1
|
Wong SS, Monteiro JM, Chang CC, Peng M, Mohamad N, Steinacker TL, Xiao B, Saurya S, Wainman A, Raff JW. Centrioles generate two scaffolds with distinct biophysical properties to build mitotic centrosomes. SCIENCE ADVANCES 2025; 11:eadq9549. [PMID: 39919171 PMCID: PMC11804907 DOI: 10.1126/sciadv.adq9549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025]
Abstract
Mitotic centrosomes assemble when centrioles recruit large amounts of pericentriolar material (PCM) around themselves. The PCM comprises hundreds of proteins, and there is much debate about its physical nature. Here, we show that Drosophila Spd-2 (human CEP192) fluxes out from centrioles, recruiting Polo and Aurora A kinases to catalyze the assembly of two distinct mitotic-PCM scaffolds: a Polo-dependent Cnn scaffold, and an Aurora A-dependent TACC scaffold, which exhibit solid- and liquid-like behaviors, respectively. Both scaffolds can independently recruit PCM proteins, but both are required for proper centrosome assembly, with the Cnn scaffold providing mechanical strength, and the TACC scaffold concentrating centriole and centrosome proteins. Recruiting Spd-2 to synthetic beads injected into early embryos reconstitutes key aspects of mitotic centrosome assembly on the bead surface, and this depends on Spd-2's ability to recruit Polo and Aurora A. Thus, Spd-2 orchestrates the assembly of two scaffolds, with distinct biophysical properties, that cooperate to build mitotic centrosomes in flies.
Collapse
Affiliation(s)
- Siu-Shing Wong
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
- The Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Joao M. Monteiro
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Chia-Chun Chang
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Min Peng
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
- Institute of Biotechnology, National Taiwan University, 106 Taipei, Taiwan
| | - Nada Mohamad
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Thomas L. Steinacker
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Bocheng Xiao
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Jordan W. Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
2
|
Gimenez D, Walko M, Miles JA, Bayliss R, Wright MH, Wilson AJ. Constrained TACC3 peptidomimetics for a non-canonical protein-protein interface elucidate allosteric communication in Aurora-A kinase. Chem Sci 2024; 16:354-363. [PMID: 39620078 PMCID: PMC11604048 DOI: 10.1039/d4sc06100d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
Peptidomimetic design for non-canonical interfaces is less well established than for α-helix and β-strand mediated protein-protein interactions. Using the TACC3/Aurora-A kinase interaction as a model, we developed a series of constrained TACC3 peptide variants with 10-fold increased binding potencies (K d) towards Aurora-A in comparison to the parent peptide. High-affinity is achieved in part by restricting the accessible conformational ensemble of the peptide leading to a more favourable entropy of binding. In addition to acting as potent orthosteric TACC3/Aurora-A inhibitors, these peptidomimetics were shown to activate the kinase and inhibit the N-Myc/Aurora-A interaction at a distal site. Thus, the potency of these tools uniquely allowed us to unveil new insight into the role of allosteric communication in the kinase.
Collapse
Affiliation(s)
- Diana Gimenez
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Martin Walko
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Jennifer A Miles
- School of Molecular and Cellular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Richard Bayliss
- School of Molecular and Cellular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Megan H Wright
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Andrew J Wilson
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| |
Collapse
|
3
|
Holder J, Miles JA, Batchelor M, Popple H, Walko M, Yeung W, Kannan N, Wilson AJ, Bayliss R, Gergely F. CEP192 localises mitotic Aurora-A activity by priming its interaction with TPX2. EMBO J 2024; 43:5381-5420. [PMID: 39327527 PMCID: PMC11574021 DOI: 10.1038/s44318-024-00240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Aurora-A is an essential cell-cycle kinase with critical roles in mitotic entry and spindle dynamics. These functions require binding partners such as CEP192 and TPX2, which modulate both kinase activity and localisation of Aurora-A. Here we investigate the structure and role of the centrosomal Aurora-A:CEP192 complex in the wider molecular network. We find that CEP192 wraps around Aurora-A, occupies the binding sites for mitotic spindle-associated partners, and thus competes with them. Comparison of two different Aurora-A conformations reveals how CEP192 modifies kinase activity through the site used for TPX2-mediated activation. Deleting the Aurora-A-binding interface in CEP192 prevents centrosomal accumulation of Aurora-A, curtails its activation-loop phosphorylation, and reduces spindle-bound TPX2:Aurora-A complexes, resulting in error-prone mitosis. Thus, by supplying the pool of phosphorylated Aurora-A necessary for TPX2 binding, CEP192:Aurora-A complexes regulate spindle function. We propose an evolutionarily conserved spatial hierarchy, which protects genome integrity through fine-tuning and correctly localising Aurora-A activity.
Collapse
Affiliation(s)
- James Holder
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jennifer A Miles
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Matthew Batchelor
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Harrison Popple
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Martin Walko
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Wayland Yeung
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Natarajan Kannan
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Andrew J Wilson
- School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| | - Fanni Gergely
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
4
|
Jiao Y, Zhong J, Xu J, Ning S, Liang T, Zhao M, Zhang J. Design and synthesis of ( E)-3-benzylideneindolin-2-one derivatives as potential allosteric inhibitors of Aurora A kinase. RSC Med Chem 2024:d4md00373j. [PMID: 39584029 PMCID: PMC11579899 DOI: 10.1039/d4md00373j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/19/2024] [Indexed: 11/26/2024] Open
Abstract
The mitotic kinase Aurora A, a pivotal regulator of the cell cycle, is overexpressed in various cancers and has emerged as one of the most promising targets for anticancer drug discovery. However, the lack of specificity and potential toxicity have impeded clinical trials involving orthosteric inhibitors. In this study, allosteric sites of Aurora A were predicted using the AlloReverse web server. Based on the non-ATP competitive inhibitor Tripolin A and molecular docking information targeting the desired allosteric site 3 of Aurora A, a series of (E)-3-benzylideneindolin-2-one derivatives were designed and synthesized. Compared to Tripolin A, our compounds AK09, AK34 and AK35 have stronger inhibitory effects and can be further investigated as potential allosteric inhibitors. Moreover, the compound AK34 with the strongest inhibitory activity (IC50 = 1.68 μM) has a high affinity for Aurora A (K D = 216 nM). According to the analysis of the structure-activity relationship of the compounds and the results of their molecular docking models, these compounds tend to act on the allosteric site 3 of Aurora A.
Collapse
Affiliation(s)
- YongLai Jiao
- School of Pharmaceutical Science, Shanxi Medical University Taiyuan 030001 China
| | - Jie Zhong
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| | - JinFang Xu
- School of Pharmaceutical Science, Shanxi Medical University Taiyuan 030001 China
| | - ShaoBo Ning
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| | - TaiGang Liang
- School of Pharmaceutical Science, Shanxi Medical University Taiyuan 030001 China
| | - MingZhu Zhao
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| | - Jian Zhang
- School of Pharmaceutical Science, Shanxi Medical University Taiyuan 030001 China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| |
Collapse
|
5
|
Zheng H, Zhang Q, Liu X, Shi F, Yang F, Xiang S, Jiang H. Aurora-A condensation mediated by BuGZ aids its mitotic centrosome functions. iScience 2024; 27:109785. [PMID: 38746663 PMCID: PMC11090908 DOI: 10.1016/j.isci.2024.109785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/30/2023] [Accepted: 04/16/2024] [Indexed: 03/17/2025] Open
Abstract
Centrosomes composed of centrioles and the pericentriolar material (PCM), serve as the platform for microtubule polymerization during mitosis. Despite some centriole and PCM proteins have been reported to utilize liquid-liquid phase separation (LLPS) to perform their mitotic functions, whether and how centrosomal kinases exert the coacervation in mitosis is still unknown. Here we reveal that Aurora-A, one key centrosomal kinase in regulating centrosome formation and functions, undergoes phase separation in vitro or in centrosomes from prophase, mediated by the conserved positive-charged residues inside its intrinsic disordered region (IDR) and the intramolecular interaction between its N- and C-terminus. Aurora-A condensation affects centrosome maturation, separation, initial spindle formation from the spindle pole and its kinase activity. Moreover, BuGZ interacts with Aurora-A to enhance its LLPS and centrosome functions. Thus, we propose that Aurora-A collaborates with BuGZ to exhibit the property of LLPS in centrosomes to control its centrosome-dependent functions from prophase.
Collapse
Affiliation(s)
- Hui Zheng
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Qiaoqiao Zhang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China, School of Life Sciences, Hefei, China
| | - Fan Shi
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China, School of Life Sciences, Hefei, China
| | - Shengqi Xiang
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hao Jiang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
6
|
Peng L, He Y, Wang W, Dai J, Li Q, Ju S. PAK1-Dependent Regulation of Microtubule Organization and Spindle Migration Is Essential for the Metaphase I-Metaphase II Transition in Porcine Oocytes. Biomolecules 2024; 14:237. [PMID: 38397472 PMCID: PMC10886677 DOI: 10.3390/biom14020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
P21-activated kinase 1 (PAK1) is a critical downstream target that mediates the effect of small Rho GTPase on the regulation of cytoskeletal kinetics, cell proliferation, and cell migration. PAK1 has been identified as a crucial regulator of spindle assembly during the first meiotic division; however, its roles during the metaphase I (MI) to metaphase II (MII) transition in oocytes remain unclear. In the present study, the potential function of PAK1 in regulating microtubule organization and spindle positioning during the MI-MII transition was addressed in porcine oocytes. The results showed that activated PAK1 was co-localized with α-tubulin, and its expression was increased from the MI to MII stage (p < 0.001). However, inhibiting PAK1 activity with an inhibitor targeting PAK1 activation-3 (IPA-3) at the MI stage decreased the first polar body (PB1) extrusion rate (p < 0.05), with most oocytes arrested at the anaphase-telophase (ATI) stage. IPA-3-treated oocytes displayed a decrease in actin distribution in the plasma membrane (p < 0.001) and an increase in the rate of defects in MII spindle reassembly with abnormal spindle positioning (p < 0.001). Nevertheless, these adverse effects of IPA-3 on oocytes were reversed when the disulfide bond between PAK1 and IPA-3 was reduced by dithiothreitol (DTT). Co-immunoprecipitation revealed that PAK1 could recruit activated Aurora A and transform acidic coiled-coil 3 (TACC3) to regulate spindle assembly and interact with LIM kinase 1 (LIMK1) to facilitate actin filament-mediated spindle migration. Together, PAK1 is essential for microtubule organization and spindle migration during the MI-MII transition in porcine oocytes, which is associated with the activity of p-Aurora A, p-TACC3 and p-LIMK1.
Collapse
Affiliation(s)
- Lei Peng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (L.P.); (Y.H.); (W.W.)
| | - Yijing He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (L.P.); (Y.H.); (W.W.)
| | - Weihan Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (L.P.); (Y.H.); (W.W.)
| | - Jianjun Dai
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China;
| | - Qiao Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (L.P.); (Y.H.); (W.W.)
| | - Shiqiang Ju
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (L.P.); (Y.H.); (W.W.)
| |
Collapse
|
7
|
Saatci O, Sahin O. TACC3: a multi-functional protein promoting cancer cell survival and aggressiveness. Cell Cycle 2023; 22:2637-2655. [PMID: 38197196 PMCID: PMC10936615 DOI: 10.1080/15384101.2024.2302243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
TACC3 is the most oncogenic member of the transforming acidic coiled-coil domain-containing protein (TACC) family. It is one of the major recruitment factors of distinct multi-protein complexes. TACC3 is localized to spindles, centrosomes, and nucleus, and regulates key oncogenic processes, including cell proliferation, migration, invasion, and stemness. Recently, TACC3 inhibition has been identified as a vulnerability in highly aggressive cancers, such as cancers with centrosome amplification (CA). TACC3 has spatiotemporal functions throughout the cell cycle; therefore, targeting TACC3 causes cell death in mitosis and interphase in cancer cells with CA. In the clinics, TACC3 is highly expressed and associated with worse survival in multiple cancers. Furthermore, TACC3 is a part of one of the most common fusions of FGFR, FGFR3-TACC3 and is important for the oncogenicity of the fusion. A detailed understanding of the regulation of TACC3 expression, its key partners, and molecular functions in cancer cells is vital for uncovering the most vulnerable tumors and maximizing the therapeutic potential of targeting this highly oncogenic protein. In this review, we summarize the established and emerging interactors and spatiotemporal functions of TACC3 in cancer cells, discuss the potential of TACC3 as a biomarker in cancer, and therapeutic potential of its inhibition.
Collapse
Affiliation(s)
- Ozge Saatci
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
8
|
Hiranuma K, Asami Y, Kato MK, Murakami N, Shimada Y, Matsuda M, Yazaki S, Fujii E, Sudo K, Kuno I, Komatsu M, Hamamoto R, Makinoshima H, Matsumoto K, Ishikawa M, Kohno T, Terao Y, Itakura A, Yoshida H, Shiraishi K, Kato T. Rare FGFR fusion genes in cervical cancer and transcriptome-based subgrouping of patients with a poor prognosis. Cancer Med 2023; 12:17835-17848. [PMID: 37537783 PMCID: PMC10524028 DOI: 10.1002/cam4.6415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/25/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Although cervical cancer is often characterized as preventable, its incidence continues to increase in low- and middle-income countries, underscoring the need to develop novel therapeutics for this disease.This study assessed the distribution of fusion genes across cancer types and used an RNA-based classification to divide cervical cancer patients with a poor prognosis into subgroups. MATERIAL AND METHODS RNA sequencing of 116 patients with cervical cancer was conducted. Fusion genes were extracted using StarFusion program. To identify a high-risk group for recurrence, 65 patients who received postoperative adjuvant therapy were subjected to non-negative matrix factorization to identify differentially expressed genes between recurrent and nonrecurrent groups. RESULTS We identified three cases with FGFR3-TACC3 and one with GOPC-ROS1 fusion genes as potential targets. A search of publicly available data from cBioPortal (21,789 cases) and the Center for Cancer Genomics and Advanced Therapeutics (32,608 cases) showed that the FGFR3 fusion is present in 1.5% and 0.6% of patients with cervical cancer, respectively. The frequency of the FGFR3 fusion gene was higher in cervical cancer than in other cancers, regardless of ethnicity. Non-negative matrix factorization identified that the patients were classified into four Basis groups. Pathway enrichment analysis identified more extracellular matrix kinetics dysregulation in Basis 3 and more immune system dysregulation in Basis 4 than in the good prognosis group. CIBERSORT analysis showed that the fraction of M1 macrophages was lower in the poor prognosis group than in the good prognosis group. CONCLUSIONS The distribution of FGFR fusion genes in patients with cervical cancer was determined by RNA-based analysis and used to classify patients into clinically relevant subgroups.
Collapse
Affiliation(s)
- Kengo Hiranuma
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
- Department of Obstetrics and GynecologyJuntendo University Faculty of MedicineTokyoJapan
| | - Yuka Asami
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
- Department of Obstetrics and GynecologyShowa University School of MedicineTokyoJapan
| | - Mayumi Kobayashi Kato
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
- Department of GynecologyNational Cancer Center HospitalTokyoJapan
| | - Naoya Murakami
- Department of Radiation OncologyNational Cancer Center HospitalTokyoJapan
| | - Yoko Shimada
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
| | - Maiko Matsuda
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
| | - Shu Yazaki
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
- Department of Medical OncologyNational Cancer Center HospitalTokyoJapan
| | - Erisa Fujii
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
- Department of GynecologyNational Cancer Center HospitalTokyoJapan
| | - Kazuki Sudo
- Department of Medical OncologyNational Cancer Center HospitalTokyoJapan
| | - Ikumi Kuno
- Department of GynecologyNational Cancer Center HospitalTokyoJapan
| | - Masaaki Komatsu
- Division of Medical AI Research and DevelopmentNational Cancer Center Research InstituteTokyoJapan
- Cancer Translational Research TeamRIKEN Center for Advanced Intelligence ProjectTokyoJapan
| | - Ryuji Hamamoto
- Division of Medical AI Research and DevelopmentNational Cancer Center Research InstituteTokyoJapan
- Cancer Translational Research TeamRIKEN Center for Advanced Intelligence ProjectTokyoJapan
| | | | - Koji Matsumoto
- Department of Obstetrics and GynecologyShowa University School of MedicineTokyoJapan
| | - Mitsuya Ishikawa
- Department of GynecologyNational Cancer Center HospitalTokyoJapan
| | - Takashi Kohno
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
| | - Yasuhisa Terao
- Department of Obstetrics and GynecologyJuntendo University Faculty of MedicineTokyoJapan
| | - Atsuo Itakura
- Department of Obstetrics and GynecologyJuntendo University Faculty of MedicineTokyoJapan
| | - Hiroshi Yoshida
- Department of Diagnostic PathologyNational Cancer Center HospitalTokyoJapan
| | - Kouya Shiraishi
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
- Department of Clinical GenomicsNational Cancer Center Research InstituteTokyoJapan
| | - Tomoyasu Kato
- Department of GynecologyNational Cancer Center HospitalTokyoJapan
| |
Collapse
|
9
|
Guo E, Yang J, Li L, Chen J, Liu H. TACC3 is an independent prognostic marker, and knockdown of TACC3 enhances the efficacy of CDK1 inhibitor RO3306 in liver cancer cells. J Biochem Mol Toxicol 2023; 37:e23402. [PMID: 37341435 DOI: 10.1002/jbt.23402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/22/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
The drug resistance of single-target therapy has gradually become an intractable clinical problem. Combination therapy may be an effective treatment to overcome or postpone drug resistance in cancer. Herein, we discussed the synergistic effect of transforming acidic coiled-coil containing protein 3 (TACC3) suppression and cyclin-dependent kinase 1 (CDK1) in hepatocellular carcinoma (HCC). The Cancer Genome Atlas database and bioinformatics methods were implemented to analyze the expression of CDK1 and TACC3, and predict the biological function of TACC3-related genes in HCC. In addition, in vitro experiments, including cell counting kit 8, transwell and flow cytometry were utilized to evaluate cell proliferation, migration, invasion, cell cycle arrest and apoptosis of HCC cells. Our results demonstrated that TACC3 is an unfavorable and independent prognostic factor to predict poor overall survival (OS) in HCC patients. Genetic inhibition of TACC3 exhibited a remarkable antineoplastic activity of HCC cell lines. Bioinformatic prediction proposed that CDK1 may be the main regulator of TACC3-related genes in HCC. In vitro experimental measurements suggested that a combination of si-TACC3 and CDK1 inhibitor synergistically inhibited cell proliferation and migration, and induced G2 cell cycle arrest and apoptosis of HepG2 or MHCC97H cells. In conclusion, our results revealed a prospective dual-target, TACC3 and CDK1, therapeutic strategy to improve the treatment of HCC.
Collapse
Affiliation(s)
- Enshuang Guo
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Li
- Department of osteology, Yellow River Central Hospital of the Yellow River Conservancy Commission, Zhengzhou, China
| | - Jia Chen
- Department of Rheumatology, The Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Hongqiang Liu
- Department of Emergency, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan Province, China
| |
Collapse
|
10
|
Perini F, Cendron F, Wu Z, Sevane N, Li Z, Huang C, Smith J, Lasagna E, Cassandro M, Penasa M. Genomics of Dwarfism in Italian Local Chicken Breeds. Genes (Basel) 2023; 14:genes14030633. [PMID: 36980905 PMCID: PMC10047989 DOI: 10.3390/genes14030633] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The identification of the dwarf phenotype in chicken is based on body weight, height, and shank length, leaving the differentiation between dwarf and small breeds ambiguous. The aims of the present study were to characterize the sequence variations associated with the dwarf phenotype in three Italian chicken breeds and to investigate the genes associated with their phenotype. Five hundred and forty-one chickens from 23 local breeds (from 20 to 24 animals per breed) were sampled. All animals were genotyped with the 600 K chicken SNP array. Three breeds were described as “dwarf”, namely, Mericanel della Brianza (MERI), Mugellese (MUG), and Pepoi (PPP). We compared MERI, MUG, and PPP with the four heaviest breeds in the dataset by performing genome-wide association studies. Results showed significant SNPs associated with dwarfism in the MERI and MUG breeds, which shared a candidate genomic region on chromosome 1. Due to this similarity, MERI and MUG were analyzed together as a meta-population, observing significant SNPs in the LEMD3 and HMGA2 genes, which were previously reported as being responsible for dwarfism in different species. In conclusion, MERI and MUG breeds seem to share a genetic basis of dwarfism, which differentiates them from the small PPP breed.
Collapse
Affiliation(s)
- Francesco Perini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Filippo Cendron
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy
| | - Zhou Wu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Natalia Sevane
- Department of Animal Production, Veterinary Faculty, Universidad Complutense de Madrid, Avenida Puerta de Hierro, 28040 Madrid, Spain
| | - Zhiqiang Li
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
- College of Animal Science and Technology, Chengdu Campus, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunhua Huang
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
- College of Animal Science and Technology, Chengdu Campus, Sichuan Agricultural University, Chengdu 611130, China
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
- Correspondence: ; Tel.: +39-075-58517102
| | - Martino Cassandro
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy
- Federazione delle Associazioni Nazionali di Razza e Specie, 00187 Roma, Italy
| | - Mauro Penasa
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy
| |
Collapse
|
11
|
Peng L, He Y, Wang W, Chu Y, Lin Q, Rui R, Li Q, Ju S. PAK1 Is Involved in the Spindle Assembly during the First Meiotic Division in Porcine Oocytes. Int J Mol Sci 2023; 24:ijms24021123. [PMID: 36674642 PMCID: PMC9866149 DOI: 10.3390/ijms24021123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
P21-activated kinase 1 (PAK1), as a member of the PAK family, has been implicated in various functions during somatic mitosis; however, less is known about its role during oocyte meiosis. Herein, we highlight the indispensable role of PAK1 in regulating spindle assembly and cell cycle progression during the first meiotic division of porcine oocytes. First, we found that the activated PAK1 expressed dynamically, and its subcellular localization was tightly associated with the spindle dynamics during meiosis in porcine oocytes. Specific inhibition of PAK1 activity by inhibitor targeting PAK1 activation-3 (IPA-3) led to impaired extrusion of the first polar body (PB1); with most of the IPA-3-treated oocytes arrested at germinal vesicle breakdown (GVBD) and subjected to failure of bipolar spindle formation. However, the adverse effects caused by IPA-3 on oocytes could be restored by reducing disulfide bonds between PAK1 and IPA-3 with dithiothreitol (DTT) treatment. Furthermore, the co-immunoprecipitation assay revealed that PAK1 interacted directly with Aurora A and transforming acidic coiled coil 3 (TACC3), providing an additional explanation for the similar localization of Aurora A and activated PAK1. Additionally, inhibiting the activity of PAK1 decreased the expression of p-Aurora A and p-TACC3; however, the reduced activity of Aurora A and TACC3 could be restored by DTT. In conclusion, PAK1 plays a crucial role in the proper assembly of the spindle during the first meiotic division of porcine oocytes, and the regulation of PAK1 is associated with its effects on p-Aurora A and p-TACC3 expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiao Li
- Correspondence: (Q.L.); (S.J.)
| | | |
Collapse
|
12
|
Wang Q, Wang T, Liang S, Zhou L. Ox-LDL-Induced Vascular Smooth Muscle Cell Dysfunction Partly Depends on the Circ_0044073/miR-377-3p/AURKA Axis in Atherosclerosis. Int Heart J 2023; 64:252-262. [PMID: 37005319 DOI: 10.1536/ihj.22-148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Atherosclerosis (AS) is the main reason for most cardiovascular diseases. Circular RNA hsa_circ_0044073 (circ_0044073) has been found to promote AS progression. However, the specific regulatory mechanism of circ_0044073 in AS progression remains unclear.In this study, oxidized low-density lipoprotein (Ox-LDL) -stimulated human vascular smooth muscle cells (VSMCs) were used as AS cell models. The expression changes of circ_0044073 in serum samples and Ox-LDL-stimulated human VSMCs were assessed via real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability, proliferation, colony formation, migration, and invasion were assessed using 3- (4,5-Dimethylthiazol-2-yl) -2,5-Diphenyltetrazolium Bromide (MTT), 5-ethynyl-2'-deoxyuridine (EDU), colony formation, and transwell assays. Some protein levels were detected via Western blotting. The regulatory mechanism of circ_0044073 was predicted using bioinformatics analysis and validated by dual-luciferase reporter and RNA pull-down assays.We observed an overt increase in circ_0044073 expression in serum samples derived from AS patients and Ox-LDL-stimulated human VSMCs. Circ_0044073 was identified as a miR-377-3p sponge. Either circ_0044073 knockdown or miR-377-3p overexpression could impair Ox-LDL-induced human VSMC proliferation, migration, invasion, and inflammation. AURKA served as a miR-377-3p target, and circ_0044073 regulated AURKA expression by adsorbing miR-377-3p. Furthermore, AURKA overexpression partly reversed the effects of circ_0044073 inhibition on Ox-LDL-induced human VSMC proliferation, migration, invasion, and inflammation.Circ_0044073 promoted AS progression by elevating AURKA expression by functioning as a miR-377-3p sponge. Providing a proof-of-concept demonstration to support circ_0044073 might be a target for AS treatment.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Vascular Surgery, Taizhou University Affiliated Municipal Hospital
| | - Tao Wang
- Department of Vascular Surgery, Taizhou University Affiliated Municipal Hospital
| | - Siyuan Liang
- Department of Vascular Surgery, Taizhou University Affiliated Municipal Hospital
| | - Long Zhou
- Department of Vascular Surgery, Taizhou University Affiliated Municipal Hospital
| |
Collapse
|
13
|
Furqan M, Fayyaz A, Firdous F, Raza H, Bilal A, Saleem RSZ, Shahzad-Ul-Hussan S, Wang D, Youssef FS, Al Musayeib NM, Ashour ML, Hussain H, Faisal A. Identification and Characterization of Natural and Semisynthetic Quinones as Aurora Kinase Inhibitors. JOURNAL OF NATURAL PRODUCTS 2022; 85:1503-1513. [PMID: 35687347 DOI: 10.1021/acs.jnatprod.1c01222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aurora kinases (Aurora A, B, and C) are a family of serine/threonine kinases that play critical roles during mitotic initiation and progression. Aurora A and B kinases are ubiquitously expressed, and their overexpression and/or amplification in many cancers have been associated with poor prognosis. Several inhibitors that target Aurora kinases A, B, or both have been developed during the past decade with efficacy in different in vitro and in vivo models for a variety of cancers. Recent studies have also identified Aurora A as a synthetic lethal target for different tumor suppressors, including RB1, SMARCA4, and ARID1A, which signifies the need for Aurora-A-selective inhibitors. Here, we report the screening of a small library of quinones (nine naphthoquinones, one orthoquinone, and one anthraquinone) in a biochemical assay for Aurora A kinase that resulted in the identification of several quinones as inhibitors. IC50 determination against Aurora A and B kinases revealed the inhibition of both kinases with selectivity toward Aurora A. Two of the compounds, natural quinone naphthazarin (1) and a pseudo anthraquinone, 2-(chloromethyl)quinizarin (11), potently inhibited the proliferation of various cancer cell lines with IC50 values ranging from 0.16 ± 0.15 to 1.7 ± 0.06 and 0.15 ± 0.04 to 6.3 ± 1.8 μM, respectively. Treatment of cancer cells with these compounds for 24 h resulted in abrogated mitosis and apoptotic cell death. Direct binding of both the compounds with Aurora A kinase was also confirmed through STD NMR analysis. Docking studies predicted the binding of both compounds to the ATP binding pocket of Aurora A kinase. We have, therefore, identified quinones as Aurora kinase inhibitors that can serve as a lead for future drug discovery endeavors.
Collapse
Affiliation(s)
- Muhammad Furqan
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Alishba Fayyaz
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Farhat Firdous
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Hadeeqa Raza
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Aishah Bilal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Syed Shahzad-Ul-Hussan
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Daijie Wang
- School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
| | - Nawal M Al Musayeib
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed L Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
| | - Hidayat Hussain
- Leibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Amir Faisal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| |
Collapse
|
14
|
Donà F, Eli S, Mapelli M. Insights Into Mechanisms of Oriented Division From Studies in 3D Cellular Models. Front Cell Dev Biol 2022; 10:847801. [PMID: 35356279 PMCID: PMC8959941 DOI: 10.3389/fcell.2022.847801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
In multicellular organisms, epithelial cells are key elements of tissue organization. In developing tissues, cellular proliferation and differentiation are under the tight regulation of morphogenetic programs, that ensure the correct organ formation and functioning. In these processes, mitotic rates and division orientation are crucial in regulating the velocity and the timing of the forming tissue. Division orientation, specified by mitotic spindle placement with respect to epithelial apico-basal polarity, controls not only the partitioning of cellular components but also the positioning of the daughter cells within the tissue, and hence the contacts that daughter cells retain with the surrounding microenvironment. Daughter cells positioning is important to determine signal sensing and fate, and therefore the final function of the developing organ. In this review, we will discuss recent discoveries regarding the mechanistics of planar divisions in mammalian epithelial cells, summarizing technologies and model systems used to study oriented cell divisions in vitro such as three-dimensional cysts of immortalized cells and intestinal organoids. We also highlight how misorientation is corrected in vivo and in vitro, and how it might contribute to the onset of pathological conditions.
Collapse
Affiliation(s)
- Federico Donà
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Susanna Eli
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | |
Collapse
|
15
|
Wellard SR, Zhang Y, Shults C, Zhao X, McKay M, Murray SA, Jordan PW. Overlapping roles for PLK1 and Aurora A during meiotic centrosome biogenesis in mouse spermatocytes. EMBO Rep 2021; 22:e51023. [PMID: 33615678 PMCID: PMC8024899 DOI: 10.15252/embr.202051023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/29/2020] [Accepted: 01/21/2021] [Indexed: 01/09/2023] Open
Abstract
The establishment of bipolar spindles during meiotic divisions ensures faithful chromosome segregation to prevent gamete aneuploidy. We analyzed centriole duplication, as well as centrosome maturation and separation during meiosis I and II using mouse spermatocytes. The first round of centriole duplication occurs during early prophase I, and then, centrosomes mature and begin to separate by the end of prophase I to prime formation of bipolar metaphase I spindles. The second round of centriole duplication occurs at late anaphase I, and subsequently, centrosome separation coordinates bipolar segregation of sister chromatids during meiosis II. Using a germ cell-specific conditional knockout strategy, we show that Polo-like kinase 1 and Aurora A kinase are required for centrosome maturation and separation prior to metaphase I, leading to the formation of bipolar metaphase I spindles. Furthermore, we show that PLK1 is required to block the second round of centriole duplication and maturation until anaphase I. Our findings emphasize the importance of maintaining strict spatiotemporal control of cell cycle kinases during meiosis to ensure proficient centrosome biogenesis and, thus, accurate chromosome segregation during spermatogenesis.
Collapse
Affiliation(s)
- Stephen R Wellard
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| | - Yujiao Zhang
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| | - Chris Shults
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| | - Xueqi Zhao
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| | | | | | - Philip W Jordan
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| |
Collapse
|
16
|
Fujita R, Jamet S, Lean G, Cheng HCM, Hébert S, Kleinman CL, Crist C. Satellite cell expansion is mediated by P-eIF2α-dependent Tacc3 translation. Development 2021; 148:dev194480. [PMID: 33318147 DOI: 10.1242/dev.194480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/04/2020] [Indexed: 11/20/2022]
Abstract
Translational control of gene expression is an important regulator of adult stem cell quiescence, activation and self-renewal. In skeletal muscle, quiescent satellite cells maintain low levels of protein synthesis, mediated in part through the phosphorylation of eIF2α (P-eIF2α). Pharmacological inhibition of the eIF2α phosphatase with the small molecule sal003 maintains P-eIF2α and permits the expansion of satellite cells ex vivo Paradoxically, P-eIF2α also increases the translation of specific mRNAs, which is mediated by P-eIF2α-dependent read-through of inhibitory upstream open reading frames (uORFs). Here, we ask whether P-eIF2α-dependent mRNA translation enables expansion of satellite cells. Using transcriptomic and proteomic analyses, we show a number of genes associated with the assembly of the spindle pole to be upregulated at the level of protein, without corresponding change in mRNA levels, in satellite cells expanded in the presence of sal003. We show that uORFs in the 5' UTR of mRNA for the mitotic spindle stability gene Tacc3 direct P-eIF2α-dependent translation. Satellite cells deficient for TACC3 exhibit defects in expansion, self-renewal and regeneration of skeletal muscle.
Collapse
Affiliation(s)
- Ryo Fujita
- Department of Human Genetics, McGill University, 3640 University St., Montréal H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin de la Côte Ste. Catherine, Montréal H3T 1E2, Canada
| | - Solène Jamet
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin de la Côte Ste. Catherine, Montréal H3T 1E2, Canada
| | - Graham Lean
- Department of Human Genetics, McGill University, 3640 University St., Montréal H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin de la Côte Ste. Catherine, Montréal H3T 1E2, Canada
| | - Harry Chun Man Cheng
- Department of Human Genetics, McGill University, 3640 University St., Montréal H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin de la Côte Ste. Catherine, Montréal H3T 1E2, Canada
| | - Steven Hébert
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin de la Côte Ste. Catherine, Montréal H3T 1E2, Canada
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, 3640 University St., Montréal H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin de la Côte Ste. Catherine, Montréal H3T 1E2, Canada
| | - Colin Crist
- Department of Human Genetics, McGill University, 3640 University St., Montréal H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin de la Côte Ste. Catherine, Montréal H3T 1E2, Canada
| |
Collapse
|
17
|
Chen A, Wen S, Liu F, Zhang Z, Liu M, Wu Y, He B, Yan M, Kang T, Lam EWF, Wang Z, Liu Q. CRISPR/Cas9 screening identifies a kinetochore-microtubule dependent mechanism for Aurora-A inhibitor resistance in breast cancer. Cancer Commun (Lond) 2021; 41:121-139. [PMID: 33471959 PMCID: PMC7896750 DOI: 10.1002/cac2.12125] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 12/31/2022] Open
Abstract
Background Overexpression of Aurora‐A (AURKA) is a feature of breast cancer and associates with adverse prognosis. The selective Aurora‐A inhibitor alisertib (MLN8237) has recently demonstrated promising antitumor responses as a single agent in various cancer types but its phase III clinical trial was reported as a failure since MLN8237 did not show an apparent effect in prolonging the survival of patients. Thus, identification of potential targets that could enhance the activity of MLN8237 would provide a rationale for drug combination to achieve better therapeutic outcome. Methods Here, we conducted a systematic synthetic lethality CRISPR/Cas9 screening of 507 kinases using MLN8237 in breast cancer cells and identified a number of targetable kinases that displayed synthetic lethality interactions with MLN8237. Then, we performed competitive growth assays, colony formation assays, cell viability assays, apoptosis assays, and xenograft murine model to evaluate the synergistic therapeutic effects of Haspin (GSG2) depletion or inhibition with MLN8237. For mechanistic studies, immunofluorescence was used to detect the state of microtubules and the localization of Aurora‐B and mitotic centromere‐associated kinesin (MCAK). Results Among the hits, we observed that Haspin depletion or inhibition marginally inhibited breast cancer cell growth but could substantially enhance the killing effects of MLN8237. Mechanistic studies showed that co‐treatment with Aurora‐A and Haspin inhibitors abolished the recruitment of Aurora‐B and mitotic centromere‐associated kinesin (MCAK) to centromeres which were associated with excessive microtubule depolymerization, kinetochore‐microtubule (KT‐MT) attachment failure, and severe mitotic catastrophe. We further showed that the combination of MLN8237 and the Haspin inhibitor CHR‐6494 synergistically reduced breast cancer cell viability and significantly inhibited both in vitro and in vivo tumor growth. Conclusions These findings establish Haspin as a synthetic lethal target and demonstrate CHR‐6494 as a potential combinational drug for promoting the therapeutic effects of MLN8237 on breast cancer.
Collapse
Affiliation(s)
- Ailin Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Shijun Wen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Fang Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Zijian Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Meiling Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Yuanzhong Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Bin He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Min Yan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Tiebang Kang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Eric W-F Lam
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China.,Department of Surgery and Cancer, Imperial College London, W12 0NN, London, UK
| | - Zifeng Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China.,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, P. R. China
| |
Collapse
|
18
|
Ong JY, Bradley MC, Torres JZ. Phospho-regulation of mitotic spindle assembly. Cytoskeleton (Hoboken) 2020; 77:558-578. [PMID: 33280275 PMCID: PMC7898546 DOI: 10.1002/cm.21649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/08/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022]
Abstract
The assembly of the bipolar mitotic spindle requires the careful orchestration of a myriad of enzyme activities like protein posttranslational modifications. Among these, phosphorylation has arisen as the principle mode for spatially and temporally activating the proteins involved in early mitotic spindle assembly processes. Here, we review key kinases, phosphatases, and phosphorylation events that regulate critical aspects of these processes. We highlight key phosphorylation substrates that are important for ensuring the fidelity of centriole duplication, centrosome maturation, and the establishment of the bipolar spindle. We also highlight techniques used to understand kinase-substrate relationships and to study phosphorylation events. We conclude with perspectives on the field of posttranslational modifications in early mitotic spindle assembly.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
19
|
Rondelet A, Lin YC, Singh D, Porfetye AT, Thakur HC, Hecker A, Brinkert P, Schmidt N, Bendre S, Müller F, Mazul L, Widlund PO, Bange T, Hiller M, Vetter IR, Bird AW. Clathrin's adaptor interaction sites are repurposed to stabilize microtubules during mitosis. J Cell Biol 2020; 219:133599. [PMID: 31932847 PMCID: PMC7041688 DOI: 10.1083/jcb.201907083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/31/2019] [Accepted: 11/24/2019] [Indexed: 11/22/2022] Open
Abstract
Clathrin ensures mitotic spindle stability and efficient chromosome alignment, independently of its vesicle trafficking function. Although clathrin localizes to the mitotic spindle and kinetochore fiber microtubule bundles, the mechanisms by which clathrin stabilizes microtubules are unclear. We show that clathrin adaptor interaction sites on clathrin heavy chain (CHC) are repurposed during mitosis to directly recruit the microtubule-stabilizing protein GTSE1 to the spindle. Structural analyses reveal that these sites interact directly with clathrin-box motifs on GTSE1. Disruption of this interaction releases GTSE1 from spindles, causing defects in chromosome alignment. Surprisingly, this disruption destabilizes astral microtubules, but not kinetochore-microtubule attachments, and chromosome alignment defects are due to a failure of chromosome congression independent of kinetochore-microtubule attachment stability. GTSE1 recruited to the spindle by clathrin stabilizes microtubules by inhibiting the microtubule depolymerase MCAK. This work uncovers a novel role of clathrin adaptor-type interactions to stabilize nonkinetochore fiber microtubules to support chromosome congression, defining for the first time a repurposing of this endocytic interaction mechanism during mitosis.
Collapse
Affiliation(s)
- Arnaud Rondelet
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Yu-Chih Lin
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Divya Singh
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | - Harish C Thakur
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Andreas Hecker
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Pia Brinkert
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Nadine Schmidt
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Shweta Bendre
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | - Lisa Mazul
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Per O Widlund
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tanja Bange
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| | - Ingrid R Vetter
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | |
Collapse
|
20
|
Abdelbaki A, Akman HB, Poteau M, Grant R, Gavet O, Guarguaglini G, Lindon C. AURKA destruction is decoupled from its activity at mitotic exit but is essential to suppress interphase activity. J Cell Sci 2020; 133:jcs243071. [PMID: 32393600 PMCID: PMC7328152 DOI: 10.1242/jcs.243071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/19/2020] [Indexed: 12/22/2022] Open
Abstract
Activity of AURKA is controlled through multiple mechanisms including phosphorylation, ubiquitin-mediated degradation and allosteric interaction with TPX2. Activity peaks at mitosis, before AURKA is degraded during and after mitotic exit in a process strictly dependent on the APC/C coactivator FZR1. We used FZR1 knockout cells (FZR1KO) and a novel FRET-based AURKA biosensor to investigate how AURKA activity is regulated in the absence of destruction. We found that AURKA activity in FZR1KO cells dropped at mitotic exit as rapidly as in parental cells, despite absence of AURKA destruction. Unexpectedly, TPX2 was degraded normally in FZR1KO cells. Overexpression of an N-terminal TPX2 fragment sufficient for AURKA binding, but that is not degraded at mitotic exit, caused delay in AURKA inactivation. We conclude that inactivation of AURKA at mitotic exit is determined not by AURKA degradation but by degradation of TPX2 and therefore is dependent on CDC20 rather than FZR1. The biosensor revealed that FZR1 instead suppresses AURKA activity in interphase and is critically required for assembly of the interphase mitochondrial network after mitosis.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Ahmed Abdelbaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - H Begum Akman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Marion Poteau
- Institut Gustave Roussy, UMR9019 - CNRS, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Rhys Grant
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Olivier Gavet
- Institut Gustave Roussy, UMR9019 - CNRS, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, CNR, Via degli Apuli 4, 00185 Roma, Italy
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
21
|
Cui P, Abbasi B, Lin D, Rui R, Ju S. Aurora A inhibition disrupts chromosome condensation and spindle assembly during the first embryonic division in pigs. Reprod Domest Anim 2020; 55:584-593. [PMID: 32053743 DOI: 10.1111/rda.13655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/10/2020] [Indexed: 11/29/2022]
Abstract
As common overexpression of Aurora A in various tumours, much attention has focused on its function in inducing cancer, and its value in cancer therapeutics, considerably less is known regarding its role in the first cleavage division of mammalian embryos. Here, we highlight an indispensable role of Aurora A during the first mitotic division progression of pig embryos just after meiosis. The expression and spatiotemporal localization of Aurora A were initially assessed in pig embryos during the first mitotic division by Western blot analysis and indirect immunofluorescent staining. Then, the potential role of Aurora A was further evaluated using a highly selective Aurora A inhibitor, MLN8054, during this mitotic progression in pig embryos. Aurora A was found to express and exhibit a specific dynamic intracellular localization pattern during the first mitotic division in pig embryos. Aurora A was diffused in the cytoplasm at the prophase stage, and then exhibited a dynamic intracellular localization which was tightly associated with the chromosome and spindle dynamics throughout subsequent mitotic phases. Inhibition of Aurora A by MLN8054 treatment led to the failure of the first cleavage, with the majority of embryos being arrested in prophase of the mitotic division. Further subcellular structure examination showed that Aurora A inhibition not only led to the failure of spindle microtubule assembly, but also resulted in severe defects in chromosome condensation, accompanied by an obvious decrease in p-TACC3(S558) expression during the prophase of the first mitosis. Together, these results illustrated that Aurora A is crucial for both spindle assembly and chromosome condensation during the first mitotic division in pig embryos, and that the regulation of Aurora A may be associated with its effects on p-TACC3(S558) expression.
Collapse
Affiliation(s)
- Panpan Cui
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Benazir Abbasi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Defeng Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Rong Rui
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shiqiang Ju
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
22
|
Kesari AS, Heintz VJ, Poudyal S, Miller AS, Kuhn RJ, LaCount DJ. Zika virus NS5 localizes at centrosomes during cell division. Virology 2020; 541:52-62. [PMID: 32056715 DOI: 10.1016/j.virol.2019.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/04/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022]
Abstract
Zika virus (ZIKV) nonstructural protein 5 (NS5) plays a critical role in viral RNA replication and mediates key virus-host cell interactions. As with other flavivirus NS5 proteins, ZIKV NS5 is primarily found in the nucleus. We previously reported that the NS5 protein of dengue virus, another flavivirus, localized to centrosomes during cell division. Here we show that ZIKV NS5 also relocalizes from the nucleus to centrosomes during mitosis. In infected cells with supernumerary centrosomes, NS5 was present at all centrosomes. Transient expression of NS5 in uninfected cells confirmed that centrosomal localization was independent of other viral proteins. Live-cell imaging demonstrated that NS5-GFP accumulated at centrosomes shortly after break down of nuclear membrane and remained there through mitosis. Cells expressing NS5-GFP took longer to complete mitosis than control cells. Finally, an analysis of ZIKV NS5 binding partners revealed several centrosomal proteins, providing potential direct links between NS5 and centrosomes.
Collapse
Affiliation(s)
- Aditi S Kesari
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Department of Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Veronica J Heintz
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Department of Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Shishir Poudyal
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Andrew S Miller
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Douglas J LaCount
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Department of Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
23
|
Tsuchiya Y, Byrne DP, Burgess SG, Bormann J, Baković J, Huang Y, Zhyvoloup A, Yu BYK, Peak-Chew S, Tran T, Bellany F, Tabor AB, Chan AE, Guruprasad L, Garifulin O, Filonenko V, Vonderach M, Ferries S, Eyers CE, Carroll J, Skehel M, Bayliss R, Eyers PA, Gout I. Covalent Aurora A regulation by the metabolic integrator coenzyme A. Redox Biol 2020; 28:101318. [PMID: 31546169 PMCID: PMC6812009 DOI: 10.1016/j.redox.2019.101318] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/14/2019] [Accepted: 09/01/2019] [Indexed: 12/12/2022] Open
Abstract
Aurora A kinase is a master mitotic regulator whose functions are controlled by several regulatory interactions and post-translational modifications. It is frequently dysregulated in cancer, making Aurora A inhibition a very attractive antitumor target. However, recently uncovered links between Aurora A, cellular metabolism and redox regulation are not well understood. In this study, we report a novel mechanism of Aurora A regulation in the cellular response to oxidative stress through CoAlation. A combination of biochemical, biophysical, crystallographic and cell biology approaches revealed a new and, to our knowledge, unique mode of Aurora A inhibition by CoA, involving selective binding of the ADP moiety of CoA to the ATP binding pocket and covalent modification of Cys290 in the activation loop by the thiol group of the pantetheine tail. We provide evidence that covalent CoA modification (CoAlation) of Aurora A is specific, and that it can be induced by oxidative stress in human cells. Oxidising agents, such as diamide, hydrogen peroxide and menadione were found to induce Thr 288 phosphorylation and DTT-dependent dimerization of Aurora A. Moreover, microinjection of CoA into fertilized mouse embryos disrupts bipolar spindle formation and the alignment of chromosomes, consistent with Aurora A inhibition. Altogether, our data reveal CoA as a new, rather selective, inhibitor of Aurora A, which locks this kinase in an inactive state via a "dual anchor" mechanism of inhibition that might also operate in cellular response to oxidative stress. Finally and most importantly, we believe that these novel findings provide a new rationale for developing effective and irreversible inhibitors of Aurora A, and perhaps other protein kinases containing appropriately conserved Cys residues.
Collapse
Affiliation(s)
- Yugo Tsuchiya
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Selena G Burgess
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Jenny Bormann
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Jovana Baković
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Yueyang Huang
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Alexander Zhyvoloup
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Sew Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Trang Tran
- Department of Chemistry, University College London, London, WC1E 6BT, UK
| | - Fiona Bellany
- Department of Chemistry, University College London, London, WC1E 6BT, UK
| | - Alethea B Tabor
- Department of Chemistry, University College London, London, WC1E 6BT, UK
| | - Aw Edith Chan
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | | | - Oleg Garifulin
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv 143, Ukraine
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv 143, Ukraine
| | - Matthias Vonderach
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Samantha Ferries
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Claire E Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK; Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - John Carroll
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Richard Bayliss
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv 143, Ukraine.
| |
Collapse
|
24
|
Rana HK, Akhtar MR, Islam MB, Ahmed MB, Liò P, Quinn JMW, Huq F, Moni MA. Genetic effects of welding fumes on the development of respiratory system diseases. Comput Biol Med 2019; 108:142-149. [PMID: 31005006 DOI: 10.1016/j.compbiomed.2019.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND The welding process releases potentially hazardous gases and fumes, mainly composed of metallic oxides, fluorides and silicates. Long term welding fume (WF) inhalation is a recognized health issue that carries a risk of developing chronic health problems, particularly respiratory system diseases (RSDs). Aside from general airway irritation, WF exposure may drive direct cellular responses in the respiratory system which increase risk of RSD, but these are not well understood. METHODS We developed a quantitative framework to identify gene expression effects of WF exposure that may affect RSD development. We analyzed gene expression microarray data from WF-exposed tissues and RSD-affected tissues, including chronic bronchitis (CB), asthma (AS), pulmonary edema (PE), lung cancer (LC) datasets. We built disease-gene (diseasome) association networks and identified dysregulated signaling and ontological pathways, and protein-protein interaction sub-network using neighborhood-based benchmarking and multilayer network topology. RESULTS We observed many genes with altered expression in WF-exposed tissues were also among differentially expressed genes (DEGs) in RSD tissues; for CB, AS, PE and LC there were 34, 27, 50 and 26 genes respectively. DEG analysis, using disease association networks, pathways, ontological analysis and protein-protein interaction sub-network suggest significant links between WF exposure and the development of CB, AS, PE and LC. CONCLUSIONS Our network-based analysis and investigation of the genetic links of WFs and RSDs confirm a number of genes and gene products are plausible participants in RSD development. Our results are a significant resource to identify causal influences on the development of RSDs, particularly in the context of WF exposure.
Collapse
Affiliation(s)
- Humayan Kabir Rana
- Department of Computer Science and Engineering, Green University of Bangladesh, Bangladesh
| | - Mst Rashida Akhtar
- Department of Computer Science and Engineering, Varendra University, Rajshahi, Bangladesh
| | - M Babul Islam
- Department of Applied Physics and Electronic Engineering, University of Rajshahi, Bangladesh
| | - Mohammad Boshir Ahmed
- School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Pietro Liò
- Computer Laboratory, The University of Cambridge, 15 JJ Thomson Avenue, Cambridge, UK
| | - Julian M W Quinn
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Fazlul Huq
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - Mohammad Ali Moni
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia.
| |
Collapse
|
25
|
Potential involvement of RITA in the activation of Aurora A at spindle poles during mitosis. Oncogene 2019; 38:4199-4214. [PMID: 30705408 DOI: 10.1038/s41388-019-0716-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/27/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022]
Abstract
The mitotic kinase Aurora A is crucial for various mitotic events. Its activation has been intensively investigated and is not yet completely understood. RITA, the RBP-J interacting and tubulin-associated protein, has been shown to modulate microtubule dynamics in mitosis. We asked if RITA could be related to the activation of Aurora A. We show here that RITA is colocalized with Aurora A and its activator TPX2 at spindle poles during mitosis. FLAG-RITA is precipitated with the complex of Aurora A, TPX2 and tubulin. Depletion of RITA increases exclusively active Aurora A and TPX2 at spindle poles in diverse cancer cell lines and in RITA knockout mouse embryonic fibroblasts. The enhanced active Aurora A, its substrate p-TACC3 and TPX2 are restored by adding back of RITA but not its Δtub mutant with an impaired tubulin-binding capability, indicating that RITA's role as Aurora A's modulator is mediated through its interaction with tubulin. Also, the mitotic failures in cells depleted of RITA are rescued by the inhibition of Aurora A. RITA itself does not directly interfere with the catalytic activity of Aurora A, instead, affects the microtubule binding of its activator TPX2. Moreover, Aurora A's activation correlates with microtubule stabilization induced by the microtubule stabilizer paclitaxel, implicating that stabilized microtubules caused by RITA depletion could also account for increased active Aurora A. Our data suggest a potential role for RITA in the activation of Aurora A at spindle poles by modulating the microtubule binding of TPX2 and the microtubule stability during mitosis.
Collapse
|
26
|
Zhang Y, Tan L, Yang Q, Li C, Liou YC. The microtubule-associated protein HURP recruits the centrosomal protein TACC3 to regulate K-fiber formation and support chromosome congression. J Biol Chem 2018; 293:15733-15747. [PMID: 30054275 DOI: 10.1074/jbc.ra118.003676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/19/2018] [Indexed: 11/06/2022] Open
Abstract
Kinetochore fibers (K-fibers) are microtubule bundles attached to chromosomes. Efficient K-fiber formation is required for chromosome congression, crucial for faithful chromosome segregation in cells. However, the mechanisms underlying K-fiber formation before chromosome biorientation remain unclear. Depletion of hepatoma up-regulated protein (HURP), a RanGTP-dependent microtubule-associated protein localized on K-fibers, has been shown to result in low-efficiency K-fiber formation. Therefore, here we sought to identify critical interaction partners of HURP that may modulate this function. Using co-immunoprecipitation and bimolecular fluorescence complementation assays, we determined that HURP interacts directly with the centrosomal protein transforming acidic coiled coil-containing protein 3 (TACC3), a centrosomal protein, both in vivo and in vitro through the HURP1-625 region. We found that HURP is important for TACC3 function during kinetochore microtubule assembly at the chromosome region in prometaphase. Moreover, HURP regulates stable lateral kinetochore attachment and chromosome congression in early mitosis by modulation of TACC3. These findings provide new insight into the coordinated regulation of K-fiber formation and chromosome congression in prometaphase by microtubule-associated proteins.
Collapse
Affiliation(s)
- Yajun Zhang
- From the Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore and
| | - Lora Tan
- From the Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore and
| | - Qiaoyun Yang
- From the Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore and
| | - Chenyu Li
- From the Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore and
| | - Yih-Cherng Liou
- From the Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore and .,the NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117573, Singapore
| |
Collapse
|
27
|
Abstract
Mitosis is controlled by reversible protein phosphorylation involving specific kinases and phosphatases. A handful of major mitotic protein kinases, such as the cyclin B-CDK1 complex, the Aurora kinases, and Polo-like kinase 1 (PLK1), cooperatively regulate distinct mitotic processes. Research has identified proteins and mechanisms that integrate these kinases into signaling cascades that guide essential mitotic events. These findings have important implications for our understanding of the mechanisms of mitotic regulation and may advance the development of novel antimitotic drugs. We review collected evidence that in vertebrates, the Aurora kinases serve as catalytic subunits of distinct complexes formed with the four scaffold proteins Bora, CEP192, INCENP, and TPX2, which we deem "core" Aurora cofactors. These complexes and the Aurora-PLK1 cascades organized by Bora, CEP192, and INCENP control crucial aspects of mitosis and all pathways of spindle assembly. We compare the mechanisms of Aurora activation in relation to the different spindle assembly pathways and draw a functional analogy between the CEP192 complex and the chromosomal passenger complex that may reflect the coevolution of centrosomes, kinetochores, and the actomyosin cleavage apparatus. We also analyze the roles and mechanisms of Aurora-PLK1 signaling in the cell and centrosome cycles and in the DNA damage response.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russian Federation.
| | | |
Collapse
|
28
|
Burgess SG, Mukherjee M, Sabir S, Joseph N, Gutiérrez-Caballero C, Richards MW, Huguenin-Dezot N, Chin JW, Kennedy EJ, Pfuhl M, Royle SJ, Gergely F, Bayliss R. Mitotic spindle association of TACC3 requires Aurora-A-dependent stabilization of a cryptic α-helix. EMBO J 2018; 37:e97902. [PMID: 29510984 PMCID: PMC5897774 DOI: 10.15252/embj.201797902] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/26/2022] Open
Abstract
Aurora-A regulates the recruitment of TACC3 to the mitotic spindle through a phospho-dependent interaction with clathrin heavy chain (CHC). Here, we describe the structural basis of these interactions, mediated by three motifs in a disordered region of TACC3. A hydrophobic docking motif binds to a previously uncharacterized pocket on Aurora-A that is blocked in most kinases. Abrogation of the docking motif causes a delay in late mitosis, consistent with the cellular distribution of Aurora-A complexes. Phosphorylation of Ser558 engages a conformational switch in a second motif from a disordered state, needed to bind the kinase active site, into a helical conformation. The helix extends into a third, adjacent motif that is recognized by a helical-repeat region of CHC, not a recognized phospho-reader domain. This potentially widespread mechanism of phospho-recognition provides greater flexibility to tune the molecular details of the interaction than canonical recognition motifs that are dominated by phosphate binding.
Collapse
Affiliation(s)
- Selena G Burgess
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Manjeet Mukherjee
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sarah Sabir
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Nimesh Joseph
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | | | - Mark W Richards
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Mark Pfuhl
- Cardiovascular & Randall Division, Kings College London, London, UK
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
29
|
Burgess SG, Oleksy A, Cavazza T, Richards MW, Vernos I, Matthews D, Bayliss R. Allosteric inhibition of Aurora-A kinase by a synthetic vNAR domain. Open Biol 2017; 6:rsob.160089. [PMID: 27411893 PMCID: PMC4967828 DOI: 10.1098/rsob.160089] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/17/2016] [Indexed: 01/15/2023] Open
Abstract
The vast majority of clinically approved protein kinase inhibitors target the ATP-binding pocket directly. Consequently, many inhibitors have broad selectivity profiles and most have significant off-target effects. Allosteric inhibitors are generally more selective, but are difficult to identify because allosteric binding sites are often unknown or poorly characterized. Aurora-A is activated through binding of TPX2 to an allosteric site on the kinase catalytic domain, and this knowledge could be exploited to generate an inhibitor. Here, we generated an allosteric inhibitor of Aurora-A kinase based on a synthetic, vNAR single domain scaffold, vNAR-D01. Biochemical studies and a crystal structure of the Aurora-A/vNAR-D01 complex show that the vNAR domain overlaps with the TPX2 binding site. In contrast with the binding of TPX2, which stabilizes an active conformation of the kinase, binding of the vNAR domain stabilizes an inactive conformation, in which the αC-helix is distorted, the canonical Lys-Glu salt bridge is broken and the regulatory (R-) spine is disrupted by an additional hydrophobic side chain from the activation loop. These studies illustrate how single domain antibodies can be used to characterize the regulatory mechanisms of kinases and provide a rational basis for structure-guided design of allosteric Aurora-A kinase inhibitors.
Collapse
Affiliation(s)
- Selena G Burgess
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Arkadiusz Oleksy
- Centre for Therapeutics Discovery, MRC Technology, The Accelerator Building, Stevenage, Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, UK
| | - Tommaso Cavazza
- Cell and Developmental Biology program, Centre for Genomic Regulation (CRG) and UPF, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Mark W Richards
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Isabelle Vernos
- Cell and Developmental Biology program, Centre for Genomic Regulation (CRG) and UPF, Dr Aiguader 88, 08003 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - David Matthews
- Centre for Therapeutics Discovery, MRC Technology, The Accelerator Building, Stevenage, Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, UK
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK
| |
Collapse
|
30
|
McIntyre PJ, Collins PM, Vrzal L, Birchall K, Arnold LH, Mpamhanga C, Coombs PJ, Burgess SG, Richards MW, Winter A, Veverka V, Delft FV, Merritt A, Bayliss R. Characterization of Three Druggable Hot-Spots in the Aurora-A/TPX2 Interaction Using Biochemical, Biophysical, and Fragment-Based Approaches. ACS Chem Biol 2017; 12:2906-2914. [PMID: 29045126 DOI: 10.1021/acschembio.7b00537] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mitotic kinase Aurora-A and its partner protein TPX2 (Targeting Protein for Xenopus kinesin-like protein 2) are overexpressed in cancers, and it has been proposed that they work together as an oncogenic holoenzyme. TPX2 is responsible for activating Aurora-A during mitosis, ensuring proper cell division. Disruption of the interface with TPX2 is therefore a potential target for novel anticancer drugs that exploit the increased sensitivity of cancer cells to mitotic stress. Here, we investigate the interface using coprecipitation assays and isothermal titration calorimetry to quantify the energetic contribution of individual residues of TPX2. Residues Tyr8, Tyr10, Phe16, and Trp34 of TPX2 are shown to be crucial for robust complex formation, suggesting that the interaction could be abrogated through blocking any of the three pockets on Aurora-A that complement these residues. Phosphorylation of Aurora-A on Thr288 is also necessary for high-affinity binding, and here we identify arginine residues that communicate the phosphorylation of Thr288 to the TPX2 binding site. With these findings in mind, we conducted a high-throughput X-ray crystallography-based screen of 1255 fragments against Aurora-A and identified 59 hits. Over three-quarters of these hits bound to the pockets described above, both validating our identification of hotspots and demonstrating the druggability of this protein-protein interaction. Our study exemplifies the potential of high-throughput crystallography facilities such as XChem to aid drug discovery. These results will accelerate the development of chemical inhibitors of the Aurora-A/TPX2 interaction.
Collapse
Affiliation(s)
- Patrick J McIntyre
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester , Leicester, LE1 9HN, United Kingdom
| | - Patrick M Collins
- Diamond Light Source, Harwell Science and Innovation Campus , Didcot, OX11 0DE, United Kingdom
| | - Lukáš Vrzal
- University of Chemistry and Technology , Technická 5, Prague 6 - Dejvice, Prague, 166 28, Czech Republic
- Institute of Organic Chemistry and Biochemistry , Flemingovo nám. 542/2, Prague 6, Prague, 166 10, Czech Republic
| | - Kristian Birchall
- LifeArc (Formerly MRC Technology), Stevenage Bioscience Catalyst , Gunnels Wood Road, Stevenage, SG1 2FX, United Kingdom
| | - Laurence H Arnold
- LifeArc (Formerly MRC Technology), Stevenage Bioscience Catalyst , Gunnels Wood Road, Stevenage, SG1 2FX, United Kingdom
| | - Chido Mpamhanga
- LifeArc (Formerly MRC Technology), Stevenage Bioscience Catalyst , Gunnels Wood Road, Stevenage, SG1 2FX, United Kingdom
| | - Peter J Coombs
- LifeArc (Formerly MRC Technology), Stevenage Bioscience Catalyst , Gunnels Wood Road, Stevenage, SG1 2FX, United Kingdom
| | - Selena G Burgess
- Astbury Centre for Structural and Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds , Leeds LS2 9JT, United Kingdom
| | - Mark W Richards
- Astbury Centre for Structural and Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds , Leeds LS2 9JT, United Kingdom
| | - Anja Winter
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester , Leicester, LE1 9HN, United Kingdom
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry , Flemingovo nám. 542/2, Prague 6, Prague, 166 10, Czech Republic
| | - Frank von Delft
- Diamond Light Source, Harwell Science and Innovation Campus , Didcot, OX11 0DE, United Kingdom
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford , Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
- Department of Biochemistry, University of Johannesburg , Auckland Park, 2006, South Africa
| | - Andy Merritt
- LifeArc (Formerly MRC Technology), Stevenage Bioscience Catalyst , Gunnels Wood Road, Stevenage, SG1 2FX, United Kingdom
| | - Richard Bayliss
- Astbury Centre for Structural and Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds , Leeds LS2 9JT, United Kingdom
| |
Collapse
|
31
|
Bayliss R, Burgess SG, McIntyre PJ. Switching Aurora-A kinase on and off at an allosteric site. FEBS J 2017; 284:2947-2954. [PMID: 28342286 DOI: 10.1111/febs.14069] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/09/2017] [Accepted: 03/23/2017] [Indexed: 12/20/2022]
Abstract
Protein kinases are central players in the regulation of cell cycle and signalling pathways. Their catalytic activities are strictly regulated through post-translational modifications and protein-protein interactions that control switching between inactive and active states. These states have been studied extensively using protein crystallography, although the dynamic nature of protein kinases makes it difficult to capture all relevant states. Here, we describe two recent structures of Aurora-A kinase that trap its active and inactive states. In both cases, Aurora-A is trapped through interaction with a synthetic protein, either a single-domain antibody that inhibits the kinase or a hydrocarbon-stapled peptide that activates the kinase. These structures show how the distinct synthetic proteins target the same allosteric pocket with opposing effects on activity. These studies pave the way for the development of tools to probe these allosteric mechanisms in cells.
Collapse
Affiliation(s)
- Richard Bayliss
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - Selena G Burgess
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, UK
| | | |
Collapse
|
32
|
Ding ZM, Huang CJ, Jiao XF, Wu D, Huo LJ. The role of TACC3 in mitotic spindle organization. Cytoskeleton (Hoboken) 2017; 74:369-378. [PMID: 28745816 DOI: 10.1002/cm.21388] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 07/04/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
TACC3 regulates spindle organization during mitosis and also regulates centrosome-mediated microtubule nucleation by affecting γ-Tubulin ring complexes. In addition, it interacts with different proteins (such as ch-TOG, clathrin and Aurora-A) to function in mitotic spindle assembly and stability. By forming the TACC3/ch-TOG complex, TACC3 acts as a plus end-tracking protein to promote microtubule elongation. The TACC3/ch-TOG/clathrin complex is formed to stabilize kinetochore fibers by crosslinking adjacent microtubules. Furthermore, the phosphorylation of TACC3 by Aurora-A is important for the formation of TACC3/ch-TOG/clathrin and its recruitment to kinetochore fibers. Recently, the aberrant expression of TACC3 in a variety of human cancers has been linked with mitotic defects. Thus, in this review, we will discuss our current understanding of the biological roles of TACC3 in mitotic spindle organization.
Collapse
Affiliation(s)
- Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Chun-Jie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| |
Collapse
|
33
|
Sarkar S, Ryan EL, Royle SJ. FGFR3-TACC3 cancer gene fusions cause mitotic defects by removal of endogenous TACC3 from the mitotic spindle. Open Biol 2017; 7:170080. [PMID: 28855393 PMCID: PMC5577446 DOI: 10.1098/rsob.170080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/22/2017] [Indexed: 12/31/2022] Open
Abstract
Fibroblast growth factor receptor 3-transforming acidic coiled-coil containing protein 3 (FGFR3-TACC3; FT3) is a gene fusion resulting from rearrangement of chromosome 4 that has been identified in many cancers including those of the urinary bladder. Altered FGFR3 signalling in FT3-positive cells is thought to contribute to cancer progression. However, potential changes in TACC3 function in these cells have not been explored. TACC3 is a mitotic spindle protein required for accurate chromosome segregation. Errors in segregation lead to aneuploidy, which can contribute to cancer progression. Here we show that FT3-positive bladder cancer cells have lower levels of endogenous TACC3 on the mitotic spindle, and that this is sufficient to cause mitotic defects. FT3 is not localized to the mitotic spindle, and by virtue of its TACC domain, recruits endogenous TACC3 away from the spindle. Knockdown of the fusion gene or low-level overexpression of TACC3 partially rescues the chromosome segregation defects in FT3-positive bladder cancer cells. This function of FT3 is specific to TACC3 as inhibition of FGFR3 signalling does not rescue the TACC3 level on the spindle in these cancer cells. Models of FT3-mediated carcinogenesis should, therefore, include altered mitotic functions of TACC3 as well as altered FGFR3 signalling.
Collapse
Affiliation(s)
- Sourav Sarkar
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Ellis L Ryan
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
34
|
Bayliss R, Burgess SG, Leen E, Richards MW. A moving target: structure and disorder in pursuit of Myc inhibitors. Biochem Soc Trans 2017; 45:709-717. [PMID: 28620032 DOI: 10.1042/bst20160328] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 02/11/2024]
Abstract
The Myc proteins comprise a family of ubiquitous regulators of gene expression implicated in over half of all human cancers. They interact with a large number of other proteins, such as transcription factors, chromatin-modifying enzymes and kinases. Remarkably, few of these interactions have been characterized structurally. This is at least in part due to the intrinsically disordered nature of Myc proteins, which adopt a defined conformation only in the presence of binding partners. Owing to this behaviour, crystallographic studies on Myc proteins have been limited to short fragments in complex with other proteins. Most recently, we determined the crystal structure of Aurora-A kinase domain bound to a 28-amino acid fragment of the N-Myc transactivation domain. The structure reveals an α-helical segment within N-Myc capped by two tryptophan residues that recognize the surface of Aurora-A. The kinase domain acts as a molecular scaffold, independently of its catalytic activity, upon which this region of N-Myc becomes ordered. The binding site for N-Myc on Aurora-A is disrupted by certain ATP-competitive inhibitors, such as MLN8237 (alisertib) and CD532, and explains how these kinase inhibitors are able to disrupt the protein-protein interaction to affect Myc destabilization. Structural studies on this and other Myc complexes will lead to the design of protein-protein interaction inhibitors as chemical tools to dissect the complex pathways of Myc regulation and function, which may be developed into Myc inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Richard Bayliss
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Selena G Burgess
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Eoin Leen
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Mark W Richards
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
35
|
Vallejo A, Perurena N, Guruceaga E, Mazur PK, Martinez-Canarias S, Zandueta C, Valencia K, Arricibita A, Gwinn D, Sayles LC, Chuang CH, Guembe L, Bailey P, Chang DK, Biankin A, Ponz-Sarvise M, Andersen JB, Khatri P, Bozec A, Sweet-Cordero EA, Sage J, Lecanda F, Vicent S. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. Nat Commun 2017; 8:14294. [PMID: 28220783 PMCID: PMC5321758 DOI: 10.1038/ncomms14294] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/16/2016] [Indexed: 12/28/2022] Open
Abstract
KRAS mutated tumours represent a large fraction of human cancers, but the vast majority remains refractory to current clinical therapies. Thus, a deeper understanding of the molecular mechanisms triggered by KRAS oncogene may yield alternative therapeutic strategies. Here we report the identification of a common transcriptional signature across mutant KRAS cancers of distinct tissue origin that includes the transcription factor FOSL1. High FOSL1 expression identifies mutant KRAS lung and pancreatic cancer patients with the worst survival outcome. Furthermore, FOSL1 genetic inhibition is detrimental to both KRAS-driven tumour types. Mechanistically, FOSL1 links the KRAS oncogene to components of the mitotic machinery, a pathway previously postulated to function orthogonally to oncogenic KRAS. FOSL1 targets include AURKA, whose inhibition impairs viability of mutant KRAS cells. Lastly, combination of AURKA and MEK inhibitors induces a deleterious effect on mutant KRAS cells. Our findings unveil KRAS downstream effectors that provide opportunities to treat KRAS-driven cancers.
Collapse
Affiliation(s)
- Adrian Vallejo
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona 31010, Spain
| | - Naiara Perurena
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona 31010, Spain
| | - Elisabet Guruceaga
- University of Navarra, Center for Applied Medical Research, Proteomics, Genomics and Bioinformatics Core Facility, Pamplona 31010, Spain
| | - Pawel K. Mazur
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Susana Martinez-Canarias
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona 31010, Spain
| | - Carolina Zandueta
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona 31010, Spain
| | - Karmele Valencia
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona 31010, Spain
| | - Andrea Arricibita
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona 31010, Spain
| | - Dana Gwinn
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Leanne C. Sayles
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Chen-Hua Chuang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Laura Guembe
- University of Navarra, Center for Applied Medical Research, Morphology Unit, Pamplona 31010, Spain
| | - Peter Bailey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - David K. Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
- Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia
| | - Andrew Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
- Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia
| | - Mariano Ponz-Sarvise
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona 31010, Spain
- Clínica Universidad de Navarra, Department of Medical Oncology, Pamplona 31008, Spain
| | - Jesper B. Andersen
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Purvesh Khatri
- Stanford Institute for Immunity, Transplantation and Infection, Stanford, California 94305, USA
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California 94305, USA
| | - Aline Bozec
- Department of Internal Medicine 3 and Institute of Clinical Immunology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | | | - Julien Sage
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Fernando Lecanda
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona 31010, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain
- University of Navarra, Department of Histology and Pathology, Pamplona 31008, Spain
| | - Silve Vicent
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona 31010, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain
- University of Navarra, Department of Histology and Pathology, Pamplona 31008, Spain
| |
Collapse
|
36
|
Rennie YK, McIntyre PJ, Akindele T, Bayliss R, Jamieson AG. A TPX2 Proteomimetic Has Enhanced Affinity for Aurora-A Due to Hydrocarbon Stapling of a Helix. ACS Chem Biol 2016; 11:3383-3390. [PMID: 27775325 DOI: 10.1021/acschembio.6b00727] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Inhibition of protein kinases using ATP-competitive compounds is an important strategy in drug discovery. In contrast, the allosteric regulation of kinases through the disruption of protein-protein interactions has not been widely adopted, despite the potential for selective targeting. Aurora-A kinase regulates mitotic entry and mitotic spindle assembly and is a promising target for anticancer therapy. The microtubule-associated protein TPX2 activates Aurora-A through binding to two sites. Aurora-A recognition is mediated by two motifs within the first 43 residues of TPX2, connected by a flexible linker. To characterize the contributions of these three structural elements, we prepared a series of TPX2 proteomimetics and investigated their binding affinity for Aurora-A using isothermal titration calorimetry. A novel stapled TPX2 peptide was developed that has improved binding affinity for Aurora-A and mimics the function of TPX2 in activating Aurora-A's autophosphorylation. We conclude that the helical region of TPX2 folds upon binding Aurora-A, and that stabilization of this helix does not compromise Aurora-A activation. This study demonstrates that the preparation of these proteomimetics using modern synthesis methods is feasible and their biochemical evaluation demonstrates the power of proteomimetics as tool compounds for investigating PPIs involving intrinsically disordered regions of proteins.
Collapse
Affiliation(s)
- Yana K. Rennie
- Department
of Chemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, United Kingdom
| | - Patrick J. McIntyre
- Department
of Molecular and Cell Biology, University of Leicester, Lancaster
Road, Leicester LE1 9HN, United Kingdom
| | - Tito Akindele
- Department
of Chemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, United Kingdom
- International
Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Richard Bayliss
- Department
of Molecular and Cell Biology, University of Leicester, Lancaster
Road, Leicester LE1 9HN, United Kingdom
- Astbury
Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Andrew G. Jamieson
- School
of Chemistry, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, United Kingdom
| |
Collapse
|
37
|
Richards MW, Burgess SG, Poon E, Carstensen A, Eilers M, Chesler L, Bayliss R. Structural basis of N-Myc binding by Aurora-A and its destabilization by kinase inhibitors. Proc Natl Acad Sci U S A 2016; 113:13726-13731. [PMID: 27837025 PMCID: PMC5137718 DOI: 10.1073/pnas.1610626113] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Myc family proteins promote cancer by inducing widespread changes in gene expression. Their rapid turnover by the ubiquitin-proteasome pathway is regulated through phosphorylation of Myc Box I and ubiquitination by the E3 ubiquitin ligase SCFFbxW7 However, N-Myc protein (the product of the MYCN oncogene) is stabilized in neuroblastoma by the protein kinase Aurora-A in a manner that is sensitive to certain Aurora-A-selective inhibitors. Here we identify a direct interaction between the catalytic domain of Aurora-A and a site flanking Myc Box I that also binds SCFFbxW7 We determined the crystal structure of the complex between Aurora-A and this region of N-Myc to 1.72-Å resolution. The structure indicates that the conformation of Aurora-A induced by compounds such as alisertib and CD532 is not compatible with the binding of N-Myc, explaining the activity of these compounds in neuroblastoma cells and providing a rational basis for the design of cancer therapeutics optimized for destabilization of the complex. We also propose a model for the stabilization mechanism in which binding to Aurora-A alters how N-Myc interacts with SCFFbxW7 to disfavor the generation of Lys48-linked polyubiquitin chains.
Collapse
Affiliation(s)
- Mark W Richards
- Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
- Cancer Research UK Leeds Centre, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Selena G Burgess
- Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
- Cancer Research UK Leeds Centre, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Evon Poon
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, The Royal Marsden National Health Service Trust, Belmont, Sutton, Surrey SM2 5NG, United Kingdom
| | - Anne Carstensen
- Theodor Boveri Institute, University of Würzburg, 97074 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 97074 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Martin Eilers
- Theodor Boveri Institute, University of Würzburg, 97074 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 97074 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Louis Chesler
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, The Royal Marsden National Health Service Trust, Belmont, Sutton, Surrey SM2 5NG, United Kingdom
| | - Richard Bayliss
- Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom;
- Cancer Research UK Leeds Centre, University of Leeds, Leeds LS2 9JT, United Kingdom
- Department of Cancer Studies, University of Leicester, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
38
|
de Oliveira PSL, Ferraz FAN, Pena DA, Pramio DT, Morais FA, Schechtman D. Revisiting protein kinase-substrate interactions: Toward therapeutic development. Sci Signal 2016; 9:re3. [PMID: 27016527 DOI: 10.1126/scisignal.aad4016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite the efforts of pharmaceutical companies to develop specific kinase modulators, few drugs targeting kinases have been completely successful in the clinic. This is primarily due to the conserved nature of kinases, especially in the catalytic domains. Consequently, many currently available inhibitors lack sufficient selectivity for effective clinical application. Kinases phosphorylate their substrates to modulate their activity. One of the important steps in the catalytic reaction of protein phosphorylation is the correct positioning of the target residue within the catalytic site. This positioning is mediated by several regions in the substrate binding site, which is typically a shallow crevice that has critical subpockets that anchor and orient the substrate. The structural characterization of this protein-protein interaction can aid in the elucidation of the roles of distinct kinases in different cellular processes, the identification of substrates, and the development of specific inhibitors. Because the region of the substrate that is recognized by the kinase can be part of a linear consensus motif or a nonlinear motif, advances in technology beyond simple linear sequence scanning for consensus motifs were needed. Cost-effective bioinformatics tools are already frequently used to predict kinase-substrate interactions for linear consensus motifs, and new tools based on the structural data of these interactions improve the accuracy of these predictions and enable the identification of phosphorylation sites within nonlinear motifs. In this Review, we revisit kinase-substrate interactions and discuss the various approaches that can be used to identify them and analyze their binding structures for targeted drug development.
Collapse
Affiliation(s)
- Paulo Sérgio L de Oliveira
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Felipe Augusto N Ferraz
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Darlene A Pena
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Dimitrius T Pramio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Felipe A Morais
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Deborah Schechtman
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil.
| |
Collapse
|
39
|
Gallini S, Carminati M, De Mattia F, Pirovano L, Martini E, Oldani A, Asteriti IA, Guarguaglini G, Mapelli M. NuMA Phosphorylation by Aurora-A Orchestrates Spindle Orientation. Curr Biol 2016; 26:458-69. [PMID: 26832443 DOI: 10.1016/j.cub.2015.12.051] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/30/2015] [Accepted: 12/16/2015] [Indexed: 11/30/2022]
Abstract
Spindle positioning is essential for tissue morphogenesis and homeostasis. The signaling network synchronizing spindle placement with mitotic progression relies on timely recruitment at the cell cortex of NuMA:LGN:Gαi complexes, in which NuMA acts as a receptor for the microtubule motor Dynein. To study the implication of Aurora-A in spindle orientation, we developed protocols for the partial inhibition of its activity. Under these conditions, in metaphase NuMA and Dynein accumulate abnormally at the spindle poles and do not reach the cortex, while the cortical distribution of LGN remains unperturbed. FRAP experiments revealed that Aurora-A governs the dynamic exchange between the cytoplasmic and the spindle pole-localized pools of NuMA. We show that Aurora-A phosphorylates directly the C terminus of NuMA on three Ser residues, of which Ser1969 determines the dynamic behavior and the spindle orientation functions of NuMA. Most interestingly, we identify a new microtubule-binding domain of NuMA, which does not overlap with the LGN-binding motif. Our study demonstrates that in metaphase the direct phosphorylation of NuMA by Aurora-A controls its cortical enrichment, and that this is the major event underlying the spindle orientation functions of Aurora-A in transformed and non-transformed cells in culture. Phosphorylation of NuMA by Aurora-A does not affect its affinity for microtubules or for LGN but rather determines the mobility of the protein at the spindle poles. The finding that NuMA can associate concomitantly with LGN and microtubules suggests that its microtubule-binding activity contributes to anchor Dynein-loaded microtubule +TIPs at cortical sites with LGN.
Collapse
Affiliation(s)
- Sara Gallini
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Manuel Carminati
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Fabiola De Mattia
- Institute of Molecular Biology and Pathology, CNR National Research Council, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Laura Pirovano
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Emanuele Martini
- Cogentech S.c.a.r.l., Via Adamello 16, 20139 Milan, Italy; IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Amanda Oldani
- Cogentech S.c.a.r.l., Via Adamello 16, 20139 Milan, Italy; IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Italia Anna Asteriti
- Institute of Molecular Biology and Pathology, CNR National Research Council, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, CNR National Research Council, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy.
| | - Marina Mapelli
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|