the brain and periphery. Previously, we used Drosophila models to determine that Htt-PQ aggregation in the heart causes shortened lifespan and cardiac dysfunction that is ameliorated by promoting chaperonin function or reducing oxidative stress. Here, we further study the role of neuronal mutant huntingtin and how it affects peripheral function. We overexpressed normal (Htt-PQ25) or expanded mutant (Htt-PQ72) exon 1 of huntingtin in Drosophila neurons and found that mutant huntingtin caused age-dependent Htt-PQ aggregation in the brain and could cause a loss of synapsin. To determine if this neuronal dysfunction led to peripheral dysfunction, we performed a negative geotaxis assay to measure locomotor performance and found that neuronal mutant huntingtin caused an age-dependent decrease in locomotor performance. Next, we found that rapamycin reduced Htt-PQ aggregation in the brain. These results demonstrate the role of neuronal Htt-PQ in dysfunction in models of HD, suggest that brain-periphery crosstalk could be important to the pathogenesis of HD, and show that rapamycin reduces mutant huntingtin aggregation in the brain.
Collapse
Affiliation(s)
- Jonathan R. Roth
- Department of Pathology, Cellular and Molecular Division, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ruan Carlos Macedo de Moraes
- Department of Pathology, Cellular and Molecular Division, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Brittney P. Xu
- Department of Pathology, Cellular and Molecular Division, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Savannah R. Crawley
- Department of Pathology, Cellular and Molecular Division, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Malghalara A. Khan
- Department of Pathology, Cellular and Molecular Division, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Girish C. Melkani
- Department of Pathology, Cellular and Molecular Division, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
12
|
Odunuga OO, Oberhauser AF. Beyond Chaperoning: UCS Proteins Emerge as Regulators of Myosin-Mediated Cellular Processes. Subcell Biochem 2023; 101:189-211. [PMID: 36520308 DOI: 10.1007/978-3-031-14740-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The UCS (UNC-45/CRO1/She4p) family of proteins has emerged as chaperones specific for the folding, assembly, and function of myosin. UCS proteins participate in various myosin-dependent cellular processes including myofibril organization and muscle functions, cell differentiation, striated muscle development, cytokinesis, and endocytosis. Mutations in the genes that code for UCS proteins cause serious defects in myosin-dependent cellular processes. UCS proteins that contain an N-terminal tetratricopeptide repeat (TPR) domain are called UNC-45. Vertebrates usually possess two variants of UNC-45, the ubiquitous general-cell UNC-45 (UNC-45A) and the striated muscle UNC-45 (UNC-45B), which is exclusively expressed in skeletal and cardiac muscles. Except for the TPR domain in UNC-45, UCS proteins comprise of several irregular armadillo (ARM) repeats that are organized into a central domain, a neck region, and the canonical C-terminal UCS domain that functions as the chaperoning module. With or without TPR, UCS proteins form linear oligomers that serve as scaffolds that mediate myosin folding, organization into myofibrils, repair, and motility. This chapter reviews emerging functions of these proteins with a focus on UNC-45 as a dedicated chaperone for folding, assembly, and function of myosin at protein and potentially gene levels. Recent experimental evidences strongly support UNC-45 as an absolute regulator of myosin, with each domain of the chaperone playing different but complementary roles during the folding, assembly, and function of myosin, as well as recruiting Hsp90 as a co-chaperone to optimize key steps. It is becoming increasingly clear that UNC-45 also regulates the transcription of several genes involved in myosin-dependent cellular processes.
Collapse
Affiliation(s)
- Odutayo O Odunuga
- Department of Chemistry and Biochemistry, Stephen F. Austin State University, Nacogdoches, TX, USA.
| | - Andres F Oberhauser
- Department of Neuroscience, Cell Biology, & Anatomy, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
13
|
Gómez-Jaramillo L, Cano-Cano F, González-Montelongo MDC, Campos-Caro A, Aguilar-Diosdado M, Arroba AI. A New Perspective on Huntington's Disease: How a Neurological Disorder Influences the Peripheral Tissues. Int J Mol Sci 2022; 23:6089. [PMID: 35682773 PMCID: PMC9181740 DOI: 10.3390/ijms23116089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a toxic, aggregation-prone expansion of CAG repeats in the HTT gene with an age-dependent progression that leads to behavioral, cognitive and motor symptoms. Principally affecting the frontal cortex and the striatum, mHTT disrupts many cellular functions. In fact, increasing evidence shows that peripheral tissues are affected by neurodegenerative diseases. It establishes an active crosstalk between peripheral tissues and the brain in different neurodegenerative diseases. This review focuses on the current knowledge of peripheral tissue effects in HD animal and cell experimental models and identifies biomarkers and mechanisms involved or affected in the progression of the disease as new therapeutic or early diagnostic options. The particular changes in serum/plasma, blood cells such as lymphocytes, immune blood cells, the pancreas, the heart, the retina, the liver, the kidney and pericytes as a part of the blood-brain barrier are described. It is important to note that several changes in different mouse models of HD present differences between them and between the different ages analyzed. The understanding of the impact of peripheral organ inflammation in HD may open new avenues for the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Laura Gómez-Jaramillo
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
| | - Fátima Cano-Cano
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
| | - María del Carmen González-Montelongo
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
| | - Antonio Campos-Caro
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
- Área de Genética, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, 11002 Cádiz, Spain
| | - Manuel Aguilar-Diosdado
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
- Departamento de Endocrinología y Nutrición, Hospital Universitario Puerta del Mar, Universidad de Cádiz, 11002 Cádiz, Spain
| | - Ana I. Arroba
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
- Área de Genética, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, 11002 Cádiz, Spain
| |
Collapse
|
14
|
Trujillo AS, Hsu KH, Viswanathan MC, Cammarato A, Bernstein SI. The R369 Myosin Residue within Loop 4 Is Critical for Actin Binding and Muscle Function in Drosophila. Int J Mol Sci 2022; 23:ijms23052533. [PMID: 35269675 PMCID: PMC8910226 DOI: 10.3390/ijms23052533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
The myosin molecular motor interacts with actin filaments in an ATP-dependent manner to yield muscle contraction. Myosin heavy chain residue R369 is located within loop 4 at the actin-tropomyosin interface of myosin's upper 50 kDa subdomain. To probe the importance of R369, we introduced a histidine mutation of that residue into Drosophila myosin and implemented an integrative approach to determine effects at the biochemical, cellular, and whole organism levels. Substituting the similarly charged but bulkier histidine residue reduces maximal actin binding in vitro without affecting myosin ATPase activity. R369H mutants exhibit impaired flight ability that is dominant in heterozygotes and progressive with age in homozygotes. Indirect flight muscle ultrastructure is normal in mutant homozygotes, suggesting that assembly defects or structural deterioration of myofibrils are not causative of reduced flight. Jump ability is also reduced in homozygotes. In contrast to these skeletal muscle defects, R369H mutants show normal heart ultrastructure and function, suggesting that this residue is differentially sensitive to perturbation in different myosin isoforms or muscle types. Overall, our findings indicate that R369 is an actin binding residue that is critical for myosin function in skeletal muscles, and suggest that more severe perturbations at this residue may cause human myopathies through a similar mechanism.
Collapse
Affiliation(s)
- Adriana S. Trujillo
- Department of Biology, Molecular Biology Institute, Heart Institute, San Diego State University, San Diego, CA 92182, USA; (A.S.T.); (K.H.H.)
| | - Karen H. Hsu
- Department of Biology, Molecular Biology Institute, Heart Institute, San Diego State University, San Diego, CA 92182, USA; (A.S.T.); (K.H.H.)
| | - Meera C. Viswanathan
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205, USA; (M.C.V.); (A.C.)
| | - Anthony Cammarato
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205, USA; (M.C.V.); (A.C.)
| | - Sanford I. Bernstein
- Department of Biology, Molecular Biology Institute, Heart Institute, San Diego State University, San Diego, CA 92182, USA; (A.S.T.); (K.H.H.)
- Correspondence:
| |
Collapse
|
15
|
Park S, Luk SHC, Bains RS, Whittaker DS, Chiem E, Jordan MC, Roos KP, Ghiani CA, Colwell CS. Targeted Genetic Reduction of Mutant Huntingtin Lessens Cardiac Pathology in the BACHD Mouse Model of Huntington's Disease. Front Cardiovasc Med 2022; 8:810810. [PMID: 35004919 PMCID: PMC8739867 DOI: 10.3389/fcvm.2021.810810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/07/2021] [Indexed: 01/16/2023] Open
Abstract
Individuals affected by Huntington's disease (HD) present with progressive degeneration that results in a wide range of symptoms, including cardiovascular (CV) dysfunction. The huntingtin gene (HTT) and its product are ubiquitously expressed, hence, the cardiomyopathy could also be driven by defects caused by its mutated form (mHTT) in the cardiomyocytes themselves. In the present study, we sought to determine the contribution of the mHTT expressed in the cardiomyocytes to CV symptoms. We utilized the BACHD mouse model, which exhibits many of the HD core symptoms, including CV dysfunction. This model allows the targeted genetic reduction of mHTT expression in the cardiomyocytes while maintaining the expression of the mHTT in the rest of the body. The BACHD line was crossed with a line of mice in which the expression of Cre recombinase is driven by the cardiac-specific alpha myosin-heavy chain (Myh6) promoter. The offspring of this cross (BMYO mice) exhibited a dramatic reduction in mHTT in the heart but not in the striatum. The BMYO mice were evaluated at 6 months old, as at this age, the BACHD line displays a strong CV phenotype. Echocardiogram measurements found improvement in the ejection fraction in the BMYO line compared to the BACHD, while hypertrophy was observed in both mutant lines. Next, we examined the expression of genes known to be upregulated during pathological cardiac hypertrophy. As measured by qPCR, the BMYO hearts exhibited significantly less expression of collagen1a as well as Gata4, and brain natriuretic peptide compared to the BACHD. Fibrosis in the hearts assessed by Masson's trichrome stain and the protein levels of fibronectin were reduced in the BMYO hearts compared to BACHD. Finally, we examined the performance of the mice on CV-sensitive motor tasks. Both the overall activity levels and grip strength were improved in the BMYO mice. Therefore, we conclude that the reduction of mHtt expression in the heart benefits CV function in the BACHD model, and suggest that cardiomyopathy should be considered in the treatment strategies for HD.
Collapse
Affiliation(s)
- Saemi Park
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shu Hon Christopher Luk
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Raj S Bains
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel S Whittaker
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Emily Chiem
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Maria C Jordan
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kenneth P Roos
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cristina A Ghiani
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
16
|
Chuang CL, Demontis F. Systemic manifestation and contribution of peripheral tissues to Huntington's disease pathogenesis. Ageing Res Rev 2021; 69:101358. [PMID: 33979693 DOI: 10.1016/j.arr.2021.101358] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/23/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disease that is caused by expansion of cytosine/adenosine/guanine repeats in the huntingtin (HTT) gene, which leads to a toxic, aggregation-prone, mutant HTT-polyQ protein. Beyond the well-established mechanisms of HD progression in the central nervous system, growing evidence indicates that also peripheral tissues are affected in HD and that systemic signaling originating from peripheral tissues can influence the progression of HD in the brain. Herein, we review the systemic manifestation of HD in peripheral tissues, and the impact of systemic signaling on HD pathogenesis. Mutant HTT induces a body wasting syndrome (cachexia) primarily via its activity in skeletal muscle, bone, adipose tissue, and heart. Additional whole-organism effects induced by mutant HTT include decline in systemic metabolic homeostasis, which stems from derangement of pancreas, liver, gut, hypothalamic-pituitary-adrenal axis, and circadian functions. In addition to spreading via the bloodstream and a leaky blood brain barrier, HTT-polyQ may travel long distance via its uptake by neurons and its axonal transport from the peripheral to the central nervous system. Lastly, signaling factors that are produced and/or secreted in response to therapeutic interventions such as exercise or in response to mutant HTT activity in peripheral tissues may impact HD. In summary, these studies indicate that HD is a systemic disease that is influenced by intertissue signaling and by the action of pathogenic HTT in peripheral tissues. We propose that treatment strategies for HD should include the amelioration of HD symptoms in peripheral tissues. Moreover, harnessing signaling between peripheral tissues and the brain may provide a means for reducing HD progression in the central nervous system.
Collapse
|
17
|
Trujillo AS, Hsu KH, Puthawala J, Viswanathan MC, Loya A, Irving TC, Cammarato A, Swank DM, Bernstein SI. Myosin dilated cardiomyopathy mutation S532P disrupts actomyosin interactions, leading to altered muscle kinetics, reduced locomotion, and cardiac dilation in Drosophila. Mol Biol Cell 2021; 32:1690-1706. [PMID: 34081531 PMCID: PMC8684735 DOI: 10.1091/mbc.e21-02-0088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dilated cardiomyopathy (DCM), a life-threatening disease characterized by pathological heart enlargement, can be caused by myosin mutations that reduce contractile function. To better define the mechanistic basis of this disease, we employed the powerful genetic and integrative approaches available in Drosophila melanogaster. To this end, we generated and analyzed the first fly model of human myosin-induced DCM. The model reproduces the S532P human β-cardiac myosin heavy chain DCM mutation, which is located within an actin-binding region of the motor domain. In concordance with the mutation's location at the actomyosin interface, steady-state ATPase and muscle mechanics experiments revealed that the S532P mutation reduces the rates of actin-dependent ATPase activity and actin binding and increases the rate of actin detachment. The depressed function of this myosin form reduces the number of cross-bridges during active wing beating, the power output of indirect flight muscles, and flight ability. Further, S532P mutant hearts exhibit cardiac dilation that is mutant gene dose-dependent. Our study shows that Drosophila can faithfully model various aspects of human DCM phenotypes and suggests that impaired actomyosin interactions in S532P myosin induce contractile deficits that trigger the disease.
Collapse
Affiliation(s)
- Adriana S Trujillo
- Department of Biology, Molecular Biology Institute, Heart Institute, San Diego State University, San Diego, CA 92182
| | - Karen H Hsu
- Department of Biology, Molecular Biology Institute, Heart Institute, San Diego State University, San Diego, CA 92182
| | - Joy Puthawala
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Meera C Viswanathan
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Amy Loya
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Thomas C Irving
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Douglas M Swank
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology Institute, Heart Institute, San Diego State University, San Diego, CA 92182
| |
Collapse
|
18
|
Zhu Y, Shamblin I, Rodriguez E, Salzer GE, Araysi L, Margolies KA, Halade GV, Litovsky SH, Pogwizd S, Gray M, Huke S. Progressive cardiac arrhythmias and ECG abnormalities in the Huntington's disease BACHD mouse model. Hum Mol Genet 2021; 29:369-381. [PMID: 31816043 DOI: 10.1093/hmg/ddz295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/11/2019] [Accepted: 12/05/2019] [Indexed: 02/03/2023] Open
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disease. There is accumulating evidence that HD patients have increased prevalence of conduction abnormalities and compromised sinoatrial node function which could lead to increased risk for arrhythmia. We used mutant Huntingtin (mHTT) expressing bacterial artificial chromosome Huntington's disease mice to determine if they exhibit electrocardiogram (ECG) abnormalities involving cardiac conduction that are known to increase risk of sudden arrhythmic death in humans. We obtained surface ECGs and analyzed arrhythmia susceptibility; we observed prolonged QRS duration, increases in PVCs as well as PACs. Abnormal histological and structural changes that could lead to cardiac conduction system dysfunction were seen. Finally, we observed decreases in desmosomal proteins, plakophilin-2 and desmoglein-2, which have been reported to cause cardiac arrhythmias and reduced conduction. Our study indicates that mHTT could cause progressive cardiac conduction system pathology that could increase the susceptibility to arrhythmias and sudden cardiac death in HD patients.
Collapse
Affiliation(s)
- Yujie Zhu
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Isaac Shamblin
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Efrain Rodriguez
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Grace E Salzer
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lita Araysi
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katherine A Margolies
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ganesh V Halade
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Silvio H Litovsky
- Department of Pathology, Division of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Steven Pogwizd
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michelle Gray
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sabine Huke
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
19
|
Sharma AK, Yang JM, Pandey S, Wu HF. Introducing Tb 4+ in (Ce 0.09/Eu 0.96)Tb 0.92Mo 1.1O 6.93 Metal Oxide at Room Temperature and Its Use in Amyloid Defibrillation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18184-18193. [PMID: 33826292 DOI: 10.1021/acsami.0c17806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tunable optical properties in nanomaterials enable a variety of applications in multidisciplinary areas. These properties are directly related to several different factors such as solvent conditions, synthesis methods, and most significantly, the oxidation states of metals participating in the absorption or emission properties. Lanthanide metals containing ABO3 perovskites are among such nanomaterials that can be tuned to a great extent by only modifying the charged states on the metals in the composition. We report a green synthesis method through sonication to synthesize ABO3 perovskites to incorporate Tb4+ into the perovskite composition at room temperature. The optical properties of the nanomaterial show emission in the entire ultraviolet-visible-near-infrared spectral regions through charge transfer between europium and terbium. The combination of cerium (C), molybdenum (M), europium (E), and terbium (T) results in a sheet-like CMET perovskite obeying hexagonal geometry. The nanomaterial is highly stable in an aqueous medium, showing finely suspended Tyndall effect due to particle size <300 nm. Owing to their wide range of emission behavior, surface charge, and aqueous stability, CMET perovskites were used to study the defibrillation of hen egg-white lysozyme (HEWL) as an amyloid model protein. The intrinsic property of the nanomaterial assists in the interaction of the fibrils with the perovskite and the emission range becomes the reporter of the defibrillation. Infrared spectroscopy shows the change in the material properties during the defibrillation. A preliminary test on the varying concentration of HEWL incubated with CMET perovskites shows linear behavior with R2 = 0.9841. The tunable emission characteristic and aqueous stability of the perovskite material make it suitable for future biological applications.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Department of Chemistry, National Sun Yat-Sen University, No. 70, Lien-Hai Road, Kaohsiung 804, Taiwan
| | - Ji-Ming Yang
- Department of Chemistry, National Sun Yat-Sen University, No. 70, Lien-Hai Road, Kaohsiung 804, Taiwan
| | - Sunil Pandey
- Department of Chemistry, National Sun Yat-Sen University, No. 70, Lien-Hai Road, Kaohsiung 804, Taiwan
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, No. 70, Lien-Hai Road, Kaohsiung 804, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology & International PhD Program for Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
20
|
Nan Y, Lin J, Cui Y, Yao J, Yang Y, Li Q. Protective role of vitamin B6 against mitochondria damage in Drosophila models of SCA3. Neurochem Int 2021; 144:104979. [PMID: 33535071 DOI: 10.1016/j.neuint.2021.104979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/15/2022]
Abstract
Polyglutamine (polyQ)-mediated mitochondria damage is one of the prime causes of polyQ toxicity, which leads to the loss of neurons and the injury of non-neuronal cells. With the discovery of the crucial role of the gut-brain axis and gut microbes in neurological diseases, the relationship between visceral damage and neurological disorders has also received extensive attention. This study successfully simulated the polyQ mitochondrial damage model by expressing 78 or 84 polyglutamine-containing Ataxin3 proteins in Drosophila intestinal enterocytes. In vivo, polyQ expression can reduce mitochondrial membrane potential, mitochondrial DNA damage, abnormal mitochondrial morphology, and loose mitochondrial cristae. Expression profiles evaluated by RNA-seq showed that mitochondrial structural genes and functional genes (oxidative phosphorylation and tricarboxylic acid cycle-related) were significantly down-regulated. More importantly, Bioinformatic analyses demonstrated that pathological polyQ expression induced vitamin B6 metabolic pathways abnormality. Active vitamin B6 participates in hundreds of enzymatic reactions and is very important for maintaining mitochondria's activities. In the SCA3 Drosophila model, Vitamin B6 supplementation significantly suppressed ECs mitochondria damage in guts and inhibited cellular polyQ aggregates in fat bodies, indicating a promising therapeutic strategy for the treatment of polyQ. Taken together, our results reveal a crucial role for the Vitamin B6-mediated mitochondrial protection in polyQ-induced cellular toxicity, which provides strong evidence for this process as a drug target in polyQ diseases treatment.
Collapse
Affiliation(s)
- Yuyu Nan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Jingjing Lin
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, 350108, China
| | - Ying Cui
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Jinpeng Yao
- Department of Emergency, Zhongshan Hospital, Xiamen University, Xiamen, 361001, China
| | - Yufeng Yang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, 350108, China.
| | - Qinghua Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410000, China; Guangxi Clinical Research Center for Neurological Diseases, Guilin, Guangxi, 541001, China; Department of Neurology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin, Guangxi, 541004, China.
| |
Collapse
|
21
|
Geng C, Cui C, Wang C, Lu S, Zhang M, Chen D, Jiang P. Systematic Evaluations of Doxorubicin-Induced Toxicity in Rats Based on Metabolomics. ACS OMEGA 2021; 6:358-366. [PMID: 33458487 PMCID: PMC7807767 DOI: 10.1021/acsomega.0c04677] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/14/2020] [Indexed: 05/04/2023]
Abstract
Doxorubicin (DOX) is widely used to treat solid tumors, but its use is limited by its severe cardiotoxicity, nephrotoxicity, hepatotoxicity, and neurotoxicity. Metabolomic studies on DOX-induced toxicity are mainly focused on alterations in the heart and kidney, but systematic research on multiple matrices (serum, heart, liver, brain, and kidney) is rare. Thus, in our study, gas chromatography-mass spectrometry analysis of main targeted tissues (serum, heart, liver, brain, and kidney) was used to systemically evaluate the toxicity of DOX. Multivariate analyses, including orthogonal projections to the latent structure and t-test, revealed 21 metabolites in the serum, including cholesterol, d-glucose, d-lactic acid, glycine, l-alanine, l-glutamic acid, l-isoleucine, l-leucine, l-proline, l-serine, l-tryptophan, l-tyrosine, l-valine, MG (0:0/18:0/0:0), MG (16:0/0:0/0:0), N-methylphenylethanolamine, oleamide, palmitic acid, pyroglutamic acid, stearic acid, and urea. In the heart, perturbed metabolites included 3-methyl-1-pentanol, cholesterol, d-glucose, d-lactic acid, glycerol, glycine, l-alanine, l-valine, MG (16:0/0:0/0:0), palmitic acid, phenol, propanoic acid, and stearic acid. For the liver, DOX exposure caused alterations of acetamide, acetic acid, d-glucose, glycerol, l-threonine, palmitic acid, palmitoleic acid, stearic acid, and urea. In the brain, metabolic changes involved 2-butanol, carbamic acid, cholesterol, desmosterol, d-lactic acid, l-valine, MG (16:0/0:0/0:0), palmitic acid, and stearic acid. In the kidney, disturbed metabolites were involved in cholesterol, glycerol, glycine, l-alanine, MG (0:0/18:0/0:0), MG (16:0/0:0/0:0), and squalene. Complementary evidence by multiple matrices revealed disturbed pathways concerning amino acid metabolism, energy metabolism, and lipid metabolism. Our results may help to systematically elucidate the metabolic changes of DOX-induced toxicity and clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Chunmei Geng
- Department
of Pharmacy, Jining No 1 People’s Hospital, Jining Medical University, Jining 272000, China
| | - Changmeng Cui
- Department
of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Changshui Wang
- Department
of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Shuxin Lu
- Department
of Medical Engineering, Jining Medical University, Jining 272000, China
| | - Maokun Zhang
- Department
of Medical Engineering, Jining Medical University, Jining 272000, China
| | - Dan Chen
- Department
of Pharmacy, Jining No 1 People’s Hospital, Jining Medical University, Jining 272000, China
| | - Pei Jiang
- Department
of Pharmacy, Jining No 1 People’s Hospital, Jining Medical University, Jining 272000, China
- . Phone: +86 537 2106208. Fax: +86 537 2106208
| |
Collapse
|
22
|
Cardiac electrical remodeling and neurodegenerative diseases association. Life Sci 2020; 267:118976. [PMID: 33387579 DOI: 10.1016/j.lfs.2020.118976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/01/2020] [Accepted: 12/22/2020] [Indexed: 11/30/2022]
Abstract
Cardiac impairment contributes significantly to the mortality associated with several neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), primarily recognized as brain pathologies. These diseases may be caused by aggregation of a misfolded protein, most often, in the brain, although new evidence also reveals peripheral abnormalities. After characterization of the cardiac involvement in neurodegenerative diseases, several studies concentrated on elucidating the cause of the impaired cardiac function. However, most of the current knowledge is focused on the mechanical aspects of the heart rather than the electrical disturbances. The main objective of this review is to summarize the most recent advances in the elucidation of cardiac electrical remodeling in the neurodegenerative environment. We aimed to determine a crosstalk between the heart and the brain in three neurodegenerative conditions: AD, PD, and HD. We found that the most studies demonstrated important alterations in the electrocardiogram (ECG) of patients with neurodegeneration and in animal models of the conditions. We also showed that little is described when considering excitability disruptions in cardiomyocytes, for example, action potential impairments. It is a matter of contention whether central nervous system abnormalities or the peripheral ones increase the risk of heart diseases in patients with neurodegenerative conditions. To determine this notion, there is a need for new heart studies focusing specifically on the cardiac electrophysiology (e.g., ECG and cardiomyocyte excitability). This review could serve as an important guide in designing novel accurate approaches targeting the heart in neuronal conditions.
Collapse
|
23
|
Walls S, Diop S, Birse R, Elmen L, Gan Z, Kalvakuri S, Pineda S, Reddy C, Taylor E, Trinh B, Vogler G, Zarndt R, McCulloch A, Lee P, Bhattacharya S, Bodmer R, Ocorr K. Prolonged Exposure to Microgravity Reduces Cardiac Contractility and Initiates Remodeling in Drosophila. Cell Rep 2020; 33:108445. [PMID: 33242407 PMCID: PMC7787258 DOI: 10.1016/j.celrep.2020.108445] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/01/2020] [Accepted: 11/06/2020] [Indexed: 01/08/2023] Open
Abstract
Understanding the effects of microgravity on human organs is crucial to exploration of low-earth orbit, the moon, and beyond. Drosophila can be sent to space in large numbers to examine the effects of microgravity on heart structure and function, which is fundamentally conserved from flies to humans. Flies reared in microgravity exhibit cardiac constriction with myofibrillar remodeling and diminished output. RNA sequencing (RNA-seq) in isolated hearts revealed reduced expression of sarcomeric/extracellular matrix (ECM) genes and dramatically increased proteasomal gene expression, consistent with the observed compromised, smaller hearts and suggesting abnormal proteostasis. This was examined further on a second flight in which we found dramatically elevated proteasome aggregates co-localizing with increased amyloid and polyQ deposits. Remarkably, in long-QT causing sei/hERG mutants, proteasomal gene expression at 1g, although less than the wild-type expression, was nevertheless increased in microgravity. Therefore, cardiac remodeling and proteostatic stress may be a fundamental response of heart muscle to microgravity.
Collapse
Affiliation(s)
- Stanley Walls
- Development, Aging & Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Soda Diop
- Development, Aging & Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Ryan Birse
- Development, Aging & Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Lisa Elmen
- Development, Aging & Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Zhuohui Gan
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sreehari Kalvakuri
- Development, Aging & Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Santiago Pineda
- Development, Aging & Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Curran Reddy
- Space Biosciences Division, NASA Ames Research Center, Mailstop 236-5, Moffett Field, CA 94035, USA
| | - Erika Taylor
- Development, Aging & Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Bosco Trinh
- Development, Aging & Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Georg Vogler
- Development, Aging & Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Rachel Zarndt
- Development, Aging & Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Andrew McCulloch
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Peter Lee
- Department of Pathology and Laboratory Medicine, Brown University, 69 Brown Street, Providence, RI 02912, USA
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Mailstop 236-5, Moffett Field, CA 94035, USA
| | - Rolf Bodmer
- Development, Aging & Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| | - Karen Ocorr
- Development, Aging & Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| |
Collapse
|
24
|
Donkervoort S, Kutzner CE, Hu Y, Lornage X, Rendu J, Stojkovic T, Baets J, Neuhaus SB, Tanboon J, Maroofian R, Bolduc V, Mroczek M, Conijn S, Kuntz NL, Töpf A, Monges S, Lubieniecki F, McCarty RM, Chao KR, Governali S, Böhm J, Boonyapisit K, Malfatti E, Sangruchi T, Horkayne-Szakaly I, Hedberg-Oldfors C, Efthymiou S, Noguchi S, Djeddi S, Iida A, di Rosa G, Fiorillo C, Salpietro V, Darin N, Fauré J, Houlden H, Oldfors A, Nishino I, de Ridder W, Straub V, Pokrzywa W, Laporte J, Foley AR, Romero NB, Ottenheijm C, Hoppe T, Bönnemann CG. Pathogenic Variants in the Myosin Chaperone UNC-45B Cause Progressive Myopathy with Eccentric Cores. Am J Hum Genet 2020; 107:1078-1095. [PMID: 33217308 DOI: 10.1016/j.ajhg.2020.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/03/2020] [Indexed: 01/03/2023] Open
Abstract
The myosin-directed chaperone UNC-45B is essential for sarcomeric organization and muscle function from Caenorhabditis elegans to humans. The pathological impact of UNC-45B in muscle disease remained elusive. We report ten individuals with bi-allelic variants in UNC45B who exhibit childhood-onset progressive muscle weakness. We identified a common UNC45B variant that acts as a complex hypomorph splice variant. Purified UNC-45B mutants showed changes in folding and solubility. In situ localization studies further demonstrated reduced expression of mutant UNC-45B in muscle combined with abnormal localization away from the A-band towards the Z-disk of the sarcomere. The physiological relevance of these observations was investigated in C. elegans by transgenic expression of conserved UNC-45 missense variants, which showed impaired myosin binding for one and defective muscle function for three. Together, our results demonstrate that UNC-45B impairment manifests as a chaperonopathy with progressive muscle pathology, which discovers the previously unknown conserved role of UNC-45B in myofibrillar organization.
Collapse
Affiliation(s)
- Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carl E Kutzner
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xavière Lornage
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR7104, Université de Strasbourg, BP 10142, 67404 Illkirch, France
| | - John Rendu
- Centre Hospitalier Universitaire de Grenoble Alpes, Biochimie Génétique et Moléculaire, Grenoble 38000, France; Grenoble Institut des Neurosciences-INSERM U1216 UGA, Grenoble 38000, France
| | - Tanya Stojkovic
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, GHU La Pitié-Salpêtrière, Sorbonne Université, AP-HP, 75013 Paris, France
| | - Jonathan Baets
- Faculty of Medicine, University of Antwerp, 2610 Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, 2610 Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, 2650 Antwerp, Belgium
| | - Sarah B Neuhaus
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jantima Tanboon
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, 10700 Bangkok, Thailand; Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 187-8502 Tokyo, Japan
| | - Reza Maroofian
- Department of Neuromuscular Disorders, University College London Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Véronique Bolduc
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Magdalena Mroczek
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Stefan Conijn
- Department of Physiology, Amsterdam UMC (location VUmc), 1081 HZ Amsterdam, the Netherlands
| | - Nancy L Kuntz
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Soledad Monges
- Servicio de Neurología y Servicio de Patologia, Hospital de Pediatría Garrahan, C1245 AAM Buenos Aires, Argentina
| | - Fabiana Lubieniecki
- Servicio de Neurología y Servicio de Patologia, Hospital de Pediatría Garrahan, C1245 AAM Buenos Aires, Argentina
| | - Riley M McCarty
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine R Chao
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Serena Governali
- Department of Physiology, Amsterdam UMC (location VUmc), 1081 HZ Amsterdam, the Netherlands
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR7104, Université de Strasbourg, BP 10142, 67404 Illkirch, France
| | - Kanokwan Boonyapisit
- Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol, University, 10700 Bangkok, Thailand
| | - Edoardo Malfatti
- Neurology Department, Raymond-Poincaré teaching hospital, centre de référence des maladies neuromusculaires Nord/Est/Ile-de-France, AP-HP, 92380 Garches, France
| | - Tumtip Sangruchi
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, 10700 Bangkok, Thailand
| | | | - Carola Hedberg-Oldfors
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, University College London Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 187-8502 Tokyo, Japan; Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, 187-8551 Tokyo, Japan
| | - Sarah Djeddi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR7104, Université de Strasbourg, BP 10142, 67404 Illkirch, France
| | - Aritoshi Iida
- Department of Clinical Genome Analysis, Medical Genome Center, National Center of Neurology and Psychiatry, 187-8551 Tokyo, Japan
| | - Gabriella di Rosa
- Division of Child Neurology and Psychiatry, Department of the Adult and Developmental Age Human Pathology, University of Messina, Messina 98125, Italy
| | - Chiara Fiorillo
- Pediatric Neurology and Muscular Diseases Unit, G. Gaslini Institute, 16147 Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy
| | - Vincenzo Salpietro
- Pediatric Neurology and Muscular Diseases Unit, G. Gaslini Institute, 16147 Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy
| | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, 41650 Gothenburg, Sweden
| | - Julien Fauré
- Centre Hospitalier Universitaire de Grenoble Alpes, Biochimie Génétique et Moléculaire, Grenoble 38000, France; Grenoble Institut des Neurosciences-INSERM U1216 UGA, Grenoble 38000, France
| | - Henry Houlden
- Department of Neuromuscular Disorders, University College London Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Anders Oldfors
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 187-8502 Tokyo, Japan; Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, 187-8551 Tokyo, Japan; Department of Clinical Genome Analysis, Medical Genome Center, National Center of Neurology and Psychiatry, 187-8551 Tokyo, Japan
| | - Willem de Ridder
- Faculty of Medicine, University of Antwerp, 2610 Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, 2610 Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, 2650 Antwerp, Belgium
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism in Development and Aging, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR7104, Université de Strasbourg, BP 10142, 67404 Illkirch, France
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Norma B Romero
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, GHU La Pitié-Salpêtrière, Sorbonne Université, AP-HP, 75013 Paris, France; Université Sorbonne, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, GH Pitié-Salpêtrière, 75651 Paris, France; Neuromuscular Morphology Unit, Myology Institute, GHU Pitié-Salpêtrière, 75013 Paris, France
| | - Coen Ottenheijm
- Department of Physiology, Amsterdam UMC (location VUmc), 1081 HZ Amsterdam, the Netherlands; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85718, USA
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany.
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Reactive Species in Huntington Disease: Are They Really the Radicals You Want to Catch? Antioxidants (Basel) 2020; 9:antiox9070577. [PMID: 32630706 PMCID: PMC7401865 DOI: 10.3390/antiox9070577] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Huntington disease (HD) is a neurodegenerative condition and one of the so-called rare or minority diseases, due to its low prevalence (affecting 1–10 of every 100,000 people in western countries). The causative gene, HTT, encodes huntingtin, a protein with a yet unknown function. Mutant huntingtin causes a range of phenotypes, including oxidative stress and the activation of microglia and astrocytes, which leads to chronic inflammation of the brain. Although substantial efforts have been made to find a cure for HD, there is currently no medical intervention able to stop or even delay progression of the disease. Among the many targets of therapeutic intervention, oxidative stress and inflammation have been extensively studied and some clinical trials have been promoted to target them. In the present work, we review the basic research on oxidative stress in HD and the strategies used to fight it. Many of the strategies to reduce the phenotypes associated with oxidative stress have produced positive results, yet no substantial functional recovery has been observed in animal models or patients with the disease. We discuss possible explanations for this and suggest potential ways to overcome it.
Collapse
|
26
|
Lin YH, Maaroufi HO, Ibrahim E, Kucerova L, Zurovec M. Expression of Human Mutant Huntingtin Protein in Drosophila Hemocytes Impairs Immune Responses. Front Immunol 2019; 10:2405. [PMID: 31681295 PMCID: PMC6805700 DOI: 10.3389/fimmu.2019.02405] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/25/2019] [Indexed: 01/30/2023] Open
Abstract
The pathogenic effect of mutant HTT (mHTT) which causes Huntington disease (HD) are not restricted to nervous system. Such phenotypes include aberrant immune responses observed in the HD models. However, it is still unclear how this immune dysregulation influences the innate immune response against pathogenic infection. In the present study, we used transgenic Drosophila melanogaster expressing mutant HTT protein (mHTT) with hemocyte-specific drivers and examined the immune responses and hemocyte function. We found that mHTT expression in the hemocytes did not affect fly viability, but the numbers of circulating hemocytes were significantly decreased. Consequently, we observed that the expression of mHTT in the hemocytes compromised the immune responses including clot formation and encapsulation which lead to the increased susceptibility to entomopathogenic nematode and parasitoid wasp infections. In addition, mHTT expression in Drosophila macrophage-like S2 cells in vitro reduced ATP levels, phagocytic activity and the induction of antimicrobial peptides. Further effects observed in mHTT-expressing cells included the altered production of cytokines and activation of JAK/STAT signaling. The present study shows that the expression of mHTT in Drosophila hemocytes causes deficient cellular and humoral immune responses against invading pathogens. Our findings provide the insight into the pathogenic effects of mHTT in the immune cells.
Collapse
Affiliation(s)
- Yu-Hsien Lin
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Houda Ouns Maaroufi
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Emad Ibrahim
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Lucie Kucerova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| |
Collapse
|
27
|
Child DD, Lee JH, Pascua CJ, Chen YH, Mas Monteys A, Davidson BL. Cardiac mTORC1 Dysregulation Impacts Stress Adaptation and Survival in Huntington's Disease. Cell Rep 2019; 23:1020-1033. [PMID: 29694882 PMCID: PMC5967646 DOI: 10.1016/j.celrep.2018.03.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/05/2018] [Accepted: 03/26/2018] [Indexed: 12/27/2022] Open
Abstract
Huntington’s disease (HD) is a dominantly inherited neurological disorder caused by CAG-repeat expansion in exon 1 of Huntingtin (HTT). But in addition to the neurological disease, mutant HTT (mHTT), which is ubiquitously expressed, impairs other organ systems. Indeed, epidemiological and animal model studies suggest higher incidence of and mortality from heart disease in HD. Here, we show that the protein complex mTORC1 is dysregulated in two HD mouse models through a mechanism that requires intrinsic mHTT expression. Moreover, restoring cardiac mTORC1 activity with constitutively active Rheb prevents mortality and relieves the mHTT-induced block to hypertrophic adaptation to cardiac stress. Finally, we show that chronic mTORC1 dysregulation is due in part to mislocalization of endogenous Rheb. These data provide insight into the increased cardiac-related mortality of HD patients, with cardiac mHTT expression inhibiting mTORC1 activity, limiting heart growth, and decreasing the heart’s ability to compensate to chronic stress.
Collapse
Affiliation(s)
- Daniel D Child
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - John H Lee
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Christine J Pascua
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yong Hong Chen
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alejandro Mas Monteys
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Valadão PAC, Oliveira BDS, Joviano-Santos JV, Vieira ÉLM, Rocha NP, Teixeira AL, Guatimosim C, de Miranda AS. Inflammatory changes in peripheral organs in the BACHD murine model of Huntington's disease. Life Sci 2019; 232:116653. [DOI: 10.1016/j.lfs.2019.116653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022]
|
29
|
Park S, Colwell CS. Do Disruptions in the Circadian Timing System Contribute to Autonomic Dysfunction in Huntington's Disease? THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:291-303. [PMID: 31249490 PMCID: PMC6585531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Huntington's disease (HD) patients suffer from a progressive neurodegenerative disorder that inflicts both motor and non-motor symptoms. HD is caused by a CAG repeat expansion within the first exon of the huntingtin (HTT) gene that produces a polyglutamine repeat that leads to protein misfolding, soluble aggregates, and inclusion bodies detected throughout the body. Both clinical and preclinical research indicate that cardiovascular dysfunction should be considered a core symptom in at least a subset of HD patients. There is strong evidence for dysautonomia (dysfunctional autonomic nervous system, ANS) in HD patients that can be detected early in the disease progression. The temporal patterning of ANS function is controlled by the circadian timing system based in the anterior hypothalamus. Patients with neurodegenerative diseases including HD exhibit disrupted sleep/wake cycle and, in preclinical models, there is compelling evidence that the circadian timing system is compromised early in the disease process. Here we review data from preclinical models of HD that explore the intersection between disruption of circadian rhythms and dysautonomia. This work will lead to new therapeutic strategies and standards of care for HD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Saemi Park
- Molecular, Cellular and Integrative Physiology graduate program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Christopher S. Colwell
- Molecular, Cellular and Integrative Physiology graduate program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,To whom all correspondence should be addressed: Christopher S. Colwell, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095; . http://orcid.org/0000-0002-1059-184X
| |
Collapse
|
30
|
Chaix A, Manoogian ENC, Melkani GC, Panda S. Time-Restricted Eating to Prevent and Manage Chronic Metabolic Diseases. Annu Rev Nutr 2019; 39:291-315. [PMID: 31180809 DOI: 10.1146/annurev-nutr-082018-124320] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Molecular clocks are present in almost every cell to anticipate daily recurring and predictable changes, such as rhythmic nutrient availability, and to adapt cellular functions accordingly. At the same time, nutrient-sensing pathways can respond to acute nutrient imbalance and modulate and orient metabolism so cells can adapt optimally to a declining or increasing availability of nutrients. Organismal circadian rhythms are coordinated by behavioral rhythms such as activity-rest and feeding-fasting cycles to temporally orchestrate a sequence of physiological processes to optimize metabolism. Basic research in circadian rhythms has largely focused on the functioning of the self-sustaining molecular circadian oscillator, while research in nutrition science has yielded insights into physiological responses to caloric deprivation or to specific macronutrients. Integration of these two fields into actionable new concepts in the timing of food intake has led to the emerging practice of time-restricted eating. In this paradigm, daily caloric intake is restricted to a consistent window of 8-12 h. This paradigm has pervasive benefits on multiple organ systems.
Collapse
Affiliation(s)
- Amandine Chaix
- Regulatory Biology Lab, Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| | - Emily N C Manoogian
- Regulatory Biology Lab, Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| | - Girish C Melkani
- Molecular Biology Program and Heart Institute, Department of Biology, San Diego State University, San Diego, California 92182, USA
| | - Satchidananda Panda
- Regulatory Biology Lab, Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| |
Collapse
|
31
|
Chandran S, Suggs JA, Wang BJ, Han A, Bhide S, Cryderman DE, Moore SA, Bernstein SI, Wallrath LL, Melkani GC. Suppression of myopathic lamin mutations by muscle-specific activation of AMPK and modulation of downstream signaling. Hum Mol Genet 2019; 28:351-371. [PMID: 30239736 PMCID: PMC6337691 DOI: 10.1093/hmg/ddy332] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/14/2022] Open
Abstract
Laminopathies are diseases caused by dominant mutations in the human LMNA gene encoding A-type lamins. Lamins are intermediate filaments that line the inner nuclear membrane, provide structural support for the nucleus and regulate gene expression. Drosophila melanogaster models of skeletal muscle laminopathies were developed to investigate the pathological defects caused by mutant lamins and identify potential therapeutic targets. Human disease-causing LMNA mutations were modeled in Drosophila Lamin C (LamC) and expressed in indirect flight muscle (IFM). IFM-specific expression of mutant, but not wild-type LamC, caused held-up wings indicative of myofibrillar defects. Analyses of the muscles revealed cytoplasmic aggregates of nuclear envelope (NE) proteins, nuclear and mitochondrial dysmorphology, myofibrillar disorganization and up-regulation of the autophagy cargo receptor p62. We hypothesized that the cytoplasmic aggregates of NE proteins trigger signaling pathways that alter cellular homeostasis, causing muscle dysfunction. In support of this hypothesis, transcriptomics data from human muscle biopsy tissue revealed misregulation of the AMP-activated protein kinase (AMPK)/4E-binding protein 1 (4E-BP1)/autophagy/proteostatic pathways. Ribosomal protein S6K (S6K) messenger RNA (mRNA) levels were increased and AMPKα and mRNAs encoding downstream targets were decreased in muscles expressing mutant LMNA relative controls. The Drosophila laminopathy models were used to determine if altering the levels of these factors modulated muscle pathology. Muscle-specific over-expression of AMPKα and down-stream targets 4E-BP, Forkhead box transcription factors O (Foxo) and Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), as well as inhibition of S6K, suppressed the held-up wing phenotype, myofibrillar defects and LamC aggregation. These findings provide novel insights on mutant LMNA-based disease mechanisms and identify potential targets for drug therapy.
Collapse
Affiliation(s)
- Sahaana Chandran
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA, USA
| | - Jennifer A Suggs
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA, USA
| | - Bingyan J Wang
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA, USA
| | - Andrew Han
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA, USA
| | - Shruti Bhide
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA, USA
| | - Diane E Cryderman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Steven A Moore
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA, USA
| | - Lori L Wallrath
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Girish C Melkani
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA, USA
| |
Collapse
|
32
|
Abstract
Polyglutamine (polyQ) diseases are a group of hereditary neurodegenerative disorders caused by expansion of unstable polyQ repeats in their associated disease proteins. To date, the pathogenesis of each disease remains poorly understood, and there are no effective treatments. Growing evidence has indicated that, in addition to neurodegeneration, polyQ-expanded proteins can cause a wide array of abnormalities in peripheral tissues. Indeed, polyQ-expanded proteins are ubiquitously expressed throughout the body and can affect the function of both the central nervous system (CNS) and peripheral tissues. The peripheral effects of polyQ disease proteins include muscle wasting and reduced muscle strength in patients or animal models of spinal and bulbar muscular atrophy (SBMA), Huntington's disease (HD), dentatorubral-pallidoluysian atrophy (DRPLA), and spinocerebellar ataxia type 17 (SCA17). Since skeletal muscle pathology can reflect disease progression and is more accessible for treatment than neurodegeneration in the CNS, understanding how polyQ disease proteins affect skeletal muscle will help elucidate disease mechanisms and the development of new therapeutics. In this review, we focus on important findings in terms of skeletal muscle pathology in polyQ diseases and also discuss the potential mechanisms underlying the major peripheral effects of polyQ disease proteins, as well as their therapeutic implications.
Collapse
Affiliation(s)
- Shanshan Huang
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Jiang Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Shihua Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
33
|
Joviano-Santos JV, Santos-Miranda A, Botelho AFM, de Jesus ICG, Andrade JN, de Oliveira Barreto T, Magalhães-Gomes MPS, Valadão PAC, Cruz JDS, Melo MM, Guatimosim S, Guatimosim C. Increased oxidative stress and CaMKII activity contribute to electro-mechanical defects in cardiomyocytes from a murine model of Huntington's disease. FEBS J 2018; 286:110-123. [PMID: 30451379 DOI: 10.1111/febs.14706] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/09/2018] [Accepted: 11/15/2018] [Indexed: 11/29/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative genetic disorder. Although described as a brain pathology, there is evidence suggesting that defects in other systems can contribute to disease progression. In line with this, cardiovascular defects are a major cause of death in HD. To date, relatively little is known about the peripheral abnormalities associated with the disease. Here, we applied a range of assays to evaluate cardiac electro-mechanical properties in vivo, using a previously characterized mouse model of HD (BACHD), and in vitro, using cardiomyocytes isolated from the same mice. We observed conduction disturbances including QT interval prolongation in BACHD mice, indicative of cardiac dysfunction. Cardiomyocytes from these mice demonstrated cellular electro-mechanical abnormalities, including a prolonged action potential, arrhythmic contractions, and relaxation disturbances. Cellular arrhythmia was accompanied by an increase in calcium waves and increased Ca2+ /calmodulin-dependent protein kinase II activity, suggesting that disruption of calcium homeostasis plays a key part. We also described structural abnormalities in the mitochondria of BACHD-derived cardiomyocytes, indicative of oxidative stress. Consistent with this, imbalances in superoxide dismutase and glutathione peroxidase activities were detected. Our data provide an in vivo demonstration of cardiac abnormalities in HD together with new insights into the cellular mechanistic basis, providing a possible explanation for the higher cardiovascular risk in HD.
Collapse
Affiliation(s)
| | - Artur Santos-Miranda
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Flávia Machado Botelho
- Department of Veterinary Clinic and Surgery, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Itamar Couto Guedes de Jesus
- Department of Physiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jéssica Neves Andrade
- Department of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiane de Oliveira Barreto
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Jader Dos Santos Cruz
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marília Martins Melo
- Department of Veterinary Clinic and Surgery, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Silvia Guatimosim
- Department of Physiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristina Guatimosim
- Department of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
34
|
Liu Y, Xu W, Xiong Y, Du G, Qin X. Evaluations of the effect of HuangQi against heart failure based on comprehensive echocardiography index and metabonomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:205-212. [PMID: 30466980 DOI: 10.1016/j.phymed.2018.04.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/15/2018] [Accepted: 04/09/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND HuangQi (HQ) is a major medicinal herb commonly used as an ingredient of traditional Chinese medicine (TCM) formulas. It has been proved to be effective against heart failure (HF). However, its holistic therapeutic mechanism is not yet well explored. PURPOSE The present study was designed to investigate the inhibitory effects and action mechanism of HQ in adriamycin (ADR)-induced HF rats. METHODS An integrative approach combining comprehensive echocardiography index (CEI) and metabonomics was conducted to assess the integral efficacy of HQ against HF. CEI was constructed to comprehensively evaluate the protection of HQ through principal component analysis of eight echocardiography parameters. Meanwhile, NMR-based untargeted metabolomic studies were performed to investigate the regulative effects of HQ coupled with correlation analysis. RESULTS HQ showed significant regulatory effects on four echocardiography parameters (left ventricular diastolic diameter, left ventricular systolic wall thickness, ejection fraction and fractional shortening). The effect on comprehensive CEI also demonstrated the efficacy of HQ against HF, especially on the first principal component (PC1). HQ could exert marked metabolic regulations on five key metabolites related to HF (NAG, 3-hydroxybutyrate, glutamine, succinate and acetoacetate), which were mainly involved into alterations of energy metabolism, oxidative stress, hypertrophy, as well as inflammatory. Their correlation analysis revealed the relationship between the metabolic profiles and cardiac function, which further authenticated the systemic regulation of HQ against HF. CONCLUSION Current evidences revealed that HQ was effective in control of HF from cardiac dysfunction and metabolic alterations. This study provided a useful approach for evaluating the efficacy of TCMs against HF.
Collapse
Affiliation(s)
- Yuetao Liu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan 030006, Shanxi, PR China.
| | - Wenqian Xu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan 030006, Shanxi, PR China; College of Chemistry and Chemical Engineering of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China
| | - Yifeng Xiong
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan 030006, Shanxi, PR China
| | - Guanhua Du
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan 030006, Shanxi, PR China; Institute of Material Medical, Chinese Academy of Medical Sciences, Beijing 100050, PR China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan 030006, Shanxi, PR China.
| |
Collapse
|
35
|
Rosas-Arellano A, Estrada-Mondragón A, Piña R, Mantellero CA, Castro MA. The Tiny Drosophila Melanogaster for the Biggest Answers in Huntington's Disease. Int J Mol Sci 2018; 19:E2398. [PMID: 30110961 PMCID: PMC6121572 DOI: 10.3390/ijms19082398] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/18/2022] Open
Abstract
The average life expectancy for humans has increased over the last years. However, the quality of the later stages of life is low and is considered a public health issue of global importance. Late adulthood and the transition into the later stage of life occasionally leads to neurodegenerative diseases that selectively affect different types of neurons and brain regions, producing motor dysfunctions, cognitive impairment, and psychiatric disorders that are progressive, irreversible, without remission periods, and incurable. Huntington's disease (HD) is a common neurodegenerative disorder. In the 25 years since the mutation of the huntingtin (HTT) gene was identified as the molecule responsible for this neural disorder, a variety of animal models, including the fruit fly, have been used to study the disease. Here, we review recent research that used Drosophila as an experimental tool for improving knowledge about the molecular and cellular mechanisms underpinning HD.
Collapse
Affiliation(s)
- Abraham Rosas-Arellano
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Argel Estrada-Mondragón
- Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden.
| | - Ricardo Piña
- Laboratorio de Neurociencias, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile.
- Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, Santiago 8370993, Chile.
| | - Carola A Mantellero
- Facultad de Ciencias de la Salud, Universidad de Las Américas, Santiago 7500972, Chile.
| | - Maite A Castro
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile.
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile.
| |
Collapse
|
36
|
Bhide S, Trujillo AS, O'Connor MT, Young GH, Cryderman DE, Chandran S, Nikravesh M, Wallrath LL, Melkani GC. Increasing autophagy and blocking Nrf2 suppress laminopathy-induced age-dependent cardiac dysfunction and shortened lifespan. Aging Cell 2018; 17:e12747. [PMID: 29575479 PMCID: PMC5946079 DOI: 10.1111/acel.12747] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2018] [Indexed: 12/16/2022] Open
Abstract
Mutations in the human LMNA gene cause a collection of diseases known as laminopathies. These include myocardial diseases that exhibit age-dependent penetrance of dysrhythmias and heart failure. The LMNA gene encodes A-type lamins, intermediate filaments that support nuclear structure and organize the genome. Mechanisms by which mutant lamins cause age-dependent heart defects are not well understood. To address this issue, we modeled human disease-causing mutations in the Drosophila melanogaster Lamin C gene and expressed mutant Lamin C exclusively in the heart. This resulted in progressive cardiac dysfunction, loss of adipose tissue homeostasis, and a shortened adult lifespan. Within cardiac cells, mutant Lamin C aggregated in the cytoplasm, the CncC(Nrf2)/Keap1 redox sensing pathway was activated, mitochondria exhibited abnormal morphology, and the autophagy cargo receptor Ref2(P)/p62 was upregulated. Genetic analyses demonstrated that simultaneous over-expression of the autophagy kinase Atg1 gene and an RNAi against CncC eliminated the cytoplasmic protein aggregates, restored cardiac function, and lengthened lifespan. These data suggest that simultaneously increasing rates of autophagy and blocking the Nrf2/Keap1 pathway are a potential therapeutic strategy for cardiac laminopathies.
Collapse
Affiliation(s)
- Shruti Bhide
- Department of Biology, Molecular Biology and Heart Institutes; San Diego State University; San Diego CA USA
| | - Adriana S. Trujillo
- Department of Biology, Molecular Biology and Heart Institutes; San Diego State University; San Diego CA USA
| | - Maureen T. O'Connor
- Department of Biochemistry; Carver College of Medicine; University of Iowa; Iowa City IA USA
| | - Grant H. Young
- Department of Biochemistry; Carver College of Medicine; University of Iowa; Iowa City IA USA
| | - Diane E. Cryderman
- Department of Biochemistry; Carver College of Medicine; University of Iowa; Iowa City IA USA
| | - Sahaana Chandran
- Department of Biology, Molecular Biology and Heart Institutes; San Diego State University; San Diego CA USA
| | - Mastaneh Nikravesh
- Department of Biology, Molecular Biology and Heart Institutes; San Diego State University; San Diego CA USA
| | - Lori L. Wallrath
- Department of Biochemistry; Carver College of Medicine; University of Iowa; Iowa City IA USA
| | - Girish C. Melkani
- Department of Biology, Molecular Biology and Heart Institutes; San Diego State University; San Diego CA USA
| |
Collapse
|
37
|
Critchley BJ, Isalan M, Mielcarek M. Neuro-Cardio Mechanisms in Huntington's Disease and Other Neurodegenerative Disorders. Front Physiol 2018; 9:559. [PMID: 29875678 PMCID: PMC5974550 DOI: 10.3389/fphys.2018.00559] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/30/2018] [Indexed: 12/30/2022] Open
Abstract
Although Huntington's disease is generally considered to be a neurological disorder, there is mounting evidence that heart malfunction plays an important role in disease progression. This is perhaps not unexpected since both cardiovascular and nervous systems are strongly connected - both developmentally and subsequently in health and disease. This connection occurs through a system of central and peripheral neurons that control cardiovascular performance, while in return the cardiovascular system works as a sensor for the nervous system to react to physiological events. Hence, given their permanent interconnectivity, any pathological events occurring in one system might affect the second. In addition, some pathological signals from Huntington's disease might occur simultaneously in both the cardiovascular and nervous systems, since mutant huntingtin protein is expressed in both. Here we aim to review the source of HD-related cardiomyopathy in the light of recently published studies, and to identify similarities between HD-related cardiomyopathy and other neuro-cardio disorders.
Collapse
Affiliation(s)
- Bethan J. Critchley
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Michal Mielcarek
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
- Department of Epidemiology of Rare Diseases and Neuroepidemiology, University of Medical Sciences, Poznań, Poland
| |
Collapse
|
38
|
Cutler TS, Park S, Loh DH, Jordan MC, Yokota T, Roos KP, Ghiani CA, Colwell CS. Neurocardiovascular deficits in the Q175 mouse model of Huntington's disease. Physiol Rep 2018; 5:5/11/e13289. [PMID: 28576852 PMCID: PMC5471434 DOI: 10.14814/phy2.13289] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/22/2017] [Accepted: 04/26/2017] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular dysautonomia as well as the deterioration of circadian rhythms are among the earliest detectable pathophysiological changes in individuals with Huntington's disease (HD). Preclinical research requires mouse models that recapitulate disease symptoms and the Q175 knock-in model offers a number of advantages but potential autonomic dysfunction has not been explored. In this study, we sought to test the dual hypotheses that cardiovascular dysautonomia can be detected early in disease progression in the Q175 model and that this dysfunction varies with the daily cycle. Using radiotelemetry implants, we observed a significant reduction in the diurnal and circadian activity rhythms in the Q175 mutants at the youngest ages. By middle age, the autonomically driven rhythms in core body temperature were highly compromised, and the Q175 mutants exhibited striking episodes of hypothermia that increased in frequency with mutant huntingtin gene dosage. In addition, Q175 mutants showed higher resting heart rate (HR) during sleep and greatly reduced correlation between activity and HR HR variability was reduced in the mutants in both time and frequency domains, providing more evidence of autonomic dysfunction. Measurement of the baroreceptor reflex revealed that the Q175 mutant could not appropriately increase HR in response to a pharmacologically induced decrease in blood pressure. Echocardiograms showed reduced ventricular mass and ejection fraction in mutant hearts. Finally, cardiac histopathology revealed localized points of fibrosis resembling those caused by myocardial infarction. Thus, the Q175 mouse model of HD exhibits cardiovascular dysautonomia similar to that seen in HD patients with prominent sympathetic dysfunction during the resting phase of the activity rhythm.
Collapse
Affiliation(s)
- Tamara S Cutler
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Saemi Park
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Dawn H Loh
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Maria C Jordan
- Department of Physiology and Cardiovascular Research Lab, University of California, Los Angeles, Los Angeles, California
| | - Tomohiro Yokota
- Department of Anesthesiology, Division of Molecular Medicine David Geffen School of Medicine University of California, Los Angeles, Los Angeles, California
| | - Kenneth P Roos
- Department of Physiology and Cardiovascular Research Lab, University of California, Los Angeles, Los Angeles, California
| | - Cristina A Ghiani
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Christopher S Colwell
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
39
|
Abstract
Heart failure places an enormous burden on health and economic systems worldwide. It is a complex disease that is profoundly influenced by both genetic and environmental factors. Neither the molecular mechanisms underlying heart failure nor effective prevention strategies are fully understood. Fortunately, relevant aspects of human heart failure can be experimentally studied in tractable model animals, including the fruit fly, Drosophila, allowing the in vivo application of powerful and sophisticated molecular genetic and physiological approaches. Heart failure in Drosophila, as in humans, can be classified into dilated cardiomyopathies and hypertrophic cardiomyopathies. Critically, many genes and cellular pathways directing heart development and function are evolutionarily conserved from Drosophila to humans. Studies of molecular mechanisms linking aging with heart failure have revealed that genes involved in aging-associated energy homeostasis and oxidative stress resistance influence cardiac dysfunction through perturbation of IGF and TOR pathways. Importantly, ion channel proteins, cytoskeletal proteins, and integrins implicated in aging of the mammalian heart have been shown to play significant roles in heart failure. A number of genes previously described having roles in development of the Drosophila heart, such as genes involved in Wnt signaling pathways, have recently been shown to play important roles in the adult fly heart. Moreover, the fly model presents opportunities for innovative studies that cannot currently be pursued in the mammalian heart because of technical limitations. In this review, we discuss progress in our understanding of genes, proteins, and molecular mechanisms that affect the Drosophila adult heart and heart failure.
Collapse
Affiliation(s)
- Shasha Zhu
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zhe Han
- Center for Cancer and Immunology Research, Children's National Medical Center, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Yan Luo
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yulin Chen
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Qun Zeng
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Xiushan Wu
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Wuzhou Yuan
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| |
Collapse
|
40
|
Nelson VK, Ali A, Dutta N, Ghosh S, Jana M, Ganguli A, Komarov A, Paul S, Dwivedi V, Chatterjee S, Jana NR, Lakhotia SC, Chakrabarti G, Misra AK, Mandal SC, Pal M. Azadiradione ameliorates polyglutamine expansion disease in Drosophila by potentiating DNA binding activity of heat shock factor 1. Oncotarget 2018; 7:78281-78296. [PMID: 27835876 PMCID: PMC5346638 DOI: 10.18632/oncotarget.12930] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/21/2016] [Indexed: 01/14/2023] Open
Abstract
Aggregation of proteins with the expansion of polyglutamine tracts in the brain underlies progressive genetic neurodegenerative diseases (NDs) like Huntington's disease and spinocerebellar ataxias (SCA). An insensitive cellular proteotoxic stress response to non-native protein oligomers is common in such conditions. Indeed, upregulation of heat shock factor 1 (HSF1) function and its target protein chaperone expression has shown promising results in animal models of NDs. Using an HSF1 sensitive cell based reporter screening, we have isolated azadiradione (AZD) from the methanolic extract of seeds of Azadirachta indica, a plant known for its multifarious medicinal properties. We show that AZD ameliorates toxicity due to protein aggregation in cell and fly models of polyglutamine expansion diseases to a great extent. All these effects are correlated with activation of HSF1 function and expression of its target protein chaperone genes. Notably, HSF1 activation by AZD is independent of cellular HSP90 or proteasome function. Furthermore, we show that AZD directly interacts with purified human HSF1 with high specificity, and facilitates binding of HSF1 to its recognition sequence with higher affinity. These unique findings qualify AZD as an ideal lead molecule for consideration for drug development against NDs that affect millions worldwide.
Collapse
Affiliation(s)
- Vinod K Nelson
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India.,Department of Pharmaceutical Technology, Pharmacognosy and Phytotherapy Laboratory, Jadavpur University, Jadavpur, West Bengal, India
| | - Asif Ali
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Naibedya Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Manas Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Arnab Ganguli
- Dr. B. C. Guha Center for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, West Bengal, India
| | - Andrei Komarov
- Cellecta Inc, Mountain View, California, United States of America
| | - Soumyadip Paul
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Vibha Dwivedi
- Department of Zoology, Cytogenetics Laboratory, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | - Nihar R Jana
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Institute, Manesar, Gurgaon, Haryana, India
| | - Subhash C Lakhotia
- Department of Zoology, Cytogenetics Laboratory, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Gopal Chakrabarti
- Dr. B. C. Guha Center for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, West Bengal, India
| | - Anup K Misra
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Subhash C Mandal
- Department of Pharmaceutical Technology, Pharmacognosy and Phytotherapy Laboratory, Jadavpur University, Jadavpur, West Bengal, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
41
|
Berh D, Scherzinger A, Otto N, Jiang X, Klämbt C, Risse B. Automatic non-invasive heartbeat quantification of Drosophila pupae. Comput Biol Med 2018; 93:189-199. [DOI: 10.1016/j.compbiomed.2017.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
|
42
|
Ast A, Schindler F, Buntru A, Schnoegl S, Wanker EE. A Filter Retardation Assay Facilitates the Detection and Quantification of Heat-Stable, Amyloidogenic Mutant Huntingtin Aggregates in Complex Biosamples. Methods Mol Biol 2018; 1780:31-40. [PMID: 29856013 DOI: 10.1007/978-1-4939-7825-0_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
N-terminal mutant huntingtin (mHTT) fragments with pathogenic polyglutamine (polyQ) tracts spontaneously form stable, amyloidogenic protein aggregates with a fibrillar morphology. Such structures are detectable in brains of Huntington's disease (HD) patients and various model organisms, suggesting that they play a critical role in pathogenesis. Heat-stable, fibrillar mHTT aggregates can be detected and quantified in cells and tissues using a denaturing filter retardation assay (FRA). Here, we describe step-by-step protocols and experimental procedures for the investigation of mHTT aggregates in complex biosamples using FRAs. The methods are illustrated with examples from studies in cellular, transgenic fly, and mouse models of HD, but can be adapted for any disease-relevant protein with amyloidogenic polyQ tracts.
Collapse
Affiliation(s)
- Anne Ast
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Franziska Schindler
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Alexander Buntru
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Sigrid Schnoegl
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Erich E Wanker
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
43
|
Melkani GC, Bhide S, Han A, Vyas J, Livelo C, Bodmer R, Bernstein SI. TRiC/CCT chaperonins are essential for maintaining myofibril organization, cardiac physiological rhythm, and lifespan. FEBS Lett 2017; 591:3447-3458. [PMID: 28963798 PMCID: PMC5683924 DOI: 10.1002/1873-3468.12860] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/08/2017] [Accepted: 09/19/2017] [Indexed: 01/12/2023]
Abstract
We recently reported that CCT chaperonin subunits are upregulated in a cardiac-specific manner under time-restricted feeding (TRF) [Gill S et al. (2015) Science 347, 1265-1269], suggesting that TRiC/CCT has a heart-specific function. To understand the CCT chaperonin function in cardiomyocytes, we performed its cardiac-specific knock-down in the Drosophila melanogaster model. This resulted in disorganization of cardiac actin- and myosin-containing myofibrils and severe physiological dysfunction, including restricted heart diameters, elevated cardiac dysrhythmia and compromised cardiac performance. We also noted that cardiac-specific knock-down of CCT chaperonin significantly shortens lifespans. Additionally, disruption of circadian rhythm yields further deterioration of cardiac function of hypomorphic CCT mutants. Our analysis reveals that both the orchestration of protein folding and circadian rhythms mediated by CCT chaperonin are critical for maintaining heart contractility.
Collapse
Affiliation(s)
- Girish C. Melkani
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University San Diego, CA 92182, USA
| | - Shruti Bhide
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University San Diego, CA 92182, USA
| | - Andrew Han
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University San Diego, CA 92182, USA
| | - Jay Vyas
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University San Diego, CA 92182, USA
| | - Catherine Livelo
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University San Diego, CA 92182, USA
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sanford I. Bernstein
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University San Diego, CA 92182, USA
| |
Collapse
|
44
|
Abstract
The incidence and prevalence of cardiac diseases, which are the main cause of death worldwide, are likely to increase because of population ageing. Prevailing theories about the mechanisms of ageing feature the gradual derailment of cellular protein homeostasis (proteostasis) and loss of protein quality control as central factors. In the heart, loss of protein patency, owing to flaws in genetically-determined design or because of environmentally-induced 'wear and tear', can overwhelm protein quality control, thereby triggering derailment of proteostasis and contributing to cardiac ageing. Failure of protein quality control involves impairment of chaperones, ubiquitin-proteosomal systems, autophagy, and loss of sarcomeric and cytoskeletal proteins, all of which relate to induction of cardiomyocyte senescence. Targeting protein quality control to maintain cardiac proteostasis offers a novel therapeutic strategy to promote cardiac health and combat cardiac disease. Currently marketed drugs are available to explore this concept in the clinical setting.
Collapse
Affiliation(s)
- Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
45
|
Melkani GC, Panda S. Time-restricted feeding for prevention and treatment of cardiometabolic disorders. J Physiol 2017; 595:3691-3700. [PMID: 28295377 PMCID: PMC5471414 DOI: 10.1113/jp273094] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/01/2017] [Indexed: 12/11/2022] Open
Abstract
The soaring prevalence of obesity and diabetes is associated with an increase in comorbidities, including elevated risk for cardiovascular diseases (CVDs). CVDs continue to be among the leading causes of death and disability in the United States. While increased nutritional intake from an energy-dense diet is known to disrupt metabolic homeostasis and contributes to the disease risk, circadian rhythm disruption is emerging as a new risk factor for CVD. Circadian rhythms coordinate cardiovascular health via temporal control of organismal metabolism and physiology. Thus, interventions that improve circadian rhythms are prospective entry points to mitigate cardiometabolic disease risk. Although light is a strong modulator of the neural circadian clock, time of food intake is emerging as a dominant agent that affects circadian clocks in metabolic organs. We discovered that imposing a time-restricted feeding (TRF) regimen in which all caloric intakes occur consistently within ≤ 12 h every day exerts many cardiometabolic benefits. TRF prevents excessive body weight gain, improves sleep, and attenuates age- and diet-induced deterioration in cardiac performance. Using an integrative approach that combines Drosophila melanogaster (fruit fly) genetics with transcriptome analyses it was found that the beneficial effects of TRF are mediated by circadian clock, ATP-dependent TCP/TRiC/CCT chaperonin and mitochondrial electron transport chain components. Parallel studies in rodents have shown TRF reduces metabolic disease risks by maintaining metabolic homeostasis. As modern humans continue to live under extended periods of wakefulness and ingestion events, daily eating pattern offers a new potential target for lifestyle intervention to reduce CVD risk.
Collapse
Affiliation(s)
- Girish C. Melkani
- Department of Biology, Molecular Biology and Heart InstitutesSan Diego State University San DiegoCA92182USA
| | - Satchidananda Panda
- Regulatory Biology LaboratorySalk Institute for Biological StudiesLa JollaCA92037USA
| |
Collapse
|
46
|
Ocorr K, Zambon A, Nudell Y, Pineda S, Diop S, Tang M, Akasaka T, Taylor E. Age-dependent electrical and morphological remodeling of the Drosophila heart caused by hERG/seizure mutations. PLoS Genet 2017; 13:e1006786. [PMID: 28542428 PMCID: PMC5459509 DOI: 10.1371/journal.pgen.1006786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 06/05/2017] [Accepted: 04/30/2017] [Indexed: 12/03/2022] Open
Abstract
Understanding the cellular-molecular substrates of heart disease is key to the development of cardiac specific therapies and to the prevention of off-target effects by non-cardiac targeted drugs. One of the primary targets for therapeutic intervention has been the human ether a go-go (hERG) K+ channel that, together with the KCNQ channel, controls the rate and efficiency of repolarization in human myocardial cells. Neither of these channels plays a major role in adult mouse heart function; however, we show here that the hERG homolog seizure (sei), along with KCNQ, both contribute significantly to adult heart function as they do in humans. In Drosophila, mutations in or cardiac knockdown of sei channels cause arrhythmias that become progressively more severe with age. Intracellular recordings of semi-intact heart preparations revealed that these perturbations also cause electrical remodeling that is reminiscent of the early afterdepolarizations seen in human myocardial cells defective in these channels. In contrast to KCNQ, however, mutations in sei also cause extensive structural remodeling of the myofibrillar organization, which suggests that hERG channel function has a novel link to sarcomeric and myofibrillar integrity. We conclude that deficiency of ion channels with similar electrical functions in cardiomyocytes can lead to different types or extents of electrical and/or structural remodeling impacting cardiac output. We have used the fruit fly cardiac model to show that seizure, the fly homolog of the human ether a go-go K+ channel hERG, is functional in the fly heart. This channel plays a major role in cardiac repolarization in humans but not in adult rodent hearts. Loss of channel function in the fly causes bradycardia, electrical arrhythmia and altered myofibrillar structure. Gene expression analysis indicates that Wnt signaling is affected and we show a genetic interaction between sei and pygopus, a Wnt pathway component, on heart function.
Collapse
Affiliation(s)
- Karen Ocorr
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, United States of America
- * E-mail:
| | - Alexander Zambon
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Yoav Nudell
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Santiago Pineda
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Soda Diop
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Min Tang
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Takeshi Akasaka
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Erika Taylor
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, United States of America
| |
Collapse
|
47
|
Li Q, Yu M, Wang S. A Statistical Framework for Pathway and Gene Identification from Integrative Analysis. J MULTIVARIATE ANAL 2017; 156:1-17. [PMID: 28943673 PMCID: PMC5606168 DOI: 10.1016/j.jmva.2016.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the era of big data, integrative analyses that pool data from different sources are now extensively conducted in order to improve performance. Among many interesting applications, genomics research is an area where integrative methods become popular tools to identify prognostic biomarkers for various diseases. In this paper, we propose such a framework for pathway and gene identification. Our method employs a hierarchical decomposition on genes' effects followed by a proper regularization to identify important pathways and genes across multiple studies. Asymptotic theories are provided to show that our method is both pathway and gene selection consistent. More importantly, we explicitly show that pathway selection consistency needs milder statistical conditions than gene selection consistency, as it would allow false positives and negatives at the gene selection level. Finite-sample performance of our method is shown to be superior than other ad hoc methods in various simulation studies. We further apply our method to analyze five cardiovascular disease studies. Our method is intrinsically a general method on group-wise and element-wise selections from integrative analysis, which can have other applications beyond genomic research.
Collapse
Affiliation(s)
- Quefeng Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA. Statistical and Applied Mathematical Sciences Institute, Research Triangle Park, NC 27709, USA
| | - Menggang Yu
- Department of Biostatistics and Medical Informatics, University of Wisconsin at Madison, Madison, WI 53792, USA
| | - Sijian Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin at Madison, Madison, WI 53792, USA
| |
Collapse
|
48
|
Molecular Chaperones in Neurodegenerative Diseases: A Short Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 987:219-231. [PMID: 28971461 DOI: 10.1007/978-3-319-57379-3_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Stress and misfolded proteins result to dysfunction in the cell, often leading to neurodegenerative diseases and aging. Misfolded proteins form toxic aggregates that threaten cell's stability and normal functions. In order to restore its homeostasis, the cell activates the UPR system. Leading role in the restoration play the molecular chaperones which target the misfolded proteins with the purpose of either helping them to unfold and refold to their natural state or lead them degradation. This paper aims to present some of the most known molecular chaperones and their relation with diseases associated to protein misfolding and neurodegeneration, as well as the role of chaperones in proteostasis.
Collapse
|
49
|
Cardiac Fas-Dependent and Mitochondria-Dependent Apoptotic Pathways in a Transgenic Mouse Model of Huntington's Disease. Cardiovasc Toxicol 2016; 16:111-21. [PMID: 25800750 DOI: 10.1007/s12012-015-9318-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Huntington's disease is an autosomal dominant neurodegenerative disease caused by a CAG repeat expansion in the huntingtin gene. Heart disease is the second leading cause of death in patients with Huntington's disease. This study was to evaluate whether cardiac Fas-dependent and mitochondria-dependent apoptotic pathways are activated in transgenic mice with Huntington's disease. Sixteen Huntington's disease transgenic mice (HD) and sixteen wild-type (WT) littermates were studied at 10.5 weeks of age. The cardiac characteristics, myocardial architecture, and two major apoptotic pathways in the excised left ventricle from mice were measured by histopathological analysis, Western blotting, and TUNEL assays. The whole heart weight and the left ventricular weight decreased significantly in the HD group, as compared to the WT group. Abnormal myocardial architecture, enlarged interstitial spaces, and more cardiac TUNEL-positive cells were observed in the HD group. The key components of Fas-dependent apoptosis (TNF-alpha, TNFR1, Fas ligand, Fas death receptors, FADD, activated caspase-8, and activated caspase-3) and the key components of mitochondria-dependent apoptosis (Bax, Bax-to-Bcl-2 ratio, cytosolic cytochrome c, activated caspase-9, and activated caspase-3) increased significantly in the hearts of the HD group. Cardiac Fas-dependent and mitochondria-dependent apoptotic pathways were activated in transgenic mice with Huntington's disease, which might provide one of possible mechanisms to explain why patients with Huntington's disease will develop heart failure.
Collapse
|
50
|
Jensen BC, Willis MS. The Head and the Heart. J Am Coll Cardiol 2016; 68:2408-2411. [DOI: 10.1016/j.jacc.2016.09.934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 01/03/2023]
|