1
|
Najmuldeen HH, Sidiq KR, Rahim FK, Abubaker KT, Faraj MF, Qadir SR, Ismael SK, Mahmood NH. Prevalence of Vibrio cholerae in an Acute Watery Diarrhea Outbreak in Sulaymaniyah City, Iraq. Int J Microbiol 2025; 2025:5539834. [PMID: 40365485 PMCID: PMC12069837 DOI: 10.1155/ijm/5539834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/29/2025] [Indexed: 05/15/2025] Open
Abstract
Cholera is a life-threatening diarrheal disease caused by Vibrio cholerae, with recurring outbreaks in Iraq, including the Kurdistan Region. Despite its endemic nature, outbreaks have primarily been reported by the health sector without comprehensive molecular epidemiological investigations. Limited studies have characterized outbreak dynamics, prevalence, and antimicrobial resistance, hindering effective public health interventions. This study aimed to analyze the prevalence, molecular characteristics, and antibiotic resistance of V. cholerae isolates from the 2023 outbreak in Sulaymaniyah, Kurdistan, Iraq. A total of 1200 diarrheic stool samples were collected from Shar Hospital between July and October 2023. Bacterial isolation was performed using microbiological methods and automated VITEK 2 analysis, followed by serological identification (O1 and O139 antisera) and 16S rRNA gene sequencing. Antibiotic susceptibility testing (AST) was conducted to assess resistance patterns. The outbreak prevalence was 0.015%, with the highest infection rate in August (0.009%). The overall infection rate was 28.91% (347/1200), with the most affected age groups being 19-33 years (27.66%) and 34-48 years (26.22%). Infection was more common in females (55.6%) than males (44.4%). Phylogenetic analysis revealed high genetic similarity to the V. cholerae Kuwait1 strain, suggesting potential introduction from southern Iraq, possibly due to an influx of tourists. Furthermore, antibiotic susceptibility testing revealed that all V. cholerae isolates were susceptible to most tested antibiotics; however, complete resistance (100%) was observed against amikacin, amoxicillin, amoxiclav, nalidixic acid, and trimethoprim, with partial resistance (30%) to tetracycline. Cholera remains a major public health concern in Kurdistan, particularly in Sulaymaniyah, due to recurrent outbreaks. Molecular techniques provided crucial insights into outbreak tracking and genetic relatedness, while AST profiling highlighted the urgent need for revised treatment guidelines. Strengthening water sanitation, continuous antimicrobial resistance monitoring, and targeted public health interventions are essential for preventing future outbreaks.
Collapse
Affiliation(s)
- Hastyar Hamarashid Najmuldeen
- College of Health Sciences, Cihan University-Sulaimaniya, Sulaymaniyah, Iraq
- Department of Biology, College of science, University of Sulaimani, Sulaymaniyah, Iraq
| | - Karzan Rafiq Sidiq
- Medical Laboratory Science Department, Charmo University, Sulaymaniyah, Iraq
| | | | | | - Mazin Frya Faraj
- Laboratory Department, Directorate of General Health of Sulaimaniya, Sulaymaniyah, Iraq
| | - Sima Rahman Qadir
- College of Health Sciences, Cihan University-Sulaimaniya, Sulaymaniyah, Iraq
| | - Sina Khalil Ismael
- College of Health Sciences, Cihan University-Sulaimaniya, Sulaymaniyah, Iraq
| | | |
Collapse
|
2
|
Roberts I, Everitt RG, Koskela J, Didelot X. Bayesian Inference of Pathogen Phylogeography using the Structured Coalescent Model. PLoS Comput Biol 2025; 21:e1012995. [PMID: 40258093 PMCID: PMC12040344 DOI: 10.1371/journal.pcbi.1012995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 04/29/2025] [Accepted: 03/25/2025] [Indexed: 04/23/2025] Open
Abstract
Over the past decade, pathogen genome sequencing has become well established as a powerful approach to study infectious disease epidemiology. In particular, when multiple genomes are available from several geographical locations, comparing them is informative about the relative size of the local pathogen populations as well as past migration rates and events between locations. The structured coalescent model has a long history of being used as the underlying process for such phylogeographic analysis. However, the computational cost of using this model does not scale well to the large number of genomes frequently analysed in pathogen genomic epidemiology studies. Several approximations of the structured coalescent model have been proposed, but their effects are difficult to predict. Here we show how the exact structured coalescent model can be used to analyse a precomputed dated phylogeny, in order to perform Bayesian inference on the past migration history, the effective population sizes in each location, and the directed migration rates from any location to another. We describe an efficient reversible jump Markov Chain Monte Carlo scheme which is implemented in a new R package StructCoalescent. We use simulations to demonstrate the scalability and correctness of our method and to compare it with existing software. We also applied our new method to several state-of-the-art datasets on the population structure of real pathogens to showcase the relevance of our method to current data scales and research questions.
Collapse
Affiliation(s)
- Ian Roberts
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Richard G. Everitt
- Department of Statistics, University of Warwick, Coventry, United Kingdom
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom
| | - Jere Koskela
- Department of Statistics, University of Warwick, Coventry, United Kingdom
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle, United Kingdom
| | - Xavier Didelot
- Department of Statistics, University of Warwick, Coventry, United Kingdom
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
3
|
Luo Y, Payne M, Kaur S, Octavia S, Lan R. Genomic evidence of two-staged transmission of the early seventh cholera pandemic. Nat Commun 2024; 15:8504. [PMID: 39353924 PMCID: PMC11445481 DOI: 10.1038/s41467-024-52800-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
The seventh cholera pandemic started in 1961 in Indonesia and spread across the world in three waves in the decades that followed. Here, we utilised genomic evidence to detail the first wave of the seventh pandemic. Genomes of 22 seventh pandemic Vibrio cholerae isolates from 1961 to 1979 were completely sequenced. Together with 152 publicly available genomes from the same period, they fell into seven phylogenetic clusters (CL1-CL7). By multilevel genome typing (MGT), all were assigned to MGT2 ST1 (Wave 1) except three isolates in CL7 which were typed as MGT2 ST2 (Wave 2). The Wave 1 seventh pandemic expanded in two stages, with Stage 1 (CL1-CL5) spread across Asia and Stage 2 (CL6 and CL7) spread to the Middle East and Africa. Three non-synonymous mutations, one each, in three regulatory genes, csrD (global regulator), acfB (chemotaxis), and luxO (quorum sensing) may have critically contributed to its pandemicity. The three MGT2 ST2 isolates in CL7 were the progenitors of Wave 2 and evolved from within Wave 1 with acquisition of a novel IncA/C plasmid. Our findings provide new insight into the evolution and transmission of the early seventh pandemic, which may aid future cholera prevention and control.
Collapse
Affiliation(s)
- Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Campbell AM, Gavilan RG, Abanto Marin M, Yang C, Hauton C, van Aerle R, Martinez-Urtaza J. Evolutionary dynamics of the successful expansion of pandemic Vibrio parahaemolyticus ST3 in Latin America. Nat Commun 2024; 15:7828. [PMID: 39244587 PMCID: PMC11380683 DOI: 10.1038/s41467-024-52159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
The underlying evolutionary mechanisms driving global expansions of pathogen strains are poorly understood. Vibrio parahaemolyticus is one of only two marine pathogens where variants have emerged in distinct climates globally. The success of a Vibrio parahaemolyticus clone (VpST3) in Latin America- the first spread identified outside its endemic region of tropical Asia- provided an invaluable opportunity to investigate mechanisms of VpST3 expansion into a distinct marine climate. A global collection of VpST3 isolates and novel Latin American isolates were used for evolutionary population genomics, pangenome analysis and combined with oceanic climate data. We found a VpST3 population (LatAm-VpST3) introduced in Latin America well before the emergence of this clone in India, previously considered the onset of the VpST3 epidemic. LatAm-VpST3 underwent successful adaptation to local conditions over its evolutionary divergence from Asian VpST3 isolates, to become dominant in Latin America. Selection signatures were found in genes providing resilience to the distinct marine climate. Core genome mutations and accessory gene presences that promoted survival over long dispersals or increased environmental fitness were associated with environmental conditions. These results provide novel insights into the global expansion of this successful V. parahaemolyticus clone into regions with different climate scenarios.
Collapse
Affiliation(s)
- Amy Marie Campbell
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, UK
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, UK
| | - Ronnie G Gavilan
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Barcelona, Spain
| | - Michel Abanto Marin
- Genomics and Bioinformatics Unit, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Chao Yang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Chris Hauton
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, UK
| | - Ronny van Aerle
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, UK
| | - Jaime Martinez-Urtaza
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, UK.
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Barcelona, Spain.
| |
Collapse
|
5
|
Wilinski M, Castro L, Keithley J, Manore C, Campos J, Romero-Severson E, Domman D, Lokhov AY. Congruity of genomic and epidemiological data in modelling of local cholera outbreaks. Proc Biol Sci 2024; 291:20232805. [PMID: 38503333 PMCID: PMC10950457 DOI: 10.1098/rspb.2023.2805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Cholera continues to be a global health threat. Understanding how cholera spreads between locations is fundamental to the rational, evidence-based design of intervention and control efforts. Traditionally, cholera transmission models have used cholera case-count data. More recently, whole-genome sequence data have qualitatively described cholera transmission. Integrating these data streams may provide much more accurate models of cholera spread; however, no systematic analyses have been performed so far to compare traditional case-count models to the phylodynamic models from genomic data for cholera transmission. Here, we use high-fidelity case-count and whole-genome sequencing data from the 1991 to 1998 cholera epidemic in Argentina to directly compare the epidemiological model parameters estimated from these two data sources. We find that phylodynamic methods applied to cholera genomics data provide comparable estimates that are in line with established methods. Our methodology represents a critical step in building a framework for integrating case-count and genomic data sources for cholera epidemiology and other bacterial pathogens.
Collapse
Affiliation(s)
- Mateusz Wilinski
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Lauren Castro
- Analytics, Intelligence and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Jeffrey Keithley
- Analytics, Intelligence and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Computer Science, University of Iowa, Iowa City, IA, USA
| | - Carrie Manore
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Josefina Campos
- UO Centro Nacional de Genómica y Bioinformtica, ANLIS ‘Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | | | - Daryl Domman
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Andrey Y. Lokhov
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
6
|
Taylor-Brown A, Afrad MH, Khan AI, Lassalle F, Islam MT, Tanvir NA, Thomson NR, Qadri F. Genomic epidemiology of Vibrio cholerae during a mass vaccination campaign of displaced communities in Bangladesh. Nat Commun 2023; 14:3773. [PMID: 37355673 PMCID: PMC10290697 DOI: 10.1038/s41467-023-39415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/12/2023] [Indexed: 06/26/2023] Open
Abstract
Ongoing diarrheal disease surveillance throughout Bangladesh over the last decade has revealed seasonal localised cholera outbreaks in Cox's Bazar, where both Bangladeshi Nationals and Forcibly Displaced Myanmar Nationals (FDMNs) reside in densely populated settlements. FDMNs were recently targeted for the largest cholera vaccination campaign in decades. We aimed to infer the epidemic risk of circulating Vibrio cholerae strains by determining if isolates linked to the ongoing global cholera pandemic ("7PET" lineage) were responsible for outbreaks in Cox's Bazar. We found two sublineages of 7PET in this setting during the study period; one with global distribution, and a second lineage restricted to Asia and the Middle East. These subclades were associated with different disease patterns that could be partially explained by genomic differences. Here we show that as the pandemic V. cholerae lineage circulates in this vulnerable population, without a vaccine intervention, the risk of an epidemic was very high.
Collapse
Affiliation(s)
- Alyce Taylor-Brown
- Parasites & Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Mokibul Hassan Afrad
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful Islam Khan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Florent Lassalle
- Parasites & Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Md Taufiqul Islam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Nabid Anjum Tanvir
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Nicholas R Thomson
- Parasites & Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.
| |
Collapse
|
7
|
Wang YY, Xie L, Zhang WZ, Du XL, Li WG, Bia LL, Cui ZG, Wu Y, Lu JX. Application of a core genome sequence typing (cgMLST) pipeline for surveillance of Clostridioides difficile in China. Front Cell Infect Microbiol 2023; 13:1109153. [PMID: 36992688 PMCID: PMC10040748 DOI: 10.3389/fcimb.2023.1109153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
IntroductionClostridioides difficile (C. difficile) is a nosocomial bacterial pathogen that causes antibiotic-associated diarrhea mediated by cellular exotoxins secreted into the intestine during bacterial growth. Multilocus sequence typing (MLST) and PCR ribotyping are the main molecular typing for C. difficile. Whole genome sequencing (WGS) core genome multilocus sequence typing (cgMLST) was developed for genetic evolution and outbreak investigation of C. difficile with higher precision and accuracy.MethodsA total of 699 whole (complete and draft) genome sequences of distinct C. difficile strains were used in this study to identify core gene set (2469 core genes) and the cgMLST scheme for the phylogeny analysis of C. difficile. This cgMLST pipeline was then carried the Chinese Pathogen Identification Net (China PIN) for surveillance of C. difficile in China. Within the China PIN, 195 WGS of C. difficile and an outbreak of CDI with 12 WGS of C. difficile were used to evaluate the cgMLST pipeline.ResultsThe result displayed that mostly tested C. difficile isolates could be successfully divided into 5 classic clades and the outbreak event was also successfully identified.DiscussionThe results are meaningful and offer a practicable pipeline for a national-wide surveillance of C. difficile in China.
Collapse
Affiliation(s)
- Yuan Yuan Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lu Xie
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Wen Zhu Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao li Du
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen Ge Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lu Lu Bia
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhi Gang Cui
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuan Wu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- *Correspondence: Yuan Wu,
| | - Jin Xing Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
8
|
Abstract
Vibrio cholerae O1 is the causative agent of cholera, a severe diarrheal disease which can cause death if left untreated. In this study, a collection of clinical and environmental V. cholerae serogroup O1 isolates from Australia (1977 to 1987) (from local cases and cases acquired through international travel) and publicly available international isolates were characterized for genotypic features (virulence genes, mobile genetic elements [MGEs], and antimicrobial resistance gene profiles). Whole-genome sequencing (WGS) was used to investigate and compare the genetic relatedness between the 44 Australian and nine travel-associated isolates and the 60 publicly available international V. cholerae sequences representing pre-seventh-pandemic (pre-7PET) isolates and different waves of 7PET isolates. In this study, 36 (81%) Australian clinical and aquatic isolates harbored the cholera toxin-producing genes located in the CTX bacteriophage region. All the Australian environmental and clinical isolates lacked the seventh-pandemic virulence-associated genomic islands (VSP-I and -II). In silico multilocus sequence typing (MLST) classified all nine internationally acquired isolates as sequence type 69 (ST69), 36 clinical and aquatic isolates as ST70, and eight isolates from Australia as ST71. Most of the nontoxigenic clinical and aquatic isolates of ST71 had diverse genetic variations compared to ST70 Australian strains. The antimicrobial resistance-associated genes gyrA, parC, and parE had no mutations in all the environmental and clinical isolates from Australia. The SXT genetic element and class 1 integron gene sequences were not detected in Australian strains. Moreover, in this study, a Bayesian evolutionary study suggests that two distinct lineages of ST71 (new set of strains) and ST70 strains were prevalent around similar times in Australia, in ~1973 and 1969. IMPORTANCE Australia has its own indigenous V. cholerae strains, both toxigenic and nontoxigenic, that are associated with disease. Exotic strains are also detected in Australian patients returning from overseas travel. The clinical and aquatic V. cholerae O1 toxin gene-positive isolates from Australia responsible for cases in 1977 to 1987 were linked to acquisition from Queensland waterways but until now had not been characterized genetically. It is important to determine the genetic relatedness of Australian strains to international strains to assist in understanding their origin. This is the first extensive study to provide sequences and genomic analysis focused on toxigenic O1 V. cholerae clinical and environmental strains from Australia and its possible evolutionary relationship with other publicly available pre-7PET and 7PET V. cholerae strains. It is important to understand the population genetics of Australian V. cholerae from a public health perspective to assist in devising control measures and management plans for reducing V. cholerae exposure in Australia, given previous Australian disease clusters.
Collapse
|
9
|
Didelot X, Parkhill J. A scalable analytical approach from bacterial genomes to epidemiology. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210246. [PMID: 35989600 PMCID: PMC9393561 DOI: 10.1098/rstb.2021.0246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
Recent years have seen a remarkable increase in the practicality of sequencing whole genomes from large numbers of bacterial isolates. The availability of this data has huge potential to deliver new insights into the evolution and epidemiology of bacterial pathogens, but the scalability of the analytical methodology has been lagging behind that of the sequencing technology. Here we present a step-by-step approach for such large-scale genomic epidemiology analyses, from bacterial genomes to epidemiological interpretations. A central component of this approach is the dated phylogeny, which is a phylogenetic tree with branch lengths measured in units of time. The construction of dated phylogenies from bacterial genomic data needs to account for the disruptive effect of recombination on phylogenetic relationships, and we describe how this can be achieved. Dated phylogenies can then be used to perform fine-scale or large-scale epidemiological analyses, depending on the proportion of cases for which genomes are available. A key feature of this approach is computational scalability and in particular the ability to process hundreds or thousands of genomes within a matter of hours. This is a clear advantage of the step-by-step approach described here. We discuss other advantages and disadvantages of the approach, as well as potential improvements and avenues for future research. This article is part of a discussion meeting issue 'Genomic population structures of microbial pathogens'.
Collapse
Affiliation(s)
- Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
10
|
Zheng J, Zhang N, Shen G, Liang F, Zhao Y, He X, Wang Y, He R, Chen W, Xue H, Shen Y, Fu Y, Zhang WH, Zhang L, Bhatt S, Mao Y, Zhu B. Spatiotemporal and Seasonal Trends of Class A and B Notifiable Infectious Diseases in China: A Retrospective Analysis (Preprint). JMIR Public Health Surveill 2022; 9:e42820. [PMID: 37103994 PMCID: PMC10176137 DOI: 10.2196/42820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND China is the most populous country globally and has made significant achievements in the control of infectious diseases over the last decades. The 2003 SARS epidemic triggered the initiation of the China Information System for Disease Control and Prevention (CISDCP). Since then, numerous studies have investigated the epidemiological features and trends of individual infectious diseases in China; however, few considered the changing spatiotemporal trends and seasonality of these infectious diseases over time. OBJECTIVE This study aims to systematically review the spatiotemporal trends and seasonal characteristics of class A and class B notifiable infectious diseases in China during 2005-2020. METHODS We extracted the incidence and mortality data of 8 types (27 diseases) of notifiable infectious diseases from the CISDCP. We used the Mann-Kendall and Sen's methods to investigate the diseases' temporal trends, Moran I statistic for their geographical distribution, and circular distribution analysis for their seasonality. RESULTS Between January 2005 and December 2020, 51,028,733 incident cases and 261,851 attributable deaths were recorded. Pertussis (P=.03), dengue fever (P=.01), brucellosis (P=.001), scarlet fever (P=.02), AIDS (P<.001), syphilis (P<.001), hepatitis C (P<.001) and hepatitis E (P=.04) exhibited significant upward trends. Furthermore, measles (P<.001), bacillary and amebic dysentery (P<.001), malaria (P=.04), dengue fever (P=.006), brucellosis (P=.03), and tuberculosis (P=.003) exhibited significant seasonal patterns. We observed marked disease burden-related geographic disparities and heterogeneities. Notably, high-risk areas for various infectious diseases have remained relatively unchanged since 2005. In particular, hemorrhagic fever and brucellosis were largely concentrated in Northeast China; neonatal tetanus, typhoid and paratyphoid, Japanese encephalitis, leptospirosis, and AIDS in Southwest China; BAD in North China; schistosomiasis in Central China; anthrax, tuberculosis, and hepatitis A in Northwest China; rabies in South China; and gonorrhea in East China. However, the geographical distribution of syphilis, scarlet fever, and hepatitis E drifted from coastal to inland provinces during 2005-2020. CONCLUSIONS The overall infectious disease burden in China is declining; however, hepatitis C and E, bacterial infections, and sexually transmitted infections continue to multiply, many of which have spread from coastal to inland provinces.
Collapse
Affiliation(s)
- Junyao Zheng
- China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai, China
- School of International and Public Affairs, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Zhang
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, China
| | - Guoquan Shen
- School of Public Administration and Policy, Renmin University of China, Beijing, China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Yang Zhao
- The George Institute for Global Health, Peking University Health Science Center, Beijing, China
- WHO Collaborating Centre on Implementation Research for Prevention and Control of Noncommunicable Diseases, Melbourne, Australia
| | - Xiaochen He
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, China
| | - Ying Wang
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, China
| | - Rongxin He
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Wenna Chen
- Center for Chinese Public Administration Research and School of Government, Sun Yat-sen University, Guangzhou, China
| | - Hao Xue
- Stanford Center on China's Economy and Institutions, Stanford University, Stanford, CA, United States
| | - Yue Shen
- Laboratory for Urban Future, School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yang Fu
- Department of public administration, School of Government, Shenzhen University, Shenzhen, China
| | - Wei-Hong Zhang
- International Centre for Reproductive Health, Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Lei Zhang
- China-Australia Joint Research Center for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia
- Central Clinical School, Faculty of Medicine, Monash University, Melbourne, Australia
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Samir Bhatt
- MRC Centre for Global Infectious Disease Analysis and the Abdul Latif Jameel Institute for Disease and Emergency Analytics, School of Public Health, Imperial College, London, United Kingdom
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Ying Mao
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, China
| | - Bin Zhu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
11
|
Rouard C, Njamkepo E, Quilici ML, Weill FX. Contribution of microbial genomics to cholera epidemiology. C R Biol 2022; 345:37-56. [DOI: 10.5802/crbiol.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022]
|
12
|
Deka RK, Deka A, Liu WZ, Norgard MV, Brautigam CA. Inhibition of bacterial FMN transferase: A potential avenue for countering antimicrobial resistance. Protein Sci 2022; 31:545-551. [PMID: 34796555 PMCID: PMC8819833 DOI: 10.1002/pro.4241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/01/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023]
Abstract
Antibiotic resistance is a challenge for the control of bacterial infections. In an effort to explore unconventional avenues for antibacterial drug development, we focused on the FMN-transferase activity of the enzyme Ftp from the syphilis spirochete, Treponema pallidum (Ftp_Tp). This enzyme, which is only found in prokaryotes and trypanosomatids, post-translationally modifies proteins in the periplasm, covalently linking FMN (from FAD) to proteins that typically are important for establishing an essential electrochemical gradient across the cytoplasmic membrane. As such, Ftp inhibitors potentially represent a new class of antimicrobials. Previously, we showed that AMP is both a product of the Ftp_tp-catalyzed reaction and an inhibitor of the enzyme. As a preliminary step in exploiting this property to develop a novel Ftp_Tp inhibitor, we have used structural and solution studies to examine the inhibitory and enzyme-binding properties of several adenine-based nucleosides, with particular focus on the 2-position of the purine ring. Implications for future drug design are discussed.
Collapse
Affiliation(s)
- Ranjit K. Deka
- Department of MicrobiologyUT Southwestern Medical CenterDallasTexasUSA
| | | | - Wei Z. Liu
- Department of MicrobiologyUT Southwestern Medical CenterDallasTexasUSA
| | | | - Chad A. Brautigam
- Department of MicrobiologyUT Southwestern Medical CenterDallasTexasUSA,Department of BiophysicsUT Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
13
|
Systematic review and meta-analysis of environmental Vibrio species - antibiotic resistance. Heliyon 2022; 8:e08845. [PMID: 35265752 PMCID: PMC8899705 DOI: 10.1016/j.heliyon.2022.e08845] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 03/09/2021] [Accepted: 01/24/2022] [Indexed: 01/30/2023] Open
Abstract
Adequate comprehension of the genomics of microbial resistance to an antimicrobial agent will advance knowledge on the management of associated pathologies and public health safety. However, continued emergences and reemergence of pathogens, including Vibrio species, hallmarks a potential knowledge gap. A clear understanding of the process and forecast of the next trend should be in place to nip in the bud, microbial acquisition of resistance to antibiotics. Therefore, this two-decade (1 January 2000 to 31 December 2019) systematic review and meta-analytical study articulated the prevalence and incidence of antibiotics resistance genes in Vibrio species isolated from environmental samples. Articles from the Web of Science and PubMed electronic databases was engaged. Heterogeneity of the data and bias were analyzed with random effect model meta-analysis and funnel plot. A total of 1920 Vibrio sp. were reported by the ten selected articles included in this study; out of which 32.39% of identified isolates displayed antimicrobial resistance and associated genes. The distribution of antibiotics resistance genes in Vibrio sp., reported within six countries was 21% tetracycline (tet), and 20% sulphonamide (sul) and β-lactamase (bla) respectively. The quinolone, tetracycline and sulfonamide resistance genes showed 32.97% (95% CI 0.18–0.53) prevalence while chloramphenicol, macrolides and aminoglycoside resistance genes are expressed in percentages as 28.67% (95% CI 0.15–0.47) and β-lactamase resistance genes 27.93% (95% CI 0.11–0.56) respectively. The Vibrio antibiotics resistance genes (V-ARG) distribution depicts no regular trend or pattern from the analyzed data. Consequently, more studies would be required to articulate the structure of cohesion in the distribution of the resistance determinants in microbes.
Collapse
|
14
|
Yan H, Pang B, Lu X, Gao Z, Lu P, Zhang X, Wang M, Shen L, Zhao W, Zhao J, Liang W, Jia L, Zhou H, Cui Z, Du X, Kan B, Wang Q. Cholera Caused by a New Clone of Serogroup O1 Vibrio cholerae — Beijing Municipality, China, June 2021. China CDC Wkly 2022; 4:31-32. [PMID: 35586521 PMCID: PMC8796729 DOI: 10.46234/ccdcw2021.279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/14/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hanqiu Yan
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Bo Pang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhiyong Gao
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Pan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Zhang
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Mengyu Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lingyu Shen
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Wenxuan Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianhong Zhao
- Beijing Chaoyang Center for Disease Prevention and Control, Beijing, China
| | - Weili Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lei Jia
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Haijian Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhigang Cui
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoli Du
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Biao Kan,
| | - Quanyi Wang
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
- Quanyi Wang,
| |
Collapse
|
15
|
Bugayong MP, Izumiya H, Bilar JM, Morita M, Arakawa E, Saito-Obata M, Oshitani H, Ohnishi M. Molecular characterization of Vibrio cholerae O1 isolates obtained from outbreaks in the Philippines, 2015-2016. J Med Microbiol 2021; 70:001443. [PMID: 34817317 PMCID: PMC11251456 DOI: 10.1099/jmm.0.001443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction. The Philippines, comprising three island groups, namely, Luzon, Visayas and Mindanao, experienced an increase in cholera outbreaks in 2016. Previous studies have shown that Vibrio cholerae isolates obtained from the Philippines are novel hybrid El Tor strains that have evolved in the country and are clearly distinct from those found in Mozambique and Cameroon.Gap statement. The characterization of the strains isolated from outbreaks has been limited to phenotypic characteristics, such as biochemical and serological characteristics, in most previous studies.Aim. We performed multilocus variable-number tandem repeat (VNTR) analysis (MLVA) for V. cholerae isolates obtained from 2015 to 2016 to further characterize and understand the emergence and dissemination of the strains in the Philippines.Methodology. A total of 139 V. cholerae O1 Ogawa biotype El Tor isolates were obtained from the Philippines during diarrhoeal outbreaks in 18 provinces between 2015 and 2016. VNTR data were analysed to classify the MLVA profiles where the large-chromosome types (LCTs) were applied for grouping.Results. We identified 50 MLVA types among 139 isolates originating from 18 provinces, and 14 LCTs. The distribution of the LCTs was variable, and a few were located in specific areas or even in specific provinces. Based on eBURST analysis, 99 isolates with 7 LCTs and 32 MLVA types belonged to 1 group, suggesting that they were related to each other. LCT A was predominant (n=67) and was isolated from Luzon and Visayas. LCT A had 14 MLVA types; however, it mostly emerged during a single quarter of a year. Eight clusters were identified, each of which involved specific MLVA type(s). The largest cluster involved 23 isolates showing 3 MLVA types, 21 of which were MLVA type A-14 isolated from Negros Occidental during quarter 4 of 2016. Comparative analysis showed that almost all isolates from the Philippines were distinct from those in other countries.Conclusions. The genotypic relationship of the V. cholerae isolates obtained during outbreaks in the Philippines was studied, and their emergence and dissemination were elucidated. MLVA revealed the short-term dynamics of V. cholerae genotypes in the Philippines.
Collapse
Affiliation(s)
- Mark Philip Bugayong
- Department of Microbiology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Hidemasa Izumiya
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Josie M. Bilar
- Department of Microbiology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Masatomo Morita
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Eiji Arakawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mariko Saito-Obata
- Department of Virology, Tohoku University Graduate School of Medicine, Miyagi, Japan
- RITM-Tohoku Collaborating Research Center for Emerging and Re-emerging Infectious Diseases, Muntinlupa, Philippines
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
16
|
A Combination of Metagenomic and Cultivation Approaches Reveals Hypermutator Phenotypes within Vibrio cholerae-Infected Patients. mSystems 2021; 6:e0088921. [PMID: 34427503 PMCID: PMC8407408 DOI: 10.1128/msystems.00889-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae can cause a range of symptoms, from severe diarrhea to asymptomatic infection. Previous studies using whole-genome sequencing (WGS) of multiple bacterial isolates per patient showed that V. cholerae can evolve modest genetic diversity during symptomatic infection. To further explore the extent of V. cholerae within-host diversity, we applied culture-based WGS and metagenomics to a cohort of both symptomatic and asymptomatic cholera patients from Bangladesh. While metagenomics allowed us to detect more mutations in symptomatic patients, WGS of cultured isolates was necessary to detect V. cholerae diversity in asymptomatic carriers, likely due to their low V. cholerae load. Using both metagenomics and isolate WGS, we report three lines of evidence that V. cholerae hypermutators evolve within patients. First, we identified nonsynonymous mutations in V. cholerae DNA repair genes in 5 out of 11 patient metagenomes sequenced with sufficient coverage of the V. cholerae genome and in 1 of 3 patients with isolate genomes sequenced. Second, these mutations in DNA repair genes tended to be accompanied by an excess of intrahost single nucleotide variants (iSNVs). Third, these iSNVs were enriched in transversion mutations, a known hallmark of hypermutator phenotypes. While hypermutators appeared to generate mostly selectively neutral mutations, nonmutators showed signs of convergent mutation across multiple patients, suggesting V. cholerae adaptation within hosts. Our results highlight the power and limitations of metagenomics combined with isolate sequencing to characterize within-patient diversity in acute V. cholerae infections, while providing evidence for hypermutator phenotypes within cholera patients. IMPORTANCE Pathogen evolution within patients can impact phenotypes such as drug resistance and virulence, potentially affecting clinical outcomes. V. cholerae infection can result in life-threatening diarrheal disease or asymptomatic infection. Here, we describe whole-genome sequencing of V. cholerae isolates and culture-free metagenomic sequencing from stool of symptomatic cholera patients and asymptomatic carriers. Despite the typically short duration of cholera, we found evidence for adaptive mutations in the V. cholerae genome that occur independently and repeatedly within multiple symptomatic patients. We also identified V. cholerae hypermutator phenotypes within several patients, which appear to generate mainly neutral or deleterious mutations. Our work sets the stage for future studies of the role of hypermutators and within-patient evolution in explaining the variation from asymptomatic carriage to symptomatic cholera.
Collapse
|
17
|
Didelot X, Geidelberg L, Volz EM. Model design for non-parametric phylodynamic inference and applications to pathogen surveillance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.18.427056. [PMID: 34426812 PMCID: PMC8382123 DOI: 10.1101/2021.01.18.427056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Inference of effective population size from genomic data can provide unique information about demographic history, and when applied to pathogen genetic data can also provide insights into epidemiological dynamics. The combination of non-parametric models for population dynamics with molecular clock models which relate genetic data to time has enabled phylodynamic inference based on large sets of time-stamped genetic sequence data. The methodology for non-parametric inference of effective population size is well-developed in the Bayesian setting, but here we develop a frequentist approach based on non-parametric latent process models of population size dynamics. We appeal to statistical principles based on out-of-sample prediction accuracy in order to optimize parameters that control shape and smoothness of the population size over time. We demonstrate the flexibility and speed of this approach in a series of simulation experiments, and apply the methodology to reconstruct the previously described waves in the seventh pandemic of cholera. We also estimate the impact of non-pharmaceutical interventions for COVID-19 in England using thousands of SARS-CoV-2 sequences. By incorporating a measure of the strength of these interventions over time within the phylodynamic model, we estimate the impact of the first national lockdown in the UK on the epidemic reproduction number.
Collapse
Affiliation(s)
- Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, United Kingdom
| | - Lily Geidelberg
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, United Kingdom
| | | | - Erik M Volz
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, United Kingdom
| |
Collapse
|
18
|
Ogasawara K, Inoue T. The long-run heterogeneous effects of a cholera pandemic on stature: Evidence from industrializing Japan. ECONOMICS AND HUMAN BIOLOGY 2021; 41:100968. [PMID: 33582501 PMCID: PMC9760307 DOI: 10.1016/j.ehb.2020.100968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 06/02/2023]
Abstract
The recent COVID-19 pandemic poses the general question on how infectious diseases can persistently affect human health. A growing body of literature has found a significant amount of evidence on the long-term adverse effects of infectious diseases, such as influenza, typhoid fever, and yellow fever. However, we must be careful about the fact that little is known about the long-term consequences of the acute diarrheal disease pandemic cholera - Vibrio cholerae bacillus - which still threatens the health of the population in many developing countries. To bridge this gap in the body of knowledge, we utilized unique census-based data on army height at age 20 in early 20th-century Japan, with a difference-in-differences estimation strategy using regional variation in the intensity of cholera pandemics. We found that early-life exposure to a cholera pandemic had heterogeneous stunting effects on the final height of men; the magnitude of the stunting effects increased as the intensity of exposure increased.
Collapse
Affiliation(s)
- Kota Ogasawara
- Department of Industrial Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Tatsuki Inoue
- Department of Business Economics, School of Management, Tokyo University of Science, 1-11-2, Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan.
| |
Collapse
|
19
|
Bhandari M, Jennison AV, Rathnayake IU, Huygens F. Evolution, distribution and genetics of atypical Vibrio cholerae - A review. INFECTION GENETICS AND EVOLUTION 2021; 89:104726. [PMID: 33482361 DOI: 10.1016/j.meegid.2021.104726] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
Vibrio cholerae is the etiological agent of cholera, a severe diarrheal disease, which can occur as either an epidemic or sporadic disease. Cholera pandemic-causing V. cholerae O1 and O139 serogroups originated from the Indian subcontinent and spread globally and millions of lives are lost each year, mainly in developing and underdeveloped countries due to this disease. V. cholerae O1 is further classified as classical and El Tor biotype which can produce biotype specific cholera toxin (CT). Since 1961, the current seventh pandemic El Tor strains replaced the sixth pandemic strains resulting in the classical biotype strain that produces classical CT. The ongoing evolution of Atypical El Tor V. cholerae srains encoding classical CT is of global concern. The severity in the pathophysiology of these Atypical El Tor strains is significantly higher than El Tor or classical strains. Pathogenesis of V. cholerae is a complex process that involves coordinated expression of different sets of virulence-associated genes to cause disease. We are yet to understand the complete virulence profile of V. cholerae, including direct and indirect expression of genes involved in its survival and stress adaptation in the host. In recent years, whole genome sequencing has paved the way for better understanding of the evolution and strain distribution, outbreak identification and pathogen surveillance for the implementation of direct infection control measures in the clinic against many infectious pathogens including V. cholerae. This review provides a synopsis of recent studies that have contributed to the understanding of the evolution, distribution and genetics of the seventh pandemic Atypical El Tor V. cholerae strains.
Collapse
Affiliation(s)
- Murari Bhandari
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia; Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, QLD, Australia
| | - Amy V Jennison
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, QLD, Australia
| | - Irani U Rathnayake
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, QLD, Australia
| | - Flavia Huygens
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
20
|
Oprea M, Njamkepo E, Cristea D, Zhukova A, Clark CG, Kravetz AN, Monakhova E, Ciontea AS, Cojocaru R, Rauzier J, Damian M, Gascuel O, Quilici ML, Weill FX. The seventh pandemic of cholera in Europe revisited by microbial genomics. Nat Commun 2020; 11:5347. [PMID: 33093464 PMCID: PMC7582136 DOI: 10.1038/s41467-020-19185-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/30/2020] [Indexed: 01/09/2023] Open
Abstract
In 1970, the seventh pandemic of cholera (7 P) reached both Africa and Europe. Between 1970 and 2011, several European countries reported cholera outbreaks of a few to more than 2,000 cases. We report here a whole-genome analysis of 1,324 7 P V. cholerae El Tor (7 PET) isolates, including 172 from autochthonous sporadic or outbreak cholera cases occurring between 1970 and 2011 in Europe, providing insight into the spatial and temporal spread of this pathogen across Europe. In this work, we show that the 7 PET lineage was introduced at least eight times into two main regions: Eastern and Southern Europe. Greater recurrence of the disease was observed in Eastern Europe, where it persisted until 2011. It was introduced into this region from Southern Asia, often circulating regionally in the countries bordering the Black Sea, and in the Middle East before reaching Eastern Africa on several occasions. In Southern Europe, the disease was mostly seen in individual countries during the 1970s and was imported from North and West Africa, except in 1994, when cholera was imported into Albania and Italy from the Black Sea region. These results shed light on the geographic course of cholera during the seventh pandemic and highlight the role of humans in its global dissemination.
Collapse
Affiliation(s)
- Mihaela Oprea
- Cantacuzino National Medico-Military Institute for Research and Development, 050096, Bucharest, Romania
| | - Elisabeth Njamkepo
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris, 75015, France
| | - Daniela Cristea
- Cantacuzino National Medico-Military Institute for Research and Development, 050096, Bucharest, Romania
| | - Anna Zhukova
- Unité Bioinformatique Evolutive, USR3756 (C3BI/DBC), Institut Pasteur & CNRS, Paris, France
- Hub Bioinformatique et Biostatistique, USR3756 (C3BI/DBC), Institut Pasteur, Paris, France
| | - Clifford G Clark
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MN, Canada
| | - Anatoly N Kravetz
- Kiev Research Institute of Epidemiology and Infectious Diseases, Protasiv Yar Uzuiz, Ukraine
| | - Elena Monakhova
- Rostov-on-Don Research Anti-Plague Institute, Rostov-on-Don, Russia, 344002
| | - Adriana S Ciontea
- Cantacuzino National Medico-Military Institute for Research and Development, 050096, Bucharest, Romania
| | - Radu Cojocaru
- National Centre for Public Health, Chisinau, Republic of Moldova
| | - Jean Rauzier
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris, 75015, France
| | - Maria Damian
- Cantacuzino National Medico-Military Institute for Research and Development, 050096, Bucharest, Romania
| | - Olivier Gascuel
- Unité Bioinformatique Evolutive, USR3756 (C3BI/DBC), Institut Pasteur & CNRS, Paris, France
| | - Marie-Laure Quilici
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris, 75015, France
| | | |
Collapse
|
21
|
Morita M, Okada K, Yamashiro T, Sekizuka T, Roobthaisong A, Wongboot W, Chantaroj S, Tu ND, Xangsayarath P, Sithivong N, Noilath K, Vongdouangchanh A, Kuroda M, Hamada S, Izumiya H, Ohnssishi M. Phylogenetic Analysis Revealed the Dissemination of Closely Related Epidemic Vibrio cholerae O1 Isolates in Laos, Thailand, and Vietnam. Open Forum Infect Dis 2020; 7:ofaa492. [PMID: 33244479 PMCID: PMC7679066 DOI: 10.1093/ofid/ofaa492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/13/2020] [Indexed: 11/24/2022] Open
Abstract
We performed whole-genome sequencing of Vibrio cholerae O1 isolates from Laos, Thailand, and Vietnam, where cholera outbreaks occurred, to determine their genetic lineages. Core genome phylogenetic analysis revealed that the isolates located in same lineage without regional clusters, which suggests that closely related strains circulated in Southeast Asia.
Collapse
Affiliation(s)
- Masatomo Morita
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhisa Okada
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand.,Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tetsu Yamashiro
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.,Nagasaki University, Nagasaki, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Amonrattana Roobthaisong
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
| | - Warawan Wongboot
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand.,National Institute of Health, Department of Medical Sciences, Ministry Public Health, Nonthaburi, Thailand
| | - Siriporn Chantaroj
- National Institute of Health, Department of Medical Sciences, Ministry Public Health, Nonthaburi, Thailand
| | - Nguyen Dong Tu
- Bacteriology Department, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | | | - Noikaseumsy Sithivong
- National Center for Laboratory and Epidemiology, Vientiane, Lao People's Democratic Republic
| | - Khambai Noilath
- National Center for Laboratory and Epidemiology, Vientiane, Lao People's Democratic Republic
| | | | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigeyuki Hamada
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hidemasa Izumiya
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnssishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
22
|
Hu D, Liu B, Wang L, Reeves PR. Living Trees: High-Quality Reproducible and Reusable Construction of Bacterial Phylogenetic Trees. Mol Biol Evol 2020; 37:563-575. [PMID: 31633785 DOI: 10.1093/molbev/msz241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
An ideal bacterial phylogenetic tree accurately retraces evolutionary history and accurately incorporates mutational, recombination and other events on the appropriate branches. Current strain-level bacterial phylogenetic analysis based on large numbers of genomes lacks reliability and resolution, and is hard to be replicated, confirmed and reused, because of the highly divergent nature of microbial genomes. We present SNPs and Recombination Events Tree (SaRTree), a pipeline using six "living trees" modules that addresses problems arising from the high numbers and variable quality of bacterial genome sequences. It provides for reuse of the tree and offers a major step toward global standardization of phylogenetic analysis by generating deposit files including all steps involved in phylogenetic inference. The tree itself is a "living tree" that can be extended by addition of more sequences, or the deposit can be used to vary the programs or parameters used, to assess the effect of such changes. This approach will allow phylogeny papers to meet the traditional responsibility of providing data and analysis that can be repeated and critically evaluated by others. We used the Acinetobacter baumannii global clone I to illustrate use of SaRTree to optimize tree resolution. An Escherichia coli tree was built from 351 sequences selected from 11,162 genome sequences, with the others added back onto well-defined branches, to show how this facility can greatly improve the outcomes from genome sequencing. SaRTree is designed for prokaryote strain-level analysis but could be adapted for other usage.
Collapse
Affiliation(s)
- Dalong Hu
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, People's Republic of China.,Tianjin Research Center for Functional Genomics and Biochip, Tianjin, People's Republic of China
| | - Lei Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, People's Republic of China.,Ministry of Education, The Key Laboratory of Molecular Microbiology and Technology, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| | - Peter R Reeves
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
23
|
Dorman MJ, Domman D, Poklepovich T, Tolley C, Zolezzi G, Kane L, Viñas MR, Panagópulo M, Moroni M, Binsztein N, Caffer MI, Clare S, Dougan G, Salmond GPC, Parkhill J, Campos J, Thomson NR. Genomics of the Argentinian cholera epidemic elucidate the contrasting dynamics of epidemic and endemic Vibrio cholerae. Nat Commun 2020; 11:4918. [PMID: 33004800 PMCID: PMC7530988 DOI: 10.1038/s41467-020-18647-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022] Open
Abstract
In order to control and eradicate epidemic cholera, we need to understand how epidemics begin, how they spread, and how they decline and eventually end. This requires extensive sampling of epidemic disease over time, alongside the background of endemic disease that may exist concurrently with the epidemic. The unique circumstances surrounding the Argentinian cholera epidemic of 1992-1998 presented an opportunity to do this. Here, we use 490 Argentinian V. cholerae genome sequences to characterise the variation within, and between, epidemic and endemic V. cholerae. We show that, during the 1992-1998 cholera epidemic, the invariant epidemic clone co-existed alongside highly diverse members of the Vibrio cholerae species in Argentina, and we contrast the clonality of epidemic V. cholerae with the background diversity of local endemic bacteria. Our findings refine and add nuance to our genomic definitions of epidemic and endemic cholera, and are of direct relevance to controlling current and future cholera epidemics.
Collapse
Affiliation(s)
- Matthew J Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Daryl Domman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Internal Medicine, Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Tomás Poklepovich
- Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Charlotte Tolley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Gisella Zolezzi
- Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Leanne Kane
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - María Rosa Viñas
- Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Marcela Panagópulo
- Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Miriam Moroni
- Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Norma Binsztein
- Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - María Inés Caffer
- Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Simon Clare
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Gordon Dougan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QW, UK
| | - George P C Salmond
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Josefina Campos
- Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.
| | - Nicholas R Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
24
|
The Impact of Water Intrusion on Pathogenic Vibrio Species to Inland Brackish Waters of China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186781. [PMID: 32957572 PMCID: PMC7558382 DOI: 10.3390/ijerph17186781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022]
Abstract
The estuary is the ecological niche of pathogenic Vibrio spp. as it provides abundant organic and inorganic nutrients from seawater and rivers. However, little is known about the ecology of these Vibrio species in the inland brackish water area. In this study, their co-occurrence and relationships to key environmental constraints (salinity and temperature) in the Hun-Tai River of China were examined using the most probable number polymerase chain reaction (MPN-PCR) approach. We hereby report 2-year continuous surveillance based on six water indices of the Hun-Tai River. The results showed that seawater intrusion maximally reached inland as far as 26.5 km for the Hun-Tai River. Pathogenic Vibrio spp. were detected in 21.9% of the water samples. In particular, V. cholerae, V. parahaemolyticus, and V. vulnificus were isolated in 10 (10.4%), 20 (20.8.5%), and 2 (2.08%) samples, respectively. All V. parahaemolyticus strains were tdh gene negative, 10% were positive for the trh gene. Multi-locus sequence typing (MLST) divided V. parahaemolyticus strains into 12 sequence types (STs) for the Hun-Tai River. Five STs were respectively present in various locations along the Hun-Tai River. The PCR assay for detecting six virulence genes and Vibrio seventh pandemic island I and II revealed three genotypes in 12 V. cholerae isolates. The results of our study showed that seawater intrusion and salinity have profound effects on the distribution of pathogenic Vibrio spp. in the inland river, suggesting a potential health risk associated with the waters of the Hun-Tai River used for irrigation and drinking.
Collapse
|
25
|
Li F, Pang B, Yan H, Lu X, Li J, Zhou H, Cui Z, Zhao L, Huo D, Kan B, Jia L. Investigation of an imported cholera case in China with whole genome sequencing. INFECTION GENETICS AND EVOLUTION 2020; 84:104362. [PMID: 32422352 DOI: 10.1016/j.meegid.2020.104362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 04/26/2020] [Accepted: 05/08/2020] [Indexed: 11/17/2022]
Abstract
Determining the source and genetic characteristics of the imported pathogen is critical in the control of infectious diseases. Here, we reported the investigation of an imported cholera case in China in 2018 with a recent travel history in Nepal and India. Stool culture from the patient was identified as Vibrio cholerae serogroup O1, biotype El Tor, serotype Ogawa. The strain 2018HL24 possessed intact Vibrio seventh pandemic island I (VSP-I), Vibrio pathogenicity Island 1 and 2 (VPI-1, VPI-2). A VSP-II variant with a 13 kb deletion was also detected, which was identical to those observed in V. cholerae in cluster "Nepal-4". Phylogenetic analysis based on the core genome SNPs showed that the isolate was most closely related to the V. cholerae isolated in northern India not far from the border of Nepal in 2012 (16 SNPs). Combining the epidemiological data with phylogenetic analysis results, we speculate that the patient may got infected in Nepal-India region.
Collapse
Affiliation(s)
- Fu Li
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing 100013, China
| | - Bo Pang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hanqiu Yan
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing 100013, China
| | - Xin Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jie Li
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing 100013, China
| | - Haijian Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhigang Cui
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lin Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Da Huo
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing 100013, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Lei Jia
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing 100013, China.
| |
Collapse
|
26
|
Irenge LM, Ambroise J, Mitangala PN, Bearzatto B, Kabangwa RKS, Durant JF, Gala JL. Genomic analysis of pathogenic isolates of Vibrio cholerae from eastern Democratic Republic of the Congo (2014-2017). PLoS Negl Trop Dis 2020; 14:e0007642. [PMID: 32310947 PMCID: PMC7192507 DOI: 10.1371/journal.pntd.0007642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 04/30/2020] [Accepted: 03/12/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Over the past recent years, Vibrio cholerae has been associated with outbreaks in sub-Saharan Africa, notably in Democratic Republic of the Congo (DRC). This study aimed to determine the genetic relatedness of isolates responsible for cholera outbreaks in eastern DRC between 2014 and 2017, and their potential spread to bordering countries. METHODS/PRINCIPAL FINDINGS Phenotypic analysis and whole genome sequencing (WGS) were carried out on 78 clinical isolates of V. cholerae associated with cholera in eastern provinces of DRC between 2014 and 2017. SNP-based phylogenomic data show that most isolates (73/78) were V. cholerae O1 biotype El Tor with CTX-3 type prophage. They fell within the third transmission wave of the current seventh pandemic El Tor (7PET) lineage and were contained in the introduction event (T)10 in East Africa. These isolates clustered in two sub-clades corresponding to Multiple Locus Sequence Types (MLST) profiles ST69 and the newly assigned ST515, the latter displaying a higher genetic diversity. Both sub-clades showed a distinct geographic clustering, with ST69 isolates mostly restricted to Lake Tanganyika basin and phylogenetically related to V. cholerae isolates associated with cholera outbreaks in western Tanzania, whereas ST515 isolates were disseminated along the Albertine Rift and closely related to isolates in South Sudan, Uganda, Tanzania and Zambia. Other V. cholerae isolates (5/78) were non-O1/non-O139 without any CTX prophage and no phylogenetic relationship with already characterized non-O1/non-O139 isolates. CONCLUSIONS/SIGNIFICANCE Current data confirm the association of both DRC O1 7PET (T)10 sub-clades ST69 and ST515 with recurrent outbreaks in eastern DRC and at regional level over the past 10 years. Interestingly, while ST69 is predominantly a locally endemic sequence type, ST515 became adaptable enough to expand across DRC neighboring countries.
Collapse
Affiliation(s)
- Leonid M. Irenge
- Center for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain, Brussels, Belgium
- Defence Laboratories Department, ACOS Ops&Trg, Belgian Armed Forces, Peutie, Belgium
| | - Jérôme Ambroise
- Center for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain, Brussels, Belgium
| | | | - Bertrand Bearzatto
- Center for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain, Brussels, Belgium
| | | | - Jean-François Durant
- Center for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Luc Gala
- Center for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain, Brussels, Belgium
- * E-mail:
| |
Collapse
|
27
|
Wang H, Yang C, Sun Z, Zheng W, Zhang W, Yu H, Wu Y, Didelot X, Yang R, Pan J, Cui Y. Genomic epidemiology of Vibrio cholerae reveals the regional and global spread of two epidemic non-toxigenic lineages. PLoS Negl Trop Dis 2020; 14:e0008046. [PMID: 32069325 PMCID: PMC7048298 DOI: 10.1371/journal.pntd.0008046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 02/28/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Non-toxigenic Vibrio cholerae isolates have been found associated with diarrheal disease globally, however, the global picture of non-toxigenic infections is largely unknown. Among non-toxigenic V. cholerae, ctxAB negative, tcpA positive (CNTP) isolates have the highest risk of disease. From 2001 to 2012, 71 infectious diarrhea cases were reported in Hangzhou, China, caused by CNTP serogroup O1 isolates. We sequenced 119 V. cholerae genomes isolated from patients, carriers and the environment in Hangzhou between 2001 and 2012, and compared them with 850 publicly available global isolates. We found that CNTP isolates from Hangzhou belonged to two distinctive lineages, named L3b and L9. Both lineages caused disease over a long time period with usually mild or moderate clinical symptoms. Within Hangzhou, the spread route of the L3b lineage was apparently from rural to urban areas, with aquatic food products being the most likely medium. Both lineages had been previously reported as causing local endemic disease in Latin America, but here we show that global spread of them has occurred, with the most likely origin of L3b lineage being in Central Asia. The L3b lineage has spread to China on at least three occasions. Other spread events, including from China to Thailand and to Latin America were also observed. We fill the missing links in the global spread of the two non-toxigenic serogroup O1 V. cholerae lineages that can cause human infection. The results are important for the design of future disease control strategies: surveillance of V. cholerae should not be limited to ctxAB positive strains.
Collapse
Affiliation(s)
- Haoqiu Wang
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Chao Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhou Sun
- Institution of Infectious Disease Control, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Wei Zheng
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Wei Zhang
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Hua Yu
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xavier Didelot
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingcao Pan
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
28
|
Deen J, Mengel MA, Clemens JD. Epidemiology of cholera. Vaccine 2020; 38 Suppl 1:A31-A40. [DOI: 10.1016/j.vaccine.2019.07.078] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 07/06/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
|
29
|
Ahmmed S, Khan MAAK, Eshik MME, Punom NJ, Islam ABMMK, Rahman MS. Genomic and evolutionary features of two AHPND positive Vibrio parahaemolyticus strains isolated from shrimp (Penaeus monodon) of south-west Bangladesh. BMC Microbiol 2019; 19:270. [PMID: 31796006 PMCID: PMC6889531 DOI: 10.1186/s12866-019-1655-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/18/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to its rapid lethal effect in the early development stage of shrimp, acute hepatopancreatic necrosis disease (AHPND) has been causing great economic losses, since its first outbreak in southeast China in 2009. Vibrio parahaemolyticus, carrying the pirA and pirB toxin genes is known to cause AHPND in shrimp. The overall objective of this study was to sequence the whole genome of AHPND positive V. parahaemolyticus strains isolated from shrimp (Peneaus monodon) of the south-west region of Bangladesh in 2016 and 2017 and characterize the genomic features and emergence pattern of this marine pathogen. RESULTS Two targeted AHPND positive V. parahaemolyticus strains were confirmed using PCR with 16S rRNA, ldh, AP3 and AP4 primers. The assembled genomes of strain MSR16 and MSR17 were comprised of a total of 5,393,740 bp and 5,241,592 bp, respectively. From annotation, several virulence genes involved in chemotaxis and motility, EPS type II secretion system, Type III secretion system-1 (T3SS-1) and its secreted effectors, thermolabile hemolysin were found in both strains. Importantly, the ~ 69 kb plasmid was identified in both MSR16 and MSR17 strains containing the two toxin genes pirA and pirB. Antibiotic resistance genes were predicted against β-lactam, fluoroquinolone, tetracycline and macrolide groups in both MSR16 and MSR17 strains. CONCLUSIONS The findings of this research may facilitate the tracking of pathogenic and/or antibiotic-resistant V. parahaemolyticus isolates between production sites, and the identification of candidate strains for the production of vaccines as an aid to control of this devastating disease. Also, the emergence pattern of this pathogen can be highlighted to determine the characteristic differences of other strains found all over the world.
Collapse
Affiliation(s)
- Shawon Ahmmed
- Aquatic Animal Health Group, Department of Fisheries, University of Dhaka, Dhaka, 1000, Bangladesh
| | | | - Md Mostavi Enan Eshik
- Aquatic Animal Health Group, Department of Fisheries, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nusrat Jahan Punom
- Aquatic Animal Health Group, Department of Fisheries, University of Dhaka, Dhaka, 1000, Bangladesh
| | | | - Mohammad Shamsur Rahman
- Aquatic Animal Health Group, Department of Fisheries, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
30
|
Abstract
The 7th cholera pandemic began in 1961 in Sulawesi, Indonesia, and then spread around the world in at least three waves. However, the lack of genome sequences for Vibrio cholerae strains under long-term surveillance in East Asia, especially in China, has restricted our understanding of the dynamics of the intracountry and intercountry evolution and transmission of the 7th-pandemic clones. In this study, we obtained the genome sequences of 60 V. cholerae strains isolated in Shanghai, the largest port in the world and the largest city in China, from 1961 to 2011. Our whole-genome-based phylogeny of 7th-pandemic strains revealed that all but one fell into five "stages," most of which are single clades and share independent ancestors. Each stage dominated in succession for a period, with little overlap between them. In addition, two near-identical Shanghai strains belonging to a pre-7th-pandemic precursor and 4 nontoxigenic O1/O139 strains attributed to independent recombination events at the O-antigen loci were present. The major lineages of the 7th pandemic in Shanghai appeared to be closely related to V. cholerae strains isolated from South or Southeast Asia. Stage succession was consistently related to changes in society and human activity, implying that human-caused niche change may play a vital role in the cholera dynamics in Shanghai.IMPORTANCE V. cholerae is the causative agent of cholera, a life-threatening disease characterized by severe, watery diarrhea. The 7th pandemic started in Indonesia in 1961 and spread globally, currently infecting 1.3 million to 4 million people annually. Here, we applied whole-genome sequencing to analyze a long-term collection of V. cholerae clinical strains to reveal the phylogenetic background and evolutionary dynamics of the 7th pandemic in Shanghai, which had undergone breathtakingly rapid development in the last half-century. All but one of the Shanghai 7th-pandemic strains fell into five "stages" that were dominant in Shanghai and appeared to be closely related to 7th-pandemic strains of South or Southeast Asia. Our findings extended the understanding of the dynamics of the evolution and transmission of the 7th-pandemic clones in East Asia and the relationship between social changes and cholera epidemiology.
Collapse
|
31
|
Ramamurthy T, Mutreja A, Weill FX, Das B, Ghosh A, Nair GB. Revisiting the Global Epidemiology of Cholera in Conjuction With the Genomics of Vibrio cholerae. Front Public Health 2019; 7:203. [PMID: 31396501 PMCID: PMC6664003 DOI: 10.3389/fpubh.2019.00203] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/08/2019] [Indexed: 11/13/2022] Open
Abstract
Toxigenic Vibrio cholerae is responsible for 1.4 to 4.3 million cases with about 21,000-143,000 deaths per year. Dominance of O1 and O139 serogroups, classical and El tor biotypes, alterations in CTX phages and the pathogenicity Islands are some of the major features of V. cholerae isolates that are responsible for cholera epidemics. Whole-genome sequencing (WGS) based analyses of single-nucleotide polymorphisms (SNPs) and other infrequent genetic variants provide a robust phylogenetic framework. Recent studies on the global transmission of pandemic V. cholerae O1 strains have shown the existence of eight different phyletic lineages. In these, the classical and El Tor biotype strains were separated as two distinctly evolved lineages. The frequency of SNP accumulation and the temporal and geographical distribution supports the perception that the seventh cholera pandemic (7CP) has spread from the Bay of Bengal region in three independent but overlapping waves. The 2010 Haitian outbreak shared a common ancestor with South-Asian wave-3 strains. In West Africa and East/Southern Africa, cholera epidemics are caused by single expanded lineage, which has been introduced several times since 1970. The Latin American epidemics that occurred in 1991 and 2010 were the result of introductions of two 7CP sublineages. Sublineages representing wave-3 have caused huge outbreaks in Haiti and Yemen. The Ogawa-Inaba serotype switchover in several cholera epidemics are believed to be due to the involvement of certain selection mechanism(s) rather than due to random events. V. cholerae O139 serogroup is phylogenetically related to the 7CP El Tor, and almost all these isolates belonged to the multilocus sequence type-69. Additional phenotypic and genotypic information have been generated to understand the pathogenicity of classical and El Tor vibrios. Presence of integrative conjugative elements (ICE) with antibiotic resistance gene cassettes, clustered regularly interspaced short palindromic repeats-associated protein system and ctxAB promoter based ToxRS expression of cholera toxin (CT) separates classical and El Tor biotypes. With the availability of WGS information, several important applications including, molecular typing, antimicrobial resistance, new diagnostics, and vaccination strategies could be generated.
Collapse
Affiliation(s)
- Thandavarayan Ramamurthy
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, India
| | - Ankur Mutreja
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, India.,Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | | | - Bhabatosh Das
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, India
| | - Amit Ghosh
- Department of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
32
|
Fan Y, Li Z, Li Z, Li X, Sun H, Li J, Lu X, Liang W, Kan B. Nonhemolysis of epidemic El Tor biotype strains of Vibrio cholerae is related to multiple functional deficiencies of hemolysin A. Gut Pathog 2019; 11:38. [PMID: 31338129 PMCID: PMC6626427 DOI: 10.1186/s13099-019-0316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/22/2019] [Indexed: 11/10/2022] Open
Abstract
Background Hemolysis of bacteria is an important phenotype used for typing and characterizing strains with specific biomarkers and even a virulence factor in bacterial pathogenesis. In Vibrio cholerae, hemolysin HlyA is responsible for hemolysis of sheep red blood cells, and this hemolytic phenotype is used as a biotyping indicator and considered one of the virulence factors. At the beginning of the seventh cholera pandemic, the El Tor biotype strains of serogroup O1 were distinguished by hemolysis from the sixth pandemic O1 classical biotype strains, whereas during the following epidemics, nonhemolytic El Tor strains appeared, suggesting phenotypic and genetic variations in these strains. This study aimed to investigate the possible mechanisms involved in nonhemolysis of El Tor strains. Results Five sequence types of hlyA genes were found in the studied O1 El Tor strains isolated during the seventh pandemic. A 4-base deletion in hlyA caused the HlyA protein mutation and non-hemolytic phenotype. Some strains carry wildtype hlyA genes but are still non-hemolytic, and greatly reduced hlyA transcription and blocked secretion of hemolysin were observed in hemolysis tests of the subcellular components and transcription/expression analysis of hlyA. Conclusions Mechanisms responsible for nonhemolysis of the epidemic O1 El Tor strains are complex and not only confined to gene mutation but also deficiencies of transcription and extracellular transport of HlyA. Mutations in gene regulation and protein secretion systems of HlyA in the nonhemolytic V. cholerae strains should be areas of concern in future studies.
Collapse
Affiliation(s)
- Yufeng Fan
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping, Beijing, 102206 China.,2Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zhenpeng Li
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping, Beijing, 102206 China.,2Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zhe Li
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping, Beijing, 102206 China.,2Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xu Li
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping, Beijing, 102206 China.,2Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Huihui Sun
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping, Beijing, 102206 China.,2Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jie Li
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping, Beijing, 102206 China.,2Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xin Lu
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping, Beijing, 102206 China.,2Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Weili Liang
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping, Beijing, 102206 China.,2Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Biao Kan
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping, Beijing, 102206 China.,2Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
33
|
Li Y, Zhang S, Li J, Chen M, He M, Wang Y, Zhang Y, Jing H, Ma H, Li Y, Zhao L, Zhao H, Kan B, Pang B. Application of digital PCR and next generation sequencing in the etiology investigation of a foodborne disease outbreak caused by Vibrio parahaemolyticus. Food Microbiol 2019; 84:103233. [PMID: 31421792 DOI: 10.1016/j.fm.2019.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/30/2019] [Accepted: 05/28/2019] [Indexed: 11/17/2022]
Abstract
Globally, V. parahaemolyticus infection is a leading cause of bacterial diarrheal diseases. Pathogenic V. parahaemolyticus strains that produce hemolysins are responsible for these diseases. The composition of pathogenic and non-pathogenic V. parahaemolyticus and the change of the bacterial composition before and after traditional selective enrichment in a single sample associated with disease outbreak remain unclear. We investigated an outbreak by using next generation sequencing and digital PCR to address those questions. NGS showed that the V. parahaemolyticus caused the outbreak belonged to s single clone. In contrast, among the seven non-pathogenic V. parahaemolyticus isolated from the suspected food sample, 4 serotypes and 6 PFGE patterns were identified. And nearly 70,000 SNPs were identified among the non-pathogenic strains. This result confirmed that the outbreak was caused by V. parahaemolyticus. Furthermore, NGS results clearly showed the diversity of non-pathogenic V. parahaemolyticus in a single contaminated food sample. The ratios of non-pathogenic and pathogenic V. parahaemolyticus were 31.41 and 620.11 in the original and enriched food samples respectively showed by digital PCR. Meta-genomic data indicated the top 3 species were Weissella cibaria, Weissella confusa, and Enterobacter cloacae in the original food sample, and Vibrio sp Ex25, Vibrio sp 712i, and V. parahaemolyticus in the enriched sample. Therefore, the combing of NGS and digital PCR results showed that traditional Vibrio selective enrichment media could facilitate the growth of Vibrios, however, it provided no advantages to pathogenic V. parahaemolyticus. Hence, our results indicated that the traditional culture methods alone may lead to wrong conclusions and so improvements in culture methods are needed.
Collapse
Affiliation(s)
- Ying Li
- Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Shuang Zhang
- Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Jie Li
- Beijing Center for Disease Control and Prevention, Beijing, China; Research Center for Preventive Medicine of Beijing, Beijing, China
| | - Meiling Chen
- Beijing Xicheng District Chunshu Community Healthcare Center, Beijing, China
| | - Mu He
- Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Yuanyuan Wang
- Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Yanchun Zhang
- Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Hongbo Jing
- Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Hongmei Ma
- Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Yindong Li
- Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Lin Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hongqun Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China; Sanming Project of Medicine in Shenzhen, No. SZSM201811071, Beijing, China.
| | - Bo Pang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China; Sanming Project of Medicine in Shenzhen, No. SZSM201811071, Beijing, China.
| |
Collapse
|
34
|
Li Z, Pang B, Wang D, Li J, Xu J, Fang Y, Lu X, Kan B. Expanding dynamics of the virulence-related gene variations in the toxigenic Vibrio cholerae serogroup O1. BMC Genomics 2019; 20:360. [PMID: 31072300 PMCID: PMC6509779 DOI: 10.1186/s12864-019-5725-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 04/23/2019] [Indexed: 01/16/2023] Open
Abstract
Background Toxigenic Vibrio cholerae serogroup O1 is the causative pathogen in the sixth and seventh cholera pandemics. Cholera toxin is the major virulent factor but other virulence and virulence-related factors play certain roles in the pathogenesis and survival in the host. Along with the evolution of the epidemic strains, the virulence-related genes also experience variation, gain and loss, and lead to genetic divergence in different strains. Results In this study, we analyzed the virulence-related gene profiles in the toxigenic serogroup O1 strains isolated from 1923 to 2015, the genomes of which were publicly available. The virulence-related genes of the V. cholerae O1 strains were annotated based on the Virulence Factors Database (VFDB). An average of 230.1 virulence-related genes per strain were identified; significant differences in the average numbers were found between the classical and El Tor biotypes, and increasing trends in the number of virulence-related genes along with the isolation years were observed in the El Tor biotype strains. A total of 176 homologs of virulence-related genes were found from these strains, of which 25 belonged to the core genes, suggesting their conservative and necessary roles in V. cholerae pathogenesis. We described the diversities of the homologs by defining gene sequence type, and illustrated its association with gene duplication; we found that gene duplication clearly increased the complexity of the gene sequence types in the core virulence-related genes. In addition, we provided virulence-related gene profiles whose genetic characteristic depend on the isolation years from the view of gene gain and loss, variation, gene duplication and gene sequence type number. Conclusions Our study reveals the comprehensive variation dynamics of the virulence-related genes in toxigenic V. cholerae serogroup O1 during epidemics. The increasing trend for the virulence-related genes may suggest the evolutional advantage of strains by gaining virulence-related genes with diverse functional categories. Electronic supplementary material The online version of this article (10.1186/s12864-019-5725-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenpeng Li
- State Key Laboratory for Infectious Disease Prevention and Control. National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Bo Pang
- State Key Laboratory for Infectious Disease Prevention and Control. National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Duochun Wang
- State Key Laboratory for Infectious Disease Prevention and Control. National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Jie Li
- State Key Laboratory for Infectious Disease Prevention and Control. National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Jialiang Xu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, School of Food and Chemical Engeering, Beijing Technology and Business University, Beijing, 100048, China
| | - Yujie Fang
- State Key Laboratory for Infectious Disease Prevention and Control. National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Xin Lu
- State Key Laboratory for Infectious Disease Prevention and Control. National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China.
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control. National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China.
| |
Collapse
|
35
|
Fu S, Hao J, Jin S, Wu K, Wang Y, Ye S, Liu Y, Li R. A Human Intestinal Infection Caused by a Novel Non-O1/O139 Vibrio cholerae Genotype and Its Dissemination Along the River. Front Public Health 2019; 7:100. [PMID: 31069211 PMCID: PMC6491804 DOI: 10.3389/fpubh.2019.00100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/08/2019] [Indexed: 12/25/2022] Open
Abstract
Non-O1/O139 Vibrio cholerae is increasingly reported in the clinical settings. However, intestinal infections via the consumption of non-O1/O139 V. cholerae-carrying seafood are rarely documented in China. In this study, we reported a case of mild watery diarrhea in a young male, caused by non-O1/O139 V. cholerae in the downstream of Liaohe River. Epidemiological investigation showed that this intestinal infection potentially associated with the raw consumption of mollusc. Prior to this finding, we conducted a 6-month pathogen surveillance of three locations along the Liaohe River and identified three environmental non-O1/O139 V. cholerae strains. To confirm the epidemiological links between clinical and environmental strains, high-resolution genomic typing was employed and revealed that V. cholerae isolated from human stool sample was genomically related to the one found in local mollusc and shared a common ancestor with other environmental strains obtained in the upstream sites of the Liaohe River. This fact suggests that the river is a natural reservoir for non-O1/O139 V. cholerae which poses a potential threat to the public health. In summary, our results deepened the insights on the transmission of non-pandemic V. cholerae strains and underscored the significance of genomic surveillance for drinking water along the river sites.
Collapse
Affiliation(s)
- Songzhe Fu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Jingwei Hao
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Shibo Jin
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Kui Wu
- Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Yi Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Shigen Ye
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Ying Liu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Ruijun Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| |
Collapse
|
36
|
Genomic comparison of serogroups O159 and O170 with other Vibrio cholerae serogroups. BMC Genomics 2019; 20:241. [PMID: 30909880 PMCID: PMC6434791 DOI: 10.1186/s12864-019-5603-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 03/13/2019] [Indexed: 12/04/2022] Open
Abstract
Background Of the hundreds of Vibrio cholerae serogroups, O1 and O139 are the main epidemic-causing ones. Although non-O1/non-O139 serogroups rarely cause epidemics, the possibility exists for strains within them to have pathogenic potential. Results We selected 25 representative strains within 16 V. cholerae serogroups and examined their genomic and functional characteristics. We tentatively constructed a gene pool containing 405 homologous gene clusters, which is well organized and functions in O-antigen polysaccharide (O-PS) synthesis. Our network analysis indicate that great diversity exists in O-PS among the serogroups, and several serogroup pairs share a high number of homologous genes (e.g., O115 and O37; O170 and O139; O12 and O39). The phylogenetic analysis results suggest that a close relationship exists between serogroups O170, O89 and O144, based on neighbor-joining (NJ) and gene trees, although serogroup O159 showed an inconsistent phylogenetic relationship between the NJ tree and the gene tree, indicating that it may have undergone extensive recombination and horizontal gene transfer. Different phylogenetic structures were observed between the core genes, pan genes, and O-PS genes. The virulence gene analysis indicated that the virulence genes from all the representative strains may have their sources from four particular bacteria (Pseudomonas aeruginosa, V. vulnificus, Haemophilus somnus and H. influenzae), which suggests that V. cholerae may have exchanged virulence genes with other bacterial genera or species in certain environments. The mobile genetic element analysis indicated that O159 carries nearly complete VSP-II and partial VPI-1 and VPI-2, O170 carries partial VPI-1 and VPI-2, and several non-O1/non-O139 strains contain full or partial VPI-1 and VPI-2. Several genes showing evidence of positive selection are involved in chemotaxis, Na + resistance, or cell wall synthesis, suggestive of environmental adaptation. Conclusions This study reports on the newly sequenced O159 and O170 genomes and their comparisons with other V. cholerae serogroups. The complicated O-PS network of constituent genes highlights the detailed recombination mechanisms that have acted on the serogroups’ genomes. The serogroups have different virulence-related gene profiles, and there is evidence of positive selection acting on other genes, possibly during adaptation to different environments and hosts. Electronic supplementary material The online version of this article (10.1186/s12864-019-5603-7) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Greenhill AR, Mutreja A, Bulach D, Belousoff MJ, Jonduo MH, Collins DA, Kas MP, Wapling J, Seemann T, Lafana A, Dougan G, Brown MV, Horwood PF. Wave 2 strains of atypical Vibrio cholerae El Tor caused the 2009-2011 cholera outbreak in Papua New Guinea. Microb Genom 2019; 5. [PMID: 30810520 PMCID: PMC6487313 DOI: 10.1099/mgen.0.000256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vibrio cholerae is the causative agent of cholera, a globally important human disease for at least 200 years. In 2009–2011, the first recorded cholera outbreak in Papua New Guinea (PNG) occurred. We conducted genetic and phenotypic characterization of 21 isolates of V. cholerae, with whole-genome sequencing conducted on 2 representative isolates. The PNG outbreak was caused by an atypical El Tor strain harbouring a tandem repeat of the CTX prophage on chromosome II. Whole-genome sequence data, prophage structural analysis and the absence of the SXT integrative conjugative element was indicative that the PNG isolates were most closely related to strains previously isolated in South-East and East Asia with affiliations to global wave 2 strains. This finding suggests that the cholera outbreak in PNG was caused by an exotic (non-endemic) strain of V. cholerae that originated in South-East Asia.
Collapse
Affiliation(s)
- Andrew R Greenhill
- 2School of Health and Life Sciences, Federation University Australia, Churchill, Australia.,1Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Ankur Mutreja
- 3Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,4Department of Medicine, University of Cambridge, Cambridge, UK
| | - Dieter Bulach
- 5Melbourne Bioinformatics, The University of Melbourne, Parkville, Australia.,6Department of Microbiology, Monash University, Clayton, Australia
| | | | - Marinjho H Jonduo
- 1Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Deirdre A Collins
- 1Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea.,7School of Medicinal and Health Sciences, Edith Cowan University, Perth, Australia
| | - Monalisa P Kas
- 1Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Johanna Wapling
- 1Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Torsten Seemann
- 5Melbourne Bioinformatics, The University of Melbourne, Parkville, Australia
| | - Alice Lafana
- 1Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Gordon Dougan
- 3Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Mark V Brown
- 8School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Paul F Horwood
- 1Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea.,9Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| |
Collapse
|
38
|
Wang H, Xing X, Wang J, Pang B, Liu M, Larios-Valencia J, Liu T, Liu G, Xie S, Hao G, Liu Z, Kan B, Zhu J. Hypermutation-induced in vivo oxidative stress resistance enhances Vibrio cholerae host adaptation. PLoS Pathog 2018; 14:e1007413. [PMID: 30376582 PMCID: PMC6226196 DOI: 10.1371/journal.ppat.1007413] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/09/2018] [Accepted: 10/18/2018] [Indexed: 01/08/2023] Open
Abstract
Bacterial pathogens are highly adaptable organisms, a quality that enables them to overcome changing hostile environments. For example, Vibrio cholerae, the causative agent of cholera, is able to colonize host small intestines and combat host-produced reactive oxygen species (ROS) during infection. To dissect the molecular mechanisms utilized by V. cholerae to overcome ROS in vivo, we performed a whole-genome transposon sequencing analysis (Tn-seq) by comparing gene requirements for colonization using adult mice with and without the treatment of the antioxidant, N-acetyl cysteine. We found that mutants of the methyl-directed mismatch repair (MMR) system, such as MutS, displayed significant colonization advantages in untreated, ROS-rich mice, but not in NAC-treated mice. Further analyses suggest that the accumulation of both catalase-overproducing mutants and rugose colony variants in NAC- mice was the leading cause of mutS mutant enrichment caused by oxidative stress during infection. We also found that rugose variants could revert back to smooth colonies upon aerobic, in vitro culture. Additionally, the mutation rate of wildtype colonized in NAC- mice was significantly higher than that in NAC+ mice. Taken together, these findings support a paradigm in which V. cholerae employs a temporal adaptive strategy to battle ROS during infection, resulting in enriched phenotypes. Moreover, ΔmutS passage and complementation can be used to model hypermuation in diverse pathogens to identify novel stress resistance mechanisms. Cholera is a devastating diarrheal disease that is still endemic to many developing nations, with the worst outbreak in history having occurred recently in Yemen. Vibrio cholerae, the causative agent of cholera, transitions from aquatic reservoirs to the human gastrointestinal tract, where it expresses virulence factors to facilitate colonization of the small intestines and to combat host innate immune effectors, such as reactive oxygen species (ROS). We applied a genome-wide transposon screen (Tn-seq) and identified that deletion of mutS, which is part of DNA mismatch repair system, drastically increased colonization in ROS-rich mice. The deletion of mutS led to the accumulation of catalase-overproducing mutants and a high frequency rugose phenotype when exposed to ROS selective pressures in vivo. Additionally, ROS elevated mutation frequency in wildtype, both in vitro and in vivo. Our data imply that V. cholerae may modulate mutation frequency as a temporal adaptive strategy to overcome oxidative stress and to enhance infectivity.
Collapse
Affiliation(s)
- Hui Wang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
- * E-mail: (HW); (JH)
| | - Xiaolin Xing
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Jipeng Wang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Bo Pang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ming Liu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Jessie Larios-Valencia
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Tao Liu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Ge Liu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Saijun Xie
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Guijuan Hao
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Zhi Liu
- Department of Biotechnology, Huazhong University of Science and Technology, Wuhan, China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
- * E-mail: (HW); (JH)
| |
Collapse
|
39
|
Yahara K, Nakayama SI, Shimuta K, Lee KI, Morita M, Kawahata T, Kuroki T, Watanabe Y, Ohya H, Yasuda M, Deguchi T, Didelot X, Ohnishi M. Genomic surveillance of Neisseria gonorrhoeae to investigate the distribution and evolution of antimicrobial-resistance determinants and lineages. Microb Genom 2018; 4:e000205. [PMID: 30063202 PMCID: PMC6159555 DOI: 10.1099/mgen.0.000205] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022] Open
Abstract
The first extensively drug resistant (XDR) Neisseria gonorrhoeae strain with high resistance to the extended-spectrum cephalosporin ceftriaxone was identified in 2009 in Japan, but no other strain with this antimicrobial-resistance profile has been reported since. However, surveillance to date has been based on phenotypic methods and sequence typing, not genome sequencing. Therefore, little is known about the local population structure at the genomic level, and how resistance determinants and lineages are distributed and evolve. We analysed the whole-genome sequence data and the antimicrobial-susceptibility testing results of 204 strains sampled in a region where the first XDR ceftriaxone-resistant N. gonorrhoeae was isolated, complemented with 67 additional genomes from other time frames and locations within Japan. Strains resistant to ceftriaxone were not found, but we discovered a sequence type (ST)7363 sub-lineage susceptible to ceftriaxone and cefixime in which the mosaic penA allele responsible for reduced susceptibility had reverted to a susceptible allele by recombination. Approximately 85 % of isolates showed resistance to fluoroquinolones (ciprofloxacin) explained by linked amino acid substitutions at positions 91 and 95 of GyrA with 99 % sensitivity and 100 % specificity. Approximately 10 % showed resistance to macrolides (azithromycin), for which genetic determinants are less clear. Furthermore, we revealed different evolutionary paths of the two major lineages: single acquisition of penA X in the ST7363-associated lineage, followed by multiple independent acquisitions of the penA X and XXXIV in the ST1901-associated lineage. Our study provides a detailed picture of the distribution of resistance determinants and disentangles the evolution of the two major lineages spreading worldwide.
Collapse
Affiliation(s)
- Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shu-ichi Nakayama
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Shimuta
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken-ichi Lee
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masatomo Morita
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuya Kawahata
- Virology Section, Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Toshiro Kuroki
- Department of Microbiology, Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
- Present address: Faculty of Veterinary Medicine, Okayama University of Science, 1-3, Ikoinooka, Imabari, Ehime 794-8555, Japan
| | - Yuko Watanabe
- Department of Microbiology, Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | - Hitomi Ohya
- Department of Microbiology, Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | - Mitsuru Yasuda
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Takashi Deguchi
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College, London, UK
| | - Makoto Ohnishi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
40
|
Domman D, Chowdhury F, Khan AI, Dorman MJ, Mutreja A, Uddin MI, Paul A, Begum YA, Charles RC, Calderwood SB, Bhuiyan TR, Harris JB, LaRocque RC, Ryan ET, Qadri F, Thomson NR. Defining endemic cholera at three levels of spatiotemporal resolution within Bangladesh. Nat Genet 2018; 50:951-955. [PMID: 29942084 PMCID: PMC6283067 DOI: 10.1038/s41588-018-0150-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/02/2018] [Indexed: 11/08/2022]
Abstract
Although much focus is placed on cholera epidemics, the greatest burden occurs in settings in which cholera is endemic, including areas of South Asia, Africa and now Haiti1,2. Dhaka, Bangladesh is a megacity that is hyper-endemic for cholera, and experiences two regular seasonal outbreaks of cholera each year3. Despite this, a detailed understanding of the diversity of Vibrio cholerae strains circulating in this setting, and their relationships to annual outbreaks, has not yet been obtained. Here we performed whole-genome sequencing of V. cholerae across several levels of focus and scale, at the maximum possible resolution. We analyzed bacterial isolates to define cholera dynamics at multiple levels, ranging from infection within individuals, to disease dynamics at the household level, to regional and intercontinental cholera transmission. Our analyses provide a genomic framework for understanding cholera diversity and transmission in an endemic setting.
Collapse
Affiliation(s)
- Daryl Domman
- Infection Genomics Programme, Wellcome Sanger Institute, Hinxton, UK.
| | - Fahima Chowdhury
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Ashraful I Khan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Matthew J Dorman
- Infection Genomics Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Ankur Mutreja
- Infection Genomics Programme, Wellcome Sanger Institute, Hinxton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Muhammad Ikhtear Uddin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Anik Paul
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Yasmin A Begum
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Taufiqur R Bhuiyan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Nicholas R Thomson
- Infection Genomics Programme, Wellcome Sanger Institute, Hinxton, UK.
- London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
41
|
Ogasawara K, Inoue T. Long-run effects of early childhood exposure to cholera on final height: Evidence from industrializing Japan. SSM Popul Health 2018; 4:66-70. [PMID: 29349274 PMCID: PMC5769111 DOI: 10.1016/j.ssmph.2017.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 11/07/2022] Open
Abstract
Pandemic cholera is one of the most topical and urgent issues in many developing countries. However, although a growing body of research has shown the negative long-run effects of infectious disease exposure on human health, the long-run influences of early childhood exposure to cholera have thus far been understudied. To bridge this gap in the body of knowledge, we draw both on new data describing adult height from 1899 to 1910 from comprehensive official Japanese army records and on data recording the regional variation in the intensity of cholera pandemics. By using a difference-in-differences estimation strategy, we find that exposure to pandemic cholera had stunting effects on the final height of men at that time. Our estimates also suggest that early-infancy exposure to cholera seems to have a stronger long-run effect on adult height than late-infancy exposure.
Collapse
Affiliation(s)
- Kota Ogasawara
- Graduate School of Social Sciences, Chiba University, 1-33, Yayoicho, Inage-ku, Chiba 263-8522, Japan
| | - Tatsuki Inoue
- Graduate School of Economics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
42
|
Mironova LV, Gladkikh AS, Ponomareva AS, Feranchuk SI, Bochalgin NО, Basov EA, Yu Khunkheeva Z, Balakhonov SV. Comparative genomics of Vibrio cholerae El Tor strains isolated at epidemic complications in Siberia and at the Far East. INFECTION GENETICS AND EVOLUTION 2018; 60:80-88. [PMID: 29462719 DOI: 10.1016/j.meegid.2018.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 11/30/2022]
Abstract
The territory of Siberia and the Far East of Russia is classified as epidemically safe for cholera; however, in the 1970s and 1990s a number of infection importation cases and acute outbreaks associated with the cholera importation were reported. Here, we analyze genomes of four Vibrio cholerae El Tor strains isolated from humans during epidemic complications (imported cases, an outbreak) in the 1990s. The analyzed strains harbor the classical allele of the cholera toxin subunit B gene (ctxB1); thus, belong to genetically altered variants of the El Tor biotype. Analysis of the genomes revealed their high homology with the V. cholerae N16961 reference strain: 85-93 SNPs were identified in the core genome as compared to the reference. The determined features of SNPs in the CTX prophage made it possible to propose the presence of a new subtype - CTX-2a in two strains; the other two strains carried the prophage of CTX-3 type. Results of phylogenetic analysis based on SNP-typing demonstrated that two strains belonged to the second wave, and two - to the early third wave of cholera dissemination in the world. Phylogenetic reconstruction in combination with epidemiological data permitted to trace the origin of the strains and the way of their importation to the Russian Federation directly or through temporary cholera foci.
Collapse
Affiliation(s)
- Liliya V Mironova
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - Anna S Gladkikh
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia.
| | - Anna S Ponomareva
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - Sergey I Feranchuk
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia; Limnological Institute of Siberian Branch of Russian Academy of Sciences, 3, Ulan-Batorskaya str., Irkutsk 664033, Russia
| | - Nikita О Bochalgin
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - Evgenii A Basov
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - Zhanna Yu Khunkheeva
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - Sergey V Balakhonov
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| |
Collapse
|
43
|
Hauck S, Maiden MCJ. Clonally Evolving Pathogenic Bacteria. MOLECULAR MECHANISMS OF MICROBIAL EVOLUTION 2018. [DOI: 10.1007/978-3-319-69078-0_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Fan F, Li X, Pang B, Zhang C, Li Z, Zhang L, Li J, Zhang J, Yan M, Liang W, Kan B. The outer-membrane protein TolC of Vibrio cholerae serves as a second cell-surface receptor for the VP3 phage. J Biol Chem 2017; 293:4000-4013. [PMID: 29259138 DOI: 10.1074/jbc.m117.805689] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
Receptor recognition is a key step in the initiation of phage infection. Previously, we found that VP3, the T7 family phage of the Vibrio cholerae serogroup O1 biotype El Tor, can adsorb the core oligosaccharide (OS) of lipopolysaccharides of V. cholerae However, some wildtype strains of V. cholerae possessing the intact OS gene cluster still have VP3 binding but are resistant to VP3 infection. Moreover, an OS gene-deletion mutant still exhibits weak VP3 binding, suggesting multiple factors are possibly involved in VP3 binding to V. cholerae Here, we report that the outer-membrane protein TolC of V. cholerae is involved in the host adsorption of VP3. We observed that TolC directly interacts with the VP3 tail fiber protein gp44 and its C-terminal domains, and we also found that three amino acid residues in the outside loops of TolC, at positions 78, 290, and 291, are critical for binding to gp44. Among the VP3-resistant wildtype V. cholerae strains, frequent amino acid residue mutations were observed in the loops around the sites 78, 290, and 291, which were predicted to be exposed to the cell surface. These findings reveal a co-receptor-binding mechanism for VP3 infection of V. cholerae and that both outer-membrane TolC and OS are necessary for successful VP3 infection of V. cholerae We conclude that mutations on the outside loops of the receptor may confer V. cholerae strains with VP3 phage resistance, enabling these strains to survive in environments containing VP3 or related phages.
Collapse
Affiliation(s)
- Fenxia Fan
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Xu Li
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Bo Pang
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Cheng Zhang
- the National Institute of Biological Sciences, Beijing 102206, China
| | - Zhe Li
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Lijuan Zhang
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Jie Li
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Jingyun Zhang
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Meiying Yan
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Weili Liang
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206.,the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, and
| | - Biao Kan
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, .,the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, and
| |
Collapse
|
45
|
Fu S, Tian H, Wei D, Zhang X, Liu Y. Delineating the Origins of Vibrio parahaemolyticus Isolated from Outbreaks of Acute Hepatopancreatic Necrosis Disease in Asia by the Use of Whole Genome Sequencing. Front Microbiol 2017; 8:2354. [PMID: 29234316 PMCID: PMC5712426 DOI: 10.3389/fmicb.2017.02354] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/15/2017] [Indexed: 12/04/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is an emerging penaeid shrimp disease caused by Vibrio parahaemolyticus. Although V. parahaemolyticus has been isolated and sequenced from several Asia countries, the epidemiological links among the AHPND outbreaks in different locations remain unclear. In this study, we sequenced the genomes of nine strains isolated in China between 2014 and 2016 from four sampling sites in three provinces. Analysis of single nucleotide polymorphisms (SNPs) among the nine isolates yielded an average of 35,519 SNPs per isolate, ranging from 35,001 SNPs to 35,889 SNPs relative to the reference genome FDA_R31. To capture the genetic diversity of V. parahaemolyticus in Asia and Mexico, 93 published genomes were included in the analysis. Phylogenetic analysis divided the 102 isolates into 5 clades from I to V, with the majority belonging to Clade I and Clade II. There were at least 12 independent AHPND related clones. The results indicated that the clones recovered from AHPND affected shrimps in Asia were genomically distinct in various locations and there are no epidemiological links between Asian and Mexico outbreaks. Core genome analysis of pVA-1-like plasmid sequences from V. parahaemolyticus revealed that the AHPND-associated plasmids were also genetically diverse. Homology analysis of the publicly available microbial genomes showed that the conjugative transfer gene clusters of the plasmids in AHPND-causing strains were found in 27 V. parahaemolyticus strains and several other Vibrio sp. from 10 countries including five strains isolated prior to the first identification of AHPND outbreak, indicating that the backbone of AHPND- associated plasmid was widely distributed around the globe. In conclusion, at least 11 origins of AHPND outbreaks were identified; as AHPND-causing plasmid is widely distributed globally, prevention strategies for AHPND need to focus on microbial management in the aquaculture system and establishing ecological friendly aquaculture practices instead of detection of plasmid alone. However, more strains from other Asia countries as well as Mexico need to be included for whole genome sequencing (WGS) for reconstruction of the global transmission and the spread patterns of AHPND.
Collapse
Affiliation(s)
- Songzhe Fu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China.,Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Huiqin Tian
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Dawei Wei
- College of Life Science, Northwest Agriculture and Forestry University, Yangling, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ying Liu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China.,Nantong R&D Center, Chinese Academy of Sciences, Nantong, China
| |
Collapse
|
46
|
Domman D, Quilici ML, Dorman MJ, Njamkepo E, Mutreja A, Mather AE, Delgado G, Morales-Espinosa R, Grimont PAD, Lizárraga-Partida ML, Bouchier C, Aanensen DM, Kuri-Morales P, Tarr CL, Dougan G, Parkhill J, Campos J, Cravioto A, Weill FX, Thomson NR. Integrated view of Vibrio cholerae in the Americas. Science 2017; 358:789-793. [DOI: 10.1126/science.aao2136] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/10/2017] [Indexed: 01/24/2023]
Abstract
Latin America has experienced two of the largest cholera epidemics in modern history; one in 1991 and the other in 2010. However, confusion still surrounds the relationships between globally circulating pandemic Vibrio cholerae clones and local bacterial populations. We used whole-genome sequencing to characterize cholera across the Americas over a 40-year time span. We found that both epidemics were the result of intercontinental introductions of seventh pandemic El Tor V. cholerae and that at least seven lineages local to the Americas are associated with disease that differs epidemiologically from epidemic cholera. Our results consolidate historical accounts of pandemic cholera with data to show the importance of local lineages, presenting an integrated view of cholera that is important to the design of future disease control strategies.
Collapse
Affiliation(s)
- Daryl Domman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Marie-Laure Quilici
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris, 75015, France
| | - Matthew J. Dorman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Elisabeth Njamkepo
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris, 75015, France
| | - Ankur Mutreja
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0SP, UK
| | - Alison E. Mather
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Gabriella Delgado
- Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico, D.F., Mexico
| | - Rosario Morales-Espinosa
- Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico, D.F., Mexico
| | - Patrick A. D. Grimont
- Institut Pasteur, Unité Biodiversité des Bactéries Pathogènes Emergentes, Paris, 75015, France
| | | | | | - David M. Aanensen
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Pablo Kuri-Morales
- Subsecretaría de Prevención y Promoción de la Salud, Secretaría de Salud, Ciudad de México, Mexico
| | - Cheryl L. Tarr
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0SP, UK
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Josefina Campos
- Instituto Nacional de Enfermedades Infecciosas, ANLIS, Buenos Aires, Argentina
| | - Alejandro Cravioto
- Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico, D.F., Mexico
| | - François-Xavier Weill
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris, 75015, France
| | - Nicholas R. Thomson
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
47
|
Weill FX, Domman D, Njamkepo E, Tarr C, Rauzier J, Fawal N, Keddy KH, Salje H, Moore S, Mukhopadhyay AK, Bercion R, Luquero FJ, Ngandjio A, Dosso M, Monakhova E, Garin B, Bouchier C, Pazzani C, Mutreja A, Grunow R, Sidikou F, Bonte L, Breurec S, Damian M, Njanpop-Lafourcade BM, Sapriel G, Page AL, Hamze M, Henkens M, Chowdhury G, Mengel M, Koeck JL, Fournier JM, Dougan G, Grimont PAD, Parkhill J, Holt KE, Piarroux R, Ramamurthy T, Quilici ML, Thomson NR. Genomic history of the seventh pandemic of cholera in Africa. Science 2017; 358:785-789. [DOI: 10.1126/science.aad5901] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/10/2017] [Indexed: 11/02/2022]
Abstract
The seventh cholera pandemic has heavily affected Africa, although the origin and continental spread of the disease remain undefined. We used genomic data from 1070 Vibrio cholerae O1 isolates, across 45 African countries and over a 49-year period, to show that past epidemics were attributable to a single expanded lineage. This lineage was introduced at least 11 times since 1970, into two main regions, West Africa and East/Southern Africa, causing epidemics that lasted up to 28 years. The last five introductions into Africa, all from Asia, involved multidrug-resistant sublineages that replaced antibiotic-susceptible sublineages after 2000. This phylogenetic framework describes the periodicity of lineage introduction and the stable routes of cholera spread, which should inform the rational design of control measures for cholera in Africa.
Collapse
Affiliation(s)
- François-Xavier Weill
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris, 75015, France
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Daryl Domman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Elisabeth Njamkepo
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris, 75015, France
| | - Cheryl Tarr
- Centers for Disease Control and Prevention, Escherichia and Shigella Reference Unit, Atlanta, GA 30333, USA
| | - Jean Rauzier
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris, 75015, France
| | - Nizar Fawal
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris, 75015, France
| | - Karen H. Keddy
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Henrik Salje
- Institut Pasteur, Mathematical Modelling of Infectious Diseases, Paris, 75015, France
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Sandra Moore
- Laboratoire de Parasitologie-Mycologie, CHU Timone, Université de la Méditerranée, Marseille, 13385, France
| | - Asish K. Mukhopadhyay
- National Institute of Cholera and Enteric Diseases (NICED), Kolkata, West Bengal 700010, India
| | - Raymond Bercion
- Institut Pasteur de Bangui, BP 923, Bangui, Central African Republic
- Institut Pasteur de Dakar, BP 220, Dakar, Senegal
| | | | | | - Mireille Dosso
- Bacteriology and Virology Department, Institut Pasteur, Abidjan, Côte d'Ivoire
| | - Elena Monakhova
- Rostov-on-Don Research Institute for Plague Control, Rostov-on-Don, 344022, Russia
| | - Benoit Garin
- Institut Pasteur de Dakar, BP 220, Dakar, Senegal
| | | | - Carlo Pazzani
- University of Bari “A. Moro”, Department of Biology, Bari, 70126, Italy
| | - Ankur Mutreja
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0SP, UK
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| | | | - Fati Sidikou
- Centre de Recherche Medicale et Sanitaire (CERMES), BP 10887, Niamey, Niger
| | | | - Sébastien Breurec
- Institut Pasteur de Bangui, BP 923, Bangui, Central African Republic
| | - Maria Damian
- Cantacuzino National Institute of Research-Development for Microbiology and Immunology, Bucharest, Romania
| | | | - Guillaume Sapriel
- Université de Versailles Saint-Quentin-en-Yvelines, UFR des sciences de la santé Simone Veil, Montigny-le-Bretonneux, 78180, France
- Atelier de Bioinformatique, ISYEB, UMR 7205, Paris, 75005, France
| | | | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), EDST-FSP, Université Libanaise, Tripoli, Lebanon
| | | | - Goutam Chowdhury
- National Institute of Cholera and Enteric Diseases (NICED), Kolkata, West Bengal 700010, India
| | - Martin Mengel
- Agence de Médecine Préventive (AMP), Paris, 75015, France
| | - Jean-Louis Koeck
- Centre Hospitalier des Armées Bouffard, Djibouti, Republic of Djibouti
| | | | - Gordon Dougan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0SP, UK
| | - Patrick A. D. Grimont
- Institut Pasteur, Unité Biodiversité des Bactéries Pathogènes Emergentes, Paris, 75015, France
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Kathryn E. Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Renaud Piarroux
- Laboratoire de Parasitologie-Mycologie, CHU Timone, Université de la Méditerranée, Marseille, 13385, France
| | | | - Marie-Laure Quilici
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris, 75015, France
- Institut Pasteur, Unité du Choléra et des Vibrions, Paris, 75015, France
| | - Nicholas R. Thomson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
48
|
Klemm E, Dougan G. Advances in Understanding Bacterial Pathogenesis Gained from Whole-Genome Sequencing and Phylogenetics. Cell Host Microbe 2017; 19:599-610. [PMID: 27173928 DOI: 10.1016/j.chom.2016.04.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 01/07/2023]
Abstract
The development of next-generation sequencing as a cost-effective technology has facilitated the analysis of bacterial population structure at a whole-genome level and at scale. From these data, phylogenic trees have been constructed that define population structures at a local, national, and global level, providing a framework for genetic analysis. Although still at an early stage, these approaches have yielded progress in several areas, including pathogen transmission mapping, the genetics of niche colonization and host adaptation, as well as gene-to-phenotype association studies. Antibiotic resistance has proven to be a major challenge in the early 21(st) century, and phylogenetic analyses have uncovered the dramatic effect that the use of antibiotics has had on shaping bacterial population structures. An update on insights into bacterial evolution from comparative genomics is provided in this review.
Collapse
Affiliation(s)
- Elizabeth Klemm
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| |
Collapse
|
49
|
Didelot X, Fraser C, Gardy J, Colijn C. Genomic Infectious Disease Epidemiology in Partially Sampled and Ongoing Outbreaks. Mol Biol Evol 2017; 34:997-1007. [PMID: 28100788 PMCID: PMC5850352 DOI: 10.1093/molbev/msw275] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genomic data are increasingly being used to understand infectious disease epidemiology. Isolates from a given outbreak are sequenced, and the patterns of shared variation are used to infer which isolates within the outbreak are most closely related to each other. Unfortunately, the phylogenetic trees typically used to represent this variation are not directly informative about who infected whom-a phylogenetic tree is not a transmission tree. However, a transmission tree can be inferred from a phylogeny while accounting for within-host genetic diversity by coloring the branches of a phylogeny according to which host those branches were in. Here we extend this approach and show that it can be applied to partially sampled and ongoing outbreaks. This requires computing the correct probability of an observed transmission tree and we herein demonstrate how to do this for a large class of epidemiological models. We also demonstrate how the branch coloring approach can incorporate a variable number of unique colors to represent unsampled intermediates in transmission chains. The resulting algorithm is a reversible jump Monte-Carlo Markov Chain, which we apply to both simulated data and real data from an outbreak of tuberculosis. By accounting for unsampled cases and an outbreak which may not have reached its end, our method is uniquely suited to use in a public health environment during real-time outbreak investigations. We implemented this transmission tree inference methodology in an R package called TransPhylo, which is freely available from https://github.com/xavierdidelot/TransPhylo.
Collapse
Affiliation(s)
- Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, United Kingdom
| | - Christophe Fraser
- Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, United Kingdom
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jennifer Gardy
- Communicable Disease Prevention and Control Services, British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Caroline Colijn
- Department of Mathematics, Imperial College, London, United Kingdom
| |
Collapse
|
50
|
Baltrus DA, McCann HC, Guttman DS. Evolution, genomics and epidemiology of Pseudomonas syringae: Challenges in Bacterial Molecular Plant Pathology. MOLECULAR PLANT PATHOLOGY 2017; 18:152-168. [PMID: 27798954 PMCID: PMC6638251 DOI: 10.1111/mpp.12506] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 05/12/2023]
Abstract
A remarkable shift in our understanding of plant-pathogenic bacteria is underway. Until recently, nearly all research on phytopathogenic bacteria was focused on a small number of model strains, which provided a deep, but narrow, perspective on plant-microbe interactions. Advances in genome sequencing technologies have changed this by enabling the incorporation of much greater diversity into comparative and functional research. We are now moving beyond a typological understanding of a select collection of strains to a more generalized appreciation of the breadth and scope of plant-microbe interactions. The study of natural populations and evolution has particularly benefited from the expansion of genomic data. We are beginning to have a much deeper understanding of the natural genetic diversity, niche breadth, ecological constraints and defining characteristics of phytopathogenic species. Given this expanding genomic and ecological knowledge, we believe the time is ripe to evaluate what we know about the evolutionary dynamics of plant pathogens.
Collapse
Affiliation(s)
| | - Honour C. McCann
- New Zealand Institute for Advanced StudyMassey UniversityAuckland 0632New Zealand
| | - David S. Guttman
- Department of Cell and Systems BiologyUniversity of TorontoTorontoON M5S 3B2Canada
- Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoTorontoON M5S 3B2Canada
| |
Collapse
|