1
|
Phelan JE, Turkiewicz A, Manko E, Thorpe J, Vanheer LN, van de Vegte-Bolmer M, Ngoc NTH, Binh NTH, Thieu NQ, Gitaka J, Nolder D, Beshir KB, Dombrowski JG, Di Santi SM, Bousema T, Sutherland CJ, Campino S, Clark TG. Rapid profiling of Plasmodium parasites from genome sequences to assist malaria control. Genome Med 2023; 15:96. [PMID: 37950308 PMCID: PMC10636944 DOI: 10.1186/s13073-023-01247-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Malaria continues to be a major threat to global public health. Whole genome sequencing (WGS) of the underlying Plasmodium parasites has provided insights into the genomic epidemiology of malaria. Genome sequencing is rapidly gaining traction as a diagnostic and surveillance tool for clinical settings, where the profiling of co-infections, identification of imported malaria parasites, and detection of drug resistance are crucial for infection control and disease elimination. To support this informatically, we have developed the Malaria-Profiler tool, which rapidly (within minutes) predicts Plasmodium species, geographical source, and resistance to antimalarial drugs directly from WGS data. RESULTS The online and command line versions of Malaria-Profiler detect ~ 250 markers from genome sequences covering Plasmodium speciation, likely geographical source, and resistance to chloroquine, sulfadoxine-pyrimethamine (SP), and other anti-malarial drugs for P. falciparum, but also providing mutations for orthologous resistance genes in other species. The predictive performance of the mutation library was assessed using 9321 clinical isolates with WGS and geographical data, with most being single-species infections (P. falciparum 7152/7462, P. vivax 1502/1661, P. knowlesi 143/151, P. malariae 18/18, P. ovale ssp. 5/5), but co-infections were identified (456/9321; 4.8%). The accuracy of the predicted geographical profiles was high to both continental (96.1%) and regional levels (94.6%). For P. falciparum, markers were identified for resistance to chloroquine (49.2%; regional range: 24.5% to 100%), sulfadoxine (83.3%; 35.4- 90.5%), pyrimethamine (85.4%; 80.0-100%) and combined SP (77.4%). Markers associated with the partial resistance of artemisinin were found in WGS from isolates sourced from Southeast Asia (30.6%). CONCLUSIONS Malaria-Profiler is a user-friendly tool that can rapidly and accurately predict the geographical regional source and anti-malarial drug resistance profiles across large numbers of samples with WGS data. The software is flexible with modifiable bioinformatic pipelines. For example, it is possible to select the sequencing platform, display specific variants, and customise the format of outputs. With the increasing application of next-generation sequencing platforms on Plasmodium DNA, Malaria-Profiler has the potential to be integrated into point-of-care and surveillance settings, thereby assisting malaria control. Malaria-Profiler is available online (bioinformatics.lshtm.ac.uk/malaria-profiler) and as standalone software ( https://github.com/jodyphelan/malaria-profiler ).
Collapse
Affiliation(s)
- Jody E Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK.
| | - Anna Turkiewicz
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| | - Emilia Manko
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| | - Joseph Thorpe
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| | - Leen N Vanheer
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| | - Marga van de Vegte-Bolmer
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, University of Nijmegen, Nijmegen, The Netherlands
| | - Nguyen Thi Hong Ngoc
- Molecular Biology Department, Parasitology and Entomology, Vietnam National Institute of Malariology, Hanoi, Vietnam
| | - Nguyen Thi Huong Binh
- Molecular Biology Department, Parasitology and Entomology, Vietnam National Institute of Malariology, Hanoi, Vietnam
| | - Nguyen Quang Thieu
- Molecular Biology Department, Parasitology and Entomology, Vietnam National Institute of Malariology, Hanoi, Vietnam
| | - Jesse Gitaka
- Directorate of Research and Innovation, Mount Kenya University, Gen. Kago Rd, Thika, Kenya
| | - Debbie Nolder
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK
- UK Health Security Agency Malaria Reference Laboratory, LSHTM, London, WC1E 7HT, UK
| | - Khalid B Beshir
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| | - Jamille G Dombrowski
- Department of Parasitology, Institute of Biomedical Sciences, Univ. of São Paulo, São Paulo, Brazil
| | - Silvia Maria Di Santi
- School of Medicine, Instituto de Medicina Tropical, University of São Paulo, São Paulo, Brazil
| | - Teun Bousema
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, University of Nijmegen, Nijmegen, The Netherlands
| | - Colin J Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK
- UK Health Security Agency Malaria Reference Laboratory, LSHTM, London, WC1E 7HT, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK.
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK.
- Faculty of Epidemiology and Population Health, LSHTM, London, WC1E 7HT, UK.
| |
Collapse
|
2
|
Deelder W, Manko E, Phelan JE, Campino S, Palla L, Clark TG. Geographical classification of malaria parasites through applying machine learning to whole genome sequence data. Sci Rep 2022; 12:21150. [PMID: 36476815 PMCID: PMC9729610 DOI: 10.1038/s41598-022-25568-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Malaria, caused by Plasmodium parasites, is a major global health challenge. Whole genome sequencing (WGS) of Plasmodium falciparum and Plasmodium vivax genomes is providing insights into parasite genetic diversity, transmission patterns, and can inform decision making for clinical and surveillance purposes. Advances in sequencing technologies are helping to generate timely and big genomic datasets, with the prospect of applying Artificial Intelligence analytical techniques (e.g., machine learning) to support programmatic malaria control and elimination. Here, we assess the potential of applying deep learning convolutional neural network approaches to predict the geographic origin of infections (continents, countries, GPS locations) using WGS data of P. falciparum (n = 5957; 27 countries) and P. vivax (n = 659; 13 countries) isolates. Using identified high-quality genome-wide single nucleotide polymorphisms (SNPs) (P. falciparum: 750 k, P. vivax: 588 k), an analysis of population structure and ancestry revealed clustering at the country-level. When predicting locations for both species, classification (compared to regression) methods had the lowest distance errors, and > 90% accuracy at a country level. Our work demonstrates the utility of machine learning approaches for geo-classification of malaria parasites. With timelier WGS data generation across more malaria-affected regions, the performance of machine learning approaches for geo-classification will improve, thereby supporting disease control activities.
Collapse
Affiliation(s)
- Wouter Deelder
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Dalberg Advisors, 7 Rue de Chantepoulet, 1201, Geneva, Switzerland
| | - Emilia Manko
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Jody E Phelan
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Susana Campino
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Luigi Palla
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Taane G Clark
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
3
|
Coulibaly A, Diop MF, Kone A, Dara A, Ouattara A, Mulder N, Miotto O, Diakite M, Djimde A, Amambua-Ngwa A. Genome-wide SNP analysis of Plasmodium falciparum shows differentiation at drug-resistance-associated loci among malaria transmission settings in southern Mali. Front Genet 2022; 13:943445. [PMID: 36267403 PMCID: PMC9576839 DOI: 10.3389/fgene.2022.943445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
Plasmodium falciparum malaria cases in Africa represent over 90% of the global burden with Mali being amongst the 11 highest burden countries that account for 70% of this annual incidence. The persistence of P. falciparum despite massive global interventions is because of its genetic diversity that drives its ability to adapt to environmental changes, develop resistance to drugs, and evade the host immune system. Knowledge on P. falciparum genetic diversity across populations and intervention landscape is thus critical for the implementation of new strategies to eliminate malaria. This study assessed genetic variation with 12,177 high-quality SNPs from 830 Malian P. falciparum isolates collected between 2007 and 2017 from seven locations. The complexity of infections remained high, varied between sites, and showed a trend toward overall decreasing complexity over the decade. Though there was no significant substructure, allele frequencies varied geographically, partly driven by temporal variance in sampling, particularly for drug resistance and antigen loci. Thirty-two mutations in known drug resistance markers (pfcrt, pfdhps, pfdhfr, pfmdr1, pfmdr2, and pfk13) attained a frequency of at least 2% in the populations. SNPs within and around the major markers of resistance to quinolines (pfmdr1 and pfcrt) and antifolates (pfdhfr and pfdhps) varied temporally and geographically, with strong linkage disequilibrium and signatures of directional selection in the genome. These geo-temporal populations also differentiated at alleles in immune-related loci, including, protein E140, pfsurfin8, pfclag8, and pfceltos, as well as pftrap, which showed signatures of haplotype differentiation between populations. Several regions across the genomes, including five known drug resistance loci, showed signatures of differential positive selection. These results suggest that drugs and immune pressure are dominant selective forces against P. falciparum in Mali, but their effect on the parasite genome varies temporally and spatially. Interventions interacting with these genomic variants need to be routinely evaluated as malaria elimination strategies are implemented.
Collapse
Affiliation(s)
- Aoua Coulibaly
- Malaria Research and Training Center, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
- Computational Biology Division, University of Cape Town, Cape Town, South Africa
| | - Mouhamadou Fadel Diop
- Disease Control and Elimination, Medical Research Council Unit The Gambia at LSHTM, Banjul, Gambia
| | - Aminatou Kone
- Malaria Research and Training Center, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Antoine Dara
- Malaria Research and Training Center, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Amed Ouattara
- Malaria Research and Training Center, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
- University of Maryland Baltimore, Baltimore, MD, United States
| | - Nicola Mulder
- Computational Biology Division, University of Cape Town, Cape Town, South Africa
| | - Olivo Miotto
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Mahamadou Diakite
- Malaria Research and Training Center, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye Djimde
- Malaria Research and Training Center, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Alfred Amambua-Ngwa
- Disease Control and Elimination, Medical Research Council Unit The Gambia at LSHTM, Banjul, Gambia
| |
Collapse
|
4
|
Osborne A, Manko E, Takeda M, Kaneko A, Kagaya W, Chan C, Ngara M, Kongere J, Kita K, Campino S, Kaneko O, Gitaka J, Clark TG. Characterizing the genomic variation and population dynamics of Plasmodium falciparum malaria parasites in and around Lake Victoria, Kenya. Sci Rep 2021; 11:19809. [PMID: 34615917 PMCID: PMC8494747 DOI: 10.1038/s41598-021-99192-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Characterising the genomic variation and population dynamics of Plasmodium falciparum parasites in high transmission regions of Sub-Saharan Africa is crucial to the long-term efficacy of regional malaria elimination campaigns and eradication. Whole-genome sequencing (WGS) technologies can contribute towards understanding the epidemiology and structural variation landscape of P. falciparum populations, including those within the Lake Victoria basin, a region of intense transmission. Here we provide a baseline assessment of the genomic diversity of P. falciparum isolates in the Lake region of Kenya, which has sparse genetic data. Lake region isolates are placed within the context of African-wide populations using Illumina WGS data and population genomic analyses. Our analysis revealed that P. falciparum isolates from Lake Victoria form a cluster within the East African parasite population. These isolates also appear to have distinct ancestral origins, containing genome-wide signatures from both Central and East African lineages. Known drug resistance biomarkers were observed at similar frequencies to those of East African parasite populations, including the S160N/T mutation in the pfap2mu gene, which has been associated with delayed clearance by artemisinin-based combination therapy. Overall, our work provides a first assessment of P. falciparum genetic diversity within the Lake Victoria basin, a region targeting malaria elimination.
Collapse
Affiliation(s)
- Ashley Osborne
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Emilia Manko
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Mika Takeda
- Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Akira Kaneko
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Wataru Kagaya
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Chim Chan
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Mtakai Ngara
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - James Kongere
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Centre for Research in Tropical Medicine and Community Development (CRTMCD), Hospital Road Next to Kenyatta National Hospital, Nairobi, Kenya
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Jesse Gitaka
- Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
- Centre for Malaria Elimination, Mount Kenya University, Thika, Kenya
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
5
|
MalariaGEN, Ahouidi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A, Amaratunga C, Amato R, Amenga-Etego L, Andagalu B, Anderson TJC, Andrianaranjaka V, Apinjoh T, Ariani C, Ashley EA, Auburn S, Awandare GA, Ba H, Baraka V, Barry AE, Bejon P, Bertin GI, Boni MF, Borrmann S, Bousema T, Branch O, Bull PC, Busby GBJ, Chookajorn T, Chotivanich K, Claessens A, Conway D, Craig A, D'Alessandro U, Dama S, Day NPJ, Denis B, Diakite M, Djimdé A, Dolecek C, Dondorp AM, Drakeley C, Drury E, Duffy P, Echeverry DF, Egwang TG, Erko B, Fairhurst RM, Faiz A, Fanello CA, Fukuda MM, Gamboa D, Ghansah A, Golassa L, Goncalves S, Hamilton WL, Harrison GLA, Hart L, Henrichs C, Hien TT, Hill CA, Hodgson A, Hubbart C, Imwong M, Ishengoma DS, Jackson SA, Jacob CG, Jeffery B, Jeffreys AE, Johnson KJ, Jyothi D, Kamaliddin C, Kamau E, Kekre M, Kluczynski K, Kochakarn T, Konaté A, Kwiatkowski DP, Kyaw MP, Lim P, Lon C, Loua KM, Maïga-Ascofaré O, Malangone C, Manske M, Marfurt J, Marsh K, Mayxay M, Miles A, Miotto O, Mobegi V, Mokuolu OA, Montgomery J, Mueller I, Newton PN, Nguyen T, Nguyen TN, Noedl H, Nosten F, Noviyanti R, Nzila A, et alMalariaGEN, Ahouidi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A, Amaratunga C, Amato R, Amenga-Etego L, Andagalu B, Anderson TJC, Andrianaranjaka V, Apinjoh T, Ariani C, Ashley EA, Auburn S, Awandare GA, Ba H, Baraka V, Barry AE, Bejon P, Bertin GI, Boni MF, Borrmann S, Bousema T, Branch O, Bull PC, Busby GBJ, Chookajorn T, Chotivanich K, Claessens A, Conway D, Craig A, D'Alessandro U, Dama S, Day NPJ, Denis B, Diakite M, Djimdé A, Dolecek C, Dondorp AM, Drakeley C, Drury E, Duffy P, Echeverry DF, Egwang TG, Erko B, Fairhurst RM, Faiz A, Fanello CA, Fukuda MM, Gamboa D, Ghansah A, Golassa L, Goncalves S, Hamilton WL, Harrison GLA, Hart L, Henrichs C, Hien TT, Hill CA, Hodgson A, Hubbart C, Imwong M, Ishengoma DS, Jackson SA, Jacob CG, Jeffery B, Jeffreys AE, Johnson KJ, Jyothi D, Kamaliddin C, Kamau E, Kekre M, Kluczynski K, Kochakarn T, Konaté A, Kwiatkowski DP, Kyaw MP, Lim P, Lon C, Loua KM, Maïga-Ascofaré O, Malangone C, Manske M, Marfurt J, Marsh K, Mayxay M, Miles A, Miotto O, Mobegi V, Mokuolu OA, Montgomery J, Mueller I, Newton PN, Nguyen T, Nguyen TN, Noedl H, Nosten F, Noviyanti R, Nzila A, Ochola-Oyier LI, Ocholla H, Oduro A, Omedo I, Onyamboko MA, Ouedraogo JB, Oyebola K, Pearson RD, Peshu N, Phyo AP, Plowe CV, Price RN, Pukrittayakamee S, Randrianarivelojosia M, Rayner JC, Ringwald P, Rockett KA, Rowlands K, Ruiz L, Saunders D, Shayo A, Siba P, Simpson VJ, Stalker J, Su XZ, Sutherland C, Takala-Harrison S, Tavul L, Thathy V, Tshefu A, Verra F, Vinetz J, Wellems TE, Wendler J, White NJ, Wright I, Yavo W, Ye H. An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome Open Res 2021; 6:42. [PMID: 33824913 PMCID: PMC8008441 DOI: 10.12688/wellcomeopenres.16168.1] [Show More Authors] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/02/2023] Open
Abstract
MalariaGEN is a data-sharing network that enables groups around the world to work together on the genomic epidemiology of malaria. Here we describe a new release of curated genome variation data on 7,000 Plasmodium falciparum samples from MalariaGEN partner studies in 28 malaria-endemic countries. High-quality genotype calls on 3 million single nucleotide polymorphisms (SNPs) and short indels were produced using a standardised analysis pipeline. Copy number variants associated with drug resistance and structural variants that cause failure of rapid diagnostic tests were also analysed. Almost all samples showed genetic evidence of resistance to at least one antimalarial drug, and some samples from Southeast Asia carried markers of resistance to six commonly-used drugs. Genes expressed during the mosquito stage of the parasite life-cycle are prominent among loci that show strong geographic differentiation. By continuing to enlarge this open data resource we aim to facilitate research into the evolutionary processes affecting malaria control and to accelerate development of the surveillance toolkit required for malaria elimination.
Collapse
Affiliation(s)
| | | | - Mozam Ali
- Wellcome Sanger Institute, Hinxton, UK
| | - Jacob Almagro-Garcia
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Alfred Amambua-Ngwa
- Wellcome Sanger Institute, Hinxton, UK,Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Chanaki Amaratunga
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Roberto Amato
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Lucas Amenga-Etego
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana,West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Ben Andagalu
- United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute/Walter Reed Project, Kisumu, Kenya
| | | | | | | | | | - Elizabeth A Ashley
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Sarah Auburn
- Menzies School of Health Research, Darwin, Australia,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana,University of Ghana, Legon, Ghana
| | - Hampate Ba
- Institut National de Recherche en Santé Publique, Nouakchott, Mauritania
| | - Vito Baraka
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania,Department of Epidemiology, International Health Unit, University of Antwerp, Antwerp, Belgium
| | - Alyssa E. Barry
- Deakin University, Geelong, Australia,Burnet Institute, Melbourne, Australia,Walter and Eliza Hall Institute, Melbourne, Australia
| | - Philip Bejon
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Maciej F. Boni
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Steffen Borrmann
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Teun Bousema
- London School of Hygiene and Tropical Medicine, London, UK,Radboud University Medical Center, Nijmegen, The Netherlands
| | - Oralee Branch
- NYU School of Medicine Langone Medical Center, New York, USA
| | - Peter C. Bull
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya,Department of Pathology, University of Cambridge, Cambridge, UK
| | - George B. J. Busby
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | | | - Antoine Claessens
- Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia,LPHI, MIVEGEC, INSERM, CNRS, IRD, University of Montpellier, Montpellier, France
| | - David Conway
- London School of Hygiene and Tropical Medicine, London, UK
| | - Alister Craig
- Liverpool School of Tropical Medicine, Liverpool, UK,Malawi-Liverpool-Wellcome Trust Clinical Research, Blantyre, Malawi
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Souleymane Dama
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Nicholas PJ Day
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Brigitte Denis
- Malawi-Liverpool-Wellcome Trust Clinical Research, Blantyre, Malawi
| | - Mahamadou Diakite
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye Djimdé
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Patrick Duffy
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Diego F. Echeverry
- Centro Internacional de Entrenamiento e Investigaciones Médicas - CIDEIM, Cali, Colombia,Universidad Icesi, Cali, Colombia
| | | | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | | | - Mark M. Fukuda
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anita Ghansah
- Nogouchi Memorial Institute for Medical Research, Legon-Accra, Ghana
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - William L. Hamilton
- Wellcome Sanger Institute, Hinxton, UK,Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Lee Hart
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Christa Henrichs
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | | | - Christina Hubbart
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Deus S. Ishengoma
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania,East African Consortium for Clinical Research (EACCR), Dar es Salaam, Tanzania
| | - Scott A. Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | | | - Ben Jeffery
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Anna E. Jeffreys
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kimberly J. Johnson
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | | | - Edwin Kamau
- Walter Reed Army Institute of Research, U.S. Military HIV Research Program, Silver Spring, MD, USA
| | | | - Krzysztof Kluczynski
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Theerarat Kochakarn
- Wellcome Sanger Institute, Hinxton, UK,Mahidol University, Bangkok, Thailand
| | | | - Dominic P. Kwiatkowski
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Myat Phone Kyaw
- The Myanmar Oxford Clinical Research Unit, University of Oxford, Yangon, Myanmar,University of Public Health, Yangon, Myanmar
| | - Pharath Lim
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA,Medical Care Development International, Maryland, USA
| | - Chanthap Lon
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | | | - Oumou Maïga-Ascofaré
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany,Research in Tropical Medicine, Kwame Nkrumah University of Sciences and Technology, Kumasi, Ghana
| | | | | | - Jutta Marfurt
- Menzies School of Health Research, Darwin, Australia
| | - Kevin Marsh
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,African Academy of Sciences, Nairobi, Kenya
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Lao People's Democratic Republic,Institute of Research and Education Development (IRED), University of Health Sciences, Ministry of Health, Vientiane, Lao People's Democratic Republic
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Olivo Miotto
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Victor Mobegi
- School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Olugbenga A. Mokuolu
- Department of Paediatrics and Child Health, University of Ilorin, Ilorin, Nigeria
| | - Jacqui Montgomery
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Melbourne, Australia,Barcelona Centre for International Health Research, Barcelona, Spain
| | - Paul N. Newton
- Wellcome Trust-Mahosot Hospital-Oxford Tropical Medicine Research Collaboration, Vientiane, Lao People's Democratic Republic
| | | | - Thuy-Nhien Nguyen
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Harald Noedl
- MARIB - Malaria Research Initiative Bandarban, Bandarban, Bangladesh
| | - Francois Nosten
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,Shoklo Malaria Research Unit, Bangkok, Thailand
| | | | - Alexis Nzila
- King Fahid University of Petroleum and Minerals (KFUMP), Dharhran, Saudi Arabia
| | | | - Harold Ocholla
- KEMRI - Centres for Disease Control and Prevention (CDC) Research Program, Kisumu, Kenya,Centre for Bioinformatics and Biotechnology, University of Nairobi, Nairobi, Kenya
| | - Abraham Oduro
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Irene Omedo
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Marie A. Onyamboko
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Congo, Democratic Republic
| | | | - Kolapo Oyebola
- Nigerian Institute of Medical Research, Lagos, Nigeria,Parasitology and Bioinformatics Unit, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Richard D. Pearson
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Norbert Peshu
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Aung Pyae Phyo
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand,Shoklo Malaria Research Unit, Bangkok, Thailand
| | - Chris V. Plowe
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Ric N. Price
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand,Menzies School of Health Research, Darwin, Australia,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | - Milijaona Randrianarivelojosia
- Institut Pasteur de Madagascar, Antananarivo, Madagascar,Universités d'Antananarivo et de Mahajanga, Antananarivo, Madagascar
| | | | | | - Kirk A. Rockett
- Wellcome Sanger Institute, Hinxton, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Lastenia Ruiz
- Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | - David Saunders
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Alex Shayo
- Nelson Mandela Institute of Science and Technology, Arusha, Tanzania
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Victoria J. Simpson
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | - Xin-zhuan Su
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | | | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Livingstone Tavul
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Vandana Thathy
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya,Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | | | | | - Joseph Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru,Yale School of Medicine, New Haven, CT, USA
| | - Thomas E. Wellems
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Jason Wendler
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Ian Wright
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - William Yavo
- University Félix Houphouët-Boigny, Abidjan, Cote d'Ivoire,Malaria Research and Control Center of the National Institute of Public Health, Abidjan, Cote d'Ivoire
| | - Htut Ye
- Department of Medical Research, Yangon, Myanmar
| |
Collapse
|
6
|
MalariaGEN, Ahouidi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A, Amaratunga C, Amato R, Amenga-Etego L, Andagalu B, Anderson TJC, Andrianaranjaka V, Apinjoh T, Ariani C, Ashley EA, Auburn S, Awandare GA, Ba H, Baraka V, Barry AE, Bejon P, Bertin GI, Boni MF, Borrmann S, Bousema T, Branch O, Bull PC, Busby GBJ, Chookajorn T, Chotivanich K, Claessens A, Conway D, Craig A, D'Alessandro U, Dama S, Day NPJ, Denis B, Diakite M, Djimdé A, Dolecek C, Dondorp AM, Drakeley C, Drury E, Duffy P, Echeverry DF, Egwang TG, Erko B, Fairhurst RM, Faiz A, Fanello CA, Fukuda MM, Gamboa D, Ghansah A, Golassa L, Goncalves S, Hamilton WL, Harrison GLA, Hart L, Henrichs C, Hien TT, Hill CA, Hodgson A, Hubbart C, Imwong M, Ishengoma DS, Jackson SA, Jacob CG, Jeffery B, Jeffreys AE, Johnson KJ, Jyothi D, Kamaliddin C, Kamau E, Kekre M, Kluczynski K, Kochakarn T, Konaté A, Kwiatkowski DP, Kyaw MP, Lim P, Lon C, Loua KM, Maïga-Ascofaré O, Malangone C, Manske M, Marfurt J, Marsh K, Mayxay M, Miles A, Miotto O, Mobegi V, Mokuolu OA, Montgomery J, Mueller I, Newton PN, Nguyen T, Nguyen TN, Noedl H, Nosten F, Noviyanti R, Nzila A, et alMalariaGEN, Ahouidi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A, Amaratunga C, Amato R, Amenga-Etego L, Andagalu B, Anderson TJC, Andrianaranjaka V, Apinjoh T, Ariani C, Ashley EA, Auburn S, Awandare GA, Ba H, Baraka V, Barry AE, Bejon P, Bertin GI, Boni MF, Borrmann S, Bousema T, Branch O, Bull PC, Busby GBJ, Chookajorn T, Chotivanich K, Claessens A, Conway D, Craig A, D'Alessandro U, Dama S, Day NPJ, Denis B, Diakite M, Djimdé A, Dolecek C, Dondorp AM, Drakeley C, Drury E, Duffy P, Echeverry DF, Egwang TG, Erko B, Fairhurst RM, Faiz A, Fanello CA, Fukuda MM, Gamboa D, Ghansah A, Golassa L, Goncalves S, Hamilton WL, Harrison GLA, Hart L, Henrichs C, Hien TT, Hill CA, Hodgson A, Hubbart C, Imwong M, Ishengoma DS, Jackson SA, Jacob CG, Jeffery B, Jeffreys AE, Johnson KJ, Jyothi D, Kamaliddin C, Kamau E, Kekre M, Kluczynski K, Kochakarn T, Konaté A, Kwiatkowski DP, Kyaw MP, Lim P, Lon C, Loua KM, Maïga-Ascofaré O, Malangone C, Manske M, Marfurt J, Marsh K, Mayxay M, Miles A, Miotto O, Mobegi V, Mokuolu OA, Montgomery J, Mueller I, Newton PN, Nguyen T, Nguyen TN, Noedl H, Nosten F, Noviyanti R, Nzila A, Ochola-Oyier LI, Ocholla H, Oduro A, Omedo I, Onyamboko MA, Ouedraogo JB, Oyebola K, Pearson RD, Peshu N, Phyo AP, Plowe CV, Price RN, Pukrittayakamee S, Randrianarivelojosia M, Rayner JC, Ringwald P, Rockett KA, Rowlands K, Ruiz L, Saunders D, Shayo A, Siba P, Simpson VJ, Stalker J, Su XZ, Sutherland C, Takala-Harrison S, Tavul L, Thathy V, Tshefu A, Verra F, Vinetz J, Wellems TE, Wendler J, White NJ, Wright I, Yavo W, Ye H. An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome Open Res 2021; 6:42. [PMID: 33824913 PMCID: PMC8008441.2 DOI: 10.12688/wellcomeopenres.16168.2] [Show More Authors] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 02/02/2023] Open
Abstract
MalariaGEN is a data-sharing network that enables groups around the world to work together on the genomic epidemiology of malaria. Here we describe a new release of curated genome variation data on 7,000 Plasmodium falciparum samples from MalariaGEN partner studies in 28 malaria-endemic countries. High-quality genotype calls on 3 million single nucleotide polymorphisms (SNPs) and short indels were produced using a standardised analysis pipeline. Copy number variants associated with drug resistance and structural variants that cause failure of rapid diagnostic tests were also analysed. Almost all samples showed genetic evidence of resistance to at least one antimalarial drug, and some samples from Southeast Asia carried markers of resistance to six commonly-used drugs. Genes expressed during the mosquito stage of the parasite life-cycle are prominent among loci that show strong geographic differentiation. By continuing to enlarge this open data resource we aim to facilitate research into the evolutionary processes affecting malaria control and to accelerate development of the surveillance toolkit required for malaria elimination.
Collapse
Affiliation(s)
| | | | - Mozam Ali
- Wellcome Sanger Institute, Hinxton, UK
| | - Jacob Almagro-Garcia
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Alfred Amambua-Ngwa
- Wellcome Sanger Institute, Hinxton, UK,Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Chanaki Amaratunga
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Roberto Amato
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Lucas Amenga-Etego
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana,West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Ben Andagalu
- United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute/Walter Reed Project, Kisumu, Kenya
| | | | | | | | | | - Elizabeth A Ashley
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Sarah Auburn
- Menzies School of Health Research, Darwin, Australia,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana,University of Ghana, Legon, Ghana
| | - Hampate Ba
- Institut National de Recherche en Santé Publique, Nouakchott, Mauritania
| | - Vito Baraka
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania,Department of Epidemiology, International Health Unit, University of Antwerp, Antwerp, Belgium
| | - Alyssa E. Barry
- Deakin University, Geelong, Australia,Burnet Institute, Melbourne, Australia,Walter and Eliza Hall Institute, Melbourne, Australia
| | - Philip Bejon
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Maciej F. Boni
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Steffen Borrmann
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Teun Bousema
- London School of Hygiene and Tropical Medicine, London, UK,Radboud University Medical Center, Nijmegen, The Netherlands
| | - Oralee Branch
- NYU School of Medicine Langone Medical Center, New York, USA
| | - Peter C. Bull
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya,Department of Pathology, University of Cambridge, Cambridge, UK
| | - George B. J. Busby
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | | | - Antoine Claessens
- Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia,LPHI, MIVEGEC, INSERM, CNRS, IRD, University of Montpellier, Montpellier, France
| | - David Conway
- London School of Hygiene and Tropical Medicine, London, UK
| | - Alister Craig
- Liverpool School of Tropical Medicine, Liverpool, UK,Malawi-Liverpool-Wellcome Trust Clinical Research, Blantyre, Malawi
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Souleymane Dama
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Nicholas PJ Day
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Brigitte Denis
- Malawi-Liverpool-Wellcome Trust Clinical Research, Blantyre, Malawi
| | - Mahamadou Diakite
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye Djimdé
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Patrick Duffy
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Diego F. Echeverry
- Centro Internacional de Entrenamiento e Investigaciones Médicas - CIDEIM, Cali, Colombia,Universidad Icesi, Cali, Colombia
| | | | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | | | - Mark M. Fukuda
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anita Ghansah
- Nogouchi Memorial Institute for Medical Research, Legon-Accra, Ghana
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - William L. Hamilton
- Wellcome Sanger Institute, Hinxton, UK,Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Lee Hart
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Christa Henrichs
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | | | - Christina Hubbart
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Deus S. Ishengoma
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania,East African Consortium for Clinical Research (EACCR), Dar es Salaam, Tanzania
| | - Scott A. Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | | | - Ben Jeffery
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Anna E. Jeffreys
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kimberly J. Johnson
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | | | - Edwin Kamau
- Walter Reed Army Institute of Research, U.S. Military HIV Research Program, Silver Spring, MD, USA
| | | | - Krzysztof Kluczynski
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Theerarat Kochakarn
- Wellcome Sanger Institute, Hinxton, UK,Mahidol University, Bangkok, Thailand
| | | | - Dominic P. Kwiatkowski
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Myat Phone Kyaw
- The Myanmar Oxford Clinical Research Unit, University of Oxford, Yangon, Myanmar,University of Public Health, Yangon, Myanmar
| | - Pharath Lim
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA,Medical Care Development International, Maryland, USA
| | - Chanthap Lon
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | | | - Oumou Maïga-Ascofaré
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany,Research in Tropical Medicine, Kwame Nkrumah University of Sciences and Technology, Kumasi, Ghana
| | | | | | - Jutta Marfurt
- Menzies School of Health Research, Darwin, Australia
| | - Kevin Marsh
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,African Academy of Sciences, Nairobi, Kenya
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Lao People's Democratic Republic,Institute of Research and Education Development (IRED), University of Health Sciences, Ministry of Health, Vientiane, Lao People's Democratic Republic
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Olivo Miotto
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Victor Mobegi
- School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Olugbenga A. Mokuolu
- Department of Paediatrics and Child Health, University of Ilorin, Ilorin, Nigeria
| | - Jacqui Montgomery
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Melbourne, Australia,Barcelona Centre for International Health Research, Barcelona, Spain
| | - Paul N. Newton
- Wellcome Trust-Mahosot Hospital-Oxford Tropical Medicine Research Collaboration, Vientiane, Lao People's Democratic Republic
| | | | - Thuy-Nhien Nguyen
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Harald Noedl
- MARIB - Malaria Research Initiative Bandarban, Bandarban, Bangladesh
| | - Francois Nosten
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,Shoklo Malaria Research Unit, Bangkok, Thailand
| | | | - Alexis Nzila
- King Fahid University of Petroleum and Minerals (KFUMP), Dharhran, Saudi Arabia
| | | | - Harold Ocholla
- KEMRI - Centres for Disease Control and Prevention (CDC) Research Program, Kisumu, Kenya,Centre for Bioinformatics and Biotechnology, University of Nairobi, Nairobi, Kenya
| | - Abraham Oduro
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Irene Omedo
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Marie A. Onyamboko
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Congo, Democratic Republic
| | | | - Kolapo Oyebola
- Nigerian Institute of Medical Research, Lagos, Nigeria,Parasitology and Bioinformatics Unit, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Richard D. Pearson
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Norbert Peshu
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Aung Pyae Phyo
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand,Shoklo Malaria Research Unit, Bangkok, Thailand
| | - Chris V. Plowe
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Ric N. Price
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand,Menzies School of Health Research, Darwin, Australia,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | - Milijaona Randrianarivelojosia
- Institut Pasteur de Madagascar, Antananarivo, Madagascar,Universités d'Antananarivo et de Mahajanga, Antananarivo, Madagascar
| | | | | | - Kirk A. Rockett
- Wellcome Sanger Institute, Hinxton, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Lastenia Ruiz
- Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | - David Saunders
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Alex Shayo
- Nelson Mandela Institute of Science and Technology, Arusha, Tanzania
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Victoria J. Simpson
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | - Xin-zhuan Su
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | | | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Livingstone Tavul
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Vandana Thathy
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya,Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | | | | | - Joseph Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru,Yale School of Medicine, New Haven, CT, USA
| | - Thomas E. Wellems
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Jason Wendler
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Ian Wright
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - William Yavo
- University Félix Houphouët-Boigny, Abidjan, Cote d'Ivoire,Malaria Research and Control Center of the National Institute of Public Health, Abidjan, Cote d'Ivoire
| | - Htut Ye
- Department of Medical Research, Yangon, Myanmar
| |
Collapse
|
7
|
Deelder W, Benavente ED, Phelan J, Manko E, Campino S, Palla L, Clark TG. Using deep learning to identify recent positive selection in malaria parasite sequence data. Malar J 2021; 20:270. [PMID: 34126997 PMCID: PMC8201710 DOI: 10.1186/s12936-021-03788-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/29/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Malaria, caused by Plasmodium parasites, is a major global public health problem. To assist an understanding of malaria pathogenesis, including drug resistance, there is a need for the timely detection of underlying genetic mutations and their spread. With the increasing use of whole-genome sequencing (WGS) of Plasmodium DNA, the potential of deep learning models to detect loci under recent positive selection, historically signals of drug resistance, was evaluated. METHODS A deep learning-based approach (called "DeepSweep") was developed, which can be trained on haplotypic images from genetic regions with known sweeps, to identify loci under positive selection. DeepSweep software is available from https://github.com/WDee/Deepsweep . RESULTS Using simulated genomic data, DeepSweep could detect recent sweeps with high predictive accuracy (areas under ROC curve > 0.95). DeepSweep was applied to Plasmodium falciparum (n = 1125; genome size 23 Mbp) and Plasmodium vivax (n = 368; genome size 29 Mbp) WGS data, and the genes identified overlapped with two established extended haplotype homozygosity methods (within-population iHS, across-population Rsb) (~ 60-75% overlap of hits at P < 0.0001). DeepSweep hits included regions proximal to known drug resistance loci for both P. falciparum (e.g. pfcrt, pfdhps and pfmdr1) and P. vivax (e.g. pvmrp1). CONCLUSION The deep learning approach can detect positive selection signatures in malaria parasite WGS data. Further, as the approach is generalizable, it may be trained to detect other types of selection. With the ability to rapidly generate WGS data at low cost, machine learning approaches (e.g. DeepSweep) have the potential to assist parasite genome-based surveillance and inform malaria control decision-making.
Collapse
Affiliation(s)
- Wouter Deelder
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Dalberg Advisors, 7 Rue de Chantepoulet, CH-1201, Geneva, Switzerland
| | | | - Jody Phelan
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Emilia Manko
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Susana Campino
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Luigi Palla
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Taane G Clark
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
8
|
Kassegne K, Komi Koukoura K, Shen HM, Chen SB, Fu HT, Chen YQ, Zhou XN, Chen JH, Cheng Y. Genome-Wide Analysis of the Malaria Parasite Plasmodium falciparum Isolates From Togo Reveals Selective Signals in Immune Selection-Related Antigen Genes. Front Immunol 2020; 11:552698. [PMID: 33193320 PMCID: PMC7645038 DOI: 10.3389/fimmu.2020.552698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
Malaria is a public health concern worldwide, and Togo has proven to be no exception. Effective approaches to provide information on biological insights for disease elimination are therefore a research priority. Local selection on malaria pathogens is due to multiple factors including host immunity. We undertook genome-wide analysis of sequence variation on a sample of 10 Plasmodium falciparum (Pf) clinical isolates from Togo to identify local-specific signals of selection. Paired-end short-read sequences were mapped and aligned onto > 95% of the 3D7 Pf reference genome sequence in high fold coverage. Data on 266 963 single nucleotide polymorphisms were obtained, with average nucleotide diversity π = 1.79 × 10−3. Both principal component and neighbor-joining tree analyses showed that the Togo parasites clustered according to their geographic (Africa) origin. In addition, the average genome-wide diversity of Pf from Togo was much higher than that from other African samples. Tajima’s D value of the Togo isolates was −0.56, suggesting evidence of directional selection and/or recent population expansion. Against this background, within-population analyses identifying loci of balancing and recent positive selections evidenced that host immunity has been the major selective agent. Importantly, 87 and 296 parasite antigen genes with Tajima’s D values > 1 and in the top 1% haplotype scores, respectively, include a significant representation of membrane proteins at the merozoite stage that invaded red blood cells (RBCs) and parasitized RBCs surface proteins that play roles in immunoevasion, adhesion, or rosetting. This is consistent with expectations that elevated signals of selection due to allele-specific acquired immunity are likely to operate on antigenic targets. Collectively, our data suggest a recent expansion of Pf population in Togo and evidence strong host immune selection on membrane/surface antigens reflected in signals of balancing/positive selection of important gene loci. Findings from this study provide a fundamental basis to engage studies for effective malaria control in Togo.
Collapse
Affiliation(s)
- Kokouvi Kassegne
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Komi Komi Koukoura
- Laboratoire des Sciences Biomédicales, Alimentaires et Santé Environnementale, Département des Analyses Biomédicales, Ecole Supérieure des Techniques Biologiques et Alimentaires, Université de Lomé, Lomé, Togo
| | - Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Chinese Centre for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention-Shenzhen Centre for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China.,The School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Chinese Centre for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention-Shenzhen Centre for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China.,The School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Hai-Tian Fu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yong-Quan Chen
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Chinese Centre for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention-Shenzhen Centre for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China.,The School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Chinese Centre for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention-Shenzhen Centre for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China.,The School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
van Dorp L, Gelabert P, Rieux A, de Manuel M, de-Dios T, Gopalakrishnan S, Carøe C, Sandoval-Velasco M, Fregel R, Olalde I, Escosa R, Aranda C, Huijben S, Mueller I, Marquès-Bonet T, Balloux F, Gilbert MTP, Lalueza-Fox C. Plasmodium vivax Malaria Viewed through the Lens of an Eradicated European Strain. Mol Biol Evol 2020; 37:773-785. [PMID: 31697387 PMCID: PMC7038659 DOI: 10.1093/molbev/msz264] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The protozoan Plasmodium vivax is responsible for 42% of all cases of malaria outside Africa. The parasite is currently largely restricted to tropical and subtropical latitudes in Asia, Oceania, and the Americas. Though, it was historically present in most of Europe before being finally eradicated during the second half of the 20th century. The lack of genomic information on the extinct European lineage has prevented a clear understanding of historical population structuring and past migrations of P. vivax. We used medical microscope slides prepared in 1944 from malaria-affected patients from the Ebro Delta in Spain, one of the last footholds of malaria in Europe, to generate a genome of a European P. vivax strain. Population genetics and phylogenetic analyses placed this strain basal to a cluster including samples from the Americas. This genome allowed us to calibrate a genomic mutation rate for P. vivax, and to estimate the mean age of the last common ancestor between European and American strains to the 15th century. This date points to an introduction of the parasite during the European colonization of the Americas. In addition, we found that some known variants for resistance to antimalarial drugs, including Chloroquine and Sulfadoxine, were already present in this European strain, predating their use. Our results shed light on the evolution of an important human pathogen and illustrate the value of antique medical collections as a resource for retrieving genomic information on pathogens from the past.
Collapse
Affiliation(s)
- Lucy van Dorp
- UCL Genetics Institute, University College London, London, United Kingdom
| | - Pere Gelabert
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Adrien Rieux
- CIRAD, UMR PVBMT, St. Pierre de la Réunion, France
| | - Marc de Manuel
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Toni de-Dios
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christian Carøe
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Marcela Sandoval-Velasco
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rosa Fregel
- Department of Genetics, Stanford University, Stanford, CA
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Spain
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Raül Escosa
- Consorci de Polítiques Ambientals de les Terres de l'Ebre (COPATE), Deltebre, Spain
| | - Carles Aranda
- Servei de Control de Mosquits, Consell Comarcal del Baix Llobregat, Sant Feliu de Llobregat, Spain
| | - Silvie Huijben
- School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Ivo Mueller
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Population Health and Immunity Division, Walter & Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Tomàs Marquès-Bonet
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG-CRG, Barcelona Institute of Science and Technology, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - François Balloux
- UCL Genetics Institute, University College London, London, United Kingdom
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | |
Collapse
|
10
|
Morgan AP, Brazeau NF, Ngasala B, Mhamilawa LE, Denton M, Msellem M, Morris U, Filer DL, Aydemir O, Bailey JA, Parr JB, Mårtensson A, Bjorkman A, Juliano JJ. Falciparum malaria from coastal Tanzania and Zanzibar remains highly connected despite effective control efforts on the archipelago. Malar J 2020; 19:47. [PMID: 31992305 PMCID: PMC6988337 DOI: 10.1186/s12936-020-3137-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tanzania's Zanzibar archipelago has made significant gains in malaria control over the last decade and is a target for malaria elimination. Despite consistent implementation of effective tools since 2002, elimination has not been achieved. Importation of parasites from outside of the archipelago is thought to be an important cause of malaria's persistence, but this paradigm has not been studied using modern genetic tools. METHODS Whole-genome sequencing (WGS) was used to investigate the impact of importation, employing population genetic analyses of Plasmodium falciparum isolates from both the archipelago and mainland Tanzania. Ancestry, levels of genetic diversity and differentiation, patterns of relatedness, and patterns of selection between these two populations were assessed by leveraging recent advances in deconvolution of genomes from polyclonal malaria infections. RESULTS Significant decreases in the effective population sizes were inferred in both populations that coincide with a period of decreasing malaria transmission in Tanzania. Identity by descent analysis showed that parasites in the two populations shared long segments of their genomes, on the order of 5 cM, suggesting shared ancestry within the last 10 generations. Even with limited sampling, two of isolates between the mainland and Zanzibar were identified that are related at the expected level of half-siblings, consistent with recent importation. CONCLUSIONS These findings suggest that importation plays an important role for malaria incidence on Zanzibar and demonstrate the value of genomic approaches for identifying corridors of parasite movement to the island.
Collapse
Affiliation(s)
- Andrew P Morgan
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nicholas F Brazeau
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Billy Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Lwidiko E Mhamilawa
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Madeline Denton
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mwinyi Msellem
- Training and Research, Mnazi Mmoja Hospital, Zanzibar, Tanzania
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Dayne L Filer
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ozkan Aydemir
- Department of Laboratory Medicine and Pathology, Brown University, Providence, RI, 02912, USA
| | - Jeffrey A Bailey
- Department of Laboratory Medicine and Pathology, Brown University, Providence, RI, 02912, USA
| | - Jonathan B Parr
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andreas Mårtensson
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Anders Bjorkman
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Jonathan J Juliano
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
11
|
Ye R, Tian Y, Huang Y, Zhang Y, Wang J, Sun X, Zhou H, Zhang D, Pan W. Genome-Wide Analysis of Genetic Diversity in Plasmodium falciparum Isolates From China-Myanmar Border. Front Genet 2019; 10:1065. [PMID: 31737048 PMCID: PMC6830057 DOI: 10.3389/fgene.2019.01065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/03/2019] [Indexed: 12/29/2022] Open
Abstract
Plasmodium falciparum isolates from China-Myanmar border (CMB) have experienced regional special selective pressures and adaptive evolution. However, the genomes of P. falciparum isolates from this region to date are poorly characterized. Herein, we performed whole-genome sequencing of 34 P. falciparum isolates from CMB and a series of genome-wide sequence analyses to reveal their genetic diversity, population structures, and comparisons with the isolates from other epidemic regions (Thai-Cambodia border, Thai-Myanmar border, and West Africa). Totally 59,720 high-quality single-nucleotide polymorphisms (SNPs) were identified in the P. falciparum isolates from CMB, with average nucleotide diversity (π = 4.59 × 10-4) and LD decay (132 bp). The Tajima's D and Fu and Li's D values of the CMB isolates were -0.8 (p < 0.05) and -0.84 (p < 0.05), respectively, suggesting a demographic history of recent population expansion or purifying selection. Moreover, 78 genes of the parasite were identified that could be under positive selection, including those genes conferring drug resistance such as pfubp1. In addition, 33 SNPs were identified for tracing the source of the parasites with a high accuracy by analysis of the most differential SNPs among the four epidemic regions. Collectively, our data demonstrated high diversity of the CMB isolates' genomes forming a distinct population, and the identification of 33-SNP barcode provides a valuable surveillance of parasite migration among the regions.
Collapse
Affiliation(s)
- Run Ye
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| | - Yini Tian
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| | - Yufu Huang
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| | - Yilong Zhang
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| | - Jian Wang
- Yunnan Institute of Parasitic Diseases, Puer, China
| | - Xiaodong Sun
- Yunnan Institute of Parasitic Diseases, Puer, China
| | | | - Dongmei Zhang
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| | - Weiqing Pan
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| |
Collapse
|
12
|
Taylor AR, Jacob PE, Neafsey DE, Buckee CO. Estimating Relatedness Between Malaria Parasites. Genetics 2019; 212:1337-1351. [PMID: 31209105 PMCID: PMC6707449 DOI: 10.1534/genetics.119.302120] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/03/2019] [Indexed: 11/18/2022] Open
Abstract
Understanding the relatedness of individuals within or between populations is a common goal in biology. Increasingly, relatedness features in genetic epidemiology studies of pathogens. These studies are relatively new compared to those in humans and other organisms, but are important for designing interventions and understanding pathogen transmission. Only recently have researchers begun to routinely apply relatedness to apicomplexan eukaryotic malaria parasites, and to date have used a range of different approaches on an ad hoc basis. Therefore, it remains unclear how to compare different studies and which measures to use. Here, we systematically compare measures based on identity-by-state (IBS) and identity-by-descent (IBD) using a globally diverse data set of malaria parasites, Plasmodium falciparum and P. vivax, and provide marker requirements for estimates based on IBD. We formally show that the informativeness of polyallelic markers for relatedness inference is maximized when alleles are equifrequent. Estimates based on IBS are sensitive to allele frequencies, which vary across populations and by experimental design. For portability across studies, we thus recommend estimates based on IBD. To generate estimates with errors below an arbitrary threshold of 0.1, we recommend ∼100 polyallelic or 200 biallelic markers. Marker requirements are immediately applicable to haploid malaria parasites and other haploid eukaryotes. C.I.s facilitate comparison when different marker sets are used. This is the first attempt to provide rigorous analysis of the reliability of, and requirements for, relatedness inference in malaria genetic epidemiology. We hope it will provide a basis for statistically informed prospective study design and surveillance strategies.
Collapse
Affiliation(s)
- Aimee R Taylor
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Pierre E Jacob
- Department of Statistics, Harvard University, Cambridge, Massachusetts 02138
| | - Daniel E Neafsey
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Caroline O Buckee
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| |
Collapse
|
13
|
An analysis of large structural variation in global Plasmodium falciparum isolates identifies a novel duplication of the chloroquine resistance associated gene. Sci Rep 2019; 9:8287. [PMID: 31164664 PMCID: PMC6547842 DOI: 10.1038/s41598-019-44599-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 05/16/2019] [Indexed: 12/13/2022] Open
Abstract
The evolution of genetic mechanisms for host immune evasion and anti-malarial resistance has enabled the Plasmodium falciparum malaria parasite to inflict high morbidity and mortality on human populations. Most studies of P. falciparum genetic diversity have focused on single-nucleotide polymorphisms (SNPs), assisting the identification of drug resistance-associated loci such as the chloroquine related crt and sulfadoxine-pyrimethamine related dhfr. Whilst larger structural variants are known to impact adaptation, for example, mdr1 duplications with anti-malarial resistance, no large-scale, genome-wide study on clinical isolates has been undertaken using whole genome sequencing data. By applying a structural variant detection pipeline across whole genome sequence data from 2,855 clinical isolates in 21 malaria-endemic countries, we identified >70,000 specific deletions and >600 duplications. Most structural variants are rare (48.5% of deletions and 94.7% of duplications are found in single isolates) with 2.4% of deletions and 0.2% of duplications found in >5% of global isolates. A subset of variants was present at high frequency in drug-resistance related genes including mdr1, the gch1 promoter region, and a putative novel duplication of crt. Regional-specific variants were identified, and a companion visualisation tool has been developed to assist web-based investigation of these polymorphisms by the wider scientific community.
Collapse
|
14
|
He Y, Campino S, Diez Benavente E, Warhurst DC, Beshir KB, Lubis I, Gomes AR, Feng J, Jiazhi W, Sun X, Huang F, Tang LH, Sutherland CJ, Clark TG. Artemisinin resistance-associated markers in Plasmodium falciparum parasites from the China-Myanmar border: predicted structural stability of K13 propeller variants detected in a low-prevalence area. PLoS One 2019; 14:e0213686. [PMID: 30883571 PMCID: PMC6422288 DOI: 10.1371/journal.pone.0213686] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/26/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Malaria reduction and future elimination in China is made more difficult by the importation of cases from neighboring endemic countries, particularly Myanmar, Laos, and Vietnam, and increased travel to Africa by Chinese nationals. The increasing prevalence of artemisinin resistant parasites across Southeast Asia highlights the importance of monitoring the parasite importation into China. Artemisinin resistance in the Mekong region is associated with variants of genes encoding the K13 kelch domain protein (pf13k), found in specific genetic backgrounds, including certain alleles of genes encoding the chloroquine resistance transporter (pfcrt) and multidrug resistance transporter PgH1 (pfmdr1). METHODS In this study we investigated the prevalence of drug resistance markers in 72 P. falciparum samples from uncomplicated malaria infections in Tengchong and Yingjiang, counties on the Yunnan-Myanmar border. Variants of pf13k, pfcrt and pfmdr1 are described. RESULTS Almost all parasites harboured chloroquine-resistant alleles of pfcrt, whereas pfmdr1 was more diverse. Major mutations in the K13 propeller domain associated with artemisinin resistance in the Mekong region (C580Y, R539T and Y493H) were absent, but F446I and two previously undescribed mutations (V603E and V454I) were identified. Protein structural modelling was carried out in silico on each of these K13 variants, based on recently published crystal structures for the K13 propeller domain. Whereas F446I was predicted to elicit a moderate destabilisation of the propeller structure, the V603E substitution is likely to lead to relatively high protein instability. We plotted these stability estimates, and those for all previously described variants, against published values for in vivo parasitaemia half-life, and found that quadratic regression generates a useful predictive algorithm. CONCLUSION This study provides a baseline of P. falciparum resistance-associated mutations prevalent at the China-Myanmar border. We also show that protein modelling can be used to generate testable predictions as to the impact of pfk13 mutations on in vivo (and potentially in vitro) artemisinin susceptibility.
Collapse
Affiliation(s)
- Yan He
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, Shanghai, People’s Republic of China
- WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People’s Republic of China
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ernest Diez Benavente
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David C. Warhurst
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Khalid B. Beshir
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Inke Lubis
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ana Rita Gomes
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jun Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, Shanghai, People’s Republic of China
- WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People’s Republic of China
| | - Wang Jiazhi
- Yunnan Institute of Parasitic Diseases, Provincial Centre of Malaria Research, Provincial Collaborative Innovation Centre for Public Health and Disease Prevention and Control, Provincial Key Laboratory of Vector-borne Diseases Control and Research, Puer, China
| | - Xiaodong Sun
- Tengchong County Centers for Disease Control and Prevention, Guanghua village, Tiancheng district, Tengchong, Yunnan Province, China
| | - Fang Huang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, Shanghai, People’s Republic of China
- WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People’s Republic of China
| | - Lin-hua Tang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, Shanghai, People’s Republic of China
- WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People’s Republic of China
| | - Colin J. Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
15
|
Lo E, Bonizzoni M, Hemming-Schroeder E, Ford A, Janies DA, James AA, Afrane Y, Etemesi H, Zhou G, Githeko A, Yan G. Selection and Utility of Single Nucleotide Polymorphism Markers to Reveal Fine-Scale Population Structure in Human Malaria Parasite Plasmodium falciparum. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
16
|
Abstract
Humoral immune responses against the malaria parasite are an important component of a protective immune response. Antibodies are often directed towards conformational epitopes, and the native structure of the antigenic region is usually critical for antibody recognition. We examined the structural features of various Plasmodium antigens that may impact on epitope location, by performing a comprehensive analysis of known and modelled structures from P. falciparum. Examining the location of known polymorphisms over all available structures, we observed a strong propensity for polymorphic residues to be exposed on the surface and to occur in particular secondary structure segments such as hydrogen-bonded turns. We also utilised established prediction algorithms for B-cell epitopes and MHC class II binding peptides, examining predicted epitopes in relation to known polymorphic sites within structured regions. Finally, we used the available structures to examine polymorphic hotspots and Tajima's D values using a spatial averaging approach. We identified a region of PfAMA1 involving both domains II and III under a high degree of balancing selection relative to the rest of the protein. In summary, we developed general methods for examining how sequence-based features relate to one another in three-dimensional space and applied these methods to key P. falciparum antigens.
Collapse
|
17
|
Prosser C, Meyer W, Ellis J, Lee R. Evolutionary ARMS Race: Antimalarial Resistance Molecular Surveillance. Trends Parasitol 2018; 34:322-334. [PMID: 29396203 DOI: 10.1016/j.pt.2018.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 01/13/2023]
Abstract
Molecular surveillance of antimalarial drug resistance markers has become an important part of resistance detection and containment. In the current climate of multidrug resistance, including resistance to the global front-line drug artemisinin, there is a consensus to upscale molecular surveillance. The most salient limitation to current surveillance efforts is that skill and infrastructure requirements preclude many regions. This includes sub-Saharan Africa, where Plasmodium falciparum is responsible for most of the global malaria disease burden. New molecular and data technologies have emerged with an emphasis on accessibility. These may allow surveillance to be conducted in broad settings where it is most needed, including at the primary healthcare level in endemic countries, and extending to the village health worker.
Collapse
Affiliation(s)
- Christiane Prosser
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School-Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia; Westmead Institute for Medical Research, Westmead, NSW, Australia.
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School-Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia; Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, NSW, Australia
| | - Rogan Lee
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
18
|
Benavente ED, de Sessions PF, Moon RW, Grainger M, Holder AA, Blackman MJ, Roper C, Drakeley CJ, Pain A, Sutherland CJ, Hibberd ML, Campino S, Clark TG. A reference genome and methylome for the Plasmodium knowlesi A1-H.1 line. Int J Parasitol 2017; 48:191-196. [PMID: 29258833 DOI: 10.1016/j.ijpara.2017.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/10/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
Plasmodium knowlesi, a common parasite of macaques, is recognised as a significant cause of human malaria in Malaysia. The P. knowlesi A1H1 line has been adapted to continuous culture in human erythrocytes, successfully providing an in vitro model to study the parasite. We have assembled a reference genome for the PkA1-H.1 line using PacBio long read combined with Illumina short read sequence data. Compared with the H-strain reference, the new reference has improved genome coverage and a novel description of methylation sites. The PkA1-H.1 reference will enhance the capabilities of the in vitro model to improve the understanding of P. knowlesi infection in humans.
Collapse
Affiliation(s)
- Ernest Diez Benavente
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Robert W Moon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Munira Grainger
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Anthony A Holder
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Michael J Blackman
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Cally Roper
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christopher J Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Arnab Pain
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Colin J Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin L Hibberd
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Genomics Institute Singapore, Singapore
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| |
Collapse
|
19
|
Diez Benavente E, Florez de Sessions P, Moon RW, Holder AA, Blackman MJ, Roper C, Drakeley CJ, Pain A, Sutherland CJ, Hibberd ML, Campino S, Clark TG. Analysis of nuclear and organellar genomes of Plasmodium knowlesi in humans reveals ancient population structure and recent recombination among host-specific subpopulations. PLoS Genet 2017; 13:e1007008. [PMID: 28922357 PMCID: PMC5619863 DOI: 10.1371/journal.pgen.1007008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/28/2017] [Accepted: 09/07/2017] [Indexed: 12/28/2022] Open
Abstract
The macaque parasite Plasmodium knowlesi is a significant concern in Malaysia where cases of human infection are increasing. Parasites infecting humans originate from genetically distinct subpopulations associated with the long-tailed (Macaca fascicularis (Mf)) or pig-tailed macaques (Macaca nemestrina (Mn)). We used a new high-quality reference genome to re-evaluate previously described subpopulations among human and macaque isolates from Malaysian-Borneo and Peninsular-Malaysia. Nuclear genomes were dimorphic, as expected, but new evidence of chromosomal-segment exchanges between subpopulations was found. A large segment on chromosome 8 originating from the Mn subpopulation and containing genes encoding proteins expressed in mosquito-borne parasite stages, was found in Mf genotypes. By contrast, non-recombining organelle genomes partitioned into 3 deeply branched lineages, unlinked with nuclear genomic dimorphism. Subpopulations which diverged in isolation have re-connected, possibly due to deforestation and disruption of wild macaque habitats. The resulting genomic mosaics reveal traits selected by host-vector-parasite interactions in a setting of ecological transition.
Collapse
Affiliation(s)
- Ernest Diez Benavente
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Robert W. Moon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Michael J. Blackman
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Cally Roper
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christopher J. Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Arnab Pain
- King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Colin J. Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin L. Hibberd
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Genome Institute of Singapore, Biopolis, Singapore
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
20
|
de Oliveira TC, Rodrigues PT, Menezes MJ, Gonçalves-Lopes RM, Bastos MS, Lima NF, Barbosa S, Gerber AL, Loss de Morais G, Berná L, Phelan J, Robello C, de Vasconcelos ATR, Alves JMP, Ferreira MU. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax. PLoS Negl Trop Dis 2017; 11:e0005824. [PMID: 28759591 PMCID: PMC5552344 DOI: 10.1371/journal.pntd.0005824] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/10/2017] [Accepted: 07/20/2017] [Indexed: 01/15/2023] Open
Abstract
Background The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax. Methods We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences), Peru (PER, n = 23), Colombia (COL, n = 31), and Mexico (MEX, n = 19). Principal findings/Conclusions We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10−4 and 6.2 × 10−4) as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed) in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o) gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092). Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between parasite lineages from geographically diverse sites. Further genome-wide analyses are required to test the demographic scenario suggested by our data. Plasmodium vivax is the most common human malaria parasite in the Americas, but how and when this species arrived in the New World remains unclear. Here we describe high-quality whole-genome sequence data for nine P. vivax isolates from Brazil, a country that accounts for 37% of the malaria burden in this continent, and compare these data with additional publicly available P. vivax genomes from Brazil, Peru, Colombia, and Mexico. P. vivax populations from the New World were found to be as diverse as their counterparts from areas with substantially higher malaria transmission, such as Southeast Asia, and to carry several non-synonymous substitutions in candidate drug-resistance genes. Moreover, genome-wide patterns of linkage disequilibrium between pairs of polymorphic sites are consistent with very frequent outcrossing in these populations. Interestingly, local P. vivax is more polymorphic, with less between-population differentiation, than sympatric populations of P. falciparum, possibly as a result of different demographic histories of these two species in the Americas. We hypothesize that local P. vivax lineages originated from successive migratory waves and subsequent admixture between parasites from geographically diverse sites.
Collapse
Affiliation(s)
- Thais C. de Oliveira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Priscila T. Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria José Menezes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Raquel M. Gonçalves-Lopes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Melissa S. Bastos
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nathália F. Lima
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Susana Barbosa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandra L. Gerber
- Unit of Computational Genomics Darcy Fontoura de Almeida, Laboratory of Bioinformatics, National Laboratory of Scientific Computation, Petrópolis, Brazil
| | - Guilherme Loss de Morais
- Unit of Computational Genomics Darcy Fontoura de Almeida, Laboratory of Bioinformatics, National Laboratory of Scientific Computation, Petrópolis, Brazil
| | - Luisa Berná
- Unit of Molecular Biology, Pasteur Institute of Montevideo, Montevideo, Uruguay
| | - Jody Phelan
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Carlos Robello
- Unit of Molecular Biology, Pasteur Institute of Montevideo, Montevideo, Uruguay
| | - Ana Tereza R. de Vasconcelos
- Unit of Computational Genomics Darcy Fontoura de Almeida, Laboratory of Bioinformatics, National Laboratory of Scientific Computation, Petrópolis, Brazil
| | - João Marcelo P. Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
21
|
Shen HM, Chen SB, Wang Y, Xu B, Abe EM, Chen JH. Genome-wide scans for the identification of Plasmodium vivax genes under positive selection. Malar J 2017; 16:238. [PMID: 28587615 PMCID: PMC5461743 DOI: 10.1186/s12936-017-1882-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/27/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The current trend of Plasmodium vivax cases imported from Southeast Asia into China has sharply increased recently, especially from the China-Myanmar border (CMB) area. High recombination rates of P. vivax populations associated with varied transmission intensity might cause distinct local selective pressures. The information on the genetic variability of P. vivax in this area is scant. Hence, this study assessed the genetic diversity of P. vivax genome sequence in CMB area and aimed to provide information on the positive selection of new gene loci. RESULTS This study reports a genome-wide survey of P. vivax in CMB area, using blood samples from local patients to identify population-specific selective processes. The result showed that considerable genetic diversity and mean pair-wise divergence among the sequenced P. vivax isolates were higher in some important gene families. Using the standardized integrated haplotype score (|iHS|) for all SNPs in chromosomal regions with SNPs above the top 1% distribution, it was observed that the top score locus involved 356 genes and most of them are associated with red blood cell invasion and immune evasion. The XP-EHH test was also applied and some important genes associated with anti-malarial drug resistance were observed in high positive scores list. This result suggests that P. vivax in CMB area is facing more pressure to survive than any other region and this has led to the strong positive selection of genes that are associated with host-parasite interactions. CONCLUSIONS This study suggests that greater genetic diversity in P. vivax from CMB area and positive selection signals in invasion and drug resistance genes are consistent with the history of drug use during malaria elimination programme in CMB area. Furthermore, this result also demonstrates that haplotype-based detecting selection can assist the genome-wide methods to identify the determinants of P. vivax diversity.
Collapse
Affiliation(s)
- Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Yue Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China.,Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, People's Republic of China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Eniola Michael Abe
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
22
|
Diez Benavente E, Ward Z, Chan W, Mohareb FR, Sutherland CJ, Roper C, Campino S, Clark TG. Genomic variation in Plasmodium vivax malaria reveals regions under selective pressure. PLoS One 2017; 12:e0177134. [PMID: 28493919 PMCID: PMC5426636 DOI: 10.1371/journal.pone.0177134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/21/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Although Plasmodium vivax contributes to almost half of all malaria cases outside Africa, it has been relatively neglected compared to the more deadly P. falciparum. It is known that P. vivax populations possess high genetic diversity, differing geographically potentially due to different vector species, host genetics and environmental factors. RESULTS We analysed the high-quality genomic data for 46 P. vivax isolates spanning 10 countries across 4 continents. Using population genetic methods we identified hotspots of selection pressure, including the previously reported MRP1 and DHPS genes, both putative drug resistance loci. Extra copies and deletions in the promoter region of another drug resistance candidate, MDR1 gene, and duplications in the Duffy binding protein gene (PvDBP) potentially involved in erythrocyte invasion, were also identified. For surveillance applications, continental-informative markers were found in putative drug resistance loci, and we show that organellar polymorphisms could classify P. vivax populations across continents and differentiate between Plasmodia spp. CONCLUSIONS This study has shown that genomic diversity that lies within and between P. vivax populations can be used to elucidate potential drug resistance and invasion mechanisms, as well as facilitate the molecular barcoding of the parasite for surveillance applications.
Collapse
Affiliation(s)
- Ernest Diez Benavente
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Zoe Ward
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
- The Bioinformatics Group, School of Water Energy and Environment, Cranfield University, Cranfield, Bedfordshire, United Kingdom
| | - Wilson Chan
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
- Department of Pathology & Laboratory Medicine, Diagnostic & Scientific Centre, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fady R. Mohareb
- Department of Pathology & Laboratory Medicine, Diagnostic & Scientific Centre, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Colin J. Sutherland
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Cally Roper
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Susana Campino
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Taane G. Clark
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| |
Collapse
|
23
|
Ravenhall M, Benavente ED, Mipando M, Jensen ATR, Sutherland CJ, Roper C, Sepúlveda N, Kwiatkowski DP, Montgomery J, Phiri KS, Terlouw A, Craig A, Campino S, Ocholla H, Clark TG. Characterizing the impact of sustained sulfadoxine/pyrimethamine use upon the Plasmodium falciparum population in Malawi. Malar J 2016; 15:575. [PMID: 27899115 PMCID: PMC5129638 DOI: 10.1186/s12936-016-1634-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/23/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malawi experienced prolonged use of sulfadoxine/pyrimethamine (SP) as the front-line anti-malarial drug, with early replacement of chloroquine and delayed introduction of artemisinin-based combination therapy. Extended use of SP, and its continued application in pregnancy is impacting the genomic variation of the Plasmodium falciparum population. METHODS Whole genome sequence data of P. falciparum isolates covering 2 years of transmission within Malawi, alongside global datasets, were used. More than 745,000 SNPs were identified, and differences in allele frequencies between countries assessed, as well as genetic regions under positive selection determined. RESULTS Positive selection signals were identified within dhps, dhfr and gch1, all components of the parasite folate pathway associated with SP resistance. Sitting predominantly on a dhfr triple mutation background, a novel copy number increase of ~twofold was identified in the gch1 promoter. This copy number was almost fixed (96.8% frequency) in Malawi samples, but found at less than 45% frequency in other African populations, and distinct from a whole gene duplication previously reported in Southeast Asian parasites. CONCLUSIONS SP resistance selection pressures have been retained in the Malawian population, with known resistance dhfr mutations at fixation, complemented by a novel gch1 promoter duplication. The effects of the duplication on the fitness costs of SP variants and resistance need to be elucidated.
Collapse
Affiliation(s)
- Matt Ravenhall
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ernest Diez Benavente
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Mwapatsa Mipando
- Department of Physiology, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Anja T. R. Jensen
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Colin J. Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Cally Roper
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Nuno Sepúlveda
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Statistics and Applications of University of Lisbon, Lisbon, Portugal
| | | | - Jacqui Montgomery
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Kamija S. Phiri
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Anja Terlouw
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Alister Craig
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Harold Ocholla
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
24
|
Amambua-Ngwa A, Danso B, Worwui A, Ceesay S, Davies N, Jeffries D, D'Alessandro U, Conway D. Exceptionally long-range haplotypes in Plasmodium falciparum chromosome 6 maintained in an endemic African population. Malar J 2016; 15:515. [PMID: 27769292 PMCID: PMC5073846 DOI: 10.1186/s12936-016-1560-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous genome-wide analyses of single nucleotide variation in Plasmodium falciparum identified evidence of an extended haplotype region on chromosome 6 in West Africa, suggesting recent positive selection. Such a pattern is not seen in samples from East Africa or South East Asia, so it could be marking a selective process specific to West Africa. Analyses of the haplotype structure in samples taken at different times could give clues to possible causes of selection. METHODS This study investigates chromosome 6 extended haplotypes in The Gambia by analysing alleles at multiple microsatellite loci using genome sequence data previously obtained from clinical isolates collected in 2008, followed by genotyping of 13 loci in 439 isolates from 1984, 1991, 2008 and 2014. Temporal changes in haplotype structure and frequencies were determined. RESULTS A region of high linkage disequilibrium spanning over 170 kilobases (kb) was identified with both NGS and laboratory determined microsatellite alleles. Multiple long haplotypes were found in all temporal populations from The Gambia. Two of the haplotypes were detected in samples from 1984 and 1991. The frequency of long-range haplotypes increased in 2008 and 2014 populations. There was higher Fst between older and more recent populations at loci in proximity to genes involved in drug metabolism pathways. CONCLUSIONS The occurrence of several long haplotypes at intermediate frequencies suggests an unusual mode of selection in chromosome 6, possibly combined with recombination suppression on specific haplotypes. Such selection apparently occurred before the emergence of known anti-malarial drug resistance alleles, and could be due to effects of other drugs or unknown processes that have long been operating in this endemic region.
Collapse
Affiliation(s)
- Alfred Amambua-Ngwa
- Medical Research Council, Gambia Unit, Atlantic Road, Fajara, P.O. Box 273, Banjul, The Gambia.
| | - Bakary Danso
- Medical Research Council, Gambia Unit, Atlantic Road, Fajara, P.O. Box 273, Banjul, The Gambia
| | - Archibald Worwui
- Medical Research Council, Gambia Unit, Atlantic Road, Fajara, P.O. Box 273, Banjul, The Gambia
| | - Sukai Ceesay
- Medical Research Council, Gambia Unit, Atlantic Road, Fajara, P.O. Box 273, Banjul, The Gambia
| | - Nwakanma Davies
- Medical Research Council, Gambia Unit, Atlantic Road, Fajara, P.O. Box 273, Banjul, The Gambia
| | - David Jeffries
- Medical Research Council, Gambia Unit, Atlantic Road, Fajara, P.O. Box 273, Banjul, The Gambia
| | - Umberto D'Alessandro
- Medical Research Council, Gambia Unit, Atlantic Road, Fajara, P.O. Box 273, Banjul, The Gambia.,London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - David Conway
- London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| |
Collapse
|
25
|
Genome-wide association analysis identifies genetic loci associated with resistance to multiple antimalarials in Plasmodium falciparum from China-Myanmar border. Sci Rep 2016; 6:33891. [PMID: 27694982 PMCID: PMC5046179 DOI: 10.1038/srep33891] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/05/2016] [Indexed: 12/02/2022] Open
Abstract
Drug resistance has emerged as one of the greatest challenges facing malaria control. The recent emergence of resistance to artemisinin (ART) and its partner drugs in ART-based combination therapies (ACT) is threatening the efficacy of this front-line regimen for treating Plasmodium falciparum parasites. Thus, an understanding of the molecular mechanisms that underlie the resistance to ART and the partner drugs has become a high priority for resistance containment and malaria management. Using genome-wide association studies, we investigated the associations of genome-wide single nucleotide polymorphisms with in vitro sensitivities to 10 commonly used antimalarial drugs in 94 P. falciparum isolates from the China-Myanmar border area, a region with the longest history of ART usage. We identified several loci associated with various drugs, including those containing pfcrt and pfdhfr. Of particular interest is a locus on chromosome 10 containing the autophagy-related protein 18 (ATG18) associated with decreased sensitivities to dihydroartemisinin, artemether and piperaquine – an ACT partner drug in this area. ATG18 is a phosphatidylinositol-3-phosphate binding protein essential for autophagy and recently identified as a potential ART target. Further investigations on the ATG18 and genes at the chromosome 10 locus may provide an important lead for a connection between ART resistance and autophagy.
Collapse
|
26
|
Li R, Erpelding JE. Genetic diversity analysis of Gossypium arboreum germplasm accessions using genotyping-by-sequencing. Genetica 2016; 144:535-545. [PMID: 27604991 DOI: 10.1007/s10709-016-9921-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
Abstract
The diploid cotton species Gossypium arboreum possesses many favorable agronomic traits such as drought tolerance and disease resistance, which can be utilized in the development of improved upland cotton cultivars. The USDA National Plant Germplasm System maintains more than 1600 G. arboreum accessions. Little information is available on the genetic diversity of the collection thereby limiting the utilization of this cotton species. The genetic diversity and population structure of the G. arboreum germplasm collection were assessed by genotyping-by-sequencing of 375 accessions. Using genome-wide single nucleotide polymorphism sequence data, two major clusters were inferred with 302 accessions in Cluster 1, 64 accessions in Cluster 2, and nine accessions unassigned due to their nearly equal membership to each cluster. These two clusters were further evaluated independently resulting in the identification of two sub-clusters for the 302 Cluster 1 accessions and three sub-clusters for the 64 Cluster 2 accessions. Low to moderate genetic diversity between clusters and sub-clusters were observed indicating a narrow genetic base. Cluster 2 accessions were more genetically diverse and the majority of the accessions in this cluster were landraces. In contrast, Cluster 1 is composed of varieties or breeding lines more recently added to the collection. The majority of the accessions had kinship values ranging from 0.6 to 0.8. Eight pairs of accessions were identified as potential redundancies due to their high kinship relatedness. The genetic diversity and genotype data from this study are essential to enhance germplasm utilization to identify genetically diverse accessions for the detection of quantitative trait loci associated with important traits that would benefit upland cotton improvement.
Collapse
Affiliation(s)
- Ruijuan Li
- Crop Genetics Research Unit, USDA-ARS, 141 Experiment Station Road, PO Box 345, Stoneville, MS, 38776, USA
| | - John E Erpelding
- Crop Genetics Research Unit, USDA-ARS, 141 Experiment Station Road, PO Box 345, Stoneville, MS, 38776, USA.
| |
Collapse
|
27
|
Correction: Imputation-Based Population Genetics Analysis of Plasmodium falciparum Malaria Parasites. PLoS Genet 2016; 12:e1006300. [PMID: 27579790 PMCID: PMC5006977 DOI: 10.1371/journal.pgen.1006300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Campino S, Benavente ED, Assefa S, Thompson E, Drought LG, Taylor CJ, Gorvett Z, Carret CK, Flueck C, Ivens AC, Kwiatkowski DP, Alano P, Baker DA, Clark TG. Genomic variation in two gametocyte non-producing Plasmodium falciparum clonal lines. Malar J 2016; 15:229. [PMID: 27098483 PMCID: PMC4839107 DOI: 10.1186/s12936-016-1254-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/30/2016] [Indexed: 11/10/2022] Open
Abstract
Background Transmission of the malaria parasite Plasmodium falciparum from humans to the mosquito vector requires differentiation of a sub-population of asexual forms replicating within red blood cells into non-dividing male and female gametocytes. The nature of the molecular mechanism underlying this key differentiation event required for malaria transmission is not fully understood. Methods Whole genome sequencing was used to examine the genomic diversity of the gametocyte non-producing 3D7-derived lines F12 and A4. These lines were used in the recent detection of the PF3D7_1222600 locus (encoding PfAP2-G), which acts as a genetic master switch that triggers gametocyte development. Results The evolutionary changes from the 3D7 parental strain through its derivatives F12 (culture-passage derived cloned line) and A4 (transgenic cloned line) were identified. The genetic differences including the formation of chimeric var genes are presented. Conclusion A genomics resource is provided for the further study of gametocytogenesis or other phenotypes using these parasite lines. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1254-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Ernest Diez Benavente
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Samuel Assefa
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Eloise Thompson
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Laura G Drought
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Catherine J Taylor
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Zaria Gorvett
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Celine K Carret
- The European Molecular Biology Organization, Heidelberg, Germany
| | - Christian Flueck
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Al C Ivens
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Dominic P Kwiatkowski
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Rome, Italy
| | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.,Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|