1
|
Lavergne JP, Page A, Polard P, Campo N, Grangeasse C. Quantitative phosphoproteomic reveals that the induction of competence modulates protein phosphorylation in Streptococcus pneumonaie. J Proteomics 2025; 315:105399. [PMID: 39921128 DOI: 10.1016/j.jprot.2025.105399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/19/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Competence in the pathogenic bacterium Streptococcus pneumoniae (S. pneumoniae) is a developmental genetic program that is key for natural genetic transformation and consequently bacterial horizontal gene transfer. Phosphoproteomic studies have revealed that protein phosphorylation on serine, threonine and tyrosine residues is a widespread regulatory post-translational modification in bacteria. In this study, we performed quantitative proteomic and phosphoproteomic analyses on S. pneumoniae as a function of competence induction. To calculate peptide abundance ratios between non-competent and competent samples we used dimethyl-tag labeling. Titanium dioxide (TiO2) beads were used for phosphopeptide enrichment and samples were analysed by LC-MS/MS. Our proteome analysis covers approximatively 63 % of the total bacterial protein content, identifying 82 proteins with significantly different abundance ratios, including some not previously linked to competence. 248 phosphopeptides were identified including 47 having different abundance ratios. Notably, the proteins with a change in phosphorylation in competent cells are different from the proteins with a change in expression, highlighting different pathways induced by competence and regulated by phosphorylation. This is the first report that phosphorylation of some proteins is regulated during competence in Streptococcus pneumoniae, a key pathway for the bacteria to evade vaccines or acquire antibiotic resistance. SIGNIFICANCE: S. pneumoniae is a prominent model for the study of competence that governs the development of natural genetic transformation. The latter largely accounts for the spread of antibiotic resistance and vaccine evasion in pneumococcal isolates. Many proteins specifically expressed during competence have been identified and extensively studied. However, the potential contribution of post-translational modifications, and notably phosphorylation, during the development of competence has never been investigated. In this study, we used a quantitative phosphoproteomic approach to determine both the protein expression and the protein phosphorylation patterns. Comparison of these patterns allows to highlight a series of proteins that are differentially phosphorylated in the two conditions. This result opens new avenues to decipher new regulatory pathways induced by competence and that are potentially key for natural genetic transformation. Interfering with theses regulatory pathways could represent a promising strategy to combat antibiotic resistance in the future.
Collapse
Affiliation(s)
- Jean-Pierre Lavergne
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS UMR 5086, Univiversité Lyon 1, Lyon 69007, France
| | - Adeline Page
- Protein Science Platform, SFR BioSciences, CNRS UAR3444, INSERM US8, Univiversité Lyon 1, ENS de Lyon, 69007 Lyon, France
| | - Patrice Polard
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative, Centre Nationale de la Recherche Scientifique, 31062 Toulouse, France; Université Paul Sabatier (Toulouse III), 31062 Toulouse, France
| | - Nathalie Campo
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative, Centre Nationale de la Recherche Scientifique, 31062 Toulouse, France; Université Paul Sabatier (Toulouse III), 31062 Toulouse, France.
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS UMR 5086, Univiversité Lyon 1, Lyon 69007, France.
| |
Collapse
|
2
|
Yang Q, Li N, Zheng Y, Tian Y, Liang Q, Zhao M, Chu H, Gong Y, Wu T, Wei S, Wang H, Yan G, Li F, Lei L. Identification and characterization of ugpE associated with the full virulence of Streptococcus suis. Vet Res 2025; 56:82. [PMID: 40241177 PMCID: PMC12001685 DOI: 10.1186/s13567-025-01513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/28/2025] [Indexed: 04/18/2025] Open
Abstract
Streptococcus suis (S. suis) is an emerging zoonotic pathogen that threatens both animal and human health worldwide. UgpE is a protein subunit of the Ugp (uptake of glycerol phosphate) transporter system that is involved in glycerophospholipid synthesis in bacterial membranes. In this study, an ugpE deletion mutant was constructed and the effects of ugpE deletion on cell morphology, biofilm formation, and virulence were investigated. Deletion of ugpE slowed down bacterial growth and impaired cell chain formation and capsular synthesis by downregulating the mRNA levels of the capsular regulon genes cps-2B, cps-2C, and cps-2S. Deletion of ugpE also led to decreased tolerance to heat, oxidative, and acid-base stress. Crystal violet staining and scanning electron microscopy demonstrate that ugpE may negatively regulate biofilm formation in liquid culture and the rdar biofilm morphotype on agar plates. Moreover, ugpE deletion not only reduced hemolysin activity, survival in whole human blood, and anti-phagocytosis ability against porcine alveolar macrophages (PAM) but also enhanced bacterial adhesion and invasion of human cerebral microvascular endothelial cells (hCMEC/D3) by upregulating the expression of multiple genes associated with cell adhesion. In a mouse infection model, ugpE deletion significantly attenuated virulence and lowered the number of viable bacteria in the blood and major organs, as well as distribution of macrophages. In conclusion, this study identified that UgpE may play a pivotal role in the regulation of various properties including virulence and biofilm formation of S. suis.
Collapse
Affiliation(s)
- Qiulei Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Na Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yu Zheng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanyan Tian
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qiao Liang
- Department of First Hospital, Jilin University, Changchun, China
| | - Miaomiao Zhao
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Hong Chu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yan Gong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tong Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shaopeng Wei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - He Wang
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, China
| | - Guangmou Yan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Fengyang Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Liancheng Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
- College of Animal Science, Yangtze University, Jingzhou, China.
| |
Collapse
|
3
|
Tao Y, Lei L, Wang S, Zhang X, Yin Y, Zheng Y. SPD_0410 negatively regulates capsule polysaccharide synthesis and virulence in Streptococcus pneumoniae D39. Front Microbiol 2025; 15:1513884. [PMID: 39831115 PMCID: PMC11739294 DOI: 10.3389/fmicb.2024.1513884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Streptococcus pneumoniae capsular polysaccharide (CPS) is a crucial virulence factor for this pathogenic bacterium and is partially under transcriptional control. In this study, we used electrophoretic mobility shift assays and DNA enzyme footprinting to identified the hypothetical protein SPD_0410 as a negative regulator of cps locus. Our results showed that the D39Δspd0410 mutant strain exhibited significantly elevated CPS levels compared to the parental strain D39s. SPD_0410 directly binds at two specific sites on the cps promoter. The regulatory effect of SPD_0410 on CPS was weakened after the mutation of specific binding sites in the promoter. RNAseq analysis revealed that the deletion of spd0410 led to alterations in glucose metabolism. However, the altered glucose levels appeared to eliminate the regulation of CPS synthesis by SPD_0410. Deleting the spd0410 gene resulted in higher invasion and phagocytic resistance of bacteria and in vivo mouse experiments confirmed that D39Δspd0410 caused more severe systemic disease than the parental strain D39s. Our results indicated that SPD_0410 negatively regulates the synthesis of S. pneumoniae capsules and can directly alter pneumococcal virulence.
Collapse
Affiliation(s)
- Ye Tao
- Department of Clinical Laboratory, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Li Lei
- Department of Clinical Laboratory, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Shuhui Wang
- Dujiangyan People’s Hospital, Chengdu, China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yuqiang Zheng
- Department of Clinical Laboratory, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| |
Collapse
|
4
|
Kalizang'oma A, Swarthout TD, Mwalukomo TS, Kamng’ona A, Brown C, Msefula J, Demetriou H, Chan JM, Roalfe L, Obolski U, Lourenço J, Goldblatt D, Chaguza C, French N, Heyderman RS. Clonal Expansion of a Streptococcus pneumoniae Serotype 3 Capsule Variant Sequence Type 700 With Enhanced Vaccine Escape Potential After 13-Valent Pneumococcal Conjugate Vaccine Introduction. J Infect Dis 2024; 230:e189-e198. [PMID: 39052729 PMCID: PMC11272040 DOI: 10.1093/infdis/jiae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/21/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Streptococcus pneumoniae serotype 3 remains a problem globally. Malawi introduced 13-valent pneumococcal conjugate vaccine (PCV13) in 2011, but there has been no direct protection against serotype 3 carriage. We explored whether vaccine escape by serotype 3 is due to clonal expansion of a lineage with a competitive advantage. METHODS The distribution of serotype 3 Global Pneumococcal Sequence Clusters (GPSCs) and sequence types (STs) globally was assessed using sequences from the Global Pneumococcal Sequencing Project. Whole-genome sequences of 135 serotype 3 carriage isolates from Blantyre, Malawi (2015-2019) were analyzed. Comparative analysis of the capsule locus, entire genomes, antimicrobial resistance, and phylogenetic reconstructions were undertaken. Opsonophagocytosis was evaluated using serum samples from vaccinated adults and children. RESULTS Serotype 3 GPSC10-ST700 isolates were most prominent in Malawi. Compared with the prototypical serotype 3 capsular polysaccharide locus sequence, 6 genes are absent, with retention of capsule polysaccharide biosynthesis. This lineage is characterized by increased antimicrobial resistance and lower susceptibility to opsonophagocytic killing. CONCLUSIONS A serotype 3 variant in Malawi has genotypic and phenotypic characteristics that could enhance vaccine escape and clonal expansion after post-PCV13 introduction. Genomic surveillance among high-burden populations is essential to improve the effectiveness of next-generation pneumococcal vaccines.
Collapse
Affiliation(s)
- Akuzike Kalizang'oma
- NIHR Mucosal Pathogens Research Unit, Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
- Pneumonia and Meningitis Pathogens Associate Research Group, Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - Todd D Swarthout
- NIHR Mucosal Pathogens Research Unit, Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
- Pneumonia and Meningitis Pathogens Associate Research Group, Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Thandie S Mwalukomo
- School of Medicine and Oral Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Arox Kamng’ona
- School of Life Sciences and Allied Health Professionals, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Comfort Brown
- Pneumonia and Meningitis Pathogens Associate Research Group, Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - Jacquline Msefula
- Pneumonia and Meningitis Pathogens Associate Research Group, Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - Hayley Demetriou
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Jia Mun Chan
- NIHR Mucosal Pathogens Research Unit, Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Lucy Roalfe
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Uri Obolski
- Porter School of the Environment and Earth Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Jose Lourenço
- Faculdade de Ciências, BioISI, Universidade de Lisboa, Lisbon, Portugal
| | - David Goldblatt
- NIHR Mucosal Pathogens Research Unit, Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Chrispin Chaguza
- NIHR Mucosal Pathogens Research Unit, Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
| | - Neil French
- Institute of Infection, Veterinary and Ecological Sciences, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Robert S Heyderman
- NIHR Mucosal Pathogens Research Unit, Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
- Pneumonia and Meningitis Pathogens Associate Research Group, Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| |
Collapse
|
5
|
Thant EP, Surachat K, Chusri S, Romyasamit C, Pomwised R, Wonglapsuwan M, Yaikhan T, Suwannasin S, Singkhamanan K. Exploring Weissella confusa W1 and W2 Strains Isolated from Khao-Mahk as Probiotic Candidates: From Phenotypic Traits to Genomic Insights. Antibiotics (Basel) 2024; 13:604. [PMID: 39061286 PMCID: PMC11273482 DOI: 10.3390/antibiotics13070604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Growing interest in probiotics has spurred research into their health benefits for hosts. This study aimed to evaluate the probiotic properties, especially antibacterial activities and the safety of two Weissella confusa strains, W1 and W2, isolated from Khao-Mahk by describing their phenotypes and genotypes through phenotypic assays and whole genome sequencing. In vitro experiments demonstrated that both strains exhibited robust survival under gastric and intestinal conditions, such as in the presence of low pH, bile salt, pepsin, and pancreatin, indicating their favorable gut colonization traits. Additionally, both strains showed auto-aggregation and strong adherence to Caco2 cells, with adhesion rates of 86.86 ± 1.94% for W1 and 94.74 ± 2.29% for W2. These high adherence rates may be attributed to the significant exopolysaccharide (EPS) production observed in both strains. Moreover, they exerted remarkable antimicrobial activities against Stenotrophomonas maltophilia, Salmonella enterica serotype Typhi, Vibrio cholerae, and Acinetobacter baumannii, along with an absence of hemolytic activities and antibiotic resistance, underscoring their safety for probiotic application. Genomic analysis corroborated these findings, revealing genes related to probiotic traits, including EPS clusters, stress responses, adaptive immunity, and antimicrobial activity. Importantly, no transferable antibiotic-resistance genes or virulence genes were detected. This comprehensive characterization supports the candidacy of W1 and W2 as probiotics, offering substantial potential for promoting health and combating bacterial infections.
Collapse
Affiliation(s)
- Ei Phway Thant
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Chonticha Romyasamit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhonsithammarat 80161, Thailand;
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (R.P.); (M.W.)
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (R.P.); (M.W.)
| | - Thunchanok Yaikhan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| | - Sirikan Suwannasin
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| |
Collapse
|
6
|
Gao S, Jin W, Quan Y, Li Y, Shen Y, Yuan S, Yi L, Wang Y, Wang Y. Bacterial capsules: Occurrence, mechanism, and function. NPJ Biofilms Microbiomes 2024; 10:21. [PMID: 38480745 PMCID: PMC10937973 DOI: 10.1038/s41522-024-00497-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
In environments characterized by extended multi-stress conditions, pathogens develop a variety of immune escape mechanisms to enhance their ability to infect the host. The capsules, polymers that bacteria secrete near their cell wall, participates in numerous bacterial life processes and plays a crucial role in resisting host immune attacks and adapting to their niche. Here, we discuss the relationship between capsules and bacterial virulence, summarizing the molecular mechanisms of capsular regulation and pathogenesis to provide new insights into the research on the pathogenesis of pathogenic bacteria.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yue Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
7
|
Nakamoto R, Bamyaci S, Blomqvist K, Normark S, Henriques-Normark B, Sham LT. The divisome but not the elongasome organizes capsule synthesis in Streptococcus pneumoniae. Nat Commun 2023; 14:3170. [PMID: 37264013 DOI: 10.1038/s41467-023-38904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
The bacterial cell envelope consists of multiple layers, including the peptidoglycan cell wall, one or two membranes, and often an external layer composed of capsular polysaccharides (CPS) or other components. How the synthesis of all these layers is precisely coordinated remains unclear. Here, we identify a mechanism that coordinates the synthesis of CPS and peptidoglycan in Streptococcus pneumoniae. We show that CPS synthesis initiates from the division septum and propagates along the long axis of the cell, organized by the tyrosine kinase system CpsCD. CpsC and the rest of the CPS synthesis complex are recruited to the septum by proteins associated with the divisome (a complex involved in septal peptidoglycan synthesis) but not the elongasome (involved in peripheral peptidoglycan synthesis). Assembly of the CPS complex starts with CpsCD, then CpsA and CpsH, the glycosyltransferases, and finally CpsJ. Remarkably, targeting CpsC to the cell pole is sufficient to reposition CPS synthesis, leading to diplococci that lack CPS at the septum. We propose that septal CPS synthesis is important for chain formation and complement evasion, thereby promoting bacterial survival inside the host.
Collapse
Affiliation(s)
- Rei Nakamoto
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Sarp Bamyaci
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-17177, Sweden
| | - Karin Blomqvist
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-17177, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden
| | - Staffan Normark
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-17177, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-17177, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden
| | - Lok-To Sham
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
| |
Collapse
|
8
|
Tang J, Guo M, Chen M, Xu B, Ran T, Wang W, Ma Z, Lin H, Fan H. A link between STK signalling and capsular polysaccharide synthesis in Streptococcus suis. Nat Commun 2023; 14:2480. [PMID: 37120581 PMCID: PMC10148854 DOI: 10.1038/s41467-023-38210-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
Synthesis of capsular polysaccharide (CPS), an important virulence factor of pathogenic bacteria, is modulated by the CpsBCD phosphoregulatory system in Streptococcus. Serine/threonine kinases (STKs, e.g. Stk1) can also regulate CPS synthesis, but the underlying mechanisms are unclear. Here, we identify a protein (CcpS) that is phosphorylated by Stk1 and modulates the activity of phosphatase CpsB in Streptococcus suis, thus linking Stk1 to CPS synthesis. The crystal structure of CcpS shows an intrinsically disordered region at its N-terminus, including two threonine residues that are phosphorylated by Stk1. The activity of phosphatase CpsB is inhibited when bound to non-phosphorylated CcpS. Thus, CcpS modulates the activity of phosphatase CpsB thereby altering CpsD phosphorylation, which in turn modulates the expression of the Wzx-Wzy pathway and thus CPS production.
Collapse
Affiliation(s)
- Jinsheng Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengru Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bin Xu
- National Research Center of Veterinary Biologicals Engineering and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210000, China
| | - Tingting Ran
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiwu Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
9
|
Abstract
In the majority of bacterial species, the tripartite ParAB-parS system, composed of an ATPase (ParA), a DNA-binding protein (ParB), and its target parS sequence(s), assists in the chromosome partitioning. ParB forms large nucleoprotein complexes at parS(s), located in the vicinity of origin of chromosomal replication (oriC), which after replication are subsequently positioned by ParA in cell poles. Remarkably, ParA and ParB participate not only in the chromosome segregation but through interactions with various cellular partners they are also involved in other cell cycle-related processes, in a species-specific manner. In this work, we characterized Pseudomonas aeruginosa ParB interactions with the cognate ParA, showing that the N-terminal motif of ParB is required for these interactions, and demonstrated that ParAB-parS-mediated rapid segregation of newly replicated ori domains prevented structural maintenance of chromosome (SMC)-mediated cohesion of sister chromosomes. Furthermore, using proteome-wide techniques, we have identified other ParB partners in P. aeruginosa, which encompass a number of proteins, including the nucleoid-associated proteins NdpA(PA3849) and NdpA2, MinE (PA3245) of Min system, and transcriptional regulators and various enzymes, e.g., CTP synthetase (PA3637). Among them are also NTPases PA4465, PA5028, PA3481, and FleN (PA1454), three of them displaying polar localization in bacterial cells. Overall, this work presents the spectrum of P. aeruginosa ParB partners and implicates the role of this protein in the cross-talk between chromosome segregation and other cellular processes. IMPORTANCE In Pseudomonas aeruginosa, a Gram-negative pathogen causing life-threatening infections in immunocompromised patients, the ParAB-parS system is involved in the precise separation of newly replicated bacterial chromosomes. In this work, we identified and characterized proteins interacting with partitioning protein ParB. We mapped the domain of interactions with its cognate ParA partner and showed that ParB-ParA interactions are crucial for the chromosome segregation and for proper SMC action on DNA. We also demonstrated ParB interactions with other DNA binding proteins, metabolic enzymes, and NTPases displaying polar localization in the cells. Overall, this study uncovers novel players cooperating with the chromosome partition system in P. aeruginosa, supporting its important regulatory role in the bacterial cell cycle.
Collapse
|
10
|
Platt MP, Lin YH, Penix T, Wiscovitch-Russo R, Vashee I, Mares CA, Rosch JW, Yu Y, Gonzalez-Juarbe N. A multiomics analysis of direct interkingdom dynamics between influenza A virus and Streptococcus pneumoniae uncovers host-independent changes to bacterial virulence fitness. PLoS Pathog 2022; 18:e1011020. [PMID: 36542660 PMCID: PMC9815659 DOI: 10.1371/journal.ppat.1011020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/05/2023] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND For almost a century, it has been recognized that influenza A virus (IAV) infection can promote the development of secondary bacterial infections (SBI) mainly caused by Streptococcus pneumoniae (Spn). Recent observations have shown that IAV is able to directly bind to the surface of Spn. To gain a foundational understanding of how direct IAV-Spn interaction alters bacterial biological fitness we employed combinatorial multiomic and molecular approaches. RESULTS Here we show IAV significantly remodels the global transcriptome, proteome and phosphoproteome profiles of Spn independently of host effectors. We identified Spn surface proteins that interact with IAV proteins (hemagglutinin, nucleoprotein, and neuraminidase). In addition, IAV was found to directly modulate expression of Spn virulence determinants such as pneumococcal surface protein A, pneumolysin, and factors associated with antimicrobial resistance among many others. Metabolic pathways were significantly altered leading to changes in Spn growth rate. IAV was also found to drive Spn capsule shedding and the release of pneumococcal surface proteins. Released proteins were found to be involved in evasion of innate immune responses and actively reduced human complement hemolytic and opsonizing activity. IAV also led to phosphorylation changes in Spn proteins associated with metabolism and bacterial virulence. Validation of proteomic data showed significant changes in Spn galactose and glucose metabolism. Furthermore, supplementation with galactose rescued bacterial growth and promoted bacterial invasion, while glucose supplementation led to enhanced pneumolysin production and lung cell apoptosis. CONCLUSIONS Here we demonstrate that IAV can directly modulate Spn biology without the requirement of host effectors and support the notion that inter-kingdom interactions between human viruses and commensal pathobionts can promote bacterial pathogenesis and microbiome dysbiosis.
Collapse
Affiliation(s)
- Maryann P. Platt
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
| | - Yi-Han Lin
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
| | - Trevor Penix
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Rosana Wiscovitch-Russo
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
| | - Isha Vashee
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
| | - Chris A. Mares
- Department of Life Sciences, Texas A&M University-San Antonio, Texas, United States of America
| | - Jason W. Rosch
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yanbao Yu
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
| | - Norberto Gonzalez-Juarbe
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
| |
Collapse
|
11
|
Hajredini F, Alphonse S, Ghose R. BY-kinases: Protein tyrosine kinases like no other. J Biol Chem 2022; 299:102737. [PMID: 36423682 PMCID: PMC9800525 DOI: 10.1016/j.jbc.2022.102737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
BY-kinases (for bacterial tyrosine kinases) constitute a family of protein tyrosine kinases that are highly conserved in the bacterial kingdom and occur most commonly as essential components of multicomponent assemblies responsible for the biosynthesis, polymerization, and export of complex polysaccharides involved in biofilm or capsule formation. BY-kinase function has been attributed to a cyclic process involving formation of an oligomeric species, its disassembly into constituent monomers, and subsequent reassembly, depending on the overall phosphorylation level of a C-terminal cluster of tyrosine residues. However, the relationship of this process to the active/inactive states of the enzyme and the mechanism of its integration into the polysaccharide production machinery remain unclear. Here, we synthesize the substantial body of biochemical, cell-biological, structural, and computational data, acquired over the nearly 3 decades since the discovery of BY-kinases, to suggest means by which they fulfill their physiological function. We propose a mechanism involving temporal coordination of the assembly/disassembly process with the autokinase activity of the enzyme and its ability to be dephosphorylated by its counteracting phosphatase. We speculate that this temporal control enables BY-kinases to function as molecular timers that coordinate the diverse processes involved in the synthesis, polymerization, and export of complex sugar derivatives. We suggest that BY-kinases, which deploy distinctive catalytic domains resembling P-loop nucleoside triphosphatases, have uniquely adapted this ancient fold to drive functional processes through exquisite spatiotemporal control over protein-protein interactions and conformational changes. It is our hope that the hypotheses proposed here will facilitate future experiments targeting these unique protein kinases.
Collapse
Affiliation(s)
- Fatlum Hajredini
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA,PhD Programs in Biochemistry, The Graduate Center of CUNY, New York, New York, USA
| | - Sébastien Alphonse
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA,PhD Programs in Biochemistry, The Graduate Center of CUNY, New York, New York, USA,PhD Programs in Chemistry, The Graduate Center of CUNY, New York, New York, USA,PhD Programs in Physics, The Graduate Center of CUNY, New York, New York, USA,For correspondence: Ranajeet Ghose
| |
Collapse
|
12
|
Alphonse S, Djemil I, Piserchio A, Ghose R. Structural basis for the recognition of the bacterial tyrosine kinase Wzc by its cognate tyrosine phosphatase Wzb. Proc Natl Acad Sci U S A 2022; 119:e2201800119. [PMID: 35737836 PMCID: PMC9245664 DOI: 10.1073/pnas.2201800119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/07/2022] [Indexed: 12/25/2022] Open
Abstract
Bacterial tyrosine kinases (BY-kinases) comprise a family of protein tyrosine kinases that are structurally distinct from their functional counterparts in eukaryotes and are highly conserved across the bacterial kingdom. BY-kinases act in concert with their counteracting phosphatases to regulate a variety of cellular processes, most notably the synthesis and export of polysaccharides involved in biofilm and capsule biogenesis. Biochemical data suggest that BY-kinase function involves the cyclic assembly and disassembly of oligomeric states coupled to the overall phosphorylation levels of a C-terminal tyrosine cluster. This process is driven by the opposing effects of intermolecular autophosphorylation, and dephosphorylation catalyzed by tyrosine phosphatases. In the absence of structural insight into the interactions between a BY-kinase and its phosphatase partner in atomic detail, the precise mechanism of this regulatory process has remained poorly defined. To address this gap in knowledge, we have determined the structure of the transiently assembled complex between the catalytic core of the Escherichia coli (K-12) BY-kinase Wzc and its counteracting low-molecular weight protein tyrosine phosphatase (LMW-PTP) Wzb using solution NMR techniques. Unambiguous distance restraints from paramagnetic relaxation effects were supplemented with ambiguous interaction restraints from static spectral perturbations and transient chemical shift changes inferred from relaxation dispersion measurements and used in a computational docking protocol for structure determination. This structurepresents an atomic picture of the mode of interaction between an LMW-PTP and its BY-kinase substrate, and provides mechanistic insight into the phosphorylation-coupled assembly/disassembly process proposed to drive BY-kinase function.
Collapse
Affiliation(s)
- Sébastien Alphonse
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031
| | - Imane Djemil
- PhD Program in Biochemistry, The Graduate Center of The City University of New York (CUNY), New York, NY 10016
| | - Andrea Piserchio
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031
- PhD Program in Biochemistry, The Graduate Center of The City University of New York (CUNY), New York, NY 10016
- PhD Program in Chemistry, The Graduate Center of CUNY, New York, NY 10016
- PhD Program in Physics, The Graduate Center of CUNY, New York, NY 10016
| |
Collapse
|
13
|
Encapsulation of the septal cell wall protects Streptococcus pneumoniae from its major peptidoglycan hydrolase and host defenses. PLoS Pathog 2022; 18:e1010516. [PMID: 35731836 PMCID: PMC9216600 DOI: 10.1371/journal.ppat.1010516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
Synthesis of the capsular polysaccharide, a major virulence factor for many pathogenic bacteria, is required for bacterial survival within the infected host. In Streptococcus pneumoniae, Wze, an autophosphorylating tyrosine kinase, and Wzd, a membrane protein required for Wze autophosphorylation, co-localize at the division septum and guarantee the presence of capsule at this subcellular location. To determine how bacteria regulate capsule synthesis, we studied pneumococcal proteins that interact with Wzd and Wze using bacterial two hybrid assays and fluorescence microscopy. We found that Wzd interacts with Wzg, the putative ligase that attaches capsule to the bacterial cell wall, and recruits it to the septal area. This interaction required residue V56 of Wzd and both the transmembrane regions and DNA-PPF domain of Wzg. When compared to the wild type, Wzd null pneumococci lack capsule at midcell, bind the peptidoglycan hydrolase LytA better and are more susceptible to LytA-induced lysis, and are less virulent in a zebrafish embryo infection model. In this manuscript, we propose that the Wzd/Wze pair guarantees full encapsulation of pneumococcal bacteria by recruiting Wzg to the division septum, ensuring that capsule attachment is coordinated with peptidoglycan synthesis. Impairing the encapsulation process, at localized subcellular sites, may facilitate elimination of bacteria by strategies that target the pneumococcal peptidoglycan.
Collapse
|
14
|
The bacterial tyrosine kinase system CpsBCD governs the length of capsule polymers. Proc Natl Acad Sci U S A 2021; 118:2103377118. [PMID: 34732571 DOI: 10.1073/pnas.2103377118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
Many pathogenic bacteria are encased in a layer of capsular polysaccharide (CPS). This layer is important for virulence by masking surface antigens, preventing opsonophagocytosis, and avoiding mucus entrapment. The bacterial tyrosine kinase (BY-kinase) regulates capsule synthesis and helps bacterial pathogens to survive different host niches. BY-kinases autophosphorylate at the C-terminal tyrosine residues upon external stimuli, but the role of phosphorylation is still unclear. Here, we report that the BY-kinase CpsCD is required for growth in Streptococcus pneumoniae Cells lacking a functional cpsC or cpsD accumulated low molecular weight CPS and lysed because of the lethal sequestration of the lipid carrier undecaprenyl phosphate, resulting in inhibition of peptidoglycan (PG) synthesis. CpsC interacts with CpsD and the polymerase CpsH. CpsD phosphorylation reduces the length of CPS polymers presumably by controlling the activity of CpsC. Finally, pulse-chase experiments reveal the spatiotemporal coordination between CPS and PG synthesis. This coordination is dependent on CpsC and CpsD. Together, our study provides evidence that BY-kinases regulate capsule polymer length by fine-tuning CpsC activity through autophosphorylation.
Collapse
|
15
|
High-Throughput Mutagenesis and Cross-Complementation Experiments Reveal Substrate Preference and Critical Residues of the Capsule Transporters in Streptococcus pneumoniae. mBio 2021; 12:e0261521. [PMID: 34724815 PMCID: PMC8561386 DOI: 10.1128/mbio.02615-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MOP (Multidrug/Oligosaccharidyl-lipid/Polysaccharide) family transporters are found in almost all life forms. They are responsible for transporting lipid-linked precursors across the cell membrane to support the synthesis of various glycoconjugates. While significant progress has been made in elucidating their transport mechanism, how these transporters select their substrates remains unclear. Here, we systematically tested the MOP transporters in the Streptococcus pneumoniae capsule pathway for their ability to translocate noncognate capsule precursors. Sequence similarity cannot predict whether these transporters are interchangeable. We showed that subtle changes in the central aqueous cavity of the transporter are sufficient to accommodate a different cargo. These changes can occur naturally, suggesting a potential mechanism of expanding substrate selectivity. A directed evolution experiment was performed to identify gain-of-function variants that translocate a noncognate cargo. Coupled with a high-throughput mutagenesis and sequencing (Mut-seq) experiment, residues that are functionally important for the capsule transporter were revealed. Lastly, we showed that the expression of a flippase that can transport unfinished precursors resulted in an increased susceptibility to bacitracin and mild cell shape defects, which may be a driving force to maintain transporter specificity. IMPORTANCE All licensed pneumococcal vaccines target the capsular polysaccharide (CPS). This layer is highly variable and is important for virulence in many bacterial pathogens. Most of the CPSs are produced by the Wzx/Wzy mechanism. In this pathway, CPS repeating units are synthesized in the cytoplasm, which must be flipped across the cytoplasmic membrane before polymerization. This step is mediated by the widely conserved MOP (Multidrug/Oligosaccharidyl-lipid/Polysaccharide) family transporters. Here, we systematically evaluated the interchangeability of these transporters and identified the residues important for substrate specificity and function. Understanding how CPS is synthesized will inform glycoengineering, vaccine development, and antimicrobial discovery.
Collapse
|
16
|
Hajredini F, Ghose R. An ATPase with a twist: A unique mechanism underlies the activity of the bacterial tyrosine kinase, Wzc. SCIENCE ADVANCES 2021; 7:eabj5836. [PMID: 34550748 PMCID: PMC8457666 DOI: 10.1126/sciadv.abj5836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BY-kinases constitute a protein tyrosine kinase family that encodes unique catalytic domains that deviate from those of eukaryotic kinases resembling P-loop nucleotide triphosphatases (NTPases) instead. We have used computational and supporting biochemical approaches using the catalytic domain of the Escherichia coli BY-kinase, Wzc, to illustrate mechanistic divergences between BY-kinases and NTPases despite their deployment of similar catalytic motifs. In NTPases, the “arginine finger” drives the reactive conformation of ATP while also displacing its solvation shell, thereby making favorable enthalpic and entropic contributions toward βγ-bond cleavage. In BY-kinases, the reactive state of ATP is enabled by ATP·Mg2+-induced global conformational transitions coupled to the conformation of the Walker-A lysine. While the BY-kinase arginine finger does promote the desolvation of ATP, it does so indirectly by generating an ordered active site in combination with other structural elements. Bacteria, using these mechanistic variations, have thus repurposed an ancient fold to phosphorylate on tyrosine.
Collapse
Affiliation(s)
- Fatlum Hajredini
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
- PhD Program in Chemistry, The Graduate Center of CUNY, New York, NY 10016, USA
- PhD Program in Physics, The Graduate Center of CUNY, New York, NY 10016, USA
- Corresponding author.
| |
Collapse
|
17
|
Xiao S, Suo W, Zhang J, Zhang X, Yin Y, Guo X, Zheng Y. Mga Spn is a negative regulator of capsule and phosphorylcholine biosynthesis and influences the virulence of Streptococcus pneumoniae D39. Virulence 2021; 12:2366-2381. [PMID: 34506260 PMCID: PMC8437459 DOI: 10.1080/21505594.2021.1972539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Global transcriptional regulators are prevalent in gram-positive pathogens. The transcriptional regulators of the Mga/AtxA family regulate target gene expression by directly binding to the promoter regions, that results in the coordinated expression of virulence factors. The spd_1587 gene of Streptococcus pneumoniae strain D39 encodes MgaSpn, which shares sequence similarity with global transcriptional regulators of the Mga/AtxA family. In this study, we demonstrated that MgaSpn regulates the biosynthesis of the capsule and phosphorylcholine, which play key roles in disease severity in S. pneumoniae infections. MgaSpn directly binds to the cps and lic1 promoters and affects the biosynthesis of the capsule and phosphorylcholine. MgaSpn binds to two specific sites on the promoter of cps, one of which contains the −35 box of the promoter, with high affinity. Consistently, low-molecular-weight capsule components were observed in the mgaSpn-null mutant strain. Moreover, we found that phosphorylcholine content was notably increased in the unencapsulated mgaSpn mutant strain. The mgaSpn null mutant caused more severe systemic disease than the parental strain D39. These findings indicate that the pneumococcal MgaSpn protein can inhibit capsule and phosphorylcholine production, thereby affecting the virulence of S. pneumoniae.
Collapse
Affiliation(s)
- Shengnan Xiao
- Department of Medicine Laboratory, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; and Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Weicai Suo
- Department of Medicine Laboratory, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; and Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Jinghui Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xinlin Guo
- Department of Medicine Laboratory, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; and Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Yuqiang Zheng
- Department of Medicine Laboratory, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; and Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| |
Collapse
|
18
|
Garcia PS, Duchemin W, Flandrois JP, Gribaldo S, Grangeasse C, Brochier-Armanet C. A Comprehensive Evolutionary Scenario of Cell Division and Associated Processes in the Firmicutes. Mol Biol Evol 2021; 38:2396-2412. [PMID: 33533884 PMCID: PMC8136486 DOI: 10.1093/molbev/msab034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The cell cycle is a fundamental process that has been extensively studied in bacteria. However, many of its components and their interactions with machineries involved in other cellular processes are poorly understood. Furthermore, most knowledge relies on the study of a few models, but the real diversity of the cell division apparatus and its evolution are largely unknown. Here, we present a massive in-silico analysis of cell division and associated processes in around 1,000 genomes of the Firmicutes, a major bacterial phylum encompassing models (i.e. Bacillus subtilis, Streptococcus pneumoniae, and Staphylococcus aureus), as well as many important pathogens. We analyzed over 160 proteins by using an original approach combining phylogenetic reconciliation, phylogenetic profiles, and gene cluster survey. Our results reveal the presence of substantial differences among clades and pinpoints a number of evolutionary hotspots. In particular, the emergence of Bacilli coincides with an expansion of the gene repertoires involved in cell wall synthesis and remodeling. We also highlight major genomic rearrangements at the emergence of Streptococcaceae. We establish a functional network in Firmicutes that allows identifying new functional links inside one same process such as between FtsW (peptidoglycan polymerase) and a previously undescribed Penicilin-Binding Protein or between different processes, such as replication and cell wall synthesis. Finally, we identify new candidates involved in sporulation and cell wall synthesis. Our results provide a previously undescribed view on the diversity of the bacterial cell cycle, testable hypotheses for further experimental studies, and a methodological framework for the analysis of any other biological system.
Collapse
Affiliation(s)
- Pierre S Garcia
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918 Villeurbanne F-69622, France.,Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, CNRS, Lyon, France.,Department of Microbiology, Unit "Evolutionary Biology of the Microbial Cell", Institut Pasteur, Paris, France
| | - Wandrille Duchemin
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918 Villeurbanne F-69622, France
| | - Jean-Pierre Flandrois
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918 Villeurbanne F-69622, France
| | - Simonetta Gribaldo
- Department of Microbiology, Unit "Evolutionary Biology of the Microbial Cell", Institut Pasteur, Paris, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Céline Brochier-Armanet
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918 Villeurbanne F-69622, France
| |
Collapse
|
19
|
Wu Q, Zhang C, Wa Y, Qu H, Gu R, Chen D, Song Z, Chen X. Correlation between exopolysaccharide biosynthesis and gastrointestinal tolerance of Lactiplantibacillus plantarum. J Appl Microbiol 2021; 132:584-591. [PMID: 34261198 DOI: 10.1111/jam.15213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 11/28/2022]
Abstract
AIM This study aimed to investigate the correlation between the level of exopolysaccharide (EPS) biosynthesis and gastrointestinal tolerance of 12 Lactiplantibacillus plantarum strains. METHODS AND RESULTS In this study, the EPS production and survival rate of 12 strains of L. plantarum under gastrointestinal stress were determined. Results showed that the EPS biosynthesis level of L. plantarum in semi-defined medium ranged from 9.84 to 26.05 mg/L. The survival rates of all strains in simulated gastric juice at pH 3.0 ranged from 43.52% to 112.73%. Among them, eight strains were higher than 90%, while only one strain was lower than 50%. The survival rates of all strains in simulated intestinal juice ranged from 50.36% to 125.39%, among which eight strains were higher than 80%. The survival rates of all strains under 0.1% bile salt stress ranged from 3.39% to 109.34%, among which four strains were higher than 80% and three strains were lower than 60%. Besides, the survival rates of all strains under 0.5% bile salt stress ranged from 0.42% to 95.34%. The results indicated that the 12 L. plantarum strains had good tolerance to simulated gastric juice at pH 3.0, simulated intestinal juice and 0.1% bile salt. Notably, it was observed that the survival rates of L. plantarum strains under simulated gastric juice at pH 3.0 and simulated intestinal juice were significantly positively correlated with EPS biosynthesis (p < 0.01). CONCLUSION The yield of EPS of L. plantarum was related to simulated gastric juice and simulated intestinal juice environment. SIGNIFICANCE AND IMPACT OF STUDY It was speculated that the production of EPS may be one of the strategies for L. plantarum to adapt to the part of gastrointestinal environment. In the future, we could analyse the protection mechanism of EPS from the gene level.
Collapse
Affiliation(s)
- Qingqing Wu
- College of Food Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, China
| | - Chenchen Zhang
- College of Food Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, China
| | - Yunchao Wa
- College of Food Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, China
| | - Hengxian Qu
- College of Food Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, China
| | - Ruixia Gu
- College of Food Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, China
| | - Dawei Chen
- College of Food Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, China
| | - Zhixin Song
- College of Food Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, China
| | - Xia Chen
- College of Food Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, China
| |
Collapse
|
20
|
Cellular Mn/Zn Ratio Influences Phosphoglucomutase Activity and Capsule Production in Streptococcus pneumoniae D39. J Bacteriol 2021; 203:e0060220. [PMID: 33875543 PMCID: PMC8316032 DOI: 10.1128/jb.00602-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Capsular polysaccharide (CPS) is a major virulence determinant for many human-pathogenic bacteria. Although the essential functional roles for CPS in bacterial virulence have been established, knowledge of how CPS production is regulated remains limited. Streptococcus pneumoniae (pneumococcus) CPS expression levels and overall thickness change in response to available oxygen and carbohydrate. These nutrients in addition to transition metal ions can vary significantly between host environmental niches and infection stage. Since the pneumococcus must modulate CPS expression among various host niches during disease progression, we examined the impact of the nutritional transition metal availability of manganese (Mn) and zinc (Zn) on CPS production. We demonstrate that increased Mn/Zn ratios increase CPS production via Mn-dependent activation of the phosphoglucomutase Pgm, an enzyme that functions at the branch point between glycolysis and the CPS biosynthetic pathway in a transcription-independent manner. Furthermore, we find that the downstream CPS protein CpsB, an Mn-dependent phosphatase, does not promote aberrant dephosphorylation of its target capsule-tyrosine kinase CpsD during Mn stress. Together, these data reveal a direct role for cellular Mn/Zn ratios in the regulation of CPS biosynthesis via the direct activation of Pgm. We propose a multilayer mechanism used by the pneumococcus in regulating CPS levels across various host niches. IMPORTANCE Evolving evidence strongly indicates that maintenance of metal homeostasis is essential for establishing colonization and continued growth of bacterial pathogens in the vertebrate host. In this study, we demonstrate the impact of cellular manganese/zinc (Mn/Zn) ratios on bacterial capsular polysaccharide (CPS) production, an important virulence determinant of many human-pathogenic bacteria, including Streptococcus pneumoniae. We show that higher Mn/Zn ratios increase CPS production via the Mn-dependent activation of the phosphoglucomutase Pgm, an enzyme that functions at the branch point between glycolysis and the CPS biosynthetic pathway. The findings provide a direct role for Mn/Zn homeostasis in the regulation of CPS expression levels and further support the ability of metal cations to act as important cellular signaling mediators in bacteria.
Collapse
|
21
|
CcrZ is a pneumococcal spatiotemporal cell cycle regulator that interacts with FtsZ and controls DNA replication by modulating the activity of DnaA. Nat Microbiol 2021; 6:1175-1187. [PMID: 34373624 PMCID: PMC8387234 DOI: 10.1038/s41564-021-00949-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Most bacteria replicate and segregate their DNA concomitantly while growing, before cell division takes place. How bacteria synchronize these different cell cycle events to ensure faithful chromosome inheritance by daughter cells is poorly understood. Here, we identify Cell Cycle Regulator protein interacting with FtsZ (CcrZ) as a conserved and essential protein in pneumococci and related Firmicutes such as Bacillus subtilis and Staphylococcus aureus. CcrZ couples cell division with DNA replication by controlling the activity of the master initiator of DNA replication, DnaA. The absence of CcrZ causes mis-timed and reduced initiation of DNA replication, which subsequently results in aberrant cell division. We show that CcrZ from Streptococcus pneumoniae interacts directly with the cytoskeleton protein FtsZ, which places CcrZ in the middle of the newborn cell where the DnaA-bound origin is positioned. This work uncovers a mechanism for control of the bacterial cell cycle in which CcrZ controls DnaA activity to ensure that the chromosome is replicated at the right time during the cell cycle.
Collapse
|
22
|
Su T, Nakamoto R, Chun YY, Chua WZ, Chen JH, Zik JJ, Sham LT. Decoding capsule synthesis in Streptococcus pneumoniae. FEMS Microbiol Rev 2020; 45:6041728. [PMID: 33338218 DOI: 10.1093/femsre/fuaa067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae synthesizes more than one hundred types of capsular polysaccharides (CPS). While the diversity of the enzymes and transporters involved is enormous, it is not limitless. In this review, we summarized the recent progress on elucidating the structure-function relationships of CPS, the mechanisms by which they are synthesized, how their synthesis is regulated, the host immune response against them, and the development of novel pneumococcal vaccines. Based on the genetic and structural information available, we generated provisional models of the CPS repeating units that remain unsolved. In addition, to facilitate cross-species comparisons and assignment of glycosyltransferases, we illustrated the biosynthetic pathways of the known CPS in a standardized format. Studying the intricate steps of pneumococcal CPS assembly promises to provide novel insights for drug and vaccine development as well as improve our understanding of related pathways in other species.
Collapse
Affiliation(s)
- Tong Su
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Rei Nakamoto
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Ye Yu Chun
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Wan Zhen Chua
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Jia Hui Chen
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Justin J Zik
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Lok-To Sham
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| |
Collapse
|
23
|
Lactobacillus exopolysaccharides: New perspectives on engineering strategies, physiochemical functions, and immunomodulatory effects on host health. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.06.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Whitfield C, Wear SS, Sande C. Assembly of Bacterial Capsular Polysaccharides and Exopolysaccharides. Annu Rev Microbiol 2020; 74:521-543. [PMID: 32680453 DOI: 10.1146/annurev-micro-011420-075607] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polysaccharides are dominant features of most bacterial surfaces and are displayed in different formats. Many bacteria produce abundant long-chain capsular polysaccharides, which can maintain a strong association and form a capsule structure enveloping the cell and/or take the form of exopolysaccharides that are mostly secreted into the immediate environment. These polymers afford the producing bacteria protection from a wide range of physical, chemical, and biological stresses, support biofilms, and play critical roles in interactions between bacteria and their immediate environments. Their biological and physical properties also drive a variety of industrial and biomedical applications. Despite the immense variation in capsular polysaccharide and exopolysaccharide structures, patterns are evident in strategies used for their assembly and export. This review describes recent advances in understanding those strategies, based on a wealth of biochemical investigations of select prototypes, supported by complementary insight from expanding structural biology initiatives. This provides a framework to identify and distinguish new systems emanating from genomic studies.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| | - Samantha S Wear
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| | - Caitlin Sande
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| |
Collapse
|
25
|
Abstract
Proper chromosome segregation during cell division is essential in all domains of life. In the majority of bacterial species, faithful chromosome segregation is mediated by the tripartite ParABS system, consisting of an ATPase protein ParA, a CTPase and DNA-binding protein ParB, and a centromere-like parS site. The parS site is most often located near the origin of replication and is segregated first after chromosome replication. ParB nucleates on parS before binding to adjacent non-specific DNA to form a multimeric nucleoprotein complex. ParA interacts with ParB to drive the higher-order ParB–DNA complex, and hence the replicating chromosomes, to each daughter cell. Here, we review the various models for the formation of the ParABS complex and describe its role in segregating the origin-proximal region of the chromosome. Additionally, we discuss outstanding questions and challenges in understanding bacterial chromosome segregation.
Collapse
Affiliation(s)
- Adam S B Jalal
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
26
|
Bonne Køhler J, Jers C, Senissar M, Shi L, Derouiche A, Mijakovic I. Importance of protein Ser/Thr/Tyr phosphorylation for bacterial pathogenesis. FEBS Lett 2020; 594:2339-2369. [PMID: 32337704 DOI: 10.1002/1873-3468.13797] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation regulates a large variety of biological processes in all living cells. In pathogenic bacteria, the study of serine, threonine, and tyrosine (Ser/Thr/Tyr) phosphorylation has shed light on the course of infectious diseases, from adherence to host cells to pathogen virulence, replication, and persistence. Mass spectrometry (MS)-based phosphoproteomics has provided global maps of Ser/Thr/Tyr phosphosites in bacterial pathogens. Despite recent developments, a quantitative and dynamic view of phosphorylation events that occur during bacterial pathogenesis is currently lacking. Temporal, spatial, and subpopulation resolution of phosphorylation data is required to identify key regulatory nodes underlying bacterial pathogenesis. Herein, we discuss how technological improvements in sample handling, MS instrumentation, data processing, and machine learning should improve bacterial phosphoproteomic datasets and the information extracted from them. Such information is expected to significantly extend the current knowledge of Ser/Thr/Tyr phosphorylation in pathogenic bacteria and should ultimately contribute to the design of novel strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Julie Bonne Køhler
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Carsten Jers
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Mériem Senissar
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lei Shi
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Abderahmane Derouiche
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
27
|
Mizuno H, Tomotsune K, Islam MA, Funabashi R, Albarracin L, Ikeda-Ohtsubo W, Aso H, Takahashi H, Kimura K, Villena J, Sasaki Y, Kitazawa H. Exopolysaccharides From Streptococcus thermophilus ST538 Modulate the Antiviral Innate Immune Response in Porcine Intestinal Epitheliocytes. Front Microbiol 2020; 11:894. [PMID: 32508770 PMCID: PMC7248278 DOI: 10.3389/fmicb.2020.00894] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
It was reported that exopolysaccharides (EPSs) from lactobacilli are able to differentially modulate mucosal antiviral immunity. Although research has described the ability of EPSs derived from Streptococcus thermophilus to modulate the mucosal immune system, their impact on antiviral immunity was less explored. In this work, we investigated the capacity of the EPS-producing S. thermophilus ST538 to modulate the innate antiviral immune response triggered by the activation of the Toll-like receptor 3 (TLR3) in porcine intestinal epitheliocytes (PIE cells). Moreover, in order to study the immunomodulatory potential of S. thermophilus ST538 EPS, we successfully developed two mutant strains through the knockout of the epsB or epsC genes. High-performance liquid chromatography and scanning electron microscopy studies demonstrated that the wild type (WT) strain produced as high as 595 μg/ml of EPS in the skim milk medium, while none of the mutant strains (S. thermophilus ΔepsB and ΔepsC) were able to produce EPS. Studies in PIE cells demonstrated that the EPS of S. thermophilus ST538 is able to significantly improve the expression of interferon β (IFN-β), interleukin 6 (IL-6), and C-X-C motif chemokine 10 (CXCL10) in response to TLR3 stimulation. The role of EPS in the modulation of antiviral immune response in PIE cells was confirmed by comparative studies of cell free culture supernatants and fermented skim milks obtained from S. thermophilus ΔepsB and ΔepsC. These results suggest that S. thermophilus ST538 could be used as an immunobiotic strain for the development of new immunologically functional foods, which might contribute to improve resistance against viral infections.
Collapse
Affiliation(s)
- Hiroya Mizuno
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kae Tomotsune
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Md Aminul Islam
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ryutaro Funabashi
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Leonardo Albarracin
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina.,Scientific Computing Laboratory, Computer Science Department, Faculty of Exact Sciences and Technology, National University of Tucuman, San Miguel de Tucumán, Argentina
| | - Wakako Ikeda-Ohtsubo
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hisashi Aso
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Plant Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Katsunori Kimura
- Food Microbiology and Function Research Laboratories, Meiji Co., Ltd., Kanagawa, Japan
| | - Julio Villena
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Yasuko Sasaki
- Laboratory of Fermented Foods, Graduate School of Agriculture, Meiji University, Kanagawa, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
28
|
Pióro M, Jakimowicz D. Chromosome Segregation Proteins as Coordinators of Cell Cycle in Response to Environmental Conditions. Front Microbiol 2020; 11:588. [PMID: 32351468 PMCID: PMC7174722 DOI: 10.3389/fmicb.2020.00588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Chromosome segregation is a crucial stage of the cell cycle. In general, proteins involved in this process are DNA-binding proteins, and in most bacteria, ParA and ParB are the main players; however, some bacteria manage this process by employing other proteins, such as condensins. The dynamic interaction between ParA and ParB drives movement and exerts positioning of the chromosomal origin of replication (oriC) within the cell. In addition, both ParA and ParB were shown to interact with the other proteins, including those involved in cell division or cell elongation. The significance of these interactions for the progression of the cell cycle is currently under investigation. Remarkably, DNA binding by ParA and ParB as well as their interactions with protein partners conceivably may be modulated by intra- and extracellular conditions. This notion provokes the question of whether chromosome segregation can be regarded as a regulatory stage of the cell cycle. To address this question, we discuss how environmental conditions affect chromosome segregation and how segregation proteins influence other cell cycle processes.
Collapse
Affiliation(s)
- Monika Pióro
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Dagmara Jakimowicz
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
29
|
Lipa P, Janczarek M. Phosphorylation systems in symbiotic nitrogen-fixing bacteria and their role in bacterial adaptation to various environmental stresses. PeerJ 2020; 8:e8466. [PMID: 32095335 PMCID: PMC7020829 DOI: 10.7717/peerj.8466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/27/2019] [Indexed: 12/23/2022] Open
Abstract
Symbiotic bacteria, commonly called rhizobia, lead a saprophytic lifestyle in the soil and form nitrogen-fixing nodules on legume roots. During their lifecycle, rhizobia have to adapt to different conditions prevailing in the soils and within host plants. To survive under these conditions, rhizobia fine-tune the regulatory machinery to respond rapidly and adequately to environmental changes. Symbiotic bacteria play an essential role in the soil environment from both ecological and economical point of view, since these bacteria provide Fabaceae plants (legumes) with large amounts of accessible nitrogen as a result of symbiotic interactions (i.e., rhizobia present within the nodule reduce atmospheric dinitrogen (N2) to ammonia, which can be utilized by plants). Because of its restricted availability in the soil, nitrogen is one of the most limiting factors for plant growth. In spite of its high content in the atmosphere, plants are not able to assimilate it directly in the N2 form. During symbiosis, rhizobia infect host root and trigger the development of specific plant organ, the nodule. The aim of root nodule formation is to ensure a microaerobic environment, which is essential for proper activity of nitrogenase, i.e., a key enzyme facilitating N2 fixation. To adapt to various lifestyles and environmental stresses, rhizobia have developed several regulatory mechanisms, e.g., reversible phosphorylation. This key mechanism regulates many processes in both prokaryotic and eukaryotic cells. In microorganisms, signal transduction includes two-component systems (TCSs), which involve membrane sensor histidine kinases (HKs) and cognate DNA-binding response regulators (RRs). Furthermore, regulatory mechanisms based on phosphoenolopyruvate-dependent phosphotranspherase systems (PTSs), as well as alternative regulatory pathways controlled by Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases (STPs) play an important role in regulation of many cellular processes in both free-living bacteria and during symbiosis with the host plant (e.g., growth and cell division, envelope biogenesis, biofilm formation, response to stress conditions, and regulation of metabolism). In this review, we summarize the current knowledge of phosphorylation systems in symbiotic nitrogen-fixing bacteria, and their role in the physiology of rhizobial cells and adaptation to various environmental conditions.
Collapse
Affiliation(s)
- Paulina Lipa
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University Lublin, Lublin, Poland
| | - Monika Janczarek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University Lublin, Lublin, Poland
| |
Collapse
|
30
|
Kawalek A, Wawrzyniak P, Bartosik AA, Jagura-Burdzy G. Rules and Exceptions: The Role of Chromosomal ParB in DNA Segregation and Other Cellular Processes. Microorganisms 2020; 8:E105. [PMID: 31940850 PMCID: PMC7022226 DOI: 10.3390/microorganisms8010105] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
The segregation of newly replicated chromosomes in bacterial cells is a highly coordinated spatiotemporal process. In the majority of bacterial species, a tripartite ParAB-parS system, composed of an ATPase (ParA), a DNA-binding protein (ParB), and its target(s) parS sequence(s), facilitates the initial steps of chromosome partitioning. ParB nucleates around parS(s) located in the vicinity of newly replicated oriCs to form large nucleoprotein complexes, which are subsequently relocated by ParA to distal cellular compartments. In this review, we describe the role of ParB in various processes within bacterial cells, pointing out interspecies differences. We outline recent progress in understanding the ParB nucleoprotein complex formation and its role in DNA segregation, including ori positioning and anchoring, DNA condensation, and loading of the structural maintenance of chromosome (SMC) proteins. The auxiliary roles of ParBs in the control of chromosome replication initiation and cell division, as well as the regulation of gene expression, are discussed. Moreover, we catalog ParB interacting proteins. Overall, this work highlights how different bacterial species adapt the DNA partitioning ParAB-parS system to meet their specific requirements.
Collapse
Affiliation(s)
| | | | | | - Grazyna Jagura-Burdzy
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (A.K.); (P.W.); (A.A.B.)
| |
Collapse
|
31
|
Jung YJ, Miller DP, Perpich JD, Fitzsimonds ZR, Shen D, Ohshima J, Lamont RJ. Porphyromonas gingivalis Tyrosine Phosphatase Php1 Promotes Community Development and Pathogenicity. mBio 2019; 10:e02004-19. [PMID: 31551334 PMCID: PMC6759763 DOI: 10.1128/mbio.02004-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/23/2019] [Indexed: 01/17/2023] Open
Abstract
Protein-tyrosine phosphorylation in bacteria plays a significant role in multiple cellular functions, including those related to community development and virulence. Metal-dependent protein tyrosine phosphatases that belong to the polymerase and histindinol phosphatase (PHP) family are widespread in Gram-positive bacteria. Here, we show that Porphyromonas gingivalis, a Gram-negative periodontal pathogen, expresses a PHP protein, Php1, with divalent metal ion-dependent tyrosine phosphatase activity. Php1 tyrosine phosphatase activity was attenuated by mutation of conserved histidine residues that are important for the coordination of metal ions and by mutation of a conserved arginine residue, a key residue for catalysis in other bacterial PHPs. The php1 gene is located immediately downstream of the gene encoding the bacterial tyrosine (BY) kinase Ptk1, which was a substrate for Php1 in vitro Php1 rapidly caused the conversion of Ptk1 to a state of low tyrosine phosphorylation in the absence of discernible intermediate phosphoforms. Active Php1 was required for P. gingivalis exopolysaccharide production and for community development with the antecedent oral biofilm constituent Streptococcus gordonii under nutrient-depleted conditions. In contrast, the absence of Php1 had no effect on the ability of P. gingivalis to form monospecies biofilms. In vitro, Php1 enzymatic activity was resistant to the effects of the streptococcal secreted metabolites pABA and H2O2, which inhibited Ltp1, an enzyme in the low-molecular-weight (LMW) phosphotyrosine phosphatase family. Ptk1 reciprocally phosphorylated Php1 on tyrosine residues 159 and 161, which independently impacted phosphatase activity. Loss of Php1 rendered P. gingivalis nonvirulent in an animal model of periodontal disease. Collectively, these results demonstrate that P. gingivalis possesses active PHP and LMW tyrosine phosphatases, a unique configuration in Gram-negatives which may allow P. gingivalis to maintain phosphorylation/dephosphorylation homeostasis in multispecies communities. Moreover, Php1 contributes to the pathogenic potential of the organism.IMPORTANCE Periodontal diseases are among the most common infections of humans and are also associated with systemic inflammatory conditions. Colonization and pathogenicity of P. gingivalis are regulated by signal transduction pathways based on protein tyrosine phosphorylation and dephosphorylation. Here, we identify and characterize a novel component of the tyrosine (de)phosphorylation axis: a polymerase and histindinol phosphatase (PHP) family enzyme. This tyrosine phosphatase, designated Php1, was required for P. gingivalis community development with other oral bacteria, and in the absence of Php1 activity P. gingivalis was unable to cause disease in a mouse model of periodontitis. This work provides significant insights into the protein tyrosine (de)phosphorylation network in P. gingivalis, its adaptation to heterotypic communities, and its contribution to colonization and virulence.
Collapse
Affiliation(s)
- Young-Jung Jung
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - John D Perpich
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Zackary R Fitzsimonds
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Daonan Shen
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Jun Ohshima
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| |
Collapse
|
32
|
Abstract
Phosphorylation events modify bacterial and archaeal proteomes, imparting cells with rapid and reversible responses to specific environmental stimuli or niches. Phosphorylated proteins are generally modified at one or more serine, threonine, or tyrosine residues. Within the last ten years, increasing numbers of global phosphoproteomic surveys of prokaryote species have revealed an abundance of tyrosine-phosphorylated proteins. In some cases, novel phosphorylation-dependent regulatory paradigms for cell division, gene transcription, and protein translation have been identified, suggesting that a wide scope of prokaryotic physiology remains to be characterized. Recent observations of bacterial proteins with putative phosphotyrosine binding pockets or Src homology 2 (SH2)-like domains suggest the presence of phosphotyrosine-dependent protein interaction networks. Here in this minireview, we focus on protein tyrosine phosphorylation, a posttranslational modification once thought to be rare in prokaryotes but which has emerged as an important regulatory facet in microbial biology.
Collapse
|
33
|
Abstract
Over the past decade the number and variety of protein post-translational modifications that have been detected and characterized in bacteria have rapidly increased. Most post-translational protein modifications occur in a relatively low number of bacterial proteins in comparison with eukaryotic proteins, and most of the modified proteins carry low, substoichiometric levels of modification; therefore, their structural and functional analysis is particularly challenging. The number of modifying enzymes differs greatly among bacterial species, and the extent of the modified proteome strongly depends on environmental conditions. Nevertheless, evidence is rapidly accumulating that protein post-translational modifications have vital roles in various cellular processes such as protein synthesis and turnover, nitrogen metabolism, the cell cycle, dormancy, sporulation, spore germination, persistence and virulence. Further research of protein post-translational modifications will fill current gaps in the understanding of bacterial physiology and open new avenues for treatment of infectious diseases.
Collapse
|
34
|
Pelletier A, Freton C, Gallay C, Trouve J, Cluzel C, Franz-Wachtel M, Macek B, Jault JM, Grangeasse C, Guiral S. The Tyrosine-Autokinase UbK Is Required for Proper Cell Growth and Cell Morphology of Streptococcus pneumoniae. Front Microbiol 2019; 10:1942. [PMID: 31551943 PMCID: PMC6733980 DOI: 10.3389/fmicb.2019.01942] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
Protein phosphorylation is a key post-translational modification required for many cellular functions of the bacterial cell. Recently, we identified a new protein-kinase, named UbK, in Bacillus subtilis that belongs to a new family of protein-kinases widespread in bacteria. In this study, we analyze the function of UbK in Streptococcus pneumoniae. We show that UbK displays a tyrosine-kinase activity and autophosphorylates on a unique tyrosine in vivo. To get insights into its cellular role, we constructed a set of pneumococcal ubk mutants. Using conventional and electron microscopy, we show that the ubk deficient strain, as well as an ubk catalytic dead mutant, display both severe cell-growth and cell-morphology defects. The same defects are observed with a mutant mimicking permanent phosphorylation of UbK whereas they are not detected for a mutant mimicking defective autophosphorylation of UbK. Moreover, we find that UbK phosphorylation promotes its ability to hydrolyze ATP. These observations show that the hydrolysis of ATP by UbK serves not only for its autophosphorylation but also for a distinct purpose essential for the optimal cell growth and cell-morphogenesis of the pneumococcus. We thus propose a model in which the autophosphorylation/dephosphorylation of UbK regulates its cellular function through a negative feedback loop.
Collapse
Affiliation(s)
- Anaïs Pelletier
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université Lyon 1, Lyon, France
| | - Céline Freton
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université Lyon 1, Lyon, France
| | - Clément Gallay
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université Lyon 1, Lyon, France
| | - Jennyfer Trouve
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université Lyon 1, Lyon, France
| | - Caroline Cluzel
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR 5305 CNRS/Université Lyon 1, Lyon, France
| | | | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Jean-Michel Jault
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université Lyon 1, Lyon, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université Lyon 1, Lyon, France
| | - Sébastien Guiral
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université Lyon 1, Lyon, France
| |
Collapse
|
35
|
Fukazawa H, Fukuyama M, Miyazaki Y. Expression of Active Staphylococcus aureus Tyrosine Kinases in a Human Cell Line. Biol Pharm Bull 2019; 42:411-416. [PMID: 30828073 DOI: 10.1248/bpb.b18-00722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many bacteria encode tyrosine kinases that are structurally unrelated to their eukaryotic counterparts and are termed BY-kinases. Two BY-kinases, CapB1 and CapB2, have been identified in the Staphylococcus aureus genome. Although CapB1 and CapB2 share more than 70% homology, earlier studies with purified enzymes did not find any evident kinase activity in CapB1, whereas CapB2 was autophosphorylated on a C-terminal tyrosine cluster in the presence of the kinase modulator proteins CapA1 or CapA2. For the convenient analysis of BY-kinases, we attempted to express CapB2 in an active form in a mammalian cell line. To this end, the C-terminal activation domain of CapA1 was attached to the N-terminus of CapB2, and the resulting CapA1/CT-CapB2 chimera was further fused with various tags and transfected into HEK293T cells. Immunoblotting analyses showed that when fluorescent protein tags were attached to the N-terminus, CapA1/CT-CapB2 was both expressed and tyrosine phosphorylated in HEK293T cells. Mutation of the ATP-binding lysine abrogated tyrosine phosphorylation, indicating that tyrosine phosphorylation was catalyzed by the transfected bacterial kinase and not by endogenous cellular enzymes. Unexpectedly, mutation of the C-terminal tyrosine cluster did not abolish autophosphorylation. Further analyses revealed that CapA1/CT-CapB2 phosphorylated not only itself but also the attached fluorescent protein tag. Several domains and residues important for tyrosine kinase activity were identified from the production of various mutants. We also present data that CapB1, which was previously thought to be catalytically inert, may possess intrinsic kinase activity.
Collapse
Affiliation(s)
- Hidesuke Fukazawa
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases
| | - Mari Fukuyama
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases
| |
Collapse
|
36
|
Mercy C, Ducret A, Slager J, Lavergne JP, Freton C, Nagarajan SN, Garcia PS, Noirot-Gros MF, Dubarry N, Nourikyan J, Veening JW, Grangeasse C. RocS drives chromosome segregation and nucleoid protection in Streptococcus pneumoniae. Nat Microbiol 2019; 4:1661-1670. [PMID: 31182798 DOI: 10.1038/s41564-019-0472-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 04/26/2019] [Indexed: 11/09/2022]
Abstract
Chromosome segregation in bacteria is poorly understood outside some prominent model strains1-5 and even less is known about how it is coordinated with other cellular processes. This is the case for the opportunistic human pathogen Streptococcus pneumoniae (the pneumococcus)6, which lacks the Min and the nucleoid occlusion systems7, and possesses only an incomplete chromosome partitioning Par(A)BS system, in which ParA is absent8. The bacterial tyrosine kinase9 CpsD, which is required for capsule production, was previously found to interfere with chromosome segregation10. Here, we identify a protein of unknown function that interacts with CpsD and drives chromosome segregation. RocS (Regulator of Chromosome Segregation) is a membrane-bound protein that interacts with both DNA and the chromosome partitioning protein ParB to properly segregate the origin of replication region to new daughter cells. In addition, we show that RocS interacts with the cell division protein FtsZ and hinders cell division. Altogether, this work reveals that RocS is the cornerstone of a nucleoid protection system ensuring proper chromosome segregation and cell division in coordination with the biogenesis of the protective capsular layer.
Collapse
Affiliation(s)
- Chryslène Mercy
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France
| | - Adrien Ducret
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France
| | - Jelle Slager
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| | - Jean-Pierre Lavergne
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France
| | - Céline Freton
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France
| | - Sathya Narayanan Nagarajan
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France
| | - Pierre Simon Garcia
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France
| | - Marie-Francoise Noirot-Gros
- Micalis Institute, UMR1319, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Biosciences Division, Argonne National Laboratory, Lemont, IL, USA
| | - Nelly Dubarry
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France.,Evotec ID, Marcy l'Etoile, France
| | - Julien Nourikyan
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France
| | - Jan-Willem Veening
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands.,Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, Switzerland
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France.
| |
Collapse
|
37
|
Phanphak S, Georgiades P, Li R, King J, Roberts IS, Waigh TA. Super-Resolution Fluorescence Microscopy Study of the Production of K1 Capsules by Escherichia coli: Evidence for the Differential Distribution of the Capsule at the Poles and the Equator of the Cell. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5635-5646. [PMID: 30916568 PMCID: PMC6492954 DOI: 10.1021/acs.langmuir.8b04122] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The production of Escherichia coli K1 serotype capsule was investigated using direct stochastic optical reconstruction microscopy with live bacteria and graphene oxide-coated coverslips, overcoming many morphological artifacts found in other high-resolution imaging techniques. Super-resolution fluorescence images showed that the K1 capsular polysaccharide is not uniformly distributed on the cell surface, as previously thought. These studies demonstrated that on the cell surfaces the K1 capsule at the poles had bimodal thicknesses of 238 ± 41 and 323 ± 62 nm, whereas at the equator, there was a monomodal thickness of 217 ± 29 nm. This bimodal variation was also observed in high-pressure light-scattering chromatography measurements of purified K1 capsular polysaccharide. Particle tracking demonstrated that the formation of the capsule was dominated by the expansion of lyso-phosphatidylglycerol (lyso-PG) rafts that anchor the capsular polysaccharide in the outer membrane, and the expansion of these rafts across the cell surface was driven by new material transported through the capsular biosynthesis channels. The discovery of thicker capsules at the poles of the cell will have implications in mediating interactions between the bacterium and its immediate environment.
Collapse
Affiliation(s)
| | | | | | - Jane King
- Faculty of Biology, Medicine and Health, Michael Smith Building , The University of Manchester , Dover Street , Manchester M13 9PL , U.K
| | - Ian S Roberts
- Faculty of Biology, Medicine and Health, Michael Smith Building , The University of Manchester , Dover Street , Manchester M13 9PL , U.K
| | | |
Collapse
|
38
|
Construction of Fluorescent Pneumococci for In Vivo Imaging and Labeling of the Chromosome. Methods Mol Biol 2019. [PMID: 30929204 DOI: 10.1007/978-1-4939-9199-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Advances in fluorescence imaging techniques and development and optimization of fluorescent proteins recent years have made major impacts on different fields of pneumococcal research. This chapter provides methodology for construction of fluorescent pneumococcal strains using fusions to DNA-binding proteins. By expressing fluorescent proteins fused to HlpA, a pneumococcal nucleoid binding protein, brightly fluorescent pneumococci are generated. HlpA fusions may be used both for in vivo imaging of pneumococci as well as for marking the nucleoid in cell biology studies. Furthermore, it also explains how to construct strains for imaging of specific chromosomal loci in pneumococci, using a heterologous ParBS system.
Collapse
|
39
|
Paton JC, Trappetti C. Streptococcus pneumoniae Capsular Polysaccharide. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0019-2018. [PMID: 30977464 PMCID: PMC11590643 DOI: 10.1128/microbiolspec.gpp3-0019-2018] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Indexed: 11/20/2022] Open
Abstract
The polysaccharide capsule of Streptococcus pneumoniae is the dominant surface structure of the organism and plays a critical role in virulence, principally by interfering with host opsonophagocytic clearance mechanisms. The capsule is the target of current pneumococcal vaccines, but there are 98 currently recognised polysaccharide serotypes and protection is strictly serotype-specific. Widespread use of these vaccines is driving changes in serotype prevalence in both carriage and disease. This chapter summarises current knowledge on the role of the capsule and its regulation in pathogenesis, the mechanisms of capsule synthesis, the genetic basis for serotype differences, and provides insights into how so many structurally distinct capsular serotypes have evolved. Such knowledge will inform ongoing refinement of pneumococcal vaccination strategies.
Collapse
Affiliation(s)
- James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Claudia Trappetti
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| |
Collapse
|
40
|
Zhou Y, Cui Y, Qu X. Exopolysaccharides of lactic acid bacteria: Structure, bioactivity and associations: A review. Carbohydr Polym 2019; 207:317-332. [DOI: 10.1016/j.carbpol.2018.11.093] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 01/05/2023]
|
41
|
Gaviard C, Cosette P, Jouenne T, Hardouin J. LasB and CbpD Virulence Factors of Pseudomonas aeruginosa Carry Multiple Post-Translational Modifications on Their Lysine Residues. J Proteome Res 2019; 18:923-933. [PMID: 30672296 DOI: 10.1021/acs.jproteome.8b00556] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pseudomonas aeruginosa is a multi-drug resistant human pathogen largely involved in nosocomial infections. Today, effective antibacterial agents are lacking. Exploring the bacterial physiology at the post-translational modifications (PTM) level may contribute to the renewal of fighting strategies. Indeed, some correlations between PTMs and the bacterial virulence, adaptation, and resistance have been shown. In a previous study performed in P. aeruginosa, we reported that many virulence factors like chitin-binding protein CbpD and elastase LasB were multiphosphorylated. Besides phosphorylation, other PTMs, like those occurring on lysine, seem to play key roles in bacteria. In the present study, we investigated for the first time the lysine succinylome and acetylome of the extracellular compartment of P. aeruginosa by using a two-dimensional immunoaffinity approach. Some virulence factors were identified as multimodified on lysine residues, among them, LasB and CbpD. Lysine can be modified by a wide range of chemical groups. In order to check the presence of other chemical groups on modified lysines identified on LasB and CbpD, we used 1- and 2- dimensional gel electrophoresis approaches to target lysine modified by 7 other modifications: butyrylation, crotonylation, dimethylation, malonylation, methylation, propionylation, and trimethylation. We showed that some lysines of these two virulence factors were modified by these 9 different PTMs. Interestingly, we found that the PTMs recovered on these two virulence factors were different than those previously reported in the intracellular compartment.
Collapse
Affiliation(s)
- Charlotte Gaviard
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS , 76000 Rouen , France.,PISSARO Proteomic Facility, IRIB , 76821 Mont-Saint-Aignan , France
| | - Pascal Cosette
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS , 76000 Rouen , France.,PISSARO Proteomic Facility, IRIB , 76821 Mont-Saint-Aignan , France
| | - Thierry Jouenne
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS , 76000 Rouen , France.,PISSARO Proteomic Facility, IRIB , 76821 Mont-Saint-Aignan , France
| | - Julie Hardouin
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS , 76000 Rouen , France.,PISSARO Proteomic Facility, IRIB , 76821 Mont-Saint-Aignan , France
| |
Collapse
|
42
|
Padmanabhan A, Tong Y, Wu Q, Zhang J, Shah NP. Transcriptomic Insights Into the Growth Phase- and Sugar-Associated Changes in the Exopolysaccharide Production of a High EPS-Producing Streptococcus thermophilus ASCC 1275. Front Microbiol 2018; 9:1919. [PMID: 30177921 PMCID: PMC6109772 DOI: 10.3389/fmicb.2018.01919] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
In a previous study, incorporation of high exopolysaccharide (EPS) producing dairy starter bacterium Streptococcus thermophilus ASCC 1275 was found to improve functionality of low fat mozzarella cheese and yogurt. This bacterium in its eps gene cluster has a unique pair of chain length determining genes, epsC- epsD, when compared to other sequenced S. thermophilus strains. Hence, the aim of this study was to understand the regulatory mechanism of EPS production in this bacterium using transcriptomic analysis to provide opportunities to improve the yield of EPS. As sugars are considered as one of the major determinants of EPS production, after preliminary screening, we selected three sugars, glucose, sucrose and lactose to identify the EPS producing mechanism of this bacterium in M17 medium. Complete RNA-seq analysis was performed using Illumina HiSeq 2000 sequencing system on S. thermophilus 1275 grown in three different sugars at two-time points, 5 h (log phase) and 10 h (stationary phase) to recognize the genes involved in sugar uptake, UDP-sugar formation, EPS assembly and export of EPS outside the bacterial cell. S. thermophilus 1275 was found to produce high amount of EPS (∼430 mg/L) in sucrose (1%) supplemented M17 medium when compared to other two sugars. Differential gene expression analysis revealed the involvement of phosphoenolpyruvate phosphotransferase system (PEP-PTS) for glucose and sucrose uptake, and lacS gene for lactose uptake. The pathways for the formation of UDP-glucose and UDP-galactose were highly upregulated in all the three sugars. In the presence of sucrose, eps1C1D2C2D were found to be highly expressed which refers to high EPS production. Protein homology study suggested the presence of Wzx/Wzy-dependent EPS synthesis and transport pathway in this bacterium. KEGG pathway and COG functional enrichment analysis were also performed to support the result. This is the first report providing the transcriptomic insights into the EPS production mechanism of a common dairy bacterium, S. thermophilus.
Collapse
Affiliation(s)
- Aparna Padmanabhan
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ying Tong
- Cancer Genetics, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Qinglong Wu
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jiangwen Zhang
- Cancer Genetics, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Nagendra P. Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
43
|
Carvalho SM, Kloosterman TG, Manzoor I, Caldas J, Vinga S, Martinussen J, Saraiva LM, Kuipers OP, Neves AR. Interplay Between Capsule Expression and Uracil Metabolism in Streptococcus pneumoniae D39. Front Microbiol 2018; 9:321. [PMID: 29599757 PMCID: PMC5863508 DOI: 10.3389/fmicb.2018.00321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/09/2018] [Indexed: 11/13/2022] Open
Abstract
Pyrimidine nucleotides play an important role in the biosynthesis of activated nucleotide sugars (NDP-sugars). NDP-sugars are the precursors of structural polysaccharides in bacteria, including capsule, which is a major virulence factor of the human pathogen S. pneumoniae. In this work, we identified a spontaneous non-reversible mutant of strain D39 that displayed a non-producing capsule phenotype. Whole-genome sequencing analysis of this mutant revealed several non-synonymous single base modifications, including in genes of the de novo synthesis of pyrimidines and in the -10 box of capsule operon promoter (Pcps). By directed mutagenesis we showed that the point mutation in Pcps was solely responsible for the drastic decrease in capsule expression. We also demonstrated that D39 subjected to uracil deprivation shows increased biomass and decreased Pcps activity and capsule amounts. Importantly, Pcps expression is further decreased by mutating the first gene of the de novo synthesis of pyrimidines, carA. In contrast, the absence of uracil from the culture medium showed no effect on the spontaneous mutant strain. Co-cultivation of the wild-type and the mutant strain indicated a competitive advantage of the spontaneous mutant (non-producing capsule) in medium devoid of uracil. We propose a model in that uracil may act as a signal for the production of different capsule amounts in S. pneumoniae.
Collapse
Affiliation(s)
- Sandra M Carvalho
- Instituto de Tecnologia Química e Biológica NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Tomas G Kloosterman
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Irfan Manzoor
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - José Caldas
- Instituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento (INESC-ID), Lisbon, Portugal
| | - Susana Vinga
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Jan Martinussen
- DTU Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Ana R Neves
- Instituto de Tecnologia Química e Biológica NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
44
|
Ahmad Z, Morona R, Standish AJ. In vitro characterization and identification of potential substrates of a low molecular weight protein tyrosine phosphatase in Streptococcus pneumoniae. MICROBIOLOGY-SGM 2018; 164:697-703. [PMID: 29485030 DOI: 10.1099/mic.0.000631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus pneumoniae is a major human pathogen responsible for significant mortality and morbidity worldwide. Within the annotated genome of the pneumococcus lies a previously uncharacterized protein tyrosine phosphatase which shows homology to low molecular weight protein tyrosine phosphatases (LMWPTPs). LMWPTPs modulate many processes critical for the pathogenicity of a number of bacteria including capsular polysaccharide biosynthesis, stress response and persistence in host macrophages. Here, we demonstrate that Spd1837 is indeed a LMWPTP, by purifying the protein, and characterizing its phosphatase activity. Spd1837 showed specific tyrosine phosphatase activity, and it did not form higher order oligomers in contrast to many other LMWPTPs. Substrate-trapping assays using the wild-type and the phosphatase-deficient Spd1837 identified potential substrates/interacting proteins including major metabolic enzymes such as ATP-dependent-6-phosphofructokinase and Hpr kinase/phosphorylase. Given the tight association between the bacterial basic physiology and virulence, this study hopes to prompt further investigation of how the pneumococcus controls its metabolic flux via the LMWPTP Spd1837.
Collapse
Affiliation(s)
- Zuleeza Ahmad
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, 5005 South Australia, Australia
| | - Renato Morona
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, 5005 South Australia, Australia
| | - Alistair J Standish
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, 5005 South Australia, Australia
| |
Collapse
|
45
|
Another Brick in the Wall: a Rhamnan Polysaccharide Trapped inside Peptidoglycan of Lactococcus lactis. mBio 2017; 8:mBio.01303-17. [PMID: 28900021 PMCID: PMC5596347 DOI: 10.1128/mbio.01303-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Polysaccharides are ubiquitous components of the Gram-positive bacterial cell wall. In Lactococcus lactis, a polysaccharide pellicle (PSP) forms a layer at the cell surface. The PSP structure varies among lactococcal strains; in L. lactis MG1363, the PSP is composed of repeating hexasaccharide phosphate units. Here, we report the presence of an additional neutral polysaccharide in L. lactis MG1363 that is a rhamnan composed of α-l-Rha trisaccharide repeating units. This rhamnan is still present in mutants devoid of the PSP, indicating that its synthesis can occur independently of PSP synthesis. High-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) analysis of whole bacterial cells identified a PSP at the surface of wild-type cells. In contrast, rhamnan was detected only at the surface of PSP-negative mutant cells, indicating that rhamnan is located underneath the surface-exposed PSP and is trapped inside peptidoglycan. The genetic determinants of rhamnan biosynthesis appear to be within the same genetic locus that encodes the PSP biosynthetic machinery, except the gene tagO encoding the initiating glycosyltransferase. We present a model of rhamnan biosynthesis based on an ABC transporter-dependent pathway. Conditional mutants producing reduced amounts of rhamnan exhibit strong morphological defects and impaired division, indicating that rhamnan is essential for normal growth and division. Finally, a mutation leading to reduced expression of lcpA, encoding a protein of the LytR-CpsA-Psr (LCP) family, was shown to severely affect cell wall structure. In lcpA mutant cells, in contrast to wild-type cells, rhamnan was detected by HR-MAS NMR, suggesting that LcpA participates in the attachment of rhamnan to peptidoglycan.IMPORTANCE In the cell wall of Gram-positive bacteria, the peptidoglycan sacculus is considered the major structural component, maintaining cell shape and integrity. It is decorated with other glycopolymers, including polysaccharides, the roles of which are not fully elucidated. In the ovococcus Lactococcus lactis, a polysaccharide with a different structure between strains forms a layer at the bacterial surface and acts as the receptor for various bacteriophages that typically exhibit a narrow host range. The present report describes the identification of a novel polysaccharide in the L. lactis cell wall, a rhamnan that is trapped inside the peptidoglycan and covalently bound to it. We propose a model of rhamnan synthesis based on an ABC transporter-dependent pathway. Rhamnan appears as a conserved component of the lactococcal cell wall playing an essential role in growth and division, thus highlighting the importance of polysaccharides in the cell wall integrity of Gram-positive ovococci.
Collapse
|
46
|
Zeidan AA, Poulsen VK, Janzen T, Buldo P, Derkx PMF, Øregaard G, Neves AR. Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiol Rev 2017; 41:S168-S200. [DOI: 10.1093/femsre/fux017] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/29/2017] [Indexed: 01/14/2023] Open
|
47
|
Grangeasse C. Rewiring the Pneumococcal Cell Cycle with Serine/Threonine- and Tyrosine-kinases. Trends Microbiol 2016; 24:713-724. [DOI: 10.1016/j.tim.2016.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 03/23/2016] [Accepted: 04/07/2016] [Indexed: 12/14/2022]
|
48
|
Structure-function analysis of the extracellular domain of the pneumococcal cell division site positioning protein MapZ. Nat Commun 2016; 7:12071. [PMID: 27346279 PMCID: PMC4931243 DOI: 10.1038/ncomms12071] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/25/2016] [Indexed: 11/09/2022] Open
Abstract
Accurate placement of the bacterial division site is a prerequisite for the generation of two viable and identical daughter cells. In Streptococcus pneumoniae, the positive regulatory mechanism involving the membrane protein MapZ positions precisely the conserved cell division protein FtsZ at the cell centre. Here we characterize the structure of the extracellular domain of MapZ and show that it displays a bi-modular structure composed of two subdomains separated by a flexible serine-rich linker. We further demonstrate in vivo that the N-terminal subdomain serves as a pedestal for the C-terminal subdomain, which determines the ability of MapZ to mark the division site. The C-terminal subdomain displays a patch of conserved amino acids and we show that this patch defines a structural motif crucial for MapZ function. Altogether, this structure–function analysis of MapZ provides the first molecular characterization of a positive regulatory process of bacterial cell division. Placement of the bacterial division site is crucial for the creation of identical daughter cells. Here, the authors solve the structure of the MapZ protein, which helps to position the cell division protein FtsZ at the cell centre, and further analyse the function of the protein in vivo.
Collapse
|
49
|
Mijakovic I, Grangeasse C, Turgay K. Exploring the diversity of protein modifications: special bacterial phosphorylation systems. FEMS Microbiol Rev 2016; 40:398-417. [PMID: 26926353 DOI: 10.1093/femsre/fuw003] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/02/2016] [Indexed: 12/31/2022] Open
Abstract
Protein modifications not only affect protein homeostasis but can also establish new cellular protein functions and are important components of complex cellular signal sensing and transduction networks. Among these post-translational modifications, protein phosphorylation represents the one that has been most thoroughly investigated. Unlike in eukarya, a large diversity of enzyme families has been shown to phosphorylate and dephosphorylate proteins on various amino acids with different chemical properties in bacteria. In this review, after a brief overview of the known bacterial phosphorylation systems, we focus on more recently discovered and less widely known kinases and phosphatases. Namely, we describe in detail tyrosine- and arginine-phosphorylation together with some examples of unusual serine-phosphorylation systems and discuss their potential role and function in bacterial physiology, and regulatory networks. Investigating these unusual bacterial kinase and phosphatases is not only important to understand their role in bacterial physiology but will help to generally understand the full potential and evolution of protein phosphorylation for signal transduction, protein modification and homeostasis in all cellular life.
Collapse
Affiliation(s)
- Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
| | - Christophe Grangeasse
- Unité Microbiologie Moléculaire et Biochimie Structurale, UMR 5086-CNRS/ Université Lyon 1, Lyon 69367, France
| | - Kürşad Turgay
- Institut für Mikrobiologie, Leibniz Universität Hannover, D-30419 Hannover, Germany
| |
Collapse
|
50
|
Garcia-Garcia T, Poncet S, Derouiche A, Shi L, Mijakovic I, Noirot-Gros MF. Role of Protein Phosphorylation in the Regulation of Cell Cycle and DNA-Related Processes in Bacteria. Front Microbiol 2016; 7:184. [PMID: 26909079 PMCID: PMC4754617 DOI: 10.3389/fmicb.2016.00184] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/02/2016] [Indexed: 11/26/2022] Open
Abstract
In all living organisms, the phosphorylation of proteins modulates various aspects of their functionalities. In eukaryotes, protein phosphorylation plays a key role in cell signaling, gene expression, and differentiation. Protein phosphorylation is also involved in the global control of DNA replication during the cell cycle, as well as in the mechanisms that cope with stress-induced replication blocks. Similar to eukaryotes, bacteria use Hanks-type kinases and phosphatases for signal transduction, and protein phosphorylation is involved in numerous cellular processes. However, it remains unclear whether protein phosphorylation in bacteria can also regulate the activity of proteins involved in DNA-mediated processes such as DNA replication or repair. Accumulating evidence supported by functional and biochemical studies suggests that phospho-regulatory mechanisms also take place during the bacterial cell cycle. Recent phosphoproteomics and interactomics studies identified numerous phosphoproteins involved in various aspect of DNA metabolism strongly supporting the existence of such level of regulation in bacteria. Similar to eukaryotes, bacterial scaffolding-like proteins emerged as platforms for kinase activation and signaling. This review reports the current knowledge on the phosphorylation of proteins involved in the maintenance of genome integrity and the regulation of cell cycle in bacteria that reveals surprising similarities to eukaryotes.
Collapse
Affiliation(s)
| | - Sandrine Poncet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Abderahmane Derouiche
- Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
| | - Lei Shi
- Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
| | - Ivan Mijakovic
- Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkHørsholm, Denmark
| | | |
Collapse
|