1
|
Kordikowski Boix R, Bos E, Shademan M, Mallon S, van Zanen-Gerhardt S, Lu-Nguyen N, Malerba A, Coenen de Roo CJJ, Raz V. Histopathologic Marks of Tongue in a Mouse Model of Oculopharyngeal Muscular Dystrophy Suggest Biomechanical Defects. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:741-753. [PMID: 39800052 DOI: 10.1016/j.ajpath.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/15/2025]
Abstract
Difficulty swallowing (dysphagia) is common in the elderly population and in patients with adult-onset neuromuscular disease. In oculopharyngeal muscular dystrophy (OPMD), dysphagia is often the first symptom. OPMD is an autosomal-dominant myopathy caused by a trinucleotide-expansion mutation in the gene encoding poly(A) binding protein nuclear 1 (PABPN1). Expanded-mutant PABPN1 forms insoluble nuclear aggregates that reduce the levels of the soluble form. Clinical tongue involvement in OPMD has been documented but is poorly understood. Histopathologic analysis of the tongue in an OPMD mouse model was done by light and electron microscopy combined with RNA sequencing. PABPN1 nuclear aggregates were found at moderate levels, whereas deposition of insoluble PABPN1 in blood vessels was prominent already at 4 months of age. Muscle wasting of the tongue was age associated. RNA signatures of the OPMD tongue were enriched for mitochondrial and cytoskeletal genes. Electron microscopy revealed abnormalities in sarcomere and mitochondria organization in A17/+ mice, suggesting an energy and contractile deficit in OPMD tongue. This detailed analysis of the histopathology of the tongue in the A17/+ mouse model opens new avenues for understanding the mechanisms of dysphagia.
Collapse
Affiliation(s)
| | - Erik Bos
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Milad Shademan
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Mallon
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Ngoc Lu-Nguyen
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, United Kingdom
| | - Alberto Malerba
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, United Kingdom
| | | | - Vered Raz
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
2
|
Smith IC, Sampaio ML, Melkus G, Meier-Ross K, Chakraborty S, Stotts C, Bourque PR, Lochmuller H, Brais B, Ayoub O, Perkins TJ, Khacho M, Warman-Chardon J. Plasma-derived protein and imaging biomarkers distinguish disease severity in oculopharyngeal muscular dystrophy. J Neuromuscul Dis 2025; 12:244-259. [PMID: 39973404 DOI: 10.1177/22143602241304990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Oculopharyngeal muscular dystrophy (OPMD) is a rare, late-onset, slowly progressive neuromuscular disorder characterized by ptosis, dysphagia, and proximal limb weakness. Emerging clinical trials require rapidly accessible and sensitive biomarkers to evaluate OPMD disease progression and potential response to future treatments. OBJECTIVE This cross-sectional study was designed to identify candidate circulating protein and imaging biomarkers of OPMD severity for future use in clinical trials. METHODS Twenty-five individuals with OPMD (age 63.3 ± 10.5 years; GCN copy number of 13 in PABPN1) were assessed using the 7k SOMAScan assay to profile the plasma proteome, and MRI to quantify replacement of muscle by fat. OPMD severity was first categorized using the clinical presence/absence of limb weakness, and protein signals were considered distinguishing if they differed by more than 30% between subgroups and had statistically significant P-values after correcting for multiple comparisons. Distinguishing proteins were contrasted with age-matched controls (n = 10). OPMD severity was also treated as a continuous variable using fat fraction of the soleus muscle, and proteins were considered distinguishing if the slope of relationship between protein signal and soleus fat fraction differed significantly from zero after correcting for multiple comparisons. Pathway analyses were conducted using Metascape and the Database for Annotation, Visualization, and Integrated Discovery webtools. RESULTS Eighteen plasma proteins distinguished OPMD on both indicators of severity. Pathway analyses identified skeletal muscle tissue, phagocytosis/engulfment, and extracellular matrix organization as enriched ontology clusters in OPMD with limb weakness. The most distinguishing plasma protein signals (ACTN2, MYOM2, CA3, APOBEC2, MYL3, and PDLIM3) were over 200% higher in OPMD with limb weakness than OPMD without limb weakness as well as controls, and correlated strongly with percent of fatty replacement of soleus (r = 0.89 ± 0.04). CONCLUSIONS The candidate biomarkers identified contribute to the ongoing search for sensitive and accessible biomarkers of OPMD progression, prognosis, and monitoring.
Collapse
Affiliation(s)
- Ian C Smith
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Marcos L Sampaio
- Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medical Imaging, The Ottawa Hospital, Ottawa, Ontario, Canada
- Department of Radiology, Radiation Oncology and Medical Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Gerd Melkus
- Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medical Imaging, The Ottawa Hospital, Ottawa, Ontario, Canada
- Department of Radiology, Radiation Oncology and Medical Physics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Physics, Carleton University, Ottawa, Ontario, Canada
| | | | | | - Cameron Stotts
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario Canada
- CAPITAL Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Vascular Biology and Experimental Medicine Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Pierre R Bourque
- Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, Ontario, Canada
| | - Hanns Lochmuller
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Bernard Brais
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Othmane Ayoub
- School of Electrical Engineering and Computer Science, Faculty of Engineering, University of Ottawa, Ottawa Ontario, Canada
| | - Theodore J Perkins
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario Canada
| | - Mireille Khacho
- Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jodi Warman-Chardon
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Boulinguiez A, Dhiab J, Crisol B, Muraine L, Gaut L, Rouxel C, Flaire J, Mouigni H, Lemaitre M, Giroux B, Audoux L, SaintPierre B, Ferry A, Mouly V, Butler‐Browne G, Negroni E, Malerba A, Trollet C. Different outcomes of endurance and resistance exercise in skeletal muscles of Oculopharyngeal muscular dystrophy. J Cachexia Sarcopenia Muscle 2024; 15:1976-1988. [PMID: 39113268 PMCID: PMC11446690 DOI: 10.1002/jcsm.13546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Exercise is widely considered to have beneficial impact on skeletal muscle aging. In addition, there are also several studies demonstrating a positive effect of exercise on muscular dystrophies. Oculopharyngeal muscular dystrophy (OPMD) is a late-onset autosomal dominant inherited neuromuscular disorder caused by mutations in the PAPBN1 gene. These mutations consist in short (1-8) and meiotically stable GCN trinucleotide repeat expansions in its coding region responsible for the formation of PAPBN1 intranuclear aggregates. This study aims to characterize the effects of two types of chronic exercise, resistance and endurance, on the OPMD skeletal muscle phenotype using a relevant murine model of OPMD. METHODS In this study, we tested two protocols of exercise. In the first, based on endurance exercise, FvB (wild-type) and A17 (OPMD) mice underwent a 6-week-long motorized treadmill protocol consisting in three sessions per week of running 20 cm/s for 20 min. In the second protocol, based on resistance exercise generated by chronic mechanical overload (OVL), surgical removal of gastrocnemius and soleus muscles was performed, inducing hypertrophy of the plantaris muscle. In both types of exercise, muscles of A17 and FvB mice were compared with those of respective sedentary mice. For all the groups, force measurement, muscle histology, and molecular analyses were conducted. RESULTS Following the endurance exercise protocol, we did not observe any major changes in the muscle physiological parameters, but an increase in the number of PABPN1 intranuclear aggregates in both tibialis anterior (+24%, **P = 0.0026) and gastrocnemius (+18%, ****P < 0.0001) as well as enhanced collagen deposition (+20%, **P = 0.0064 in the tibialis anterior; +35%, **P = 0.0042 in the gastrocnemius) in the exercised A17 OPMD mice. In the supraphysiological resistance overload protocol, we also observed an increased collagen deposition (×2, ****P < 0.0001) in the plantaris muscle of A17 OPMD mice which was associated with larger muscle mass (×2, ****P < 0.0001) and fibre cross sectional area (×2, ***P = 0.0007) and increased absolute maximal force (×2, ****P < 0.0001) as well as a reduction in PABPN1 aggregate number (-16%, ****P < 0.0001). CONCLUSIONS Running exercise and mechanical overload led to very different outcome in skeletal muscles of A17 mice. Both types of exercise enhanced collagen deposition but while the running protocol increased aggregates, the OVL reduced them. More importantly OVL reversed muscle atrophy and maximal force in the A17 mice. Our study performed in a relevant model gives an indication of the effect of different types of exercise on OPMD muscle which should be further evaluated in humans for future recommendations as a part of the lifestyle of individuals with OPMD.
Collapse
Affiliation(s)
- Alexis Boulinguiez
- Department of Biological Sciences, School of Life Sciences and the EnvironmentRoyal Holloway University of LondonLondonUK
| | - Jamila Dhiab
- Centre de Recherche en MyologieSorbonne Université, INSERM, Institut de MyologieParisFrance
| | - Barbara Crisol
- Centre de Recherche en MyologieSorbonne Université, INSERM, Institut de MyologieParisFrance
| | - Laura Muraine
- Centre de Recherche en MyologieSorbonne Université, INSERM, Institut de MyologieParisFrance
| | - Ludovic Gaut
- Centre de Recherche en MyologieSorbonne Université, INSERM, Institut de MyologieParisFrance
| | - Corentin Rouxel
- Centre de Recherche en MyologieSorbonne Université, INSERM, Institut de MyologieParisFrance
| | - Justine Flaire
- Centre de Recherche en MyologieSorbonne Université, INSERM, Institut de MyologieParisFrance
| | - Hadidja‐Rose Mouigni
- Centre de Recherche en MyologieSorbonne Université, INSERM, Institut de MyologieParisFrance
| | - Mégane Lemaitre
- Sorbonne Université, INSERM, UMS28 – Phénotypage du petit animalParisFrance
| | - Benoit Giroux
- Sorbonne Université, INSERM, UMS28 – Phénotypage du petit animalParisFrance
| | - Lucie Audoux
- Université Paris Cité, CNRS, INSERM, Institut CochinParisFrance
| | | | - Arnaud Ferry
- Centre de Recherche en MyologieSorbonne Université, INSERM, Institut de MyologieParisFrance
| | - Vincent Mouly
- Centre de Recherche en MyologieSorbonne Université, INSERM, Institut de MyologieParisFrance
| | - Gillian Butler‐Browne
- Centre de Recherche en MyologieSorbonne Université, INSERM, Institut de MyologieParisFrance
| | - Elisa Negroni
- Centre de Recherche en MyologieSorbonne Université, INSERM, Institut de MyologieParisFrance
| | - Alberto Malerba
- Department of Biological Sciences, School of Life Sciences and the EnvironmentRoyal Holloway University of LondonLondonUK
| | - Capucine Trollet
- Centre de Recherche en MyologieSorbonne Université, INSERM, Institut de MyologieParisFrance
| |
Collapse
|
4
|
Ramat A, Haidar A, Garret C, Simonelig M. Spatial organization of translation and translational repression in two phases of germ granules. Nat Commun 2024; 15:8020. [PMID: 39271704 PMCID: PMC11399267 DOI: 10.1038/s41467-024-52346-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Most RNA-protein condensates are composed of heterogeneous immiscible phases. However, how this multiphase organization contributes to their biological functions remains largely unexplored. Drosophila germ granules, a class of RNA-protein condensates, are the site of mRNA storage and translational activation. Here, using super-resolution microscopy and single-molecule imaging approaches, we show that germ granules have a biphasic organization and that translation occurs in the outer phase and at the surface of the granules. The localization, directionality, and compaction of mRNAs within the granule depend on their translation status, translated mRNAs being enriched in the outer phase with their 5'end oriented towards the surface. Translation is strongly reduced when germ granule biphasic organization is lost. These findings reveal the intimate links between the architecture of RNA-protein condensates and the organization of their different functions, highlighting the functional compartmentalization of these condensates.
Collapse
Affiliation(s)
- Anne Ramat
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France.
| | - Ali Haidar
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Céline Garret
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Martine Simonelig
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
5
|
Poidevin M, Mazuras N, Bontonou G, Delamotte P, Denis B, Devilliers M, Akiki P, Petit D, de Luca L, Soulie P, Gillet C, Wicker-Thomas C, Montagne J. A fatty acid anabolic pathway in specialized-cells sustains a remote signal that controls egg activation in Drosophila. PLoS Genet 2024; 20:e1011186. [PMID: 38483976 DOI: 10.1371/journal.pgen.1011186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/26/2024] [Accepted: 02/14/2024] [Indexed: 03/27/2024] Open
Abstract
Egg activation, representing the critical oocyte-to-embryo transition, provokes meiosis completion, modification of the vitelline membrane to prevent polyspermy, and translation of maternally provided mRNAs. This transition is triggered by a calcium signal induced by spermatozoon fertilization in most animal species, but not in insects. In Drosophila melanogaster, mature oocytes remain arrested at metaphase-I of meiosis and the calcium-dependent activation occurs while the oocyte moves through the genital tract. Here, we discovered that the oenocytes of fruitfly females are required for egg activation. Oenocytes, cells specialized in lipid-metabolism, are located beneath the abdominal cuticle. In adult flies, they synthesize the fatty acids (FAs) that are the precursors of cuticular hydrocarbons (CHCs), including pheromones. The oenocyte-targeted knockdown of a set of FA-anabolic enzymes, involved in very-long-chain fatty acid (VLCFA) synthesis, leads to a defect in egg activation. Given that some but not all of the identified enzymes are required for CHC/pheromone biogenesis, this putative VLCFA-dependent remote control may rely on an as-yet unidentified CHC or may function in parallel to CHC biogenesis. Additionally, we discovered that the most posterior ventral oenocyte cluster is in close proximity to the uterus. Since oocytes dissected from females deficient in this FA-anabolic pathway can be activated in vitro, this regulatory loop likely operates upstream of the calcium trigger. To our knowledge, our findings provide the first evidence that a physiological extra-genital signal remotely controls egg activation. Moreover, our study highlights a potential metabolic link between pheromone-mediated partner recognition and egg activation.
Collapse
Affiliation(s)
- Mickael Poidevin
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Nicolas Mazuras
- Laboratoire Evolution, Génomes, Comportements, Ecologie (EGCE), CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Gwénaëlle Bontonou
- Laboratoire Evolution, Génomes, Comportements, Ecologie (EGCE), CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Delamotte
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Béatrice Denis
- Laboratoire Evolution, Génomes, Comportements, Ecologie (EGCE), CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Maëlle Devilliers
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Perla Akiki
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Delphine Petit
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Laura de Luca
- Centre Médical Universitaire, Department of Cell Physiology and Metabolism, Geneva, Switzerland
| | - Priscilla Soulie
- Centre Médical Universitaire, Department of Cell Physiology and Metabolism, Geneva, Switzerland
| | - Cynthia Gillet
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Claude Wicker-Thomas
- Laboratoire Evolution, Génomes, Comportements, Ecologie (EGCE), CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jacques Montagne
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Zampieri S, Bersch I, Smeriglio P, Barbieri E, Boncompagni S, Maccarone MC, Carraro U. Program with last minute abstracts of the Padua Days on Muscle and Mobility Medicine, 27 February - 2 March, 2024 (2024Pdm3). Eur J Transl Myol 2024; 34:12346. [PMID: 38305708 PMCID: PMC11017178 DOI: 10.4081/ejtm.2024.12346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024] Open
Abstract
During the 2023 Padua Days on Muscle and Mobility Medicine the 2024 meeting was scheduled from 28 February to 2 March 2024 (2024Pdm3). During autumn 2023 the program was expanded with Scientific Sessions which will take place over five days (in 2024 this includes February 29), starting from the afternoon of 27 February 2024 in the Conference Rooms of the Hotel Petrarca, Thermae of Euganean Hills (Padua), Italy. As per consolidated tradition, the second day will take place in Padua, for the occasion in the Sala San Luca of the Monastery of Santa Giustina in Prato della Valle, Padua, Italy. Confirming the attractiveness of the Padua Days on Muscle and Mobility Medicine, over 100 titles were accepted until 15 December 2023 (many more than expected), forcing the organization of parallel sessions on both 1 and 2 March 2024. The five days will include lectures and oral presentations of scientists and clinicians from Argentina, Austria, Belgium, Brazil, Bulgaria, Canada, Denmark, Egypt, France, Germany, Iceland, Ireland, Italy, Romania, Russia, Slovenia, Switzerland, UK and USA. Only Australia, China, India and Japan are missing from this edition. But we are confident that authors from those countries who publish articles in the PAGEpress: European Journal of Translational Myology (EJTM: 2022 ESCI Clarivate's Impact Factor: 2.2; SCOPUS Cite Score: 3.2) will decide to join us in the coming years. Together with the program established by 31 January 2024, the abstracts will circulate during the meeting only in the electronic version of the EJTM Issue 34 (1) 2024. See you soon in person at the Hotel Petrarca in Montegrotto Terme, Padua, for the inauguration scheduled the afternoon of 27 February 2024 or on-line for free via Zoom. Send us your email address if you are not traditional participants listed in Pdm3 and EJTM address books.
Collapse
Affiliation(s)
- Sandra Zampieri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy; Department of Biomedical Sciences, University of Padova, Padua, Italy; Interdepartmental Research Centre of Myology, University of Padova, Padua, Italy; Armando Carraro & Carmela Mioni-Carraro Foundation for Translational Myology, Padua.
| | - Ines Bersch
- Swiss Paraplegic Centre Nottwil, Nottwil, Switzerland; International FES Centre®, Swiss Paraplegic Centre Nottwil, Nottwil.
| | - Piera Smeriglio
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris.
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU).
| | - Simona Boncompagni
- Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti.
| | | | - Ugo Carraro
- Department of Biomedical Sciences, University of Padova, Padua, Italy; Interdepartmental Research Centre of Myology, University of Padova, Padua, Italy; Armando Carraro & Carmela Mioni-Carraro Foundation for Translational Myology, Padua.
| |
Collapse
|
7
|
Kleefeld F, Horvath R, Pinal-Fernandez I, Mammen AL, Casal-Dominguez M, Hathazi D, Melchert S, Hahn K, Sickmann A, Muselmann-Genschow C, Hentschel A, Preuße C, Roos A, Schoser B, Stenzel W. Multi-level profiling unravels mitochondrial dysfunction in myotonic dystrophy type 2. Acta Neuropathol 2024; 147:19. [PMID: 38240888 PMCID: PMC10799095 DOI: 10.1007/s00401-023-02673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
Myotonic dystrophy type 2 (DM2) is an autosomal-dominant multisystemic disease with a core manifestation of proximal muscle weakness, muscle atrophy, myotonia, and myalgia. The disease-causing CCTG tetranucleotide expansion within the CNBP gene on chromosome 3 leads to an RNA-dominated spliceopathy, which is currently untreatable. Research exploring the pathophysiological mechanisms in myotonic dystrophy type 1 has resulted in new insights into disease mechanisms and identified mitochondrial dysfunction as a promising therapeutic target. It remains unclear whether similar mechanisms underlie DM2 and, if so, whether these might also serve as potential therapeutic targets. In this cross-sectional study, we studied DM2 skeletal muscle biopsy specimens on proteomic, molecular, and morphological, including ultrastructural levels in two separate patient cohorts consisting of 8 (explorative cohort) and 40 (confirmatory cohort) patients. Seven muscle biopsy specimens from four female and three male DM2 patients underwent proteomic analysis and respiratory chain enzymology. We performed bulk RNA sequencing, immunoblotting of respiratory chain complexes, mitochondrial DNA copy number determination, and long-range PCR (LR-PCR) to study mitochondrial DNA deletions on six biopsies. Proteomic and transcriptomic analyses revealed a downregulation of essential mitochondrial proteins and their respective RNA transcripts, namely of subunits of respiratory chain complexes I, III, and IV (e.g., mt-CO1, mt-ND1, mt-CYB, NDUFB6) and associated translation factors (TACO1). Light microscopy showed mitochondrial abnormalities (e.g., an age-inappropriate amount of COX-deficient fibers, subsarcolemmal accumulation) in most biopsy specimens. Electron microscopy revealed widespread ultrastructural mitochondrial abnormalities, including dysmorphic mitochondria with paracrystalline inclusions. Immunofluorescence studies with co-localization of autophagy (p62, LC-3) and mitochondrial marker proteins (TOM20, COX-IV), as well as immunohistochemistry for mitophagy marker BNIP3 indicated impaired mitophagic flux. Immunoblotting and LR-PCR did not reveal significant differences between patients and controls. In contrast, mtDNA copy number measurement showed a reduction of mtDNA copy numbers in the patient group compared to controls. This first multi-level study of DM2 unravels thus far undescribed functional and structural mitochondrial abnormalities. However, the molecular link between the tetranucleotide expansion and mitochondrial dysfunction needs to be further elucidated.
Collapse
Affiliation(s)
- Felix Kleefeld
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Iago Pinal-Fernandez
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Andrew L Mammen
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Maria Casal-Dominguez
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Denisa Hathazi
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sarah Melchert
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Katrin Hahn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany
| | - Albert Sickmann
- Leibniz-Institut Für Analytische Wissenschaften-ISAS E.V., 44139, Dortmund, Germany
| | - Claudia Muselmann-Genschow
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany
| | - Andreas Hentschel
- Leibniz-Institut Für Analytische Wissenschaften-ISAS E.V., 44139, Dortmund, Germany
| | - Corinna Preuße
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Andreas Roos
- Pediatric Neurology, Faculty of Medicine, University Children's Hospital, University of Duisburg-Essen, Essen, Germany
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
8
|
Smith IC, Chakraborty S, Bourque PR, Sampaio ML, Melkus G, Lochmüller H, Woulfe J, Parks RJ, Brais B, Warman-Chardon J. Emerging and established biomarkers of oculopharyngeal muscular dystrophy. Neuromuscul Disord 2023; 33:824-834. [PMID: 37926637 DOI: 10.1016/j.nmd.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a rare, primarily autosomal dominant, late onset muscular dystrophy commonly presenting with ptosis, dysphagia, and subsequent weakness of proximal muscles. Although OPMD diagnosis can be confirmed with high confidence by genetic testing, the slow progression of OPMD poses a significant challenge to clinical monitoring and a barrier to assessing the efficacy of treatments during clinical trials. Accordingly, there is a pressing need for more sensitive measures of OPMD progression, particularly those which do not require a muscle biopsy. This review provides an overview of progress in OPMD biomarkers from clinical assessment, quantitative imaging, histological assessments, and genomics, as well as hypothesis-generating "omics" approaches. The ongoing search for biomarkers relevant to OPMD progression needs an integrative, longitudinal approach combining validated and experimental approaches which may include clinical, imaging, demographic, and biochemical assessment methods. A multi-omics approach to biochemical biomarker discovery could help provide context for differences found between individuals with varying levels of disease activity and provide insight into pathomechanisms and prognosis of OPMD.
Collapse
Affiliation(s)
- Ian C Smith
- The Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | | | - Pierre R Bourque
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, ON K1H 8L6, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada
| | - Marcos L Sampaio
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada; Department of Medical Imaging, The Ottawa Hospital, Ottawa, Ontario K1Y 4E9, Canada; Department of Radiology, Radiation Oncology and Medical Physics, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Gerd Melkus
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada; Department of Medical Imaging, The Ottawa Hospital, Ottawa, Ontario K1Y 4E9, Canada; Department of Physics, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Hanns Lochmüller
- The Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada; Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, ON K1H 8L6, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada; Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - John Woulfe
- The Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada; Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
| | - Robin J Parks
- The Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada; Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, ON K1H 8L6, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada
| | - Bernard Brais
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jodi Warman-Chardon
- The Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada; Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, ON K1H 8L6, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada; Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada; Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada.
| |
Collapse
|
9
|
Pekovic F, Rammelt C, Kubíková J, Metz J, Jeske M, Wahle E. RNA binding proteins Smaug and Cup induce CCR4-NOT-dependent deadenylation of the nanos mRNA in a reconstituted system. Nucleic Acids Res 2023; 51:3950-3970. [PMID: 36951092 PMCID: PMC10164591 DOI: 10.1093/nar/gkad159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/22/2023] [Accepted: 02/22/2023] [Indexed: 03/24/2023] Open
Abstract
Posttranscriptional regulation of the maternal nanos mRNA is essential for the development of the anterior - posterior axis of the Drosophila embryo. The nanos RNA is regulated by the protein Smaug, which binds to Smaug recognition elements (SREs) in the nanos 3'-UTR and nucleates the assembly of a larger repressor complex including the eIF4E-T paralog Cup and five additional proteins. The Smaug-dependent complex represses translation of nanos and induces its deadenylation by the CCR4-NOT deadenylase. Here we report an in vitro reconstitution of the Drosophila CCR4-NOT complex and Smaug-dependent deadenylation. We find that Smaug by itself is sufficient to cause deadenylation by the Drosophila or human CCR4-NOT complexes in an SRE-dependent manner. CCR4-NOT subunits NOT10 and NOT11 are dispensable, but the NOT module, consisting of NOT2, NOT3 and the C-terminal part of NOT1, is required. Smaug interacts with the C-terminal domain of NOT3. Both catalytic subunits of CCR4-NOT contribute to Smaug-dependent deadenylation. Whereas the CCR4-NOT complex itself acts distributively, Smaug induces a processive behavior. The cytoplasmic poly(A) binding protein (PABPC) has a minor inhibitory effect on Smaug-dependent deadenylation. Among the additional constituents of the Smaug-dependent repressor complex, Cup also facilitates CCR4-NOT-dependent deadenylation, both independently and in cooperation with Smaug.
Collapse
Affiliation(s)
- Filip Pekovic
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Christiane Rammelt
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
| | - Jana Kubíková
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Jutta Metz
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Mandy Jeske
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
| |
Collapse
|
10
|
Yin Z, Zhang Z, Lei Y, Klionsky DJ. Bidirectional roles of the Ccr4-Not complex in regulating autophagy before and after nitrogen starvation. Autophagy 2023; 19:415-425. [PMID: 35167422 PMCID: PMC9851207 DOI: 10.1080/15548627.2022.2036476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/12/2022] [Accepted: 01/28/2022] [Indexed: 01/22/2023] Open
Abstract
Macroautophagy/autophagy is a highly conserved catabolic process by which cytoplasmic constituents are delivered to the vacuole/lysosome for degradation and recycling. To maintain cellular homeostasis and prevent pathologies, the induction and amplitude of autophagy activity are finely controlled through regulation of ATG gene expression. Here we report that the Ccr4-Not complex in Saccharomyces cerevisiae has bidirectional roles in regulating autophagy before and after nutrient deprivation. Under nutrient-rich conditions, Ccr4-Not directly targets the mRNAs of several ATG genes in the core autophagy machinery to promote their degradation through deadenylation, thus contributing to maintaining autophagy at the basal level. Upon starvation, Ccr4-Not releases its repression of these ATG genes and switches its role to promote the expression of a different subset of ATG genes, which is required for sufficient autophagy induction and activity. These results reveal that the Ccr4-Not complex is indispensable to maintain autophagy at the appropriate amplitude in both basal and stress conditions.Abbreviations: AID, auxin-inducible degron; Ape1, aminopeptidase I; Atg, autophagy related; Cvt, cytoplasm-to-vacuole targeting; DMSO, dimethyl sulfoxide; IAA, indole-3-acetic acid; PA, protein A; RIP, RNA immunoprecipitation.
Collapse
Affiliation(s)
- Zhangyuan Yin
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Zhihai Zhang
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yuchen Lei
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J. Klionsky
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Assessment of PABPN1 nuclear inclusions on a large cohort of patients and in a human xenograft model of oculopharyngeal muscular dystrophy. Acta Neuropathol 2022; 144:1157-1170. [PMID: 36197469 PMCID: PMC9637588 DOI: 10.1007/s00401-022-02503-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/26/2022] [Accepted: 09/17/2022] [Indexed: 01/26/2023]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a rare muscle disease characterized by an onset of weakness in the pharyngeal and eyelid muscles. The disease is caused by the extension of a polyalanine tract in the Poly(A) Binding Protein Nuclear 1 (PABPN1) protein leading to the formation of intranuclear inclusions or aggregates in the muscle of OPMD patients. Despite numerous studies stressing the deleterious role of nuclear inclusions in cellular and animal OPMD models, their exact contribution to human disease is still unclear. In this study, we used a large and unique collection of human muscle biopsy samples to perform an in-depth analysis of PABPN1 aggregates in relation to age, genotype and muscle status with the final aim to improve our understanding of OPMD physiopathology. Here we demonstrate that age and genotype influence PABPN1 aggregates: the percentage of myonuclei containing PABPN1 aggregates increases with age and the chaperone HSP70 co-localize more frequently with PABPN1 aggregates with a larger polyalanine tract. In addition to the previously described PRMT1 and HSP70 co-factors, we identified new components of PABPN1 aggregates including GRP78/BiP, RPL24 and p62. We also observed that myonuclei containing aggregates are larger than myonuclei without. When comparing two muscles from the same patient, a similar amount of aggregates is observed in different muscles, except for the pharyngeal muscle where fewer aggregates are observed. This could be due to the peculiar nature of this muscle which has a low level of PAPBN1 and contains regenerating fibers. To confirm the fate of PABPN1 aggregates in a regenerating muscle, we generated a xenograft model by transplanting human OPMD muscle biopsy samples into the hindlimb of an immunodeficient mouse. Xenografts from subjects with OPMD displayed regeneration of human myofibers and PABPN1 aggregates were rapidly present-although to a lower extent-after muscle fiber regeneration. Our data obtained on human OPMD samples add support to the dual non-exclusive models in OPMD combining toxic PABPN1 intranuclear inclusions together with PABPN1 loss of function which altogether result in this late-onset and muscle selective disease.
Collapse
|
12
|
Boulinguiez A, Roth F, Mouigni HR, Butler-Browne G, Mouly V, Trollet C. [Nuclear aggregates in oculopharyngeal muscular dystrophy]. Med Sci (Paris) 2022; 38 Hors série n° 1:13-16. [PMID: 36649629 DOI: 10.1051/medsci/2022175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is one of the diseases related to pathological expansions of trinucleotides. Its pathogenesis remains unclear although the presence of aggregates within the nuclei of the muscle fiber seems to play an important role. The basic research studies presented here help understand their composition and their deleterious role. These elements may result in new therapeutic avenues.
Collapse
Affiliation(s)
- Alexis Boulinguiez
- Sorbonne Université-Inserm, Centre de Recherche en Myologie, Institut de Myologie, Paris, France
| | - Fany Roth
- Sorbonne Université-Inserm, Centre de Recherche en Myologie, Institut de Myologie, Paris, France
| | - Hadidja Rose Mouigni
- Sorbonne Université-Inserm, Centre de Recherche en Myologie, Institut de Myologie, Paris, France
| | - Gillian Butler-Browne
- Sorbonne Université-Inserm, Centre de Recherche en Myologie, Institut de Myologie, Paris, France
| | - Vincent Mouly
- Sorbonne Université-Inserm, Centre de Recherche en Myologie, Institut de Myologie, Paris, France
| | - Capucine Trollet
- Sorbonne Université-Inserm, Centre de Recherche en Myologie, Institut de Myologie, Paris, France
| |
Collapse
|
13
|
Richard P, Stojkovic T, Metay C, Lacau St Guily J, Trollet C. Distrofia muscolare oculofaringea. Neurologia 2022. [DOI: 10.1016/s1634-7072(22)46725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
14
|
Ribot C, Soler C, Chartier A, Al Hayek S, Naït-Saïdi R, Barbezier N, Coux O, Simonelig M. Activation of the ubiquitin-proteasome system contributes to oculopharyngeal muscular dystrophy through muscle atrophy. PLoS Genet 2022; 18:e1010015. [PMID: 35025870 PMCID: PMC8791501 DOI: 10.1371/journal.pgen.1010015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 01/26/2022] [Accepted: 01/01/2022] [Indexed: 12/05/2022] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset disorder characterized by progressive weakness and degeneration of specific muscles. OPMD is due to extension of a polyalanine tract in poly(A) binding protein nuclear 1 (PABPN1). Aggregation of the mutant protein in muscle nuclei is a hallmark of the disease. Previous transcriptomic analyses revealed the consistent deregulation of the ubiquitin-proteasome system (UPS) in OPMD animal models and patients, suggesting a role of this deregulation in OPMD pathogenesis. Subsequent studies proposed that UPS contribution to OPMD involved PABPN1 aggregation. Here, we use a Drosophila model of OPMD to address the functional importance of UPS deregulation in OPMD. Through genome-wide and targeted genetic screens we identify a large number of UPS components that are involved in OPMD. Half dosage of UPS genes reduces OPMD muscle defects suggesting a pathological increase of UPS activity in the disease. Quantification of proteasome activity confirms stronger activity in OPMD muscles, associated with degradation of myofibrillar proteins. Importantly, improvement of muscle structure and function in the presence of UPS mutants does not correlate with the levels of PABPN1 aggregation, but is linked to decreased degradation of muscle proteins. Oral treatment with the proteasome inhibitor MG132 is beneficial to the OPMD Drosophila model, improving muscle function although PABPN1 aggregation is enhanced. This functional study reveals the importance of increased UPS activity that underlies muscle atrophy in OPMD. It also provides a proof-of-concept that inhibitors of proteasome activity might be an attractive pharmacological approach for OPMD. Oculopharyngeal muscular dystrophy (OPMD) is a genetic disease characterized by progressive weakness of specific muscles, leading to swallowing difficulties (dysphagia), eyelid drooping (ptosis) and walking difficulties at later stages. No drug treatments are currently available. OPMD is due to mutations in a nuclear protein called poly(A) binding protein nuclear 1 (PABPN1) that is involved in processing of different classes of RNAs in the nucleus. We have used an animal model of OPMD that we have developed in the fly Drosophila to investigate the role in OPMD of the ubiquitin-proteasome system, a pathway specialized in protein degradation. We report an increased activity of the ubiquitin-proteasome system that is associated with degradation of muscular proteins in the OPMD Drosophila model. We propose that higher activity of the ubiquitin-proteasome system leads to muscle atrophy in OPMD. Importantly, oral treatment of this OPMD animal model with an inhibitor of proteasome activity reduces muscle defects. A number of proteasome inhibitors are approved drugs used in clinic against cancers, therefore our results provide a proof-of-concept that inhibitors of proteasome might be of interest in future treatments of OPMD.
Collapse
Affiliation(s)
- Cécile Ribot
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Cédric Soler
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Aymeric Chartier
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Sandy Al Hayek
- GReD Laboratory, Clermont-Auvergne University, INSERM U1103, CNRS UMR6293, Clermont-Ferrand, France
| | - Rima Naït-Saïdi
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Nicolas Barbezier
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Olivier Coux
- Ubiquitin-proteasome system and cell cycle control, Montpellier Cell Biology Research Center, UMR5237 CNRS-Univ Montpellier, Montpellier, France
| | - Martine Simonelig
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
15
|
Lo Furno E, Busseau I, Aze A, Lorenzi C, Saghira C, Danzi MC, Zuchner S, Maiorano D. Translesion DNA synthesis-driven mutagenesis in very early embryogenesis of fast cleaving embryos. Nucleic Acids Res 2021; 50:885-898. [PMID: 34939656 PMCID: PMC8789082 DOI: 10.1093/nar/gkab1223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/22/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022] Open
Abstract
In early embryogenesis of fast cleaving embryos, DNA synthesis is short and surveillance mechanisms preserving genome integrity are inefficient, implying the possible generation of mutations. We have analyzed mutagenesis in Xenopus laevis and Drosophila melanogaster early embryos. We report the occurrence of a high mutation rate in Xenopus and show that it is dependent upon the translesion DNA synthesis (TLS) master regulator Rad18. Unexpectedly, we observed a homology-directed repair contribution of Rad18 in reducing the mutation load. Genetic invalidation of TLS in the pre-blastoderm Drosophila embryo resulted in reduction of both the hatching rate and single-nucleotide variations on pericentromeric heterochromatin in adult flies. Altogether, these findings indicate that during very early Xenopus and Drosophila embryos TLS strongly contributes to the high mutation rate. This may constitute a previously unforeseen source of genetic diversity contributing to the polymorphisms of each individual with implications for genome evolution and species adaptation.
Collapse
Affiliation(s)
- Elena Lo Furno
- Genome Surveillance and Stability Laboratory, Institut de Génétique Humaine, Université de Montpellier, CNRS-UMR9002, 34000 Montpellier, France
| | - Isabelle Busseau
- Systemic Impact of Small Regulatory RNAs Laboratory, Institut de Génétique Humaine, Université de Montpellier, CNRS-UMR9002, 34000 Montpellier, France
| | - Antoine Aze
- Genome Surveillance and Stability Laboratory, Institut de Génétique Humaine, Université de Montpellier, CNRS-UMR9002, 34000 Montpellier, France
| | - Claudio Lorenzi
- Machine Learning and Gene Regulation Laboratory, Institut de Génétique Humaine, Université de Montpellier, CNRS-UMR9002, 34000 Montpellier, France
| | - Cima Saghira
- Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Matt C Danzi
- Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Stephan Zuchner
- Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Domenico Maiorano
- Genome Surveillance and Stability Laboratory, Institut de Génétique Humaine, Université de Montpellier, CNRS-UMR9002, 34000 Montpellier, France
| |
Collapse
|
16
|
Fernández-Alvarez AJ, Thomas MG, Pascual ML, Habif M, Pimentel J, Corbat AA, Pessoa JP, La Spina PE, Boscaglia L, Plessis A, Carmo-Fonseca M, Grecco HE, Casado M, Boccaccio GL. Smaug1 membrane-less organelles respond to AMPK/mTOR and affect mitochondrial function‡. J Cell Sci 2021; 135:273619. [PMID: 34859817 DOI: 10.1242/jcs.253591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Smaug is a conserved translational regulator that binds numerous mRNAs, including nuclear transcripts that encode mitochondrial enzymes. Smaug orthologs form cytosolic membrane-less organelles (MLOs) in several organisms and cell types. We have performed single-molecule FISH assays that revealed that SDHB and UQCRC1 mRNAs associate with Smaug1 bodies in U2OS cells. Loss of function of Smaug1 and Smaug2 affected both mitochondrial respiration and morphology of the mitochondrial network. Phenotype rescue by Smaug1 transfection depends on the presence of its RNA binding domain. Moreover, we identified specific Smaug1 domains involved in MLO formation, and found that impaired Smaug1 MLO condensation correlates with mitochondrial defects. Mitochondrial Complex I inhibition by rotenone -but not strong mitochondrial uncoupling by CCCP- rapidly induced Smaug1 MLOs dissolution. Metformin and rapamycin elicited similar effects, which were blocked by pharmacological inhibition of AMPK. Finally, we found that Smaug1 MLO dissolution weakens the interaction with target mRNAs, thus enabling their release. We propose that mitochondrial respiration and the AMPK/mTOR balance controls the condensation and dissolution of Smaug1 MLOs, thus regulating nuclear mRNAs that encode key mitochondrial proteins.
Collapse
Affiliation(s)
- Ana J Fernández-Alvarez
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - María Gabriela Thomas
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - Malena L Pascual
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - Martín Habif
- Department of Physics, Facultad de Ciencias Exactas y Naturales (FCEN), University of Buenos Aires, and IFIBA, CONICET, C1428EHA Buenos Aires, Argentina
| | - Jerónimo Pimentel
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - Agustín A Corbat
- Department of Physics, Facultad de Ciencias Exactas y Naturales (FCEN), University of Buenos Aires, and IFIBA, CONICET, C1428EHA Buenos Aires, Argentina
| | - João P Pessoa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Pablo E La Spina
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina
| | | | - Anne Plessis
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Hernán E Grecco
- Department of Physics, Facultad de Ciencias Exactas y Naturales (FCEN), University of Buenos Aires, and IFIBA, CONICET, C1428EHA Buenos Aires, Argentina
| | - Marta Casado
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia 46010, Spain, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Graciela L Boccaccio
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina.,Department of Molecular and Cellular Biology and Physiology (FBMyC), Facultad de Ciencias Exactas y Naturales (FCEN), University of Buenos Aires, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
17
|
Cao WX, Kabelitz S, Gupta M, Yeung E, Lin S, Rammelt C, Ihling C, Pekovic F, Low TCH, Siddiqui NU, Cheng MHK, Angers S, Smibert CA, Wühr M, Wahle E, Lipshitz HD. Precise Temporal Regulation of Post-transcriptional Repressors Is Required for an Orderly Drosophila Maternal-to-Zygotic Transition. Cell Rep 2021; 31:107783. [PMID: 32579915 PMCID: PMC7372737 DOI: 10.1016/j.celrep.2020.107783] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/06/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
In animal embryos, the maternal-to-zygotic transition (MZT) hands developmental control from maternal to zygotic gene products. We show that the maternal proteome represents more than half of the protein-coding capacity of Drosophila melanogaster’s genome, and that 2% of this proteome is rapidly degraded during the MZT. Cleared proteins include the post-transcriptional repressors Cup, Trailer hitch (TRAL), Maternal expression at 31B (ME31B), and Smaug (SMG). Although the ubiquitin-proteasome system is necessary for clearance of these repressors, distinct E3 ligase complexes target them: the C-terminal to Lis1 Homology (CTLH) complex targets Cup, TRAL, and ME31B for degradation early in the MZT and the Skp/Cullin/F-box-containing (SCF) complex targets SMG at the end of the MZT. Deleting the C-terminal 233 amino acids of SMG abrogates F-box protein interaction and confers immunity to degradation. Persistent SMG downregulates zygotic re-expression of mRNAs whose maternal contribution is degraded by SMG. Thus, clearance of SMG permits an orderly MZT. Cao et al. show that 2% of the proteome is degraded in early Drosophila embryos, including a repressive ribonucleoprotein complex. Two E3 ubiquitin ligases separately act on distinct components of this complex to phase their clearance. Failure to degrade a key component, the Smaug RNA-binding protein, disrupts an orderly maternal-to-zygotic transition.
Collapse
Affiliation(s)
- Wen Xi Cao
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Sarah Kabelitz
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06099 Halle, Germany
| | - Meera Gupta
- Department of Molecular Biology and the Lewis-Sigler Institute, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Eyan Yeung
- Department of Molecular Biology and the Lewis-Sigler Institute, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Sichun Lin
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada
| | - Christiane Rammelt
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06099 Halle, Germany
| | - Christian Ihling
- Institute of Pharmacy and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06099 Halle, Germany
| | - Filip Pekovic
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06099 Halle, Germany
| | - Timothy C H Low
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Najeeb U Siddiqui
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Matthew H K Cheng
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada; Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Craig A Smibert
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada; Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Martin Wühr
- Department of Molecular Biology and the Lewis-Sigler Institute, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06099 Halle, Germany.
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
18
|
Parnell AA, De Nobrega AK, Lyons LC. Translating around the clock: Multi-level regulation of post-transcriptional processes by the circadian clock. Cell Signal 2021; 80:109904. [PMID: 33370580 PMCID: PMC8054296 DOI: 10.1016/j.cellsig.2020.109904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
The endogenous circadian clock functions to maintain optimal physiological health through the tissue specific coordination of gene expression and synchronization between tissues of metabolic processes throughout the 24 hour day. Individuals face numerous challenges to circadian function on a daily basis resulting in significant incidences of circadian disorders in the United States and worldwide. Dysfunction of the circadian clock has been implicated in numerous diseases including cancer, diabetes, obesity, cardiovascular and hepatic abnormalities, mood disorders and neurodegenerative diseases. The circadian clock regulates molecular, metabolic and physiological processes through rhythmic gene expression via transcriptional and post-transcriptional processes. Mounting evidence indicates that post-transcriptional regulation by the circadian clock plays a crucial role in maintaining tissue specific biological rhythms. Circadian regulation affecting RNA stability and localization through RNA processing, mRNA degradation, and RNA availability for translation can result in rhythmic protein synthesis, even when the mRNA transcripts themselves do not exhibit rhythms in abundance. The circadian clock also targets the initiation and elongation steps of translation through multiple pathways. In this review, the influence of the circadian clock across the levels of post-transcriptional, translation, and post-translational modifications are examined using examples from humans to cyanobacteria demonstrating the phylogenetic conservation of circadian regulation. Lastly, we briefly discuss chronotherapies and pharmacological treatments that target circadian function. Understanding the complexity and levels through which the circadian clock regulates molecular and physiological processes is important for future advancement of therapeutic outcomes.
Collapse
Affiliation(s)
- Amber A Parnell
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
19
|
Bamia A, Sinane M, Naït-Saïdi R, Dhiab J, Keruzoré M, Nguyen PH, Bertho A, Soubigou F, Halliez S, Blondel M, Trollet C, Simonelig M, Friocourt G, Béringue V, Bihel F, Voisset C. Anti-prion Drugs Targeting the Protein Folding Activity of the Ribosome Reduce PABPN1 Aggregation. Neurotherapeutics 2021; 18:1137-1150. [PMID: 33533011 PMCID: PMC8423950 DOI: 10.1007/s13311-020-00992-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2020] [Indexed: 01/10/2023] Open
Abstract
Prion diseases are caused by the propagation of PrPSc, the pathological conformation of the PrPC prion protein. The molecular mechanisms underlying PrPSc propagation are still unsolved and no therapeutic solution is currently available. We thus sought to identify new anti-prion molecules and found that flunarizine inhibited PrPSc propagation in cell culture and significantly prolonged survival of prion-infected mice. Using an in silico therapeutic repositioning approach based on similarities with flunarizine chemical structure, we tested azelastine, duloxetine, ebastine, loperamide and metixene and showed that they all have an anti-prion activity. Like flunarizine, these marketed drugs reduced PrPSc propagation in cell culture and in mouse cerebellum organotypic slice culture, and inhibited the protein folding activity of the ribosome (PFAR). Strikingly, some of these drugs were also able to alleviate phenotypes due to PABPN1 nuclear aggregation in cell and Drosophila models of oculopharyngeal muscular dystrophy (OPMD). These data emphasize the therapeutic potential of anti-PFAR drugs for neurodegenerative and neuromuscular proteinopathies.
Collapse
Affiliation(s)
- Aline Bamia
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Maha Sinane
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Rima Naït-Saïdi
- Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, mRNA Regulation and Development, Montpellier, France
| | - Jamila Dhiab
- Sorbanne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F75013, Paris, France
| | - Marc Keruzoré
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Phu Hai Nguyen
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
- Host Parasite Interactions Section, Laboratory of Intracellular Parasites, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Agathe Bertho
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Flavie Soubigou
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Sophie Halliez
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
- Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Univ. Lille, F-59000, Lille, France
| | - Marc Blondel
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Capucine Trollet
- Sorbanne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F75013, Paris, France
| | - Martine Simonelig
- Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, mRNA Regulation and Development, Montpellier, France
| | | | - Vincent Béringue
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Frédéric Bihel
- Laboratoire d'Innovation Thérapeutique, LIT, UMR7200, IMS MEDALIS, Faculty of Pharmacy, CNRS, Université de Strasbourg, Illkirch, F-67400, France.
| | - Cécile Voisset
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France.
| |
Collapse
|
20
|
Strings-Ufombah V, Malerba A, Kao SC, Harbaran S, Roth F, Cappellari O, Lu-Nguyen N, Takahashi K, Mukadam S, Kilfoil G, Kloth C, Roelvink P, Dickson G, Trollet C, Suhy D. BB-301: a silence and replace AAV-based vector for the treatment of oculopharyngeal muscular dystrophy. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:67-78. [PMID: 33738139 PMCID: PMC7940701 DOI: 10.1016/j.omtn.2021.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/14/2021] [Indexed: 11/08/2022]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a rare autosomal dominant disease that results from an alanine expansion in the N-terminal domain of Poly-A Binding Protein Nuclear-1 (PABPN1). We have recently demonstrated that a two-vector gene therapy strategy significantly ameliorated the pathology in a mouse model of OPMD. This approach entailed intramuscular injection of two recombinant adeno-associated viruses (AAVs), one expressing three short hairpin RNAs (shRNAs) to silence both mutant and wild-type PABPN1 and one expressing a codon-optimized version of PABPN1 that is insensitive to RNA interference. Here we report the continued development of this therapeutic strategy by delivering “silence and replace” sequences in a single AAV vector named BB-301. This construct is composed of a modified AAV serotype 9 (AAV9) capsid that expresses a unique single bifunctional construct under the control of the muscle-specific Spc5-12 promoter for the co-expression of both the codon-optimized PABPN1 protein and two small inhibitory RNAs (siRNAs) against PABPN1 modeled into microRNA (miRNA) backbones. A single intramuscular injection of BB-301 results in robust inhibition of mutant PABPN1 and concomitant replacement of the codon-optimized PABPN1 protein. The treatment restores muscle strength and muscle weight to wild-type levels as well as improving other physiological hallmarks of the disease in a mouse model of OPMD.
Collapse
Affiliation(s)
| | - Alberto Malerba
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | | | | | - Fanny Roth
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Ornella Cappellari
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Ngoc Lu-Nguyen
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | | | | | | | | | | | - George Dickson
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Capucine Trollet
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - David Suhy
- Benitec Biopharma, Inc., Hayward, CA 94545, USA
| |
Collapse
|
21
|
The Impact of Mitochondrial Deficiencies in Neuromuscular Diseases. Antioxidants (Basel) 2020; 9:antiox9100964. [PMID: 33050147 PMCID: PMC7600520 DOI: 10.3390/antiox9100964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Neuromuscular diseases (NMDs) are a heterogeneous group of acquired or inherited rare disorders caused by injury or dysfunction of the anterior horn cells of the spinal cord (lower motor neurons), peripheral nerves, neuromuscular junctions, or skeletal muscles leading to muscle weakness and waste. Unfortunately, most of them entail serious or even fatal consequences. The prevalence rates among NMDs range between 1 and 10 per 100,000 population, but their rarity and diversity pose difficulties for healthcare and research. Some molecular hallmarks are being explored to elucidate the mechanisms triggering disease, to set the path for further advances. In fact, in the present review we outline the metabolic alterations of NMDs, mainly focusing on the role of mitochondria. The aim of the review is to discuss the mechanisms underlying energy production, oxidative stress generation, cell signaling, autophagy, and inflammation triggered or conditioned by the mitochondria. Briefly, increased levels of inflammation have been linked to reactive oxygen species (ROS) accumulation, which is key in mitochondrial genomic instability and mitochondrial respiratory chain (MRC) dysfunction. ROS burst, impaired autophagy, and increased inflammation are observed in many NMDs. Increasing knowledge of the etiology of NMDs will help to develop better diagnosis and treatments, eventually reducing the health and economic burden of NMDs for patients and healthcare systems.
Collapse
|
22
|
Sultana N, Hadas Y, Sharkar MTK, Kaur K, Magadum A, Kurian AA, Hossain N, Alburquerque B, Ahmed S, Chepurko E, Zangi L. Optimization of 5' Untranslated Region of Modified mRNA for Use in Cardiac or Hepatic Ischemic Injury. Mol Ther Methods Clin Dev 2020; 17:622-633. [PMID: 32300609 PMCID: PMC7150433 DOI: 10.1016/j.omtm.2020.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
Modified mRNA (modRNA) is a gene-delivery platform for transiently introducing a single gene or several genes of interest to different cell types and tissues. modRNA is considered to be a safe vector for gene transfer, as it negligibly activates the innate immune system and does not compromise the genome integrity. The use of modRNA in basic and translational science is rising, due to the clinical potential of modRNA. We are currently using modRNA to induce cardiac regeneration post-ischemic injury. Major obstacles in using modRNA for cardiac ischemic disease include the need for the direct and single administration of modRNA to the heart and the inefficient translation of modRNA due to its short half-life. Modulation of the 5' untranslated region (5' UTR) to enhance translation efficiency in ischemic cardiac disease has great value, as it can reduce the amount of modRNA needed per delivery and will achieve higher and longer protein production post-single delivery. Here, we identified that 5' UTR, from the fatty acid metabolism gene carboxylesterase 1D (Ces1d), enhanced the translation of firefly luciferase (Luc) modRNA by 2-fold in the heart post-myocardial infarction (MI). Moreover, we identified, in the Ces1d, a specific RNA element (element D) that is responsible for the improvement of modRNA translation and leads to a 2.5-fold translation increment over Luc modRNA carrying artificial 5' UTR, post-MI. Importantly, we were able to show that 5' UTR Ces1d also enhances modRNA translation in the liver, but not in the kidney, post-ischemic injury, indicating that Ces1d 5' UTR and element D may play a wider role in translation of protein under an ischemic condition.
Collapse
Affiliation(s)
- Nishat Sultana
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yoav Hadas
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mohammad Tofael Kabir Sharkar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keerat Kaur
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ajit Magadum
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ann Anu Kurian
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nadia Hossain
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bremy Alburquerque
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sakib Ahmed
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elena Chepurko
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lior Zangi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
23
|
Bruzzone L, Argüelles C, Sanial M, Miled S, Alvisi G, Gonçalves-Antunes M, Qasrawi F, Holmgren RA, Smibert CA, Lipshitz HD, Boccaccio GL, Plessis A, Bécam I. Regulation of the RNA-binding protein Smaug by the GPCR Smoothened via the kinase Fused. EMBO Rep 2020; 21:e48425. [PMID: 32383557 DOI: 10.15252/embr.201948425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 03/17/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
From fly to mammals, the Smaug/Samd4 family of prion-like RNA-binding proteins control gene expression by destabilizing and/or repressing the translation of numerous target transcripts. However, the regulation of its activity remains poorly understood. We show that Smaug's protein levels and mRNA repressive activity are downregulated by Hedgehog signaling in tissue culture cells. These effects rely on the interaction of Smaug with the G-protein coupled receptor Smoothened, which promotes the phosphorylation of Smaug by recruiting the kinase Fused. The activation of Fused and its binding to Smaug are sufficient to suppress its ability to form cytosolic bodies and to antagonize its negative effects on endogenous targets. Importantly, we demonstrate in vivo that HH reduces the levels of smaug mRNA and increases the level of several mRNAs downregulated by Smaug. Finally, we show that Smaug acts as a positive regulator of Hedgehog signaling during wing morphogenesis. These data constitute the first evidence for a post-translational regulation of Smaug and reveal that the fate of several mRNAs bound to Smaug is modulated by a major signaling pathway.
Collapse
Affiliation(s)
- Lucia Bruzzone
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | | | - Matthieu Sanial
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | - Samia Miled
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | - Giorgia Alvisi
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | | | - Fairouz Qasrawi
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | - Robert A Holmgren
- Department of Mol. Biosci., Northwestern University, Evanston, IL, USA
| | - Craig A Smibert
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Graciela L Boccaccio
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina
| | - Anne Plessis
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | - Isabelle Bécam
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| |
Collapse
|
24
|
Ramat A, Garcia-Silva MR, Jahan C, Naït-Saïdi R, Dufourt J, Garret C, Chartier A, Cremaschi J, Patel V, Decourcelle M, Bastide A, Juge F, Simonelig M. The PIWI protein Aubergine recruits eIF3 to activate translation in the germ plasm. Cell Res 2020; 30:421-435. [PMID: 32132673 PMCID: PMC7196074 DOI: 10.1038/s41422-020-0294-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) and PIWI proteins are essential in germ cells to repress transposons and regulate mRNAs. In Drosophila, piRNAs bound to the PIWI protein Aubergine (Aub) are transferred maternally to the embryo and regulate maternal mRNA stability through two opposite roles. They target mRNAs by incomplete base pairing, leading to their destabilization in the soma and stabilization in the germ plasm. Here, we report a function of Aub in translation. Aub is required for translational activation of nanos mRNA, a key determinant of the germ plasm. Aub physically interacts with the poly(A)-binding protein (PABP) and the translation initiation factor eIF3. Polysome gradient profiling reveals the role of Aub at the initiation step of translation. In the germ plasm, PABP and eIF3d assemble in foci that surround Aub-containing germ granules, and Aub acts with eIF3d to promote nanos translation. These results identify translational activation as a new mode of mRNA regulation by Aub, highlighting the versatility of PIWI proteins in mRNA regulation.
Collapse
Affiliation(s)
- Anne Ramat
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Maria-Rosa Garcia-Silva
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Camille Jahan
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Rima Naït-Saïdi
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Jérémy Dufourt
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Céline Garret
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Aymeric Chartier
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Julie Cremaschi
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Vipul Patel
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | | | | | - François Juge
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Martine Simonelig
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France.
| |
Collapse
|
25
|
Malerba A, Roth F, Harish P, Dhiab J, Lu-Nguyen N, Cappellari O, Jarmin S, Mahoudeau A, Ythier V, Lainé J, Negroni E, Abgueguen E, Simonelig M, Guedat P, Mouly V, Butler-Browne G, Voisset C, Dickson G, Trollet C. Pharmacological modulation of the ER stress response ameliorates oculopharyngeal muscular dystrophy. Hum Mol Genet 2020; 28:1694-1708. [PMID: 30649389 DOI: 10.1093/hmg/ddz007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 12/23/2022] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a rare late onset genetic disease leading to ptosis, dysphagia and proximal limb muscles at later stages. A short abnormal (GCN) triplet expansion in the polyA-binding protein nuclear 1 (PABPN1) gene leads to PABPN1-containing aggregates in the muscles of OPMD patients. Here we demonstrate that treating mice with guanabenz acetate (GA), an FDA-approved antihypertensive drug, reduces the size and number of nuclear aggregates, improves muscle force, protects myofibers from the pathology-derived turnover and decreases fibrosis. GA targets various cell processes, including the unfolded protein response (UPR), which acts to attenuate endoplasmic reticulum (ER) stress. We demonstrate that GA increases both the phosphorylation of the eukaryotic translation initiation factor 2α subunit and the splicing of Xbp1, key components of the UPR. Altogether these data show that modulation of protein folding regulation is beneficial for OPMD and promote the further development of GA or its derivatives for treatment of OPMD in humans. Furthermore, they support the recent evidences that treating ER stress could be therapeutically relevant in other more common proteinopathies.
Collapse
Affiliation(s)
- Alberto Malerba
- School of Biological Sciences, Centers of Gene and Cell Therapy and Biomedical Sciences, Royal Holloway, University of London, TW20 OEX Surrey, UK
| | - Fanny Roth
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, 47 bd de l'Hôpital, Paris, France
| | - Pradeep Harish
- School of Biological Sciences, Centers of Gene and Cell Therapy and Biomedical Sciences, Royal Holloway, University of London, TW20 OEX Surrey, UK
| | - Jamila Dhiab
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, 47 bd de l'Hôpital, Paris, France
| | - Ngoc Lu-Nguyen
- School of Biological Sciences, Centers of Gene and Cell Therapy and Biomedical Sciences, Royal Holloway, University of London, TW20 OEX Surrey, UK
| | - Ornella Cappellari
- Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| | - Susan Jarmin
- School of Biological Sciences, Centers of Gene and Cell Therapy and Biomedical Sciences, Royal Holloway, University of London, TW20 OEX Surrey, UK
| | - Alexandrine Mahoudeau
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, 47 bd de l'Hôpital, Paris, France
| | - Victor Ythier
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, 47 bd de l'Hôpital, Paris, France
| | - Jeanne Lainé
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, 47 bd de l'Hôpital, Paris, France
| | - Elisa Negroni
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, 47 bd de l'Hôpital, Paris, France
| | | | - Martine Simonelig
- Institute of Human Genetics, CNRS UMR9002-University of Montpellier, mRNA Regulation and Development, Montpellier, France
| | | | - Vincent Mouly
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, 47 bd de l'Hôpital, Paris, France
| | - Gillian Butler-Browne
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, 47 bd de l'Hôpital, Paris, France
| | - Cécile Voisset
- UMR1078 'Genetic, Functional Genomic and Biotechnologies', INSERM, EFS, Brest University, IBSAM, Brest, France
| | - George Dickson
- School of Biological Sciences, Centers of Gene and Cell Therapy and Biomedical Sciences, Royal Holloway, University of London, TW20 OEX Surrey, UK
| | - Capucine Trollet
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, 47 bd de l'Hôpital, Paris, France
| |
Collapse
|
26
|
Mitochondrial localization of PABPN1 in oculopharyngeal muscular dystrophy. J Transl Med 2019; 99:1728-1740. [PMID: 30894671 DOI: 10.1038/s41374-019-0243-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/09/2019] [Accepted: 02/16/2019] [Indexed: 11/09/2022] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset disorder characterized by ptosis, dysphagia, and weakness of proximal limbs. OPMD is caused by the expansion of polyalanine in poly(A)-binding protein, nuclear 1 (PABPN1). Although mitochondrial abnormality has been proposed as the possible etiology, the molecular pathogenesis is still poorly understood. The aim of the study was to specify the mechanism by which expanded PABPN1 causes mitochondrial dysfunction in OPMD. We evaluated whether transgenic mouse model of OPMD, by expressing expanded PABPN1, indeed causes mitochondrial abnormality associated with muscle degeneration. We also investigated the mechanism by which expanded PABPN1 would cause mitochondrial dysfunction in the mouse and cell models of OPMD. Mitochondrial localization of PABPN1 was observed in the muscle fibers of patients with OPMD. Moreover, abnormal accumulation of PABPN1 on the inner membrane of mitochondria and reduced expression of OXPHOS complexes were detected in the muscle fibers of the transgenic mice expressing expanded human PABPN1 with a 13-alanine stretch. In cells expressing PABPN1 with a 10-alanine or 18-alanine stretch, both types of PABPN1 accumulated in the mitochondria and interacted with TIM23 mitochondrial protein import complex, but PABPN1 with 18-alanine stretch decreased the cell viability and aggresome formation. We proposed that the abnormal accumulation of expanded PABPN1 in mitochondria may be associated with mitochondrial abnormality in OPMD.
Collapse
|
27
|
Banerjee A, Phillips BL, Deng Q, Seyfried NT, Pavlath GK, Vest KE, Corbett AH. Proteomic analysis reveals that wildtype and alanine-expanded nuclear poly(A)-binding protein exhibit differential interactions in skeletal muscle. J Biol Chem 2019; 294:7360-7376. [PMID: 30837270 DOI: 10.1074/jbc.ra118.007287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset, primarily autosomal dominant disease caused by a short GCN expansion in the PABPN1 (polyadenylate-binding protein nuclear 1) gene that results in an alanine expansion at the N terminus of the PABPN1 protein. Expression of alanine-expanded PABPN1 is linked to the formation of nuclear aggregates in tissues from individuals with OPMD. However, as with other nuclear aggregate-associated diseases, controversy exists over whether these aggregates are the direct cause of pathology. An emerging hypothesis is that a loss of PABPN1 function and/or aberrant protein interactions contribute to pathology in OPMD. Here, we present the first global proteomic analysis of the protein interactions of WT and alanine-expanded PABPN1 in skeletal muscle tissue. These data provide both insight into the function of PABPN1 in muscle and evidence that the alanine expansion alters the protein-protein interactions of PABPN1. We extended this analysis to demonstrate altered complex formation with and loss of function of TDP-43 (TAR DNA-binding protein 43), which we show interacts with alanine-expanded but not WT PABPN1. The results from our study support a model where altered protein interactions with alanine-expanded PABPN1 that lead to loss or gain of function could contribute to pathology in OPMD.
Collapse
Affiliation(s)
| | - Brittany L Phillips
- From the Department of Biology and.,the Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia 30322
| | - Quidong Deng
- the Department of Biochemistry, Center for Neurodegenerative Diseases and
| | | | - Grace K Pavlath
- the Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Katherine E Vest
- the Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | | |
Collapse
|
28
|
Nikonova E, Kao SY, Ravichandran K, Wittner A, Spletter ML. Conserved functions of RNA-binding proteins in muscle. Int J Biochem Cell Biol 2019; 110:29-49. [PMID: 30818081 DOI: 10.1016/j.biocel.2019.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022]
Abstract
Animals require different types of muscle for survival, for example for circulation, motility, reproduction and digestion. Much emphasis in the muscle field has been placed on understanding how transcriptional regulation generates diverse types of muscle during development. Recent work indicates that alternative splicing and RNA regulation are as critical to muscle development, and altered function of RNA-binding proteins causes muscle disease. Although hundreds of genes predicted to bind RNA are expressed in muscles, many fewer have been functionally characterized. We present a cross-species view summarizing what is known about RNA-binding protein function in muscle, from worms and flies to zebrafish, mice and humans. In particular, we focus on alternative splicing regulated by the CELF, MBNL and RBFOX families of proteins. We discuss the systemic nature of diseases associated with loss of RNA-binding proteins in muscle, focusing on mis-regulation of CELF and MBNL in myotonic dystrophy. These examples illustrate the conservation of RNA-binding protein function and the marked utility of genetic model systems in understanding mechanisms of RNA regulation.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Keshika Ravichandran
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
29
|
Schatton D, Rugarli EI. A concert of RNA-binding proteins coordinates mitochondrial function. Crit Rev Biochem Mol Biol 2019; 53:652-666. [DOI: 10.1080/10409238.2018.1553927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Désirée Schatton
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Elena I. Rugarli
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
30
|
Deacetylation Inhibition Reverses PABPN1-Dependent Muscle Wasting. iScience 2019; 12:318-332. [PMID: 30739015 PMCID: PMC6370712 DOI: 10.1016/j.isci.2019.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/04/2018] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
Reduced poly(A)-binding protein nuclear 1 (PABPN1) levels cause aging-associated muscle wasting. PABPN1 is a multifunctional regulator of mRNA processing. To elucidate the molecular mechanisms causing PABPN1-mediated muscle wasting, we compared the transcriptome with the proteome in mouse muscles expressing short hairpin RNA to PABPN1 (shPab). We found greater variations in the proteome than in mRNA expression profiles. Protein accumulation in the shPab proteome was concomitant with reduced proteasomal activity. Notably, protein acetylation appeared to be decreased in shPab versus control proteomes (63%). Acetylome profiling in shPab muscles revealed prominent peptide deacetylation associated with elevated sirtuin-1 (SIRT1) deacetylase. We show that SIRT1 mRNA levels are controlled by PABPN1 via alternative polyadenylation site utilization. Most importantly, SIRT1 deacetylase inhibition by sirtinol increased PABPN1 levels and reversed muscle wasting. We suggest that perturbation of a multifactorial regulatory loop involving PABPN1 and SIRT1 plays an imperative role in aging-associated muscle wasting. Video Abstract
The PABPN1 transcriptome has smaller changes than its corresponding proteome The PABPN1 proteome is marked by protein deacetylation and elevated SIRT1 deacetylase SIRT1 levels are controlled by PABPN1 via alternative polyadenylation utilization Deacetylation inhibition reversed hallmark of muscle wasting in shPab muscles
Collapse
|
31
|
Vitiello L, Marabita M, Sorato E, Nogara L, Forestan G, Mouly V, Salviati L, Acosta M, Blaauw B, Canton M. Drug Repurposing for Duchenne Muscular Dystrophy: The Monoamine Oxidase B Inhibitor Safinamide Ameliorates the Pathological Phenotype in mdx Mice and in Myogenic Cultures From DMD Patients. Front Physiol 2018; 9:1087. [PMID: 30154729 PMCID: PMC6102489 DOI: 10.3389/fphys.2018.01087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress and mitochondrial dysfunction play a crucial role in the pathophysiology of muscular dystrophies. We previously reported that the mitochondrial enzyme monoamine oxidase (MAO) is a relevant source of reactive oxygen species (ROS) not only in murine models of muscular dystrophy, in which it directly contributes to contractile impairment, but also in muscle cells from collagen VI-deficient patients. Here, we now assessed the efficacy of a novel MAO-B inhibitor, safinamide, using in vivo and in vitro models of Duchenne muscular dystrophy (DMD). Specifically, we found that administration of safinamide in 3-month-old mdx mice reduced myofiber damage and oxidative stress and improved muscle functionality. In vitro studies with myogenic cultures from mdx mice and DMD patients showed that even cultured dystrophic myoblasts were more susceptible to oxidative stress than matching cells from healthy donors. Indeed, upon exposure to the MAO substrate tyramine or to hydrogen peroxide, DMD muscle cells displayed a rise in ROS levels and a consequent mitochondrial depolarization. Remarkably, both phenotypes normalized when cultures were treated with safinamide. Given that safinamide is already in clinical use for neurological disorders, our findings could pave the way toward a promising translation into clinical trials for DMD patients as a classic case of drug repurposing.
Collapse
Affiliation(s)
- Libero Vitiello
- Department of Biology, University of Padova, Padova, Italy.,Interuniversity Institute of Myology, Padova, Italy
| | | | - Elisa Sorato
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Leonardo Nogara
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Giada Forestan
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Vincent Mouly
- UMRS 974 UPMC-INSERM, Center for Research in Myology, Paris, France
| | - Leonardo Salviati
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza - IRP, Padova, Italy
| | - Manuel Acosta
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza - IRP, Padova, Italy
| | - Bert Blaauw
- Interuniversity Institute of Myology, Padova, Italy.,Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marcella Canton
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza - IRP, Padova, Italy
| |
Collapse
|
32
|
Ueyama M, Nagai Y. Repeat Expansion Disease Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:63-78. [PMID: 29951815 DOI: 10.1007/978-981-13-0529-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Repeat expansion disorders are a group of inherited neuromuscular diseases, which are caused by expansion mutations of repeat sequences in the disease-causing genes. Repeat expansion disorders include a class of diseases caused by repeat expansions in the coding region of the genes, producing mutant proteins with amino acid repeats, mostly the polyglutamine (polyQ) diseases, and another class of diseases caused by repeat expansions in the noncoding regions, producing aberrant RNA with expanded repeats, which are called noncoding repeat expansion diseases. A variety of Drosophila disease models have been established for both types of diseases, and they have made significant contributions toward elucidating the molecular mechanisms of and developing therapies for these neuromuscular diseases.
Collapse
Affiliation(s)
- Morio Ueyama
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
33
|
Schatton D, Rugarli EI. Post-transcriptional regulation of mitochondrial function. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2017.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
van der Sluijs BM, Raz V, Lammens M, van den Heuvel LP, Voermans NC, van Engelen BGM. Intranuclear Aggregates Precede Clinical Onset in Oculopharyngeal Muscular Dystrophy. J Neuromuscul Dis 2018; 3:101-109. [PMID: 27854203 DOI: 10.3233/jnd-150118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Oculopharyngeal muscular dystrophy (OPMD) has long been characterized by a combination of bilateral ptosis and dysphagia and subsequent limb girdle weakness. The role of the typical intranuclear inclusion in the pathophysiology is unresolved. OBJECTIVE The aim of this study was to describe the clinical and histopathological features of oculopharyngeal muscular dystrophy (OPMD). We examined this in a Dutch cohort including presymptomatic Ala-expanded-PABPN1 carriers and late symptomatic patients. METHODS We performed a prospective, observational study in OPMD patients and adult children of genetically confirmed OPMD patients. The study includes a structured history, a detailed neurological examination, muscle histology and biochemical analysis. Forty patients and 18 adult children participated in this study, among whom were six presymptomatic mutation carriers. One patient died during the study and had given permission to autopsy. RESULTS In addition to the characteristic OPMD symptoms including ptosis and dysphagia, other symptoms such as limb girdle and axial weakness, and external ophthalmoplegia were frequently observed. Intranuclear aggregates were observed in the biopsies of presymptomatic carriers. Biochemical analysis of the biopsies of the presymptomatic carriers showed no mitochondrial dysfunction. The autopsy showed that muscle weakness correlated with histopathological findings in five different muscles in an individual patient. CONCLUSIONS The main findings of this nationwide study are the presence of intranuclear aggregates before clinical onset and the absence of mitochondrial changes in Ala-expanded-PABPN1 carriers. This indicates that the expression of Ala-expanded-PABPN1 causes the formation of nuclear aggregates before the onset of muscle weakness. Normal results of biochemical analysis in presymptomatic carriers suggest that possible mitochondrial dysfunction occurs later. Furthermore we confirmed that limb girdle weakness occurs frequently in Dutch OPMD patients. This study thus expands the OPMD research towards characterization of presymptomatic carriers.
Collapse
Affiliation(s)
- B M van der Sluijs
- Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Neurology, Gelre Hospital Zutphen, Zutphen, The Netherlands
| | - V Raz
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - M Lammens
- Department of Pathology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium.,Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - L P van den Heuvel
- Department of Laboratory Medicine and Pediatrics, Translational Metabolic Laboratory, Radboud University Medical Centre, The Netherlands
| | - N C Voermans
- Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B G M van Engelen
- Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
35
|
Abstract
Autophagy plays a context-dependent role in cardiac homeostasis. In this issue of Science Signaling, Yamaguchi et al delineate a role for CCR4-NOT-mediated mRNA deadenylation in preventing the autophagy factor Atg7 from coactivating p53-mediated transcription of cell death genes in the heart.
Collapse
Affiliation(s)
- Saumya Das
- Cardiology Division, Department of Medicine and Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, Charles River Plaza, Boston, MA 02114, USA.
| |
Collapse
|
36
|
Chartier A, Joly W, Simonelig M. Measurement of mRNA Poly(A) Tail Lengths in Drosophila Female Germ Cells and Germ-Line Stem Cells. Methods Mol Biol 2018; 1463:93-102. [PMID: 27734350 DOI: 10.1007/978-1-4939-4017-2_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
mRNA regulation by poly(A) tail length variations plays an important role in many developmental processes. Recent advances have shown that, in particular, deadenylation (the shortening of mRNA poly(A) tails) is essential for germ-line stem cell biology in the Drosophila ovary. Therefore, a rapid and accurate method to analyze poly(A) tail lengths of specific mRNAs in this tissue is valuable. Several methods of poly(A) test (PAT) assays have been reported to measure mRNA poly(A) tail lengths in vivo. Here, we describe two of these methods (PAT and ePAT) that we have adapted for Drosophila ovarian germ cells and germ-line stem cells.
Collapse
Affiliation(s)
- Aymeric Chartier
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS UPR1142 and University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Willy Joly
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS UPR1142 and University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Martine Simonelig
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS UPR1142 and University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| |
Collapse
|
37
|
Potikanond S, Nimlamool W, Noordermeer J, Fradkin LG. Muscular Dystrophy Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:147-172. [PMID: 29951819 DOI: 10.1007/978-981-13-0529-0_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Muscular dystrophy (MD) is a group of muscle weakness disease involving in inherited genetic conditions. MD is caused by mutations or alteration in the genes responsible for the structure and functioning of muscles. There are many different types of MD which have a wide range from mild symptoms to severe disability. Some types involve the muscles used for breathing which eventually affect life expectancy. This chapter provides an overview of the MD types, its gene mutations, and the Drosophila MD models. Specifically, the Duchenne muscular dystrophy (DMD), the most common form of MD, will be thoroughly discussed including Dystrophin genes, their isoforms, possible mechanisms, and signaling pathways of pathogenesis.
Collapse
Affiliation(s)
- Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jasprien Noordermeer
- Department of Molecular Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Lee G Fradkin
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
38
|
Rojas-Ríos P, Chartier A, Pierson S, Simonelig M. Aubergine and piRNAs promote germline stem cell self-renewal by repressing the proto-oncogene Cbl. EMBO J 2017; 36:3194-3211. [PMID: 29030484 PMCID: PMC5666619 DOI: 10.15252/embj.201797259] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022] Open
Abstract
PIWI proteins play essential roles in germ cells and stem cell lineages. In Drosophila, Piwi is required in somatic niche cells and germline stem cells (GSCs) to support GSC self‐renewal and differentiation. Whether and how other PIWI proteins are involved in GSC biology remains unknown. Here, we show that Aubergine (Aub), another PIWI protein, is intrinsically required in GSCs for their self‐renewal and differentiation. Aub needs to be loaded with piRNAs to control GSC self‐renewal and acts through direct mRNA regulation. We identify the Cbl proto‐oncogene, a regulator of mammalian hematopoietic stem cells, as a novel GSC differentiation factor. Aub stimulates GSC self‐renewal by repressing Cbl mRNA translation and does so in part through recruitment of the CCR4‐NOT complex. This study reveals the role of piRNAs and PIWI proteins in controlling stem cell homeostasis via translational repression and highlights piRNAs as major post‐transcriptional regulators in key developmental decisions.
Collapse
Affiliation(s)
- Patricia Rojas-Ríos
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Université de Montpellier, Montpellier Cedex 5, France
| | - Aymeric Chartier
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Université de Montpellier, Montpellier Cedex 5, France
| | - Stéphanie Pierson
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Université de Montpellier, Montpellier Cedex 5, France
| | - Martine Simonelig
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Université de Montpellier, Montpellier Cedex 5, France
| |
Collapse
|
39
|
Götze M, Dufourt J, Ihling C, Rammelt C, Pierson S, Sambrani N, Temme C, Sinz A, Simonelig M, Wahle E. Translational repression of the Drosophila nanos mRNA involves the RNA helicase Belle and RNA coating by Me31B and Trailer hitch. RNA (NEW YORK, N.Y.) 2017; 23:1552-1568. [PMID: 28701521 PMCID: PMC5602113 DOI: 10.1261/rna.062208.117] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/10/2017] [Indexed: 05/10/2023]
Abstract
Translational repression of maternal mRNAs is an essential regulatory mechanism during early embryonic development. Repression of the Drosophila nanos mRNA, required for the formation of the anterior-posterior body axis, depends on the protein Smaug binding to two Smaug recognition elements (SREs) in the nanos 3' UTR. In a comprehensive mass spectrometric analysis of the SRE-dependent repressor complex, we identified Smaug, Cup, Me31B, Trailer hitch, eIF4E, and PABPC, in agreement with earlier data. As a novel component, the RNA-dependent ATPase Belle (DDX3) was found, and its involvement in deadenylation and repression of nanos was confirmed in vivo. Smaug, Cup, and Belle bound stoichiometrically to the SREs, independently of RNA length. Binding of Me31B and Tral was also SRE-dependent, but their amounts were proportional to the length of the RNA and equimolar to each other. We suggest that "coating" of the RNA by a Me31B•Tral complex may be at the core of repression.
Collapse
Affiliation(s)
- Michael Götze
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Jérémy Dufourt
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34396 Montpellier Cedex 5, France
| | - Christian Ihling
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Christiane Rammelt
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Stephanie Pierson
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34396 Montpellier Cedex 5, France
| | - Nagraj Sambrani
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34396 Montpellier Cedex 5, France
| | - Claudia Temme
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Andrea Sinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Martine Simonelig
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34396 Montpellier Cedex 5, France
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| |
Collapse
|
40
|
Vest KE, Phillips BL, Banerjee A, Apponi LH, Dammer EB, Xu W, Zheng D, Yu J, Tian B, Pavlath GK, Corbett AH. Novel mouse models of oculopharyngeal muscular dystrophy (OPMD) reveal early onset mitochondrial defects and suggest loss of PABPN1 may contribute to pathology. Hum Mol Genet 2017; 26:3235-3252. [PMID: 28575395 PMCID: PMC5886286 DOI: 10.1093/hmg/ddx206] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/14/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late onset disease caused by polyalanine expansion in the poly(A) binding protein nuclear 1 (PABPN1). Several mouse models have been generated to study OPMD; however, most of these models have employed transgenic overexpression of alanine-expanded PABPN1. These models do not recapitulate the OPMD patient genotype and PABPN1 overexpression could confound molecular phenotypes. We have developed a knock-in mouse model of OPMD (Pabpn1+/A17) that contains one alanine-expanded Pabpn1 allele under the control of the native promoter and one wild-type Pabpn1 allele. This mouse is the closest available genocopy of OPMD patients. We show that Pabpn1+/A17 mice have a mild myopathic phenotype in adult and aged animals. We examined early molecular and biochemical phenotypes associated with expressing native levels of A17-PABPN1 and detected shorter poly(A) tails, modest changes in poly(A) signal (PAS) usage, and evidence of mitochondrial damage in these mice. Recent studies have suggested that a loss of PABPN1 function could contribute to muscle pathology in OPMD. To investigate a loss of function model of pathology, we generated a heterozygous Pabpn1 knock-out mouse model (Pabpn1+/Δ). Like the Pabpn1+/A17 mice, Pabpn1+/Δ mice have mild histologic defects, shorter poly(A) tails, and evidence of mitochondrial damage. However, the phenotypes detected in Pabpn1+/Δ mice only partially overlap with those detected in Pabpn1+/A17 mice. These results suggest that loss of PABPN1 function could contribute to but may not completely explain the pathology detected in Pabpn1+/A17 mice.
Collapse
Affiliation(s)
- Katherine E. Vest
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Brittany L. Phillips
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Ayan Banerjee
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Luciano H. Apponi
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B. Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Weiting Xu
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Julia Yu
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Grace K. Pavlath
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
41
|
Murphy S, Ohlendieck K. Mass spectrometric identification of dystrophin, the protein product of the Duchenne muscular dystrophy gene, in distinct muscle surface membranes. Int J Mol Med 2017; 40:1078-1088. [PMID: 28765879 PMCID: PMC5593493 DOI: 10.3892/ijmm.2017.3082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
Supramolecular membrane complexes of low abundance are difficult to study by routine bioanalytical techniques. The plasmalemmal complex consisting of sarcoglycans, dystroglycans, dystrobrevins and syntrophins, which is closely associated with the membrane cytoskeletal protein dystrophin, represents such a high‑molecular‑mass protein assembly in skeletal muscles. The almost complete loss of the dystrophin isoform Dp427‑M and concomitant reduction in the dystrophin‑associated glycoprotein complex is the underlying cause of the highly progressive neuromuscular disorder named Duchenne muscular dystrophy. This gives the detailed characterization of the dystrophin complex considerable pathophysiological importance. In order to carry out a comprehensive mass spectrometric identification of the dystrophin‑glycoprotein complex, in this study, we used extensive subcellular fractionation and enrichment procedures prior to subproteomic analysis. Mass spectrometry identified high levels of full‑length dystrophin isoform Dp427‑M, α/β‑dystroglycans, α/β/γ/δ‑sarcoglycans, α1/β1/β2‑syntrophins and α/β‑dystrobrevins in highly purified sarcolemma vesicles. By contrast, lower levels were detected in transverse tubules and no components of the dystrophin complex were identified in triads. For comparative purposes, the presence of organellar marker proteins was studied in crude surface membrane preparations vs. enriched fractions from the sarcolemma, transverse tubules and triad junctions using gradient gel electrophoresis and on‑membrane digestion. This involved the subproteomic assessment of various ion‑regulatory proteins and excitation‑contraction coupling components. The comparative profiling of skeletal muscle fractions established a relatively restricted subcellular localization of the dystrophin‑glycoprotein complex in the muscle fibre periphery by proteomic means and clearly demonstrated the absence of dystrophin from triad junctions by sensitive mass spectrometric analysis.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co Kildare, Ireland
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co Kildare, Ireland
| |
Collapse
|
42
|
Kühn U, Buschmann J, Wahle E. The nuclear poly(A) binding protein of mammals, but not of fission yeast, participates in mRNA polyadenylation. RNA (NEW YORK, N.Y.) 2017; 23:473-482. [PMID: 28096519 PMCID: PMC5340911 DOI: 10.1261/rna.057026.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 01/04/2017] [Indexed: 05/22/2023]
Abstract
The nuclear poly(A) binding protein (PABPN1) has been suggested, on the basis of biochemical evidence, to play a role in mRNA polyadenylation by strongly increasing the processivity of poly(A) polymerase. While experiments in metazoans have tended to support such a role, the results were not unequivocal, and genetic data show that the S. pombe ortholog of PABPN1, Pab2, is not involved in mRNA polyadenylation. The specific model in which PABPN1 increases the rate of poly(A) tail elongation has never been examined in vivo. Here, we have used 4-thiouridine pulse-labeling to examine the lengths of newly synthesized poly(A) tails in human cells. Knockdown of PABPN1 strongly reduced the synthesis of full-length tails of ∼250 nucleotides, as predicted from biochemical data. We have also purified S. pombe Pab2 and the S. pombe poly(A) polymerase, Pla1, and examined their in vitro activities. Whereas PABPN1 strongly increases the activity of its cognate poly(A) polymerase in vitro, Pab2 was unable to stimulate Pla1 to any significant extent. Thus, in vitro and in vivo data are consistent in supporting a role of PABPN1 but not S. pombe Pab2 in the polyadenylation of mRNA precursors.
Collapse
Affiliation(s)
- Uwe Kühn
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Juliane Buschmann
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| |
Collapse
|
43
|
Malerba A, Klein P, Bachtarzi H, Jarmin SA, Cordova G, Ferry A, Strings V, Espinoza MP, Mamchaoui K, Blumen SC, St Guily JL, Mouly V, Graham M, Butler-Browne G, Suhy DA, Trollet C, Dickson G. PABPN1 gene therapy for oculopharyngeal muscular dystrophy. Nat Commun 2017; 8:14848. [PMID: 28361972 PMCID: PMC5380963 DOI: 10.1038/ncomms14848] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/07/2017] [Indexed: 01/14/2023] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is an autosomal dominant, late-onset muscle disorder characterized by ptosis, swallowing difficulties, proximal limb weakness and nuclear aggregates in skeletal muscles. OPMD is caused by a trinucleotide repeat expansion in the PABPN1 gene that results in an N-terminal expanded polyalanine tract in polyA-binding protein nuclear 1 (PABPN1). Here we show that the treatment of a mouse model of OPMD with an adeno-associated virus-based gene therapy combining complete knockdown of endogenous PABPN1 and its replacement by a wild-type PABPN1 substantially reduces the amount of insoluble aggregates, decreases muscle fibrosis, reverts muscle strength to the level of healthy muscles and normalizes the muscle transcriptome. The efficacy of the combined treatment is further confirmed in cells derived from OPMD patients. These results pave the way towards a gene replacement approach for OPMD treatment. Oculopharyngeal muscular dystrophy is caused by trinucleotide repeat expansions in the PABPN1 gene. Here the authors use AAV-based gene therapy to knockdown the mutant gene and replace it with a wild-type allele, and show effectiveness in mice and in patient cells.
Collapse
Affiliation(s)
- A Malerba
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, TW20 0EX Surrey, UK
| | - P Klein
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617, 47 bd de l'Hôpital, 75013 Paris, France
| | - H Bachtarzi
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, TW20 0EX Surrey, UK
| | - S A Jarmin
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, TW20 0EX Surrey, UK
| | - G Cordova
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617, 47 bd de l'Hôpital, 75013 Paris, France
| | - A Ferry
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617, 47 bd de l'Hôpital, 75013 Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
| | - V Strings
- Benitec Biopharma, 3940 Trust Way, Hayward, California 94545, USA
| | - M Polay Espinoza
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617, 47 bd de l'Hôpital, 75013 Paris, France
| | - K Mamchaoui
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617, 47 bd de l'Hôpital, 75013 Paris, France
| | - S C Blumen
- Department of Neurology, Hillel Yaffe Medical Center, Hadera and Rappaport Faculty of Medicine, The Technion, 1 Efron Street, Haifa 31096, Israel
| | - J Lacau St Guily
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617, 47 bd de l'Hôpital, 75013 Paris, France.,Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and University Pierre-et-Marie-Curie, Paris VI, Tenon Hospital, Assistance Publique des Hopitaux de Paris, 75252 Paris, France
| | - V Mouly
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617, 47 bd de l'Hôpital, 75013 Paris, France
| | - M Graham
- Benitec Biopharma, 3940 Trust Way, Hayward, California 94545, USA
| | - G Butler-Browne
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617, 47 bd de l'Hôpital, 75013 Paris, France
| | - D A Suhy
- Benitec Biopharma, 3940 Trust Way, Hayward, California 94545, USA
| | - C Trollet
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617, 47 bd de l'Hôpital, 75013 Paris, France
| | - G Dickson
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, TW20 0EX Surrey, UK
| |
Collapse
|
44
|
Richard P, Roth F, Stojkovic T, Trollet C. Distrofia muscolare oculofaringea. Neurologia 2017. [DOI: 10.1016/s1634-7072(16)81777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
45
|
Richard P, Trollet C, Stojkovic T, de Becdelievre A, Perie S, Pouget J, Eymard B. Correlation between PABPN1 genotype and disease severity in oculopharyngeal muscular dystrophy. Neurology 2016; 88:359-365. [PMID: 28011929 PMCID: PMC5272966 DOI: 10.1212/wnl.0000000000003554] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/19/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Oculopharyngeal muscular dystrophy (OPMD) is an autosomal dominant adult-onset disease characterized by progressive ptosis, dysphagia, and proximal limb weakness. The genetic cause is an expanded (GCN)n mutation in the PABPN1 gene encoding for the polyadenylate-binding protein nuclear 1. We hypothesized a potential correlation between the size of the (GCN)n expansion and the severity of the phenotype. To do this, we characterized the distribution of the genotypes as well as their correlation with age at diagnosis and phenotypical features in a large cohort of heterozygous and homozygous patients with OPMD in France with a confirmed molecular diagnosis of PABPN1. METHODS We explored 354 unrelated index cases recruited between 1999 and 2014 in several neuromuscular centers in France. RESULTS This cohort allowed us to characterize the frequency of mutated alleles in the French population and to demonstrate a statistical correlation between the size of the expansion and the mean age at diagnosis. We also confirmed that homozygous patients present with a more severe disease. CONCLUSIONS It has been difficult to establish phenotype-genotype correlations because of the rare nature of this disease. Our work demonstrates that patients with OPMD with longer PABPN1 expansion are on average diagnosed at an earlier age than patients with a shorter expansion, confirming that polyalanine expansion size plays a role in OPMD, with an effect on disease severity and progression.
Collapse
Affiliation(s)
- Pascale Richard
- From APHP (P.R., A.d.B.), Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris Cedex 13, INSERM UMRS1166, UPMC Paris 6; Sorbonne Universités (C.T.), UPMC Univ Paris 6, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617; APHP (T.S., B.E.), Centre de Référence des Maladies Neuromusculaire, Institut de Myologie, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris; APHP (S.P.), Service d'ORL et Chirurgie Cervicofaciale, Hôpital Tenon, UPMC Paris 6; and APHM (J.P.), Aix Marseille Université, Centre de Référence des Maladies Neuromusculaires, Hôpital de La Timone, Marseille, France.
| | - Capucine Trollet
- From APHP (P.R., A.d.B.), Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris Cedex 13, INSERM UMRS1166, UPMC Paris 6; Sorbonne Universités (C.T.), UPMC Univ Paris 6, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617; APHP (T.S., B.E.), Centre de Référence des Maladies Neuromusculaire, Institut de Myologie, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris; APHP (S.P.), Service d'ORL et Chirurgie Cervicofaciale, Hôpital Tenon, UPMC Paris 6; and APHM (J.P.), Aix Marseille Université, Centre de Référence des Maladies Neuromusculaires, Hôpital de La Timone, Marseille, France
| | - Tanya Stojkovic
- From APHP (P.R., A.d.B.), Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris Cedex 13, INSERM UMRS1166, UPMC Paris 6; Sorbonne Universités (C.T.), UPMC Univ Paris 6, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617; APHP (T.S., B.E.), Centre de Référence des Maladies Neuromusculaire, Institut de Myologie, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris; APHP (S.P.), Service d'ORL et Chirurgie Cervicofaciale, Hôpital Tenon, UPMC Paris 6; and APHM (J.P.), Aix Marseille Université, Centre de Référence des Maladies Neuromusculaires, Hôpital de La Timone, Marseille, France
| | - Alix de Becdelievre
- From APHP (P.R., A.d.B.), Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris Cedex 13, INSERM UMRS1166, UPMC Paris 6; Sorbonne Universités (C.T.), UPMC Univ Paris 6, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617; APHP (T.S., B.E.), Centre de Référence des Maladies Neuromusculaire, Institut de Myologie, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris; APHP (S.P.), Service d'ORL et Chirurgie Cervicofaciale, Hôpital Tenon, UPMC Paris 6; and APHM (J.P.), Aix Marseille Université, Centre de Référence des Maladies Neuromusculaires, Hôpital de La Timone, Marseille, France
| | - Sophie Perie
- From APHP (P.R., A.d.B.), Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris Cedex 13, INSERM UMRS1166, UPMC Paris 6; Sorbonne Universités (C.T.), UPMC Univ Paris 6, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617; APHP (T.S., B.E.), Centre de Référence des Maladies Neuromusculaire, Institut de Myologie, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris; APHP (S.P.), Service d'ORL et Chirurgie Cervicofaciale, Hôpital Tenon, UPMC Paris 6; and APHM (J.P.), Aix Marseille Université, Centre de Référence des Maladies Neuromusculaires, Hôpital de La Timone, Marseille, France
| | - Jean Pouget
- From APHP (P.R., A.d.B.), Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris Cedex 13, INSERM UMRS1166, UPMC Paris 6; Sorbonne Universités (C.T.), UPMC Univ Paris 6, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617; APHP (T.S., B.E.), Centre de Référence des Maladies Neuromusculaire, Institut de Myologie, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris; APHP (S.P.), Service d'ORL et Chirurgie Cervicofaciale, Hôpital Tenon, UPMC Paris 6; and APHM (J.P.), Aix Marseille Université, Centre de Référence des Maladies Neuromusculaires, Hôpital de La Timone, Marseille, France
| | - Bruno Eymard
- From APHP (P.R., A.d.B.), Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris Cedex 13, INSERM UMRS1166, UPMC Paris 6; Sorbonne Universités (C.T.), UPMC Univ Paris 6, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617; APHP (T.S., B.E.), Centre de Référence des Maladies Neuromusculaire, Institut de Myologie, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris; APHP (S.P.), Service d'ORL et Chirurgie Cervicofaciale, Hôpital Tenon, UPMC Paris 6; and APHM (J.P.), Aix Marseille Université, Centre de Référence des Maladies Neuromusculaires, Hôpital de La Timone, Marseille, France
| | | |
Collapse
|
46
|
Klein P, Oloko M, Roth F, Montel V, Malerba A, Jarmin S, Gidaro T, Popplewell L, Perie S, Lacau St Guily J, de la Grange P, Antoniou MN, Dickson G, Butler-Browne G, Bastide B, Mouly V, Trollet C. Nuclear poly(A)-binding protein aggregates misplace a pre-mRNA outside of SC35 speckle causing its abnormal splicing. Nucleic Acids Res 2016; 44:10929-10945. [PMID: 27507886 PMCID: PMC5159528 DOI: 10.1093/nar/gkw703] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 11/21/2022] Open
Abstract
A short abnormal polyalanine expansion in the polyadenylate-binding protein nuclear-1 (PABPN1) protein causes oculopharyngeal muscular dystrophy (OPMD). Mutated PABPN1 proteins accumulate as insoluble intranuclear aggregates in muscles of OPMD patients. While the roles of PABPN1 in nuclear polyadenylation and regulation of alternative poly(A) site choice have been established, the molecular mechanisms which trigger pathological defects in OPMD and the role of aggregates remain to be determined. Using exon array, for the first time we have identified several splicing defects in OPMD. In particular, we have demonstrated a defect in the splicing regulation of the muscle-specific Troponin T3 (TNNT3) mutually exclusive exons 16 and 17 in OPMD samples compared to controls. This splicing defect is directly linked to the SC35 (SRSF2) splicing factor and to the presence of nuclear aggregates. As reported here, PABPN1 aggregates are able to trap TNNT3 pre-mRNA, driving it outside nuclear speckles, leading to an altered SC35-mediated splicing. This results in a decreased calcium sensitivity of muscle fibers, which could in turn plays a role in muscle pathology. We thus report a novel mechanism of alternative splicing deregulation that may play a role in various other diseases with nuclear inclusions or foci containing an RNA binding protein.
Collapse
Affiliation(s)
- Pierre Klein
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Martine Oloko
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Fanny Roth
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Valérie Montel
- Univ. Lille - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, équipe APMS, F-59000 Lille, France
| | - Alberto Malerba
- School of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Susan Jarmin
- School of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Teresa Gidaro
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Linda Popplewell
- School of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Sophie Perie
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France.,Department of Otolaryngology-Head and Neck Surgery, University Pierre-et-Marie-Curie, Paris VI, Tenon Hospital, Assistance Publique des Hopitaux de Paris, Paris, France
| | - Jean Lacau St Guily
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France.,Department of Otolaryngology-Head and Neck Surgery, University Pierre-et-Marie-Curie, Paris VI, Tenon Hospital, Assistance Publique des Hopitaux de Paris, Paris, France
| | | | - Michael N Antoniou
- King's College London School of Medicine, Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Guy's Hospital, London, UK
| | - George Dickson
- School of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Gillian Butler-Browne
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Bruno Bastide
- Univ. Lille - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, équipe APMS, F-59000 Lille, France
| | - Vincent Mouly
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Capucine Trollet
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| |
Collapse
|
47
|
Fernández-Alvarez AJ, Pascual ML, Boccaccio GL, Thomas MG. Smaug variants in neural and non-neuronal cells. Commun Integr Biol 2016; 9:e1139252. [PMID: 27195061 PMCID: PMC4857778 DOI: 10.1080/19420889.2016.1139252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/02/2016] [Accepted: 01/04/2016] [Indexed: 10/25/2022] Open
Abstract
Mammalian Smaug1/Samd4a is an mRNA regulator involved in synapse plasticity and additional non-neuronal functions. Here we analyzed the expression of Smaug1/Samd4a variants and Smaug2/Samd4b in primary hippocampal neurons and non-neuronal cell lines. We found that multiple Smaug proteins are present in several mammalian cell lines, including a canonical full length Smaug1, a Smaug1 variant that lacks the third exon, termed ΔEIII, and Smaug2, the product of a highly homologous gene. These three major isoforms are expressed differentially along neuron development and form cytosolic bodies when transfected in cell lines. By using luciferase reporters, we found that the ΔEIII isoform, which lacks 10 amino acids in the sterile α motif involved in RNA binding, shows a RNA-binding capacity and repressor activity comparable to that of the full length Smaug1. These observations are an important groundwork for molecular studies of the Smaug post-transcriptional pathway, which is relevant to neuron development, mitochondrial function and muscle physiology in health and disease.
Collapse
Affiliation(s)
- Ana Julia Fernández-Alvarez
- Fundación Instituto Leloir, Buenos Aires, Argentina; Instituto de Investigaciones Bioquímicas Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Malena Lucía Pascual
- Fundación Instituto Leloir, Buenos Aires, Argentina; Instituto de Investigaciones Bioquímicas Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina
| | - Graciela Lidia Boccaccio
- Fundación Instituto Leloir, Buenos Aires, Argentina; Instituto de Investigaciones Bioquímicas Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina
| | - María Gabriela Thomas
- Fundación Instituto Leloir, Buenos Aires, Argentina; Instituto de Investigaciones Bioquímicas Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| |
Collapse
|