1
|
Inserra A, Campanale A, Rezai T, Romualdi P, Rubino T. Epigenetic mechanisms of rapid-acting antidepressants. Transl Psychiatry 2024; 14:359. [PMID: 39231927 PMCID: PMC11375021 DOI: 10.1038/s41398-024-03055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Rapid-acting antidepressants (RAADs), including dissociative anesthetics, psychedelics, and empathogens, elicit rapid and sustained therapeutic improvements in psychiatric disorders by purportedly modulating neuroplasticity, neurotransmission, and immunity. These outcomes may be mediated by, or result in, an acute and/or sustained entrainment of epigenetic processes, which remodel chromatin structure and alter DNA accessibility to regulate gene expression. METHODS In this perspective, we present an overview of the known mechanisms, knowledge gaps, and future directions surrounding the epigenetic effects of RAADs, with a focus on the regulation of stress-responsive DNA and brain regions, and on the comparison with conventional antidepressants. MAIN BODY Preliminary correlative evidence indicates that administration of RAADs is accompanied by epigenetic effects which are similar to those elicited by conventional antidepressants. These include changes in DNA methylation, post-translational modifications of histones, and differential regulation of non-coding RNAs in stress-responsive chromatin areas involved in neurotrophism, neurotransmission, and immunomodulation, in stress-responsive brain regions. Whether these epigenetic changes causally contribute to the therapeutic effects of RAADs, are a consequence thereof, or are unrelated, remains unknown. Moreover, the potential cell type-specificity and mechanisms involved are yet to be fully elucidated. Candidate mechanisms include neuronal activity- and serotonin and Tropomyosine Receptor Kinase B (TRKB) signaling-mediated epigenetic changes, and direct interaction with DNA, histones, or chromatin remodeling complexes. CONCLUSION Correlative evidence suggests that epigenetic changes induced by RAADs accompany therapeutic and side effects, although causation, mechanisms, and cell type-specificity remain largely unknown. Addressing these research gaps may lead to the development of novel neuroepigenetics-based precision therapeutics.
Collapse
Affiliation(s)
- Antonio Inserra
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Behavioral Neuroscience Laboratory, University of South Santa Catarina (UNISUL), Tubarão, Brazil., Tubarão, Brazil.
| | | | - Tamim Rezai
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Varese, Italy
| |
Collapse
|
2
|
Mas-Ponte D, Supek F. Mutation rate heterogeneity at the sub-gene scale due to local DNA hypomethylation. Nucleic Acids Res 2024; 52:4393-4408. [PMID: 38587182 PMCID: PMC11077091 DOI: 10.1093/nar/gkae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
Local mutation rates in human are highly heterogeneous, with known variability at the scale of megabase-sized chromosomal domains, and, on the other extreme, at the scale of oligonucleotides. The intermediate, kilobase-scale heterogeneity in mutation risk is less well characterized. Here, by analyzing thousands of somatic genomes, we studied mutation risk gradients along gene bodies, representing a genomic scale spanning roughly 1-10 kb, hypothesizing that different mutational mechanisms are differently distributed across gene segments. The main heterogeneity concerns several kilobases at the transcription start site and further downstream into 5' ends of gene bodies; these are commonly hypomutated with several mutational signatures, most prominently the ubiquitous C > T changes at CpG dinucleotides. The width and shape of this mutational coldspot at 5' gene ends is variable across genes, and corresponds to variable interval of lowered DNA methylation depending on gene activity level and regulation. Such hypomutated loci, at 5' gene ends or elsewhere, correspond to DNA hypomethylation that can associate with various landmarks, including intragenic enhancers, Polycomb-marked regions, or chromatin loop anchor points. Tissue-specific DNA hypomethylation begets tissue-specific local hypomutation. Of note, direction of mutation risk is inverted for AID/APOBEC3 cytosine deaminase activity, whose signatures are enriched in hypomethylated regions.
Collapse
Affiliation(s)
- David Mas-Ponte
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Fran Supek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
3
|
Konstantinidis I, Sætrom P, Brieuc S, Jakobsen KS, Liedtke H, Pohlmann C, Tsoulia T, Fernandes JMO. DNA hydroxymethylation differences underlie phenotypic divergence of somatic growth in Nile tilapia reared in common garden. Epigenetics 2023; 18:2282323. [PMID: 38010265 PMCID: PMC10732659 DOI: 10.1080/15592294.2023.2282323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Phenotypic plasticity of metabolism and growth are essential for adaptation to new environmental conditions, such as those experienced during domestication. Epigenetic regulation plays a key role in this process but the underlying mechanisms are poorly understood, especially in the case of hydroxymethylation. Using reduced representation 5-hydroxymethylcytosine profiling, we compared the liver hydroxymethylomes in full-sib Nile tilapia with distinct growth rates (3.8-fold difference) and demonstrated that DNA hydroxymethylation is strongly associated with phenotypic divergence of somatic growth during the early stages of domestication. The 2677 differentially hydroxymethylated cytosines between fast- and slow-growing fish were enriched within gene bodies (79%), indicating a pertinent role in transcriptional regulation. Moreover, they were found in genes involved in biological processes related to skeletal system and muscle structure development, and there was a positive association between somatic growth and 5hmC levels in genes coding for growth factors, kinases and receptors linked to myogenesis. Single nucleotide polymorphism analysis revealed no genetic differentiation between fast- and slow-growing fish. In addition to unveiling a new link between DNA hydroxymethylation and epigenetic regulation of growth in fish during the initial stages of domestication, this study suggests that epimarkers may be applied in selective breeding programmes for superior phenotypes.
Collapse
Affiliation(s)
| | - Pål Sætrom
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
- Bioinformatics core facility-BioCore, Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
| | - S.O. Brieuc
- Center for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetill S. Jakobsen
- Center for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Hannes Liedtke
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Caroline Pohlmann
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Thomais Tsoulia
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | |
Collapse
|
4
|
Petroff RL, Cavalcante RG, Colacino JA, Goodrich JM, Jones TR, Lalancette C, Morgan RK, Neier K, Perera BPU, Rygiel CA, Svoboda LK, Wang K, Sartor MA, Dolinoy DC. Developmental exposures to common environmental contaminants, DEHP and lead, alter adult brain and blood hydroxymethylation in mice. Front Cell Dev Biol 2023; 11:1198148. [PMID: 37384255 PMCID: PMC10294071 DOI: 10.3389/fcell.2023.1198148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction: The developing epigenome changes rapidly, potentially making it more sensitive to toxicant exposures. DNA modifications, including methylation and hydroxymethylation, are important parts of the epigenome that may be affected by environmental exposures. However, most studies do not differentiate between these two DNA modifications, possibly masking significant effects. Methods: To investigate the relationship between DNA hydroxymethylation and developmental exposure to common contaminants, a collaborative, NIEHS-sponsored consortium, TaRGET II, initiated longitudinal mouse studies of developmental exposure to human-relevant levels of the phthalate plasticizer di(2-ethylhexyl) phthalate (DEHP), and the metal lead (Pb). Exposures to 25 mg DEHP/kg of food (approximately 5 mg DEHP/kg body weight) or 32 ppm Pb-acetate in drinking water were administered to nulliparous adult female mice. Exposure began 2 weeks before breeding and continued throughout pregnancy and lactation, until offspring were 21 days old. At 5 months, perinatally exposed offspring blood and cortex tissue were collected, for a total of 25 male mice and 17 female mice (n = 5-7 per tissue and exposure). DNA was extracted and hydroxymethylation was measured using hydroxymethylated DNA immunoprecipitation sequencing (hMeDIP-seq). Differential peak and pathway analysis was conducted comparing across exposure groups, tissue types, and animal sex, using an FDR cutoff of 0.15. Results: DEHP-exposed females had two genomic regions with lower hydroxymethylation in blood and no differences in cortex hydroxymethylation. For DEHP-exposed males, ten regions in blood (six higher and four lower) and 246 regions (242 higher and four lower) and four pathways in cortex were identified. Pb-exposed females had no statistically significant differences in blood or cortex hydroxymethylation compared to controls. Pb-exposed males, however, had 385 regions (all higher) and six pathways altered in cortex, but no differential hydroxymethylation was identified in blood. Discussion: Overall, perinatal exposure to human-relevant levels of two common toxicants showed differences in adult DNA hydroxymethylation that was specific to sex, exposure type, and tissue, but male cortex was most susceptible to hydroxymethylation differences by exposure. Future assessments should focus on understanding if these findings indicate potential biomarkers of exposure or are related to functional long-term health effects.
Collapse
Affiliation(s)
- Rebekah L. Petroff
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Raymond G. Cavalcante
- Epigenomics Core, Biomedical Research Core Facilities, Michigan Medicine, Ann Arbor, MI, United States
| | - Justin A. Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Tamara R. Jones
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Claudia Lalancette
- Epigenomics Core, Biomedical Research Core Facilities, Michigan Medicine, Ann Arbor, MI, United States
| | - Rachel K. Morgan
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Kari Neier
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Bambarendage P. U. Perera
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Christine A. Rygiel
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Laurie K. Svoboda
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, Ann Arbor, MI, United States
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, Ann Arbor, MI, United States
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Keith N, Jackson CE, Glaholt SP, Young K, Lynch M, Shaw JR. Genome-Wide Analysis of Cadmium-Induced, Germline Mutations in a Long-Term Daphnia pulex Mutation-Accumulation Experiment. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:107003. [PMID: 34623885 PMCID: PMC8500294 DOI: 10.1289/ehp8932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Germline mutations provide the raw material for all evolutionary processes and contribute to the occurrence of spontaneous human diseases and disorders. Yet despite the daily interaction of humans and other organisms with an increasing number of chemicals that are potentially mutagenic, precise measurements of chemically induced changes to the genome-wide rate and spectrum of germline mutation are lacking. OBJECTIVES A large-scale Daphnia pulex mutation-accumulation experiment was propagated in the presence and absence of an environmentally relevant cadmium concentration to quantify the influence of cadmium on germline mutation rates and spectra. RESULTS Cadmium exposure dramatically changed the genome-wide rates and regional spectra of germline mutations. In comparison with those in control conditions, Daphnia exposed to cadmium had a higher overall A : T → G : C mutation rates and a lower overall C : G → G : C mutation rate. Daphnia exposed to cadmium had a higher intergenic mutation rate and a lower exonic mutation rate. The higher intergenic mutation rate under cadmium exposure was the result of an elevated intergenic A : T → G : C rate, whereas the lower exon mutation rate in cadmium was the result of a complete loss of exonic C : G → G : C mutations-mutations that are known to be enriched at 5-hydroxymethylcytosine. We experimentally show that cadmium exposure significantly reduced 5-hydroxymethylcytosine levels. DISCUSSION These results provide evidence that cadmium changes regional mutation rates and can influence regional rates by interfering with an epigenetic process in the Daphnia pulex germline. We further suggest these observed cadmium-induced changes to the Daphnia germline mutation rate may be explained by cadmium's inhibition of zinc-containing domains. The cadmium-induced changes to germline mutation rates and spectra we report provide a comprehensive view of the mutagenic perils of cadmium and give insight into its potential impact on human population health. https://doi.org/10.1289/EHP8932.
Collapse
Affiliation(s)
- Nathan Keith
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Craig E. Jackson
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Stephen P. Glaholt
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Kimberly Young
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Joseph R. Shaw
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
6
|
Seplyarskiy VB, Sunyaev S. The origin of human mutation in light of genomic data. Nat Rev Genet 2021; 22:672-686. [PMID: 34163020 DOI: 10.1038/s41576-021-00376-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2021] [Indexed: 02/05/2023]
Abstract
Despite years of active research into the role of DNA repair and replication in mutagenesis, surprisingly little is known about the origin of spontaneous human mutation in the germ line. With the advent of high-throughput sequencing, genome-scale data have revealed statistical properties of mutagenesis in humans. These properties include variation of the mutation rate and spectrum along the genome at different scales in relation to epigenomic features and dependency on parental age. Moreover, mutations originated in mothers are less frequent than mutations originated in fathers and have a distinct genomic distribution. Statistical analyses that interpret these patterns in the context of known biochemistry can provide mechanistic models of mutagenesis in humans.
Collapse
Affiliation(s)
- Vladimir B Seplyarskiy
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Shamil Sunyaev
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Seplyarskiy VB, Soldatov RA, Koch E, McGinty RJ, Goldmann JM, Hernandez RD, Barnes K, Correa A, Burchard EG, Ellinor PT, McGarvey ST, Mitchell BD, Vasan RS, Redline S, Silverman E, Weiss ST, Arnett DK, Blangero J, Boerwinkle E, He J, Montgomery C, Rao DC, Rotter JI, Taylor KD, Brody JA, Chen YDI, de las Fuentes L, Hwu CM, Rich SS, Manichaikul AW, Mychaleckyj JC, Palmer ND, Smith JA, Kardia SLR, Peyser PA, Bielak LF, O'Connor TD, Emery LS, Gilissen C, Wong WSW, Kharchenko PV, Sunyaev S. Population sequencing data reveal a compendium of mutational processes in the human germ line. Science 2021; 373:1030-1035. [PMID: 34385354 PMCID: PMC9217108 DOI: 10.1126/science.aba7408] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/14/2021] [Indexed: 12/16/2022]
Abstract
Biological mechanisms underlying human germline mutations remain largely unknown. We statistically decompose variation in the rate and spectra of mutations along the genome using volume-regularized nonnegative matrix factorization. The analysis of a sequencing dataset (TOPMed) reveals nine processes that explain the variation in mutation properties between loci. We provide a biological interpretation for seven of these processes. We associate one process with bulky DNA lesions that are resolved asymmetrically with respect to transcription and replication. Two processes track direction of replication fork and replication timing, respectively. We identify a mutagenic effect of active demethylation primarily acting in regulatory regions and a mutagenic effect of long interspersed nuclear elements. We localize a mutagenic process specific to oocytes from population sequencing data. This process appears transcriptionally asymmetric.
Collapse
Affiliation(s)
- Vladimir B Seplyarskiy
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Ruslan A Soldatov
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Evan Koch
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Ryan J McGinty
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Jakob M Goldmann
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ryan D Hernandez
- Quantitative Life Sciences, McGill University, Montreal, QC, Canada
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Kathleen Barnes
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Population Health Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Esteban G Burchard
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Patrick T Ellinor
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen T McGarvey
- International Health Institute, Brown University, Providence, RI, USA
- Department of Epidemiology, Brown University, Providence, RI, USA
- Department of Anthropology, Brown University, Providence, RI, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Ramachandran S Vasan
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Susan Redline
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Edwin Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Scott T Weiss
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Donna K Arnett
- Department of Epidemiology, University of Kentucky, Lexington, KY, USA
| | - John Blangero
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Eric Boerwinkle
- University of Texas Health Science Center at Houston, Houston, TX, USA
- Baylor College of Medicine Human Genome Sequencing Center, Houston, TX, USA
| | - Jiang He
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
- Tulane University Translational Science Institute, Tulane University, New Orleans, LA , USA
| | - Courtney Montgomery
- Division of Genomics and Data Science, Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - D C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Yii-Der Ida Chen
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Lisa de las Fuentes
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Chii-Min Hwu
- National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Ani W Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA
- Survey Research Center, Institute for Social Research, University of Michigan 426 Thompson St, Room Ann Arbor, MI 48104, USA
| | - Sharon L R Kardia
- Survey Research Center, Institute for Social Research, University of Michigan 426 Thompson St, Room Ann Arbor, MI 48104, USA
| | - Patricia A Peyser
- Survey Research Center, Institute for Social Research, University of Michigan 426 Thompson St, Room Ann Arbor, MI 48104, USA
| | - Lawrence F Bielak
- Survey Research Center, Institute for Social Research, University of Michigan 426 Thompson St, Room Ann Arbor, MI 48104, USA
| | - Timothy D O'Connor
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Leslie S Emery
- University of Washington Department of Biostatistics, Seattle, WA 98195, USA
| | - Christian Gilissen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Wendy S W Wong
- Inova Translational Medicine Institute (ITMI), Inova Health Systems, Falls Church, VA, USA
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Shamil Sunyaev
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Han Y, Ji L, Guan Y, Ma M, Li P, Xue Y, Zhang Y, Huang W, Gong Y, Jiang L, Wang X, Xie H, Zhou B, Wang J, Wang J, Han J, Deng Y, Yi X, Gao F, Huang J. An epigenomic landscape of cervical intraepithelial neoplasia and cervical cancer using single-base resolution methylome and hydroxymethylome. Clin Transl Med 2021; 11:e498. [PMID: 34323415 PMCID: PMC8288011 DOI: 10.1002/ctm2.498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cervical cancer (CC) is the second leading cause of cancer death among women worldwide. Epigenetic regulation of gene expression through DNA methylation and hydroxymethylation plays a pivotal role during tumorigenesis. In this study, to analyze the epigenomic landscape and identify potential biomarkers for CCs, we selected a series of samples from normal to cervical intra-epithelial neoplasia (CINs) to CCs and performed an integrative analysis of whole-genome bisulfite sequencing (WGBS-seq), oxidative WGBS, RNA-seq, and external histone modifications profiling data. RESULTS In the development and progression of CC, there were genome-wide hypo-methylation and hypo-hydroxymethylation, accompanied by local hyper-methylation and hyper-hydroxymethylation. Hydroxymethylation prefers to distribute in the CpG islands and CpG shores, as displayed a trend of gradual decline from health to CIN2, while a trend of increase from CIN3 to CC. The differentially methylated and hydroxymethylated region-associated genes both enriched in Hippo and other cancer-related signaling pathways that drive cervical carcinogenesis. Furthermore, we identified eight novel differentially methylated/hydroxymethylated-associated genes (DES, MAL, MTIF2, PIP5K1A, RPS6KA6, ANGEL2, MPP, and PAPSS2) significantly correlated with the overall survival of CC. In addition, no any correlation was observed between methylation or hydroxymethylation levels and somatic copy number variations in CINs and CCs. CONCLUSION Our current study systematically delineates the map of methylome and hydroxymethylome from CINs to CC, and some differentially methylated/hydroxymethylated-associated genes can be used as the potential epigenetic biomarkers in CC prognosis.
Collapse
Affiliation(s)
- Yingxin Han
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Centre for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | | | - Yanfang Guan
- Department of Computer Science and TechnologySchool of Electronic and Information EngineeringXi'an Jiao Tong UniversityXi'anChina
- GenePlus‐BeijingBeijingChina
| | | | | | - Yinge Xue
- Shanghai FLY Medical LaboratoryShanghaiChina
| | | | - Wanqiu Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Centre for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | | | - Li Jiang
- The Department of Obstetrics and GynecologyXinhua Hospital affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| | - Xipeng Wang
- The Department of Obstetrics and GynecologyXinhua Hospital affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| | - Hong Xie
- The Department of Obstetrics and GynecologyShenzhen People's HospitalShenzhenChina
| | - Boping Zhou
- The Department of Obstetrics and GynecologyShenzhen People's HospitalShenzhenChina
| | - Jiayin Wang
- Department of Computer Science and TechnologySchool of Electronic and Information EngineeringXi'an Jiao Tong UniversityXi'anChina
| | - Junwen Wang
- Genome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Jinghua Han
- Genome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Yuliang Deng
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Centre for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xin Yi
- GenePlus‐BeijingBeijingChina
| | - Fei Gao
- Genome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
- Comparative Pediatrics and NutritionDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Jian Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Centre for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
9
|
Thyroid MALT lymphoma: self-harm to gain potential T-cell help. Leukemia 2021; 35:3497-3508. [PMID: 34021249 PMCID: PMC8632687 DOI: 10.1038/s41375-021-01289-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023]
Abstract
The development of extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT) is driven by chronic inflammatory responses and acquired genetic changes. To investigate its genetic bases, we performed targeted sequencing of 93 genes in 131 MALT lymphomas including 76 from the thyroid. We found frequent deleterious mutations of TET2 (86%), CD274 (53%), TNFRSF14 (53%), and TNFAIP3 (30%) in thyroid MALT lymphoma. CD274 was also frequently deleted, together with mutation seen in 68% of cases. There was a significant association between CD274 mutation/deletion and TNFRSF14 mutation (p = 0.001). CD274 (PD-L1) and TNFRSF14 are ligands for the co-inhibitory receptor PD1 and BTLA on T-helper cells, respectively, their inactivation may free T-cell activities, promoting their help to malignant B-cells. In support of this, both the proportion of activated T-cells (CD4+CD69+/CD4+) within the proximity of malignant B-cells, and the level of transformed blasts were significantly higher in cases with CD274/TNFRSF14 genetic abnormalities than those without these changes. Both CD274 and TNFRSF14 genetic changes were significantly associated with Hashimoto’s thyroiditis (p = 0.01, p = 0.04, respectively), and CD274 mutation/deletion additionally associated with increased erythrocyte sedimentation rate (p = 0.0001). In conclusion, CD274/TNFRSF14 inactivation in thyroid MALT lymphoma B-cells may deregulate their interaction with T-cells, promoting co-stimulations and impairing peripheral tolerance.
Collapse
|
10
|
Goldberg ME, Harris K. Mutational signatures of replication timing and epigenetic modification persist through the global divergence of mutation spectra across the great ape phylogeny. Genome Biol Evol 2021; 14:6275268. [PMID: 33983415 PMCID: PMC8743035 DOI: 10.1093/gbe/evab104] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 11/17/2022] Open
Abstract
Great ape clades exhibit variation in the relative mutation rates of different three-base-pair genomic motifs, with closely related species having more similar mutation spectra than distantly related species. This pattern cannot be explained by classical demographic or selective forces, but imply that DNA replication fidelity has been perturbed in different ways on each branch of the great ape phylogeny. Here, we use whole-genome variation from 88 great apes to investigate whether these species’ mutation spectra are broadly differentiated across the entire genome, or whether mutation spectrum differences are driven by DNA compartments that have particular functional features or chromatin states. We perform principal component analysis (PCA) and mutational signature deconvolution on mutation spectra ascertained from compartments defined by features including replication timing and ancient repeat content, finding evidence for consistent species-specific mutational signatures that do not depend on which functional compartments the spectra are ascertained from. At the same time, we find that many compartments have their own characteristic mutational signatures that appear stable across the great ape phylogeny. For example, in a mutation spectrum PCA compartmentalized by replication timing, the second principal component explaining 21.2% of variation separates all species’ late-replicating regions from their early-replicating regions. Our results suggest that great ape mutation spectrum evolution is not driven by epigenetic changes that modify mutation rates in specific genomic regions, but instead by trans-acting mutational modifiers that affect mutagenesis across the whole genome fairly uniformly.
Collapse
Affiliation(s)
- Michael E Goldberg
- University of Washington Department of Genome Sciences, 3720 15th Ave NE, Seattle WA 98105, United States of America
| | - Kelley Harris
- University of Washington Department of Genome Sciences, 3720 15th Ave NE, Seattle WA 98105, United States of America.,Fred Hutchinson Cancer Center Computational Biology Division, 1100 Fairview Ave N, Seattle, WA 98109, United States of America
| |
Collapse
|
11
|
Brabson JP, Leesang T, Mohammad S, Cimmino L. Epigenetic Regulation of Genomic Stability by Vitamin C. Front Genet 2021; 12:675780. [PMID: 34017357 PMCID: PMC8129186 DOI: 10.3389/fgene.2021.675780] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
DNA methylation plays an important role in the maintenance of genomic stability. Ten-eleven translocation proteins (TETs) are a family of iron (Fe2+) and α-KG -dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). These oxidized methylcytosines promote passive demethylation upon DNA replication, or active DNA demethylation, by triggering base excision repair and replacement of 5fC and 5caC with an unmethylated cytosine. Several studies over the last decade have shown that loss of TET function leads to DNA hypermethylation and increased genomic instability. Vitamin C, a cofactor of TET enzymes, increases 5hmC formation and promotes DNA demethylation, suggesting that this essential vitamin, in addition to its antioxidant properties, can also directly influence genomic stability. This review will highlight the functional role of DNA methylation, TET activity and vitamin C, in the crosstalk between DNA methylation and DNA repair.
Collapse
Affiliation(s)
- John P Brabson
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Tiffany Leesang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sofia Mohammad
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Luisa Cimmino
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
12
|
Kim H, Kang Y, Li Y, Chen L, Lin L, Johnson ND, Zhu D, Robinson MH, McSwain L, Barwick BG, Yuan X, Liao X, Zhao J, Zhang Z, Shu Q, Chen J, Allen EG, Kenney AM, Castellino RC, Van Meir EG, Conneely KN, Vertino PM, Jin P, Li J. Ten-eleven translocation protein 1 modulates medulloblastoma progression. Genome Biol 2021; 22:125. [PMID: 33926529 PMCID: PMC8082834 DOI: 10.1186/s13059-021-02352-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 04/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Medulloblastoma (MB) is the most common malignant pediatric brain tumor that originates in the cerebellum and brainstem. Frequent somatic mutations and deregulated expression of epigenetic regulators in MB highlight the substantial role of epigenetic alterations. 5-hydroxymethylcytosine (5hmC) is a highly abundant cytosine modification in the developing cerebellum and is regulated by ten-eleven translocation (TET) enzymes. RESULTS We investigate the alterations of 5hmC and TET enzymes in MB and their significance to cerebellar cancer formation. We show total abundance of 5hmC is reduced in MB, but identify significant enrichment of MB-specific 5hmC marks at regulatory regions of genes implicated in stem-like properties and Nanog-binding motifs. While TET1 and TET2 levels are high in MBs, only knockout of Tet1 in the smoothened (SmoA1) mouse model attenuates uncontrolled proliferation, leading to a favorable prognosis. The pharmacological Tet1 inhibition reduces cell viability and platelet-derived growth factor signaling pathway-associated genes. CONCLUSIONS These results together suggest a potential key role of 5hmC and indicate an oncogenic nature for TET1 in MB tumorigenesis, suggesting it as a potential therapeutic target for MBs.
Collapse
Affiliation(s)
- Hyerim Kim
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yunhee Kang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Li Chen
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Li Lin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nicholas D Johnson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Dan Zhu
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - M Hope Robinson
- Department of Pediatric Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Leon McSwain
- Department of Pediatric Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Benjamin G Barwick
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Xianrui Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xinbin Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hydrocephalus Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hydrocephalus Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhiping Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hydrocephalus Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qiang Shu
- The Children's Hospital and Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianjun Chen
- Department of Systems Biology and Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA, 91010, USA
| | - Emily G Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anna M Kenney
- Department of Pediatric Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Robert C Castellino
- Department of Pediatric Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Erwin G Van Meir
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Paula M Vertino
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Jian Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hydrocephalus Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
13
|
Prasad R, Yen TJ, Bellacosa A. Active DNA demethylation-The epigenetic gatekeeper of development, immunity, and cancer. ADVANCED GENETICS (HOBOKEN, N.J.) 2021; 2:e10033. [PMID: 36618446 PMCID: PMC9744510 DOI: 10.1002/ggn2.10033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 01/11/2023]
Abstract
DNA methylation is a critical process in the regulation of gene expression with dramatic effects in development and continually expanding roles in oncogenesis. 5-Methylcytosine was once considered to be an inherited and stably repressive epigenetic mark, which can be only removed by passive dilution during multiple rounds of DNA replication. However, in the past two decades, physiologically controlled DNA demethylation and deamination processes have been identified, thereby revealing the function of cytosine methylation as a highly regulated and complex state-not simply a static, inherited signature or binary on-off switch. Alongside these fundamental discoveries, clinical studies over the past decade have revealed the dramatic consequences of aberrant DNA demethylation. In this review we discuss DNA demethylation and deamination in the context of 5-methylcytosine as critical processes for physiological and physiopathological transitions within three states-development, immune maturation, and oncogenic transformation; and we describe the expanding role of DNA demethylating drugs as therapeutic agents in cancer.
Collapse
Affiliation(s)
- Rahul Prasad
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| | - Timothy J. Yen
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| | - Alfonso Bellacosa
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
14
|
Cytosine Methylation Affects the Mutability of Neighboring Nucleotides in Germline and Soma. Genetics 2020; 214:809-823. [PMID: 32079595 DOI: 10.1534/genetics.120.303028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Methylated cytosines deaminate at higher rates than unmethylated cytosines, and the lesions they produce are repaired less efficiently. As a result, methylated cytosines are mutational hotspots. Here, combining rare polymorphism and base-resolution methylation data in humans, Arabidopsis thaliana, and rice (Oryza sativa), we present evidence that methylation state affects mutation dynamics not only at the focal cytosine but also at neighboring nucleotides. In humans, contrary to prior suggestions, we find that nucleotides in the close vicinity (±3 bp) of methylated cytosines mutate less frequently. Reduced mutability around methylated CpGs is also observed in cancer genomes, considering single nucleotide variants alongside tissue-of-origin-matched methylation data. In contrast, methylation is associated with increased neighborhood mutation risk in A. thaliana and rice. The difference in neighborhood mutation risk is less pronounced further away from the focal CpG and modulated by regional GC content. Our results are consistent with a model where altered risk at neighboring bases is linked to lesion formation at the focal CpG and subsequent long-patch repair. Our findings indicate that cytosine methylation has a broader mutational footprint than is commonly assumed.
Collapse
|
15
|
Supek F, Lehner B. Scales and mechanisms of somatic mutation rate variation across the human genome. DNA Repair (Amst) 2019; 81:102647. [PMID: 31307927 DOI: 10.1016/j.dnarep.2019.102647] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer genome sequencing has revealed that somatic mutation rates vary substantially across the human genome and at scales from megabase-sized domains to individual nucleotides. Here we review recent work that has both revealed the major mutation biases that operate across the genome and the molecular mechanisms that cause them. The default mutation rate landscape in mammalian genomes results in active genes having low mutation rates because of a combination of factors that increase DNA repair: early DNA replication, transcription, active chromatin modifications and accessible chromatin. Therefore, either an increase in the global mutation rate or a redistribution of mutations from inactive to active DNA can increase the rate at which consequential mutations are acquired in active genes. Several environmental carcinogens and intrinsic mechanisms operating in tumor cells likely cause cancer by this second mechanism: by specifically increasing the mutation rate in active regions of the genome.
Collapse
Affiliation(s)
- Fran Supek
- Genome Data Science, Institut de Recerca Biomedica (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| | - Ben Lehner
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain; Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
16
|
Schoeler K, Aufschnaiter A, Messner S, Derudder E, Herzog S, Villunger A, Rajewsky K, Labi V. TET enzymes control antibody production and shape the mutational landscape in germinal centre B cells. FEBS J 2019; 286:3566-3581. [PMID: 31120187 PMCID: PMC6851767 DOI: 10.1111/febs.14934] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
Abstract
Upon activation by antigen, B cells form germinal centres where they clonally expand and introduce affinity-enhancing mutations into their B-cell receptor genes. Somatic mutagenesis and class switch recombination (CSR) in germinal centre B cells are initiated by the activation-induced cytidine deaminase (AID). Upon germinal centre exit, B cells differentiate into antibody-secreting plasma cells. Germinal centre maintenance and terminal fate choice require transcriptional reprogramming that associates with a substantial reconfiguration of DNA methylation patterns. Here we examine the role of ten-eleven-translocation (TET) proteins, enzymes that facilitate DNA demethylation and promote a permissive chromatin state by oxidizing 5-methylcytosine, in antibody-mediated immunity. Using a conditional gene ablation strategy, we show that TET2 and TET3 guide the transition of germinal centre B cells to antibody-secreting plasma cells. Optimal AID expression requires TET function, and TET2 and TET3 double-deficient germinal centre B cells show defects in CSR. However, TET2/TET3 double-deficiency does not prevent the generation and selection of high-affinity germinal centre B cells. Rather, combined TET2 and TET3 loss-of-function in germinal centre B cells favours C-to-T and G-to-A transition mutagenesis, a finding that may be of significance for understanding the aetiology of B-cell lymphomas evolving in conditions of reduced TET function.
Collapse
Affiliation(s)
- Katia Schoeler
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Andreas Aufschnaiter
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Simon Messner
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Emmanuel Derudder
- Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Sebastian Herzog
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Klaus Rajewsky
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany
| | - Verena Labi
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| |
Collapse
|
17
|
Grolleman JE, Díaz-Gay M, Franch-Expósito S, Castellví-Bel S, de Voer RM. Somatic mutational signatures in polyposis and colorectal cancer. Mol Aspects Med 2019; 69:62-72. [PMID: 31108140 DOI: 10.1016/j.mam.2019.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 02/04/2023]
Abstract
The somatic mutation spectrum imprinted in the genome of a tumor represents the mutational processes that have been active in that tumor. Large sequencing efforts in various cancer types have resulted in the identification of multiple mutational signatures, of which several have been linked to specific biological mechanisms. Several pan-cancer mutational signatures have been identified, while other signatures are only found in specific tissue types. Research on tumors from individuals with specific DNA repair defects has led to links between specific mutational signatures and mutational processes. Studying mutational signatures in cancers that are likely the result of a genetic predisposition may represent an interesting strategy to identify constitutional DNA repair defects, including those underlying polyposis and colorectal cancer.
Collapse
Affiliation(s)
- Judith E Grolleman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marcos Díaz-Gay
- Gastroenterology Department, Hospital Clínic de Barcelona, August Pi I Sunyer Biomedical Research Institute, CIBER of Hepatic and Digestive Diseases, University of Barcelona, Barcelona, Spain
| | - Sebastià Franch-Expósito
- Gastroenterology Department, Hospital Clínic de Barcelona, August Pi I Sunyer Biomedical Research Institute, CIBER of Hepatic and Digestive Diseases, University of Barcelona, Barcelona, Spain
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic de Barcelona, August Pi I Sunyer Biomedical Research Institute, CIBER of Hepatic and Digestive Diseases, University of Barcelona, Barcelona, Spain
| | - Richarda M de Voer
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
18
|
Molnár B, Galamb O, Péterfia B, Wichmann B, Csabai I, Bodor A, Kalmár A, Szigeti KA, Barták BK, Nagy ZB, Valcz G, Patai ÁV, Igaz P, Tulassay Z. Gene promoter and exon DNA methylation changes in colon cancer development - mRNA expression and tumor mutation alterations. BMC Cancer 2018; 18:695. [PMID: 29945573 PMCID: PMC6020382 DOI: 10.1186/s12885-018-4609-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 06/18/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND DNA mutations occur randomly and sporadically in growth-related genes, mostly on cytosines. Demethylation of cytosines may lead to genetic instability through spontaneous deamination. Aims were whole genome methylation and targeted mutation analysis of colorectal cancer (CRC)-related genes and mRNA expression analysis of TP53 pathway genes. METHODS Long interspersed nuclear element-1 (LINE-1) BS-PCR followed by pyrosequencing was performed for the estimation of global DNA metlyation levels along the colorectal normal-adenoma-carcinoma sequence. Methyl capture sequencing was done on 6 normal adjacent (NAT), 15 adenomatous (AD) and 9 CRC tissues. Overall quantitative methylation analysis, selection of top hyper/hypomethylated genes, methylation analysis on mutation regions and TP53 pathway gene promoters were performed. Mutations of 12 CRC-related genes (APC, BRAF, CTNNB1, EGFR, FBXW7, KRAS, NRAS, MSH6, PIK3CA, SMAD2, SMAD4, TP53) were evaluated. mRNA expression of TP53 pathway genes was also analyzed. RESULTS According to the LINE-1 methylation results, overall hypomethylation was observed along the normal-adenoma-carcinoma sequence. Within top50 differential methylated regions (DMRs), in AD-N comparison TP73, NGFR, PDGFRA genes were hypermethylated, FMN1, SLC16A7 genes were hypomethylated. In CRC-N comparison DKK2, SDC2, SOX1 genes showed hypermethylation, while ERBB4, CREB5, CNTN1 genes were hypomethylated. In certain mutation hot spot regions significant DNA methylation alterations were detected. The TP53 gene body was addressed by hypermethylation in adenomas. APC, TP53 and KRAS mutations were found in 30, 15, 21% of adenomas, and in 29, 53, 29% of CRCs, respectively. mRNA expression changes were observed in several TP53 pathway genes showing promoter methylation alterations. CONCLUSIONS DNA methylation with consecutive phenotypic effect can be observed in a high number of promoter and gene body regions through CRC development.
Collapse
Affiliation(s)
- Béla Molnár
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Orsolya Galamb
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Bálint Péterfia
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Barnabás Wichmann
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - István Csabai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117 Hungary
| | - András Bodor
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117 Hungary
- Institute of Mathematics and Informatics, Faculty of Sciences, University of Pécs, Ifjúság útja 6, Pécs, H-7624 Hungary
| | - Alexandra Kalmár
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Krisztina Andrea Szigeti
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Barbara Kinga Barták
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Zsófia Brigitta Nagy
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Gábor Valcz
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Árpád V. Patai
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Péter Igaz
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Zsolt Tulassay
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| |
Collapse
|
19
|
Pavlovic M, Ray P, Pavlovic K, Kotamarti A, Chen M, Zhang MQ. DIRECTION: a machine learning framework for predicting and characterizing DNA methylation and hydroxymethylation in mammalian genomes. Bioinformatics 2018; 33:2986-2994. [PMID: 28505334 DOI: 10.1093/bioinformatics/btx316] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/11/2017] [Indexed: 12/15/2022] Open
Abstract
Motivation 5-Methylcytosine and 5-Hydroxymethylcytosine in DNA are major epigenetic modifications known to significantly alter mammalian gene expression. High-throughput assays to detect these modifications are expensive, labor-intensive, unfeasible in some contexts and leave a portion of the genome unqueried. Hence, we devised a novel, supervised, integrative learning framework to perform whole-genome methylation and hydroxymethylation predictions in CpG dinucleotides. Our framework can also perform imputation of missing or low quality data in existing sequencing datasets. Additionally, we developed infrastructure to perform in silico, high-throughput hypotheses testing on such predicted methylation or hydroxymethylation maps. Results We test our approach on H1 human embryonic stem cells and H1-derived neural progenitor cells. Our predictive model is comparable in accuracy to other state-of-the-art DNA methylation prediction algorithms. We are the first to predict hydroxymethylation in silico with high whole-genome accuracy, paving the way for large-scale reconstruction of hydroxymethylation maps in mammalian model systems. We designed a novel, beam-search driven feature selection algorithm to identify the most discriminative predictor variables, and developed a platform for performing integrative analysis and reconstruction of the epigenome. Our toolkit DIRECTION provides predictions at single nucleotide resolution and identifies relevant features based on resource availability. This offers enhanced biological interpretability of results potentially leading to a better understanding of epigenetic gene regulation. Availability and implementation http://www.pradiptaray.com/direction, under CC-by-SA license. Contacts pradiptaray@gmail.com or mchen@utdallas.edu or michael.zhang@utdallas.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Milos Pavlovic
- Department of Biological Sciences, Center for Systems Biology
| | - Pradipta Ray
- Department of Biological Sciences, Center for Systems Biology.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | | | - Aaron Kotamarti
- Department of Biological Sciences, Center for Systems Biology
| | - Min Chen
- Department of Clinical Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology.,TNLIST, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| |
Collapse
|
20
|
Tomkova M, Schuster-Böckler B. DNA Modifications: Naturally More Error Prone? Trends Genet 2018; 34:627-638. [PMID: 29853204 DOI: 10.1016/j.tig.2018.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/22/2018] [Accepted: 04/27/2018] [Indexed: 12/31/2022]
Abstract
Epigenetic DNA modifications are essential for normal cell function in vertebrates, but they can also be hotspots of mutagenesis. Methylcytosine in particular has long been known to be less stable than other nucleotides and spontaneously deaminates to thymine. Beyond this well-established phenomenon, however, the influence of epigenetic marks on mutagenesis has recently become an active field of investigation. In this review, we summarize current knowledge of the interactions between different DNA modifications and other mutagenic processes. External mutagens, such as UV light or smoking carcinogens, affect modified cytosines differently from unmodified ones, and modified cytosine can in some cases be protective rather than mutagenic. Notably, cell-intrinsic processes, such as DNA replication, also appear to influence the mutagenesis of modified cytosines. Altogether, evidence is accumulating to show that epigenetic changes have a profound influence on tissue-specific mutation accumulation.
Collapse
Affiliation(s)
- Marketa Tomkova
- Ludwig Cancer Research Oxford, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Benjamin Schuster-Böckler
- Ludwig Cancer Research Oxford, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| |
Collapse
|
21
|
Tubbs A, Nussenzweig A. Endogenous DNA Damage as a Source of Genomic Instability in Cancer. Cell 2017; 168:644-656. [PMID: 28187286 DOI: 10.1016/j.cell.2017.01.002] [Citation(s) in RCA: 960] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/22/2016] [Accepted: 01/04/2017] [Indexed: 12/19/2022]
Abstract
Genome instability, defined as higher than normal rates of mutation, is a double-edged sword. As a source of genetic diversity and natural selection, mutations are beneficial for evolution. On the other hand, genomic instability can have catastrophic consequences for age-related diseases such as cancer. Mutations arise either from inactivation of DNA repair pathways or in a repair-competent background due to genotoxic stress from celluar processes such as transcription and replication that overwhelm high-fidelity DNA repair. Here, we review recent studies that shed light on endogenous sources of mutation and epigenomic features that promote genomic instability during cancer evolution.
Collapse
Affiliation(s)
- Anthony Tubbs
- Laboratory of Genome Integrity, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
22
|
Clutterbuck AJ. Genomic CG dinucleotide deficiencies associated with transposable element hypermutation in Basidiomycetes, some lower fungi, a moss and a clubmoss. Fungal Genet Biol 2017; 104:16-28. [PMID: 28438577 DOI: 10.1016/j.fgb.2017.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/10/2017] [Accepted: 04/17/2017] [Indexed: 12/15/2022]
Abstract
Many Basidiomycete genomes include substantial fractions that are deficient in CG dinucleotides, in extreme cases amounting to 70% of the genome. CG deficiency is variable and correlates with genome size and, more closely, with transposable element (TE) content. Many species have limited CG deficiency; it is therefore likely that there are other mechanisms that can control TE proliferation. Examination of TEs confirms that C-to-T transition mutations in CG dinucleotides may comprise a conspicuous proportion of differences between paired elements, however transition/transversion ratios are never as high as those due to RIP in some Ascomycetes, suggesting that repeat-associated CG mutation is not totally pervasive. This has allowed gene family expansion in Basidiomycetes, although CG transition differences are often prominent in paired gene family members, and are evidently responsible for destruction of some copies. A few lower fungal genomes exhibit similar evidence of repeat-associated CG mutation, as do the genomes of the two lower plants Physcomitrella patens and Selaginella moellendorffii, in both of which mutation parallels published methylation of CHG as well as CG nucleotides. In Basidiomycete DNA methylation has been reported to be largely confined to CG dinucleotides in repetitive DNA, but while methylation and mutation are evidently associated, it is not clear which is cause and which effect.
Collapse
Affiliation(s)
- A John Clutterbuck
- Wolfson Link Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|
23
|
Sahakyan AB, Balasubramanian S. Single genome retrieval of context-dependent variability in mutation rates for human germline. BMC Genomics 2017; 18:81. [PMID: 28086752 PMCID: PMC5237266 DOI: 10.1186/s12864-016-3440-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/19/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Accurate knowledge of the core components of substitution rates is of vital importance to understand genome evolution and dynamics. By performing a single-genome and direct analysis of 39,894 retrotransposon remnants, we reveal sequence context-dependent germline nucleotide substitution rates for the human genome. RESULTS The rates are characterised through rate constants in a time-domain, and are made available through a dedicated program (Trek) and a stand-alone database. Due to the nature of the method design and the imposed stringency criteria, we expect our rate constants to be good estimates for the rates of spontaneous mutations. Benefiting from such data, we study the short-range nucleotide (up to 7-mer) organisation and the germline basal substitution propensity (BSP) profile of the human genome; characterise novel, CpG-independent, substitution prone and resistant motifs; confirm a decreased tendency of moieties with low BSP to undergo somatic mutations in a number of cancer types; and, produce a Trek-based estimate of the overall mutation rate in human. CONCLUSIONS The extended set of rate constants we report may enrich our resources and help advance our understanding of genome dynamics and evolution, with possible implications for the role of spontaneous mutations in the emergence of pathological genotypes and neutral evolution of proteomes.
Collapse
Affiliation(s)
- Aleksandr B Sahakyan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK.
| |
Collapse
|
24
|
Cimmino L, Aifantis I. Alternative roles for oxidized mCs and TETs. Curr Opin Genet Dev 2016; 42:1-7. [PMID: 27939598 DOI: 10.1016/j.gde.2016.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/15/2016] [Indexed: 01/09/2023]
Abstract
Ten-eleven-translocation (TET) proteins oxidize 5-methylcytosine (5mC) to form stable or transient modifications (oxi-mCs) in the mammalian genome. Genome-wide mapping and protein interaction studies have shown that 5mC and oxi-mCs have unique distribution patterns and alternative roles in gene expression. In addition, oxi-mCs may interact with specific chromatin regulators, transcription factors and DNA repair proteins to maintain genomic integrity or alter DNA replication and transcriptional elongation rates. In this review we will discuss recent advances in our understanding of how TETs and 5hmC exert their epigenetic function as tumor suppressors by playing alternative roles in transcriptional regulation and genomic stability.
Collapse
Affiliation(s)
- Luisa Cimmino
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| | - Iannis Aifantis
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
25
|
Tomkova M, McClellan M, Kriaucionis S, Schuster-Boeckler B. 5-hydroxymethylcytosine marks regions with reduced mutation frequency in human DNA. eLife 2016; 5. [PMID: 27183007 PMCID: PMC4931910 DOI: 10.7554/elife.17082] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/13/2016] [Indexed: 12/21/2022] Open
Abstract
CpG dinucleotides are the main mutational hot-spot in most cancers. The characteristic elevated C>T mutation rate in CpG sites has been related to 5-methylcytosine (5mC), an epigenetically modified base which resides in CpGs and plays a role in transcription silencing. In brain nearly a third of 5mCs have recently been found to exist in the form of 5-hydroxymethylcytosine (5hmC), yet the effect of 5hmC on mutational processes is still poorly understood. Here we show that 5hmC is associated with an up to 53% decrease in the frequency of C>T mutations in a CpG context compared to 5mC. Tissue specific 5hmC patterns in brain, kidney and blood correlate with lower regional CpG>T mutation frequency in cancers originating in the respective tissues. Together our data reveal global and opposing effects of the two most common cytosine modifications on the frequency of cancer causing somatic mutations in different cell types.
Collapse
Affiliation(s)
- Marketa Tomkova
- Ludwig Cancer Research Oxford, University of Oxford, Oxford, United Kingdom
| | - Michael McClellan
- Ludwig Cancer Research Oxford, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
26
|
Panchin AY, Makeev VJ, Medvedeva YA. Preservation of methylated CpG dinucleotides in human CpG islands. Biol Direct 2016; 11:11. [PMID: 27005429 PMCID: PMC4804638 DOI: 10.1186/s13062-016-0113-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 03/14/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND CpG dinucleotides are extensively underrepresented in mammalian genomes. It is widely accepted that genome-wide CpG depletion is predominantly caused by an elevated CpG > TpG mutation rate due to frequent cytosine methylation in the CpG context. Meanwhile the CpG content in genomic regions called CpG islands (CGIs) is noticeably higher. This observation is usually explained by lower CpG > TpG substitution rates within CGIs due to reduced cytosine methylation levels. RESULTS By combining genome-wide data on substitutions and methylation levels in several human cell types we have shown that cytosine methylation in human sperm cells was strongly and consistently associated with increased CpG > TpG substitution rates. In contrast, this correlation was not observed for embryonic stem cells or fibroblasts. Surprisingly, the decreased sperm CpG methylation level was insufficient to explain the reduced CpG > TpG substitution rates in CGIs. CONCLUSIONS While cytosine methylation in human sperm cells is strongly associated with increased CpG > TpG substitution rates, substitution rates are significantly reduced within CGIs even after sperm CpG methylation levels and local GC content are controlled for. Our findings are consistent with strong negative selection preserving methylated CpGs within CGIs including intergenic ones.
Collapse
Affiliation(s)
- Alexander Y Panchin
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994, Russia
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, GSP-1, 119991, Russia.,Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, 117545, Russia.,Moscow Institute of Physics and Technology, Moscow Regoin, 141700, Russia
| | - Yulia A Medvedeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, GSP-1, 119991, Russia. .,Center for Bioengineering, Research Center of Biotechnology RAS, Russian Academy of Science, Moscow, 117312, Russia.
| |
Collapse
|
27
|
Niedzwiecki MM, Liu X, Hall MN, Thomas T, Slavkovich V, Ilievski V, Levy D, Alam S, Siddique AB, Parvez F, Graziano JH, Gamble MV. Sex-specific associations of arsenic exposure with global DNA methylation and hydroxymethylation in leukocytes: results from two studies in Bangladesh. Cancer Epidemiol Biomarkers Prev 2015; 24:1748-57. [PMID: 26364164 DOI: 10.1158/1055-9965.epi-15-0432] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/20/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Depletion of global 5-hydroxymethylcytosine (5-hmC) is observed in human cancers and is strongly implicated in skin cancer development. Although arsenic (As)-a class I human carcinogen linked to skin lesion and cancer risk-is known to be associated with changes in global %5-methylcytosine (%5-mC), its influence on 5-hmC has not been widely studied. METHODS We evaluated associations of As in drinking water, urine, and blood with global %5-mC and %5-hmC in two studies of Bangladeshi adults: (i) leukocyte DNA in the Nutritional Influences on Arsenic Toxicity study (n = 196; 49% male, 19-66 years); and (ii) peripheral blood mononuclear cell DNA in the Folate and Oxidative Stress study (n = 375; 49% male, 30-63 years). RESULTS Overall, As was not associated with global %5-mC or %5-hmC. Sex-specific analyses showed that associations of As exposure with global %5-hmC were positive in males and negative in females (P for interaction < 0.01). Analyses examining interactions by elevated plasma total homocysteine (tHcys), an indicator of B-vitamin deficiency, found that tHcys also modified the association between As and global %5-hmC (P for interaction < 0.10). CONCLUSION In two samples, we observed associations between As exposure and global %5-hmC in blood DNA that were modified by sex and tHcys. IMPACT Our findings suggest that As induces sex-specific changes in 5-hmC, an epigenetic mark that has been associated with cancer. Future research should explore whether altered %5-hmC is a mechanism underlying the sex-specific influences of As on skin lesion and cancer outcomes.
Collapse
Affiliation(s)
- Megan M Niedzwiecki
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | - Megan N Hall
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Tiffany Thomas
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Diane Levy
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | - Shafiul Alam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Abu B Siddique
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York.
| |
Collapse
|