1
|
Grieco G, Montefusco S, Nusco E, Capuozzo A, Cervellini F, Polishchuk E, Bishop M, Miele A, D’Apolito L, La Vecchia C, Aurilia M, Schiavo M, Staiano L, Cesana M, Oberman R, Lynch AV, Musolino P, Trepiccione F, Grishchuk Y, Medina DL. TRPML-1 Dysfunction and Renal Tubulopathy in Mucolipidosis Type IV. J Am Soc Nephrol 2025; 36:587-601. [PMID: 40168161 PMCID: PMC11975236 DOI: 10.1681/asn.0000000567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/27/2024] [Indexed: 04/03/2025] Open
Abstract
Background Loss-of-function mutations in the lysosomal channel transient receptor potential cation channel (TRPML-1) cause mucolipidosis type IV (MLIV), a rare lysosomal storage disease characterized by neurological defects, progressive vision loss, and achlorhydria. Recent reports have highlighted kidney disease and kidney failure in patients with MLIV during the second to third decade of life; however, the molecular mechanisms driving kidney dysfunction remain poorly understood. Methods A cross-sectional review of medical records from 21 patients with MLIV (ages 3–43 years) was conducted to assess kidney function impairment. In addition, we examined the kidney phenotype of MLIV mice at various ages, along with human kidney cells silenced for TRPML-1 and primary tubular cells from wild-type and MLIV mice. Immunohistology and cell biology approaches were used to phenotype nephron structure, the endolysosomal compartment, and inflammation. Kidney function was assessed through proteomic analysis of mouse urine and in vivo kidney filtration measurements. Results Of the 21 patients with MLIV, only adults were diagnosed with stage 2–3 CKD. Laboratory abnormalities included lower eGFR and higher levels BUN/creatine in blood and proteinuria. In MLIV mice, we observed significant alterations in endolysosomal morphology, function, and impaired autophagy in proximal and distal tubules. This led to the accumulation of megalin (LRP2) in the subapical region of proximal tubular cells, indicating a block in apical receptor–mediated endocytosis. In vivo and in vitro experiments confirmed reduced fluid-phase endocytosis and impaired uptake of ligands, including β-lactoglobulin, transferrin, and albumin in MLIV proximal tubular cells. Urine analysis revealed tubular proteinuria and enzymuria in mice with MLIV. In addition, early-stage disease was marked by increased inflammatory markers, fibrosis, and activation of the proinflammatory transcription factor NF-κB, coinciding with endolysosomal defects. Importantly, adeno-associated viral–mediated TRPML-1 gene delivery reversed key pathological phenotypes in MLIV mice, underscoring TRPML-1's critical role in kidney function. Conclusions Our findings link TRPML-1 dysfunction to the development of kidney disease in MLIV.
Collapse
Affiliation(s)
| | | | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | | | | | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Martha Bishop
- Department of Neurology, Massachusetts General Hospital Center for Genomic Medicine, Harvard Medical School, Boston, Massachusetts
| | - Antonio Miele
- Department of Medical Translational Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
- Institute of Molecular Biology and Genetics, Biogem, Ariano Irpino, Italy
| | - Luciano D’Apolito
- Department of Medical Translational Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
- Institute of Molecular Biology and Genetics, Biogem, Ariano Irpino, Italy
| | | | - Miriam Aurilia
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Michela Schiavo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Marcella Cesana
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | | | - Anna V. Lynch
- Department of Neurology, Massachusetts General Hospital Center for Genomic Medicine, Boston, Massachusetts
| | - Patricia Musolino
- Department of Neurology, Massachusetts General Hospital Center for Genomic Medicine, Harvard Medical School, Boston, Massachusetts
| | - Francesco Trepiccione
- Department of Medical Translational Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
- Institute of Molecular Biology and Genetics, Biogem, Ariano Irpino, Italy
| | - Yulia Grishchuk
- Department of Neurology, Massachusetts General Hospital Center for Genomic Medicine, Harvard Medical School, Boston, Massachusetts
| | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| |
Collapse
|
2
|
Uwada J, Nakazawa H, Kiyoi T, Yazawa T, Muramatsu I, Masuoka T. PIKFYVE inhibition induces endosome- and lysosome-derived vacuole enlargement via ammonium accumulation. J Cell Sci 2025; 138:jcs262236. [PMID: 39588583 DOI: 10.1242/jcs.262236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024] Open
Abstract
FYVE-type zinc finger-containing phosphoinositide kinase (PIKFYVE), which is essential for phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] production, is an important regulator of lysosomal homeostasis. PIKFYVE dysfunction leads to cytoplasmic vacuolization; however, the underlying mechanism remains unknown. In this study, we explored the cause of vacuole enlargement upon PIKFYVE inhibition in DU145 prostate cancer cells. Enlargement of vacuoles upon PIKFYVE inhibition required glutamine and its metabolism by glutaminases. Addition of ammonia, a metabolite of glutamine, was sufficient to enlarge vacuoles via PIKFYVE inhibition. Moreover, PIKFYVE inhibition led to intracellular ammonium accumulation. Endosome-lysosome permeabilization resulted in ammonium leakage from the cells, indicating ammonium accumulation in the endosomes and lysosomes. Ammonium accumulation and vacuole expansion were suppressed by the lysosomal lumen neutralization. It is therefore assumed that PIKFYVE inhibition interferes with the efflux of NH4+, which formed through protonation of NH3 in the lysosomal lumen, leading to osmotic swelling of vacuoles. Notably, glutamine or ammonium is required for PIKFYVE inhibition-induced suppression of lysosomal function and autophagic flux. In conclusion, this study shows that PIKFYVE inhibition disrupts lysosomal homeostasis via ammonium accumulation.
Collapse
Affiliation(s)
- Junsuke Uwada
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Hitomi Nakazawa
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Takeshi Kiyoi
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Ikunobu Muramatsu
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Takayoshi Masuoka
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
| |
Collapse
|
3
|
Hu M, Feng X, Liu Q, Liu S, Huang F, Xu H. The ion channels of endomembranes. Physiol Rev 2024; 104:1335-1385. [PMID: 38451235 PMCID: PMC11381013 DOI: 10.1152/physrev.00025.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
The endomembrane system consists of organellar membranes in the biosynthetic pathway [endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles] as well as those in the degradative pathway (early endosomes, macropinosomes, phagosomes, autophagosomes, late endosomes, and lysosomes). These endomembrane organelles/vesicles work together to synthesize, modify, package, transport, and degrade proteins, carbohydrates, and lipids, regulating the balance between cellular anabolism and catabolism. Large ion concentration gradients exist across endomembranes: Ca2+ gradients for most endomembrane organelles and H+ gradients for the acidic compartments. Ion (Na+, K+, H+, Ca2+, and Cl-) channels on the organellar membranes control ion flux in response to cellular cues, allowing rapid informational exchange between the cytosol and organelle lumen. Recent advances in organelle proteomics, organellar electrophysiology, and luminal and juxtaorganellar ion imaging have led to molecular identification and functional characterization of about two dozen endomembrane ion channels. For example, whereas IP3R1-3 channels mediate Ca2+ release from the ER in response to neurotransmitter and hormone stimulation, TRPML1-3 and TMEM175 channels mediate lysosomal Ca2+ and H+ release, respectively, in response to nutritional and trafficking cues. This review aims to summarize the current understanding of these endomembrane channels, with a focus on their subcellular localizations, ion permeation properties, gating mechanisms, cell biological functions, and disease relevance.
Collapse
Affiliation(s)
- Meiqin Hu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Xinghua Feng
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiang Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Siyu Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Fangqian Huang
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Haoxing Xu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
4
|
Sakaguchi H, Sato Y, Matsumoto R, Gomikawa J, Yoshida N, Suzuki T, Matsuda M, Iwanami N. Maturation of the medaka immune system depends on reciprocal interactions between the microbiota and the intestinal tract. Front Immunol 2023; 14:1259519. [PMID: 37767090 PMCID: PMC10520778 DOI: 10.3389/fimmu.2023.1259519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The interactions between the host immune system and intestinal microorganisms have been studied in many animals, including fish. However, a detailed analysis has not been performed in medaka, an established fish model for biological studies. Here, we investigated the effect of immunodeficiency on the microbiota composition and the effect of gut bacteria on intestinal epithelial development and immune responses in medaka. Chronological analysis of the intestinal microbiota of interleukin 2 receptor subunit gamma (il2rg) mutant medaka showed a gradual decrease in the evenness of operational taxonomic units, mainly caused by the increased abundance of the Aeromonadaceae family. Exposure of wild-type medaka to high doses of an intestine-derived opportunistic bacterium of the Aeromonadaceae family induced an inflammatory response, suggesting a harmful effect on adult il2rg mutants. In addition, we established germ-free conditions in larval medaka and observed large absorptive vacuoles in intestinal epithelial cells, indicating a block in epithelial maturation. Transcriptome analysis revealed a decrease in the expression of genes involved in the defense response, including the antimicrobial peptide gene hepcidin, whose expression is induced by lipopolysaccharide stimulation in normal larvae. These results show that reciprocal interactions between the microbiome and the intestinal tract are required for the maturation of the medaka immune system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Norimasa Iwanami
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| |
Collapse
|
5
|
Pabst O, Hornef MW, Schaap FG, Cerovic V, Clavel T, Bruns T. Gut-liver axis: barriers and functional circuits. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00771-6. [PMID: 37085614 DOI: 10.1038/s41575-023-00771-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 04/23/2023]
Abstract
The gut and the liver are characterized by mutual interactions between both organs, the microbiome, diet and other environmental factors. The sum of these interactions is conceptualized as the gut-liver axis. In this Review we discuss the gut-liver axis, concentrating on the barriers formed by the enterohepatic tissues to restrict gut-derived microorganisms, microbial stimuli and dietary constituents. In addition, we discuss the establishment of barriers in the gut and liver during development and their cooperative function in the adult host. We detail the interplay between microbial and dietary metabolites, the intestinal epithelium, vascular endothelium, the immune system and the various host soluble factors, and how this interplay establishes a homeostatic balance in the healthy gut and liver. Finally, we highlight how this balance is disrupted in diseases of the gut and liver, outline the existing therapeutics and describe the cutting-edge discoveries that could lead to the development of novel treatment approaches.
Collapse
Affiliation(s)
- Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany.
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH Aachen University, Aachen, Germany
| | - Frank G Schaap
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University, Aachen, Germany
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH Aachen University, Aachen, Germany
| | - Tony Bruns
- Department of Internal Medicine III, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Klee KMC, Hess MW, Lohmüller M, Herzog S, Pfaller K, Müller T, Vogel GF, Huber LA. A CRISPR screen in intestinal epithelial cells identifies novel factors for polarity and apical transport. eLife 2023; 12:e80135. [PMID: 36661306 PMCID: PMC9889089 DOI: 10.7554/elife.80135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
Epithelial polarization and polarized cargo transport are highly coordinated and interdependent processes. In our search for novel regulators of epithelial polarization and protein secretion, we used a genome-wide CRISPR/Cas9 screen and combined it with an assay based on fluorescence-activated cell sorting (FACS) to measure the secretion of the apical brush-border hydrolase dipeptidyl peptidase 4 (DPP4). In this way, we performed the first CRISPR screen to date in human polarized epithelial cells. Using high-resolution microscopy, we detected polarization defects and mislocalization of DPP4 to late endosomes/lysosomes after knockout of TM9SF4, anoctamin 8, and ARHGAP33, confirming the identification of novel factors for epithelial polarization and apical cargo secretion. Thus, we provide a powerful tool suitable for studying polarization and cargo secretion in epithelial cells. In addition, we provide a dataset that serves as a resource for the study of novel mechanisms for epithelial polarization and polarized transport and facilitates the investigation of novel congenital diseases associated with these processes.
Collapse
Affiliation(s)
- Katharina MC Klee
- Institute of Cell Biology, Medical University of InnsbruckInnsbruckAustria
- Institute of Histology and Embryology, Medical University of InnsbruckInnsbruckAustria
| | - Michael W Hess
- Institute of Histology and Embryology, Medical University of InnsbruckInnsbruckAustria
| | - Michael Lohmüller
- Institute of Developmental Immunology, Medical University of InnsbruckInnsbruckAustria
| | - Sebastian Herzog
- Institute of Developmental Immunology, Medical University of InnsbruckInnsbruckAustria
| | - Kristian Pfaller
- Institute of Histology and Embryology, Medical University of InnsbruckInnsbruckAustria
| | - Thomas Müller
- Department of Paediatrics I, Medical University of InnsbruckInnsbruckAustria
| | - Georg F Vogel
- Institute of Cell Biology, Medical University of InnsbruckInnsbruckAustria
- Department of Paediatrics I, Medical University of InnsbruckInnsbruckAustria
| | - Lukas A Huber
- Institute of Cell Biology, Medical University of InnsbruckInnsbruckAustria
| |
Collapse
|
7
|
Spix B, Jeridi A, Ansari M, Yildirim AÖ, Schiller HB, Grimm C. Endolysosomal Cation Channels and Lung Disease. Cells 2022; 11:304. [PMID: 35053420 PMCID: PMC8773812 DOI: 10.3390/cells11020304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 12/28/2022] Open
Abstract
Endolysosomal cation channels are emerging as key players of endolysosomal function such as endolysosomal trafficking, fusion/fission, lysosomal pH regulation, autophagy, lysosomal exocytosis, and endocytosis. Diseases comprise lysosomal storage disorders (LSDs) and neurodegenerative diseases, metabolic diseases, pigmentation defects, cancer, immune disorders, autophagy related diseases, infectious diseases and many more. Involvement in lung diseases has not been a focus of attention so far but recent developments in the field suggest critical functions in lung physiology and pathophysiology. Thus, loss of TRPML3 was discovered to exacerbate emphysema formation and cigarette smoke induced COPD due to dysregulated matrix metalloproteinase 12 (MMP-12) levels in the extracellular matrix of the lung, a known risk factor for emphysema/COPD. While direct lung function measurements with the exception of TRPML3 are missing for other endolysosomal cation channels or channels expressed in lysosome related organelles (LRO) in the lung, links between those channels and important roles in lung physiology have been established such as the role of P2X4 in surfactant release from alveolar epithelial Type II cells. Other channels with demonstrated functions and disease relevance in the lung such as TRPM2, TRPV2, or TRPA1 may mediate their effects due to plasma membrane expression but evidence accumulates that these channels might also be expressed in endolysosomes, suggesting additional and/or dual roles of these channels in cell and intracellular membranes. We will discuss here the current knowledge on cation channels residing in endolysosomes or LROs with respect to their emerging roles in lung disease.
Collapse
Affiliation(s)
- Barbara Spix
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, 80336 Munich, Germany;
| | - Aicha Jeridi
- Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764 Munich, Germany; (A.J.); (M.A.); (A.Ö.Y.); (H.B.S.)
| | - Meshal Ansari
- Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764 Munich, Germany; (A.J.); (M.A.); (A.Ö.Y.); (H.B.S.)
| | - Ali Önder Yildirim
- Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764 Munich, Germany; (A.J.); (M.A.); (A.Ö.Y.); (H.B.S.)
| | - Herbert B. Schiller
- Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764 Munich, Germany; (A.J.); (M.A.); (A.Ö.Y.); (H.B.S.)
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, 80336 Munich, Germany;
| |
Collapse
|
8
|
Spix B, Butz ES, Chen CC, Rosato AS, Tang R, Jeridi A, Kudrina V, Plesch E, Wartenberg P, Arlt E, Briukhovetska D, Ansari M, Günsel GG, Conlon TM, Wyatt A, Wetzel S, Teupser D, Holdt LM, Ectors F, Boekhoff I, Boehm U, García-Añoveros J, Saftig P, Giera M, Kobold S, Schiller HB, Zierler S, Gudermann T, Wahl-Schott C, Bracher F, Yildirim AÖ, Biel M, Grimm C. Lung emphysema and impaired macrophage elastase clearance in mucolipin 3 deficient mice. Nat Commun 2022; 13:318. [PMID: 35031603 PMCID: PMC8760276 DOI: 10.1038/s41467-021-27860-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
Lung emphysema and chronic bronchitis are the two most common causes of chronic obstructive pulmonary disease. Excess macrophage elastase MMP-12, which is predominantly secreted from alveolar macrophages, is known to mediate the development of lung injury and emphysema. Here, we discovered the endolysosomal cation channel mucolipin 3 (TRPML3) as a regulator of MMP-12 reuptake from broncho-alveolar fluid, driving in two independently generated Trpml3-/- mouse models enlarged lung injury, which is further exacerbated after elastase or tobacco smoke treatment. Mechanistically, using a Trpml3IRES-Cre/eR26-τGFP reporter mouse model, transcriptomics, and endolysosomal patch-clamp experiments, we show that in the lung TRPML3 is almost exclusively expressed in alveolar macrophages, where its loss leads to defects in early endosomal trafficking and endocytosis of MMP-12. Our findings suggest that TRPML3 represents a key regulator of MMP-12 clearance by alveolar macrophages and may serve as therapeutic target for emphysema and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Barbara Spix
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Elisabeth S Butz
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
- Institute for Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Cheng-Chang Chen
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Anna Scotto Rosato
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Rachel Tang
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Aicha Jeridi
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Veronika Kudrina
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Eva Plesch
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Philipp Wartenberg
- Saarland University, Center for Molecular Signaling (PZMS), Experimental Pharmacology, Homburg, Germany
| | - Elisabeth Arlt
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Daria Briukhovetska
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital Munich, Munich, Germany
| | - Meshal Ansari
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Gizem Günes Günsel
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Thomas M Conlon
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Amanda Wyatt
- Saarland University, Center for Molecular Signaling (PZMS), Experimental Pharmacology, Homburg, Germany
| | - Sandra Wetzel
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital Munich, Munich, Germany
| | - Lesca M Holdt
- Institute of Laboratory Medicine, University Hospital Munich, Munich, Germany
| | - Fabien Ectors
- FARAH Mammalian Transgenics Platform, Liège University, Liège, Belgium
| | - Ingrid Boekhoff
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Ulrich Boehm
- Saarland University, Center for Molecular Signaling (PZMS), Experimental Pharmacology, Homburg, Germany
| | - Jaime García-Añoveros
- Departments of Anesthesiology, Physiology and Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital Munich, Munich, Germany
- German Center for Translational Cancer Research (DKTK), partner site Munich, Munich, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
- Institute of Pharmacology, Johannes-Keppler-University, Linz, Australia
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
- German Center of Lung Research (DZL), Munich, Germany
| | | | - Franz Bracher
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.
| | - Martin Biel
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany.
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
9
|
Song X, Li J, Tian M, Zhu H, Hu X, Zhang Y, Cao Y, Ye H, McCormick PJ, Zeng B, Fu Y, Duan J, Zhang J. Cryo-EM structure of mouse TRPML2 in lipid nanodiscs. J Biol Chem 2021; 298:101487. [PMID: 34915027 PMCID: PMC8808176 DOI: 10.1016/j.jbc.2021.101487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/27/2022] Open
Abstract
In mammalians, transient receptor potential mucolipin ion channels (TRPMLs) exhibit variable permeability to cations such as Ca2+, Fe2+, Zn2+, and Na+, and can be activated by the phosphoinositide PI(3,5)P2 in the endolysosomal system. Loss or dysfunction of TRPMLs has been implicated in lysosomal storage disorders, infectious diseases, and metabolic diseases. TRPML2 has recently been identified as a mechanosensitive and hypotonicity-sensitive channel in endolysosomal organelles, which distinguishes it from TRPML1 and TRPML3. However, the molecular and gating mechanism of TRPML2 remains elusive. Here, we present the cryo-EM structure of the full-length mouse TRPML2 in lipid nanodiscs at 3.14 Å resolution. The TRPML2 homo-tetramer structure at pH 7.4 in the apo state reveals an inactive conformation and some unique features of the extracytosolic/luminal domain and voltage sensor-like domain that have implications for the ion-conducting pathway. This structure enables new comparisons between the different subgroups of TRPML channels with available structures and provides structural insights into the conservation and diversity of TRPML channels. These comparisons have broad implications for understanding a variety of molecular mechanisms of TRPMLs in different pH conditions, including with and without bound agonists and antagonists.
Collapse
Affiliation(s)
- Xiaojing Song
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jian Li
- College of Pharmaceutical Sciences, Ganan Medical University, Ganzhou, 341000, China
| | - Miao Tian
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Huaiyi Zhu
- Human Aging Research Institute, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Xiaohui Hu
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yuting Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yanru Cao
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Heyang Ye
- College of Pharmaceutical Sciences, Ganan Medical University, Ganzhou, 341000, China
| | - Peter J McCormick
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Jingjing Duan
- Human Aging Research Institute, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China.
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China.
| |
Collapse
|
10
|
Xie B, Song X. The impaired unfolded protein-premelanosome protein and transient receptor potential channels-autophagy axes in apoptotic melanocytes in vitiligo. Pigment Cell Melanoma Res 2021; 35:6-17. [PMID: 34333860 DOI: 10.1111/pcmr.13006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022]
Abstract
Vitiligo is an autoimmune skin disease, characterized by depigmentation and epidermal melanocytes loss. The specific mechanisms underlying vitiligo have not been fully understood. As a result, treating vitiligo is a dermatological challenge. Recently, much attention has been paid to the dysfunction and interaction of organelles under environmental stress. The impaired organelles could generate misfolded proteins, particularly accumulated toxic premelanosome protein (PMEL) amyloid oligomers, activating the autoimmune system and cause melanocyte damage. Unfolded protein response (UPR) dysfunction accelerates toxic PMEL accumulation. Herein, we presented a narrative review on UPR's role in vitiligo, the misfolded PMEL-induced attack of the autoimmune system under autophagy dysfunction caused by abnormal activation of transient receptor potential (TRP) channels and the background of UPR system defects in melanocytes. All of these mechanisms were integrated to form UPR/PMEL-TRP channels/autophagy axis, providing a new understanding of vitiligo pathogenesis.
Collapse
Affiliation(s)
- Bo Xie
- Departement of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzu Song
- Departement of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Endolysosomal TRPMLs in Cancer. Biomolecules 2021; 11:biom11010065. [PMID: 33419007 PMCID: PMC7825278 DOI: 10.3390/biom11010065] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Lysosomes, the degradative endpoints and sophisticated cellular signaling hubs, are emerging as intracellular Ca2+ stores that govern multiple cellular processes. Dys-homeostasis of lysosomal Ca2+ is intimately associated with a variety of human diseases including cancer. Recent studies have suggested that the Ca2+-permeable channels Transient Receptor Potential (TRP) Mucolipins (TRPMLs, TRPML1-3) integrate multiple processes of cell growth, division and metabolism. Dysregulation of TRPMLs activity has been implicated in cancer development. In this review, we provide a summary of the latest development of TRPMLs in cancer. The expression of TRPMLs in cancer, TRPMLs in cancer cell nutrient sensing, TRPMLs-mediated lysosomal exocytosis in cancer development, TRPMLs in TFEB-mediated gene transcription of cancer cells, TRPMLs in bacteria-related cancer development and TRPMLs-regulated antitumor immunity are discussed. We hope to guide readers toward a more in-depth discussion of the importance of lysosomal TRPMLs in cancer progression and other human diseases.
Collapse
|
12
|
Abstract
PURPOSE Intestinal absorption in premature infants occurs via direct epithelial cellular endocytosis and degradation by intracellular lysosomes. Autophagy is a mechanism by which cytoplasmic organelles contribute to lysosomal degradation. However, excessive autophagy can lead to cell death. The purpose of this study was to investigate whether autophagy and endocytosis are present in the small intestinal mucosa during experimental necrotizing enterocolitis (NEC). METHODS NEC was induced by gavage feeding of hyperosmolar formula, lipopolysaccharide and hypoxia between P5 and P9 (ethical approval 44032). Breastfed mice were used as control. Distal ileum was harvested on P5, P7 and P9 and analyzed for intestinal epithelial cellular morphology as well as autophagy/lysosomal activity, and cell death. Groups were compared using Student's t test. RESULTS During NEC, giant lysosomes were present in the intestinal villi, with some exceeding their degradation ability leading to their rupture. The NEC group had significantly increased inflammation and autophagy activity, decreased lysosome activity, and increased apoptosis compared to control. CONCLUSIONS NEC induction causes excessive autophagy and endocytosis leading to lysosomal overloading, lysosomal membrane permeabilization and rupture which results in cell death. These novel findings may help to clarify the pathogenesis of NEC. Reduction of lysosome overload and assisting in their degradation capability may reduce the burden of NEC.
Collapse
|
13
|
Singh P, Sanchez-Fernandez LL, Ramiro-Cortijo D, Ochoa-Allemant P, Perides G, Liu Y, Medina-Morales E, Yakah W, Freedman SD, Martin CR. Maltodextrin-induced intestinal injury in a neonatal mouse model. Dis Model Mech 2020; 13:dmm044776. [PMID: 32753526 PMCID: PMC7473650 DOI: 10.1242/dmm.044776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Prematurity and enteral feedings are major risk factors for intestinal injury leading to necrotizing enterocolitis (NEC). An immature digestive system can lead to maldigestion of macronutrients and increased vulnerability to intestinal injury. The aim of this study was to test in neonatal mice the effect of maltodextrin, a complex carbohydrate, on the risk of intestinal injury. The goal was to develop a robust and highly reproducible murine model of intestinal injury that allows insight into the pathogenesis and therapeutic interventions of nutrient-driven intestinal injury. Five- to 6-day-old C57BL/6 mice were assigned to the following groups: dam fed (D); D+hypoxia+Klebsiella pneumoniae; maltodextrin-dominant human infant formula (M) only; M+hypoxia; and M+hypoxia+K. pneumoniae. The mice in all M groups were gavage fed five times a day for 4 days. Mice were exposed to hypoxia twice a day for 10 min prior to the first and last feedings, and K. pneumoniae was added to feedings as per group assignment. Mice in all M groups demonstrated reduced body weight, increased small intestinal dilatation and increased intestinal injury scores. Maltodextrin-dominant infant formula with hypoxia led to intestinal injury in neonatal mice accompanied by loss of villi, increased MUC2 production, altered expression of tight junction proteins, enhanced intestinal permeability, increased cell death and higher levels of intestinal inflammatory mediators. This robust and highly reproducible model allows for further interrogation of the effects of nutrients on pathogenic factors leading to intestinal injury and NEC in preterm infants.This article has an associated First Person interview with the first author of the paper.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cytokines/metabolism
- Disease Models, Animal
- Enterocolitis, Necrotizing/chemically induced
- Enterocolitis, Necrotizing/metabolism
- Enterocolitis, Necrotizing/microbiology
- Enterocolitis, Necrotizing/pathology
- Goblet Cells/metabolism
- Goblet Cells/microbiology
- Goblet Cells/pathology
- Hypoxia/complications
- Inflammation Mediators/metabolism
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/microbiology
- Intestinal Mucosa/pathology
- Intestine, Small/metabolism
- Intestine, Small/microbiology
- Intestine, Small/pathology
- Klebsiella pneumoniae/pathogenicity
- Mice, Inbred C57BL
- Microvilli/pathology
- Mucin-2/metabolism
- Permeability
- Polysaccharides
- Tight Junction Proteins/metabolism
Collapse
Affiliation(s)
- Pratibha Singh
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Lady Leidy Sanchez-Fernandez
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - David Ramiro-Cortijo
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Pedro Ochoa-Allemant
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - George Perides
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yan Liu
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Esli Medina-Morales
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - William Yakah
- Division of Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Steven D Freedman
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Division of Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Camilia R Martin
- Division of Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Trivedi PC, Bartlett JJ, Pulinilkunnil T. Lysosomal Biology and Function: Modern View of Cellular Debris Bin. Cells 2020; 9:cells9051131. [PMID: 32375321 PMCID: PMC7290337 DOI: 10.3390/cells9051131] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Lysosomes are the main proteolytic compartments of mammalian cells comprising of a battery of hydrolases. Lysosomes dispose and recycle extracellular or intracellular macromolecules by fusing with endosomes or autophagosomes through specific waste clearance processes such as chaperone-mediated autophagy or microautophagy. The proteolytic end product is transported out of lysosomes via transporters or vesicular membrane trafficking. Recent studies have demonstrated lysosomes as a signaling node which sense, adapt and respond to changes in substrate metabolism to maintain cellular function. Lysosomal dysfunction not only influence pathways mediating membrane trafficking that culminate in the lysosome but also govern metabolic and signaling processes regulating protein sorting and targeting. In this review, we describe the current knowledge of lysosome in influencing sorting and nutrient signaling. We further present a mechanistic overview of intra-lysosomal processes, along with extra-lysosomal processes, governing lysosomal fusion and fission, exocytosis, positioning and membrane contact site formation. This review compiles existing knowledge in the field of lysosomal biology by describing various lysosomal events necessary to maintain cellular homeostasis facilitating development of therapies maintaining lysosomal function.
Collapse
Affiliation(s)
- Purvi C. Trivedi
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Jordan J. Bartlett
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
- Correspondence: ; Tel.: +1-(506)-636-6973
| |
Collapse
|
15
|
Identification, Characterization and Expression Analysis of TRP Channel Genes in the Vegetable Pest, Pieris rapae. INSECTS 2020; 11:insects11030192. [PMID: 32197450 PMCID: PMC7143563 DOI: 10.3390/insects11030192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/03/2022]
Abstract
Transient receptor potential (TRP) channels are critical for insects to detect environmental stimuli and regulate homeostasis. Moreover, this superfamily has become potential molecular targets for insecticides or repellents. Pieris rapae is one of the most common and widely spread pests of Brassicaceae plants. Therefore, it is necessary to study TRP channels (TRPs) in P. rapae. In this study, we identified 14 TRPs in P. rapae, including two Water witch (Wtrw) genes. By contrast, only one Wtrw gene exists in Drosophila and functions in hygrosensation. We also found splice isoforms of Pyrexia (Pyx), TRPgamma (TRPγ) and TRP-Melastatin (TRPM). These three genes are related to temperature and gravity sensation, fine motor control, homeostasis regulation of Mg2+ and Zn2+ in Drosophila, respectively. Evolutionary analysis showed that the TRPs of P. rapae were well clustered into their own subfamilies. Real-time quantitative PCR (qPCR) showed that PrTRPs were widely distributed in the external sensory organs, including antennae, mouthparts, legs, wings and in the internal physiological organs, including brains, fat bodies, guts, Malpighian tubules, ovaries, as well as testis. Our study established a solid foundation for functional studies of TRP channels in P. rapae, and would be benefit to developing new approaches to control P. rapae targeting these important ion channels.
Collapse
|
16
|
Pereira B, Amaral AL, Dias A, Mendes N, Muncan V, Silva AR, Thibert C, Radu AG, David L, Máximo V, van den Brink GR, Billaud M, Almeida R. MEX3A regulates Lgr5 + stem cell maintenance in the developing intestinal epithelium. EMBO Rep 2020; 21:e48938. [PMID: 32052574 PMCID: PMC7132344 DOI: 10.15252/embr.201948938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Intestinal stem cells (ISCs) fuel the lifelong self‐renewal of the intestinal tract and are paramount for epithelial repair. In this context, the Wnt pathway component LGR5 is the most consensual ISC marker to date. Still, the effort to better understand ISC identity and regulation remains a challenge. We have generated a Mex3a knockout mouse model and show that this RNA‐binding protein is crucial for the maintenance of the Lgr5+ISC pool, as its absence disrupts epithelial turnover during postnatal development and stereotypical organoid maturation ex vivo. Transcriptomic profiling of intestinal crypts reveals that Mex3a deletion induces the peroxisome proliferator‐activated receptor (PPAR) pathway, along with a decrease in Wnt signalling and loss of the Lgr5+ stem cell signature. Furthermore, we identify PPARγ activity as a molecular intermediate of MEX3A‐mediated regulation. We also show that high PPARγ signalling impairs Lgr5+ISC function, thus uncovering a new layer of post‐transcriptional regulation that critically contributes to intestinal homeostasis.
Collapse
Affiliation(s)
- Bruno Pereira
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Ana L Amaral
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Alexandre Dias
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Nuno Mendes
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Tytgat Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Ana R Silva
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Chantal Thibert
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Anca G Radu
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Leonor David
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,FMUP-Faculty of Medicine, University of Porto, Porto, Portugal
| | - Valdemar Máximo
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,FMUP-Faculty of Medicine, University of Porto, Porto, Portugal
| | - Gijs R van den Brink
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Tytgat Institute, University of Amsterdam, Amsterdam, The Netherlands.,Medicines Research Center, GSK, Stevenage, UK
| | - Marc Billaud
- Clinical and Experimental Model of Lymphomagenesis, INSERM U1052, CNRS UMR5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Raquel Almeida
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,FMUP-Faculty of Medicine, University of Porto, Porto, Portugal.,Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Leng C, Overeem AW, Cartón-Garcia F, Li Q, Klappe K, Kuipers J, Cui Y, Zuhorn IS, Arango D, van IJzendoorn SCD. Loss of MYO5B expression deregulates late endosome size which hinders mitotic spindle orientation. PLoS Biol 2019; 17:e3000531. [PMID: 31682603 PMCID: PMC6855566 DOI: 10.1371/journal.pbio.3000531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/14/2019] [Accepted: 10/17/2019] [Indexed: 12/23/2022] Open
Abstract
Recycling endosomes regulate plasma membrane recycling. Recently, recycling endosome–associated proteins have been implicated in the positioning and orientation of the mitotic spindle and cytokinesis. Loss of MYO5B, encoding the recycling endosome–associated myosin Vb, is associated with tumor development and tissue architecture defects in the gastrointestinal tract. Whether loss of MYO5B expression affects mitosis is not known. Here, we demonstrate that loss of MYO5B expression delayed cytokinesis, perturbed mitotic spindle orientation, led to the misorientation of the plane of cell division during the course of mitosis, and resulted in the delamination of epithelial cells. Remarkably, the effects on spindle orientation, but not cytokinesis, were a direct consequence of physical hindrance by giant late endosomes, which were formed in a chloride channel–sensitive manner concomitant with a redistribution of chloride channels from the cell periphery to late endosomes upon loss of MYO5B. Rab7 availability was identified as a limiting factor for the development of giant late endosomes. In accordance, increasing rab7 availability corrected mitotic spindle misorientation and cell delamination in cells lacking MYO5B expression. In conclusion, we identified a novel role for MYO5B in the regulation of late endosome size control and identify the inability to control late endosome size as an unexpected novel mechanism underlying defects in cell division orientation and epithelial architecture. Loss of the recycling endosome-associated motor protein myosin Vb causes the formation of giant late endo-lysosomes; these in turn hinder the orientation of the mitotic spindle and chromosome segregation. Deregulated endosome size thus hampers faithful cell division.
Collapse
Affiliation(s)
- Changsen Leng
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arend W. Overeem
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Fernando Cartón-Garcia
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Qinghong Li
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Karin Klappe
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jeroen Kuipers
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Yingying Cui
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Inge S. Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Sven C. D. van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- * E-mail:
| |
Collapse
|
18
|
Capurro MI, Greenfield LK, Prashar A, Xia S, Abdullah M, Wong H, Zhong XZ, Bertaux-Skeirik N, Chakrabarti J, Siddiqui I, O'Brien C, Dong X, Robinson L, Peek RM, Philpott DJ, Zavros Y, Helmrath M, Jones NL. VacA generates a protective intracellular reservoir for Helicobacter pylori that is eliminated by activation of the lysosomal calcium channel TRPML1. Nat Microbiol 2019; 4:1411-1423. [PMID: 31110360 DOI: 10.1038/s41564-019-0441-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 03/28/2019] [Indexed: 01/15/2023]
Abstract
Helicobacter pylori infection is a proven carcinogen for gastric cancer. Its virulence factor vacuolating cytotoxin A (VacA) promotes more severe disease and gastric colonization. VacA, by an unknown mechanism, usurps lysosomal and autophagy pathways to generate a protected reservoir for H. pylori that confers bacterial survival in vitro. Here, we show the existence of a VacA-generated intracellular niche in vivo that protects the bacteria from antibiotic treatment and leads to infection recrudescence after therapy. Furthermore, we report that VacA targets the lysosomal calcium channel TRPML1 to disrupt endolysosomal trafficking and mediate these effects. Remarkably, H. pylori that lack toxigenic VacA colonize enlarged dysfunctional lysosomes in the gastric epithelium of trpml1-null mice, where they are protected from eradication therapy. Furthermore, a small molecule agonist directed against TRPML1 reversed the toxic effects of VacA on endolysosomal trafficking, culminating in the clearance of intracellular bacteria. These results suggest that TRPML1 may represent a therapeutic target for chronic H. pylori infection.
Collapse
Affiliation(s)
- Mariana I Capurro
- Department of Paediatrics and Physiology, University of Toronto; Division of Gastroenterology, Hepatology and Nutrition, and Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Laura K Greenfield
- Department of Paediatrics and Physiology, University of Toronto; Division of Gastroenterology, Hepatology and Nutrition, and Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Akriti Prashar
- Department of Paediatrics and Physiology, University of Toronto; Division of Gastroenterology, Hepatology and Nutrition, and Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sunny Xia
- Department of Paediatrics and Physiology, University of Toronto; Division of Gastroenterology, Hepatology and Nutrition, and Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Majd Abdullah
- Department of Paediatrics and Physiology, University of Toronto; Division of Gastroenterology, Hepatology and Nutrition, and Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Harikesh Wong
- Department of Paediatrics, University of Toronto; Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xi Zoe Zhong
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Nina Bertaux-Skeirik
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Jayati Chakrabarti
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Iram Siddiqui
- Department of Pathology, University of Toronto; The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Catherine O'Brien
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Xianping Dong
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Lisa Robinson
- Department of Paediatrics, University of Toronto; Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Richard M Peek
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Yana Zavros
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Michael Helmrath
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nicola L Jones
- Department of Paediatrics and Physiology, University of Toronto; Division of Gastroenterology, Hepatology and Nutrition, and Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Zhang X, Hu M, Yang Y, Xu H. Organellar TRP channels. Nat Struct Mol Biol 2018; 25:1009-1018. [PMID: 30374082 DOI: 10.1038/s41594-018-0148-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/28/2018] [Indexed: 02/08/2023]
Abstract
Mammalian transient receptor potential (TRP) channels mediate Ca2+ flux and voltage changes across membranes in response to environmental and cellular signals. At the plasma membrane, sensory TRPs act as neuronal detectors of physical and chemical environmental signals, and receptor-operated (metabotropic) TRPs decode extracellular neuroendocrine cues to control body homeostasis. In intracellular membranes, such as those in lysosomes, organellar TRPs respond to compartment-derived signals to control membrane trafficking, signal transduction, and organelle function. Complementing mouse and human genetics and high-resolution structural approaches, physiological studies employing natural agonists and synthetic inhibitors have become critical in resolving the in vivo functions of metabotropic, sensory, and organellar TRPs.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Meiqin Hu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yexin Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Brunst KJ, Tignor N, Just A, Liu Z, Lin X, Hacker MR, Bosquet Enlow M, Wright RO, Wang P, Baccarelli AA, Wright RJ. Cumulative lifetime maternal stress and epigenome-wide placental DNA methylation in the PRISM cohort. Epigenetics 2018; 13:665-681. [PMID: 30001177 DOI: 10.1080/15592294.2018.1497387] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Evolving evidence links maternal stress exposure to changes in placental DNA methylation of specific genes regulating placental function that may have implications for the programming of a host of chronic disorders. Few studies have implemented an epigenome-wide approach. Using the Infinium HumanMethylation450 BeadChip (450K), we investigated epigenome-wide placental DNA methylation in relation to maternal experiences of traumatic and non-traumatic stressors over her lifetime assessed using the Life Stressor Checklist-Revised (LSC-R) survey (n = 207). We found differential DNA methylation at epigenome-wide statistical significance (FDR = 0.05) for 112 CpGs. Additionally, we observed three clusters that exhibited differential methylation in response to high maternal lifetime stress. Enrichment analyses, conducted at an FDR = 0.20, revealed lysine degradation to be the most significant pathway associated with maternal lifetimes stress exposure. Targeted enrichment analyses of the three largest clusters of probes, identified using the gap statistic, were enriched for genes associated with endocytosis (i.e., SMAP1, ANKFY1), tight junctions (i.e., EPB41L4B), and metabolic pathways (i.e., INPP5E, EEF1B2). These pathways, also identified in the top 10 KEGG pathways associated with maternal lifetime stress exposure, play important roles in multiple physiological functions necessary for proper fetal development. Further, two genes were identified to exhibit multiple probes associated with maternal lifetime stress (i.e., ANKFY1, TM6SF1). The methylation status of the probes belonging to each cluster and/or genes exhibiting multiple hits, may play a role in the pathogenesis of adverse health outcomes in children born to mothers with increased lifetime stress exposure.
Collapse
Affiliation(s)
- Kelly J Brunst
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Nicole Tignor
- b Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences , Icahn School of Medicine at Mount Sinai One Gustave L. Levy Place , New York , NY , USA
| | - Allan Just
- c Department of Environmental Medicine and Public Health , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Zhonghua Liu
- d Department of Biostatistics , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Xihong Lin
- d Department of Biostatistics , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Michele R Hacker
- e Department of Obstetrics and Gynecology , Beth Israel Deaconess Medical Center , Boston , MA , USA.,f Department of Obstetrics , Gynecology and Reproductive Biology, Harvard Medical School , Boston , MA , USA
| | - Michelle Bosquet Enlow
- g Department of Psychiatry, Program for Behavioral Science, Boston Children's Hospital and Department of Psychiatry , Harvard Medical School , Boston , MA , USA
| | - Robert O Wright
- c Department of Environmental Medicine and Public Health , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Pei Wang
- b Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences , Icahn School of Medicine at Mount Sinai One Gustave L. Levy Place , New York , NY , USA
| | - Andrea A Baccarelli
- h Department of Environmental Health Sciences , Mailman School of Public Health, Columbia University , New York , NY , USA
| | - Rosalind J Wright
- c Department of Environmental Medicine and Public Health , Icahn School of Medicine at Mount Sinai , New York , NY , USA.,i Department of Pediatrics , Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai , New York , NY , USA
| |
Collapse
|
21
|
Wiwatpanit T, Remis NN, Ahmad A, Zhou Y, Clancy JC, Cheatham MA, García-Añoveros J. Codeficiency of Lysosomal Mucolipins 3 and 1 in Cochlear Hair Cells Diminishes Outer Hair Cell Longevity and Accelerates Age-Related Hearing Loss. J Neurosci 2018; 38:3177-3189. [PMID: 29453205 PMCID: PMC5884457 DOI: 10.1523/jneurosci.3368-17.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/16/2018] [Accepted: 02/02/2018] [Indexed: 01/11/2023] Open
Abstract
Acquired hearing loss is the predominant neurodegenerative condition associated with aging in humans. Although mutations on several genes are known to cause congenital deafness in newborns, few genes have been implicated in age-related hearing loss (ARHL), perhaps because its cause is likely polygenic. Here, we generated mice lacking lysosomal calcium channel mucolipins 3 and 1 and discovered that both male and female mice suffered a polygenic form of hearing loss. Whereas mucolipin 1 is ubiquitously expressed in all cells, mucolipin 3 is expressed in a small subset of cochlear cells, hair cells (HCs) and marginal cells of the stria vascularis, and very few other cell types. Mice lacking both mucolipins 3 and 1, but not either one alone, experienced hearing loss as early as at 1 month of age. The severity of hearing impairment progressed from high to low frequencies and increased with age. Early onset of ARHL in these mice was accompanied by outer HC (OHC) loss. Adult mice conditionally lacking mucolipins in HCs exhibited comparable auditory phenotypes, thereby revealing that the reason for OHC loss is mucolipin codeficiency in the HCs and not in the stria vascularis. Furthermore, we observed that OHCs lacking mucolipins contained abnormally enlarged lysosomes aggregated at the apical region of the cell, whereas other organelles appeared normal. We also demonstrated that these aberrant lysosomes in OHCs lost their membrane integrity through lysosomal membrane permeabilization, a known cause of cellular toxicity that explains why and how OHCs die, leading to premature ARHL.SIGNIFICANCE STATEMENT Presbycusis, or age-related hearing loss (ARHL), is a common characteristic of aging in mammals. Although many genes have been identified to cause deafness from birth in both humans and mice, only a few are known to associate with progressive ARHL, the most prevalent form of deafness. We have found that mice lacking two lysosomal channels, mucolipins 3 and 1, suffer accelerated ARHL due to auditory outer hair cell degeneration, the most common cause of hearing loss and neurodegenerative condition in humans. Lysosomes lacking mucolipins undergo organelle membrane permeabilization and promote cytotoxicity with age, revealing a novel mechanism of outer hair cell degeneration and ARHL. These results underscore the importance of lysosomes in hair cell survival and the maintenance of hearing.
Collapse
Affiliation(s)
- Teerawat Wiwatpanit
- Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, Illinois 60611
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | - Natalie N Remis
- Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, Illinois 60611
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | - Aisha Ahmad
- Communication Sciences and Disorders Knowles Hearing Center, Northwestern University, Evanston, Illinois 60208
| | - Yingjie Zhou
- Communication Sciences and Disorders Knowles Hearing Center, Northwestern University, Evanston, Illinois 60208
| | - John C Clancy
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | - Mary Ann Cheatham
- Communication Sciences and Disorders Knowles Hearing Center, Northwestern University, Evanston, Illinois 60208
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Chicago, Illinois 60611, and
| | - Jaime García-Añoveros
- Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, Illinois 60611,
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Chicago, Illinois 60611, and
- Departments of Neurology and Physiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
22
|
Chen CC, Butz ES, Chao YK, Grishchuk Y, Becker L, Heller S, Slaugenhaupt SA, Biel M, Wahl-Schott C, Grimm C. Small Molecules for Early Endosome-Specific Patch Clamping. Cell Chem Biol 2017; 24:907-916.e4. [PMID: 28732201 DOI: 10.1016/j.chembiol.2017.05.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/30/2017] [Accepted: 05/26/2017] [Indexed: 12/31/2022]
Abstract
To resolve the subcellular distribution of endolysosomal ion channels, we have established a novel experimental approach to selectively patch clamp Rab5 positive early endosomes (EE) versus Rab7/LAMP1-positive late endosomes/lysosomes (LE/LY). To functionally characterize ion channels in endolysosomal membranes with the patch-clamp technique, it is important to develop techniques to selectively enlarge the respective organelles. We found here that two small molecules, wortmannin and latrunculin B, enlarge Rab5-positive EE when combined but not Rab7-, LAMP1-, or Rab11 (RE)-positive vesicles. The two compounds act rapidly, specifically, and are readily applicable in contrast to genetic approaches or previously used compounds such as vacuolin, which enlarges EE, RE, and LE/LY. We apply this approach here to measure currents mediated by TRPML channels, in particular TRPML3, which we found to be functionally active in both EE and LE/LY in overexpressing cells as well as in endogenously expressing CD11b+ lung-tissue macrophages.
Collapse
Affiliation(s)
- Cheng-Chang Chen
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Elisabeth S Butz
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Yu-Kai Chao
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Yulia Grishchuk
- Department of Neurology, Center for Human Genetic Research, Massachusetts General Hospital, Harvard University, Boston, MA 02114, USA
| | - Lars Becker
- Departments of Otolaryngology - HNS and Molecular & Cellular Physiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Stefan Heller
- Departments of Otolaryngology - HNS and Molecular & Cellular Physiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Susan A Slaugenhaupt
- Department of Neurology, Center for Human Genetic Research, Massachusetts General Hospital, Harvard University, Boston, MA 02114, USA
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Christian Wahl-Schott
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Christian Grimm
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
23
|
Methods for monitoring Ca 2+ and ion channels in the lysosome. Cell Calcium 2017; 64:20-28. [DOI: 10.1016/j.ceca.2016.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 12/22/2022]
|
24
|
Grimm C, Butz E, Chen CC, Wahl-Schott C, Biel M. From mucolipidosis type IV to Ebola: TRPML and two-pore channels at the crossroads of endo-lysosomal trafficking and disease. Cell Calcium 2017; 67:148-155. [PMID: 28457591 DOI: 10.1016/j.ceca.2017.04.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 01/05/2023]
Abstract
What do lysosomal storage disorders such as mucolipidosis type IV have in common with Ebola, cancer cell migration, or LDL-cholesterol trafficking? LDL-cholesterol, certain bacterial toxins and viruses, growth factors, receptors, integrins, macromolecules destined for degradation or secretion are all sorted and transported via the endolysosomal system (ES). There are several pathways known in the ES, e.g. the degradation, the recycling, or the retrograde trafficking pathway. The ES comprises early and late endosomes, lysosomes and recycling endosomes as well as autophagosomes and lysosome related organelles. Contact sites between the ES and the endoplasmic reticulum or the Golgi apparatus may also be considered part of it. Dysfunction of this complex intracellular machinery can cause or contribute to the development of a number of diseases ranging from neurodegenerative, infectious, or metabolic diseases to retinal and pigmentation disorders as well as cancer and autophagy-related diseases. Endolysosomal ion channels such as mucolipins (TRPMLs) and two-pore channels (TPCs) play an important role in intracellular cation/calcium signaling and homeostasis and appear to critically contribute to the proper function of the endolysosomal trafficking network.
Collapse
Affiliation(s)
- Christian Grimm
- Munich Center for Integrated Protein Science CIPSM, Center for Drug Research, Ludwig-Maximilians-Universität, München, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Germany.
| | - Elisabeth Butz
- Munich Center for Integrated Protein Science CIPSM, Center for Drug Research, Ludwig-Maximilians-Universität, München, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Germany
| | - Cheng-Chang Chen
- Munich Center for Integrated Protein Science CIPSM, Center for Drug Research, Ludwig-Maximilians-Universität, München, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Germany
| | - Christian Wahl-Schott
- Munich Center for Integrated Protein Science CIPSM, Center for Drug Research, Ludwig-Maximilians-Universität, München, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Germany
| | - Martin Biel
- Munich Center for Integrated Protein Science CIPSM, Center for Drug Research, Ludwig-Maximilians-Universität, München, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Germany.
| |
Collapse
|
25
|
Dong Y, Yang C, Wang Z, Qin Z, Cao J, Chen Y. The injury of serotonin on intestinal epithelium cell renewal of weaned diarrhoea mice. Eur J Histochem 2016; 60:2689. [PMID: 28076934 PMCID: PMC5381531 DOI: 10.4081/ejh.2016.2689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/30/2016] [Accepted: 12/06/2016] [Indexed: 02/08/2023] Open
Abstract
Diarrhoea is a common cause of death in children and weaned animals. Recent research has found that serotonin (5-HT) in the gastrointestinal tract plays an important role in regulating growth and the maintenance of mucosa, which protect against diarrhoea. To determine the influence of 5-HT on intestinal epithelium cell renewal under weaned stress diarrhoea, a weaned-stress diarrhoea mouse model was established with senna infusion (15 mL/Kg) via intragastric administration and stress restraint (SR). Mice with an increase in 5-HT were induced by intraperitoneal injection with citalopram hydrobromide (CH, 10 mg/Kg). The results demonstrated that compared with the control animals, diarrhoea appeared in weaned stress mice and the 5-HT content in the small intestine was significantly increased (P<0.05). Further, the caspase-3 cells and cells undergoing apoptosis in the small intestine were significantly increased, but the VH (villus height), V/C (villus height /crypt depth), and PCNA-positive rate significantly decreased. Compared with the control animals, CH increased the intestinal 5-HT content, caspase-3 cells and cells undergoing apoptosis but decreased the VH and V/C. Compared with both control and weaned stress animals, weaned stress animals that were pre-treated with CH showed higher 5-HT concentrations, positive caspase-3 cells and cells undergoing apoptosis but lower VH, V/C and PCNA-positive rate. In vitro, a low concentration of 5-HT inhibit, IEC-6 cell line apoptosis but a higher concentration of 5-HT promoted it. Therefore, weaned stress diarrhoea mice were accompanied by a 5-HT increase in the small intestine and vice versa, and the increase in 5-HT induced by CH caused diarrhoea. In brief, 5-HT and diarrhoea slowed the intestinal epithelium cell renewal and injured the abortion function and mucosal barrier by decreasing VH, V/C and proliferation and increasing epithelium cell apoptosis.
Collapse
Affiliation(s)
- Y Dong
- China Agricultural University.
| | | | | | | | | | | |
Collapse
|
26
|
Regulation of lysosomal ion homeostasis by channels and transporters. SCIENCE CHINA-LIFE SCIENCES 2016; 59:777-91. [PMID: 27430889 PMCID: PMC5147046 DOI: 10.1007/s11427-016-5090-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/02/2016] [Indexed: 02/05/2023]
Abstract
Lysosomes are the major organelles that carry out degradation functions. They integrate and digest materials compartmentalized by endocytosis, phagocytosis or autophagy. In addition to more than 60 hydrolases residing in the lysosomes, there are also ion channels and transporters that mediate the flux or transport of H+, Ca2+, Na+, K+, and Cl− across the lysosomal membranes. Defects in ionic exchange can lead to abnormal lysosome morphology, defective vesicle trafficking, impaired autophagy, and diseases such as neurodegeneration and lysosomal storage disorders. The latter are characterized by incomplete lysosomal digestion and accumulation of toxic materials inside enlarged intracellular vacuoles. In addition to degradation, recent studies have revealed the roles of lysosomes in metabolic pathways through kinases such as mechanistic target of rapamycin (mTOR) and transcriptional regulation through calcium signaling molecules such as transcription factor EB (TFEB) and calcineurin. Owing to the development of new approaches including genetically encoded fluorescence probes and whole endolysosomal patch clamp recording techniques, studies on lysosomal ion channels have made remarkable progress in recent years. In this review, we will focus on the current knowledge of lysosome-resident ion channels and transporters, discuss their roles in maintaining lysosomal function, and evaluate how their dysfunction can result in disease.
Collapse
|
27
|
Wu L, Sun Y, Ma L, Zhu J, Zhang B, Pan Q, Li Y, Liu H, Diao A, Li Y. A C-terminally truncated mouse Best3 splice variant targets and alters the ion balance in lysosome-endosome hybrids and the endoplasmic reticulum. Sci Rep 2016; 6:27332. [PMID: 27265833 PMCID: PMC4893618 DOI: 10.1038/srep27332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/16/2016] [Indexed: 02/07/2023] Open
Abstract
The Bestrophin family has been characterized as Cl(-) channels in mammals and Na(+) channels in bacteria, but their exact physiological roles remian unknown. In this study, a natural C-terminally truncated variant of mouse Bestrophin 3 (Best3V2) expression in myoblasts and muscles is demonstrated. Unlike full-length Best3, Best3V2 targets the two important intracellular Ca stores: the lysosome and the ER. Heterologous overexpression leads to lysosome swelling and renders it less acidic. Best3V2 overexpression also results in compromised Ca(2+) release from the ER. Knocking down endogenous Best3 expression in myoblasts makes these cells more excitable in response to Ca(2+) mobilizing reagents, such as caffeine. We propose that Best3V2 in myoblasts may work as a tuner to control Ca(2+) release from intracellular Ca(2+) stores.
Collapse
Affiliation(s)
- Lichang Wu
- Department of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Sun
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Liqiao Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jun Zhu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Baoxia Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qingjie Pan
- Department of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yuyin Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Huanqi Liu
- Department of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China
| | - Aipo Diao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yinchuan Li
- Department of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
28
|
Sun L, Hua Y, Vergarajauregui S, Diab HI, Puertollano R. Novel Role of TRPML2 in the Regulation of the Innate Immune Response. THE JOURNAL OF IMMUNOLOGY 2015; 195:4922-32. [PMID: 26432893 DOI: 10.4049/jimmunol.1500163] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 09/10/2015] [Indexed: 11/19/2022]
Abstract
TRPMLs (or mucolipins) constitute a family of endosomal cation channels with homology to the transient receptor potential superfamily. In mammals, the TRPML family includes three members: TRPML1-3. Although TRPML1 and TRPML3 have been well characterized, the cellular function of TRPML2 has remained elusive. To address TRPML2 function in a physiologically relevant cell type, we first analyzed TRPML2 expression in different mouse tissues and organs and found that it was predominantly expressed in lymphoid organs and kidney. Quantitative RT-PCR revealed tight regulation of TRPML2 at the transcriptional level. Although TRPML2 expression was negligible in resting macrophages, TRPML2 mRNA and protein levels dramatically increased in response to TLR activation both in vitro and in vivo. Conversely, TRPML1 and TRPML3 levels did not change upon TLR activation. Immunofluorescence analysis demonstrated that endogenous TRPML2 primarily localized to recycling endosomes both in culture and primary cells, in contrast with TRPML1 and TRPML3, which distribute to the late and early endosomal pathway, respectively. To better understand the in vivo function of TRPML2, we generated a TRPML2-knockout mouse. We found that the production of several chemokines, in particular CCL2, was severely reduced in TRPML2-knockout mice. Furthermore, TRPML2-knockout mice displayed impaired recruitment of peripheral macrophages in response to i.p. injections of LPS or live bacteria, suggesting a potential defect in the immune response. Overall, our study reveals interesting differences in the regulation and distribution of the members of the TRPML family and identifies a novel role for TRPML2 in the innate immune response.
Collapse
Affiliation(s)
- Lu Sun
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yinan Hua
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Silvia Vergarajauregui
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Heba I Diab
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
29
|
Cuajungco MP, Silva J, Habibi A, Valadez JA. The mucolipin-2 (TRPML2) ion channel: a tissue-specific protein crucial to normal cell function. Pflugers Arch 2015; 468:177-92. [PMID: 26336837 DOI: 10.1007/s00424-015-1732-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/26/2022]
Abstract
The discovery of the TRPML subfamily of ion channels has created an exciting niche in the fields of membrane trafficking, signal transduction, autophagy, and metal homeostasis. The TRPML protein subfamily consists of three members, TRPML1, TRPML2, and TRPML3, which are encoded by MCOLN1, MCOLN2, and MCOLN3 genes, respectively. They are non-selective cation channels with six predicted transmembrane domains and intracellular amino- and carboxyl-terminus regions. They localize to the plasma membrane, endosomes, and lysosomes of cells. TRPML1 is associated with the human lysosomal storage disease known as mucolipidosis type IV (MLIV), but TRPML2 and TRPML3 have not been linked with a human disease. Although TRPML1 is expressed in many tissues, TRPML3 is expressed in a varied but limited set of tissues, while TRPML2 has a more limited expression pattern where it is mostly detected in lymphoid and myeloid tissues. This review focuses on TRPML2 because it appears to play an important, yet unrecognized role in the immune system. While the evidence has been mostly indirect, we present and discuss relevant data that strengthen the connection of TRPML2 with cellular immunity. We also discuss the functional redundancy between the TRPML proteins, and how such features could be exploited as a potential therapeutic strategy for MLIV disease. We present evidence that TRPML2 expression may complement certain phenotypic alterations in MLIV cells and briefly examine the challenges of functional complementation. In conclusion, the function of TRPML2 still remains obscure, but emerging data show that it may serve a critical role in immune cell development and inflammatory responses.
Collapse
Affiliation(s)
- Math P Cuajungco
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd., Fullerton, CA, 92831, USA. .,Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA, 92831, USA.
| | - Joshua Silva
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| | - Ania Habibi
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| | - Jessica A Valadez
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| |
Collapse
|