1
|
Pham-Bui HA, Lee M. Germ granule-mediated mRNA storage and translational control. RNA Biol 2025; 22:1-11. [PMID: 39895378 PMCID: PMC11810088 DOI: 10.1080/15476286.2025.2462276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/24/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025] Open
Abstract
Germ cells depend on specialized post-transcriptional regulation for proper development and function, much of which is mediated by dynamic RNA granules. These membrane-less organelles form through the condensation of RNA and proteins, governed by multivalent biomolecular interactions. RNA granules compartmentalize cellular components, selectively enriching specific factors and modulating biochemical reactions. Over recent decades, various types of RNA granules have been identified in germ cells across species, with extensive studies uncovering their molecular roles and developmental significance. This review explores the mRNA regulatory mechanisms mediated by RNA granules in germ cells. We discuss the distinct spatial organization of specific granule components and the variations in material states of germ granules, which contribute to the regulation of mRNA storage and translation. Additionally, we highlight emerging research on how changes in these material states, during developmental stages, reflect the dynamic nature of germ granules and their critical role in development.
Collapse
Affiliation(s)
- Hoang-Anh Pham-Bui
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, Korea
| |
Collapse
|
2
|
Tan X, Chen C, Gao X, Wang H, Zhang Y, Li T. SMG5, a component of nonsense-mediated mRNA decay, is essential for the mouse spermatogonial differentiation and maintenance. FASEB J 2024; 38:e70268. [PMID: 39704269 DOI: 10.1096/fj.202402422r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Mammalian spermatogenesis is a tightly controlled cellular process including spermatogonial development and differentiation, meiosis of spermatocyte, and the morphological specification of haploid spermatozoa, during which the post-transcriptional gene regulations are vital but poorly understood. Nonsense-mediated mRNA decay (NMD), a highly conserved post-transcriptional regulatory mechanism of gene expression in eukaryotes, recently emerges as a licensing mechanism in cell fate transition, including stem cell differentiation and organogenesis. The function of NMD in spermatogonial development remains elusive. Here we found knockout of SMG5, an important component of the NMD machinery, in embryonic germ cells led to the failure of spermatogenesis and male infertility. SMG5 null resulted in defective differentiation and maintenance of spermatogonia, which affected initiation of meiosis, ultimately caused a "Sertoli cell-only" phenotype. Transcriptome analysis revealed that SMG5 loss led to serious defects in NMD with targets features including PTC, long 3' UTR, and 5' uORFs. Furthermore, SMG5 loss downregulates gene transcripts involved in spermatogonia expansion and differentiation. During the spermatogonial differentiation, the deletion of SMG5 led to hyperactivation of the p38 MAPK signaling pathway, which triggered widespread cell death. These results suggest that SMG5 mediated NMD plays an important role in spermatogenesis by regulating the p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Xiao Tan
- State Key Laboratory of Microbial Technology, Shandong University-Qingdao Campus, Qingdao, P.R. China
| | - Chengyan Chen
- State Key Laboratory of Microbial Technology, Shandong University-Qingdao Campus, Qingdao, P.R. China
| | - Xiyao Gao
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, P.R. China
| | - Hua Wang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, P.R. China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University-Qingdao Campus, Qingdao, P.R. China
| | - Tangliang Li
- State Key Laboratory of Microbial Technology, Shandong University-Qingdao Campus, Qingdao, P.R. China
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, P.R. China
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, P.R. China
| |
Collapse
|
3
|
Jiang N, Li Y, Yin L, Yuan S, Wang F. The Intricate Functional Networks of Pre-mRNA Alternative Splicing in Mammalian Spermatogenesis. Int J Mol Sci 2024; 25:12074. [PMID: 39596142 PMCID: PMC11594017 DOI: 10.3390/ijms252212074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Spermatogenesis is a highly coordinated process that requires the precise expression of specific subsets of genes in different types of germ cells, controlled both temporally and spatially. Among these genes, those that can exert an indispensable influence in spermatogenesis via participating in alternative splicing make up the overwhelming majority. mRNA alternative-splicing (AS) events can generate various isoforms with distinct functions from a single DNA sequence, based on specific AS codes. In addition to enhancing the finite diversity of the genome, AS can also regulate the transcription and translation of certain genes by directly binding to their cis-elements or by recruiting trans-elements that interact with consensus motifs. The testis, being one of the most complex tissue transcriptomes, undergoes unparalleled transcriptional and translational activity, supporting the dramatic and dynamic transitions that occur during spermatogenesis. Consequently, AS plays a vital role in producing an extensive array of transcripts and coordinating significant changes throughout this process. In this review, we summarize the intricate functional network of alternative splicing in spermatogenesis based on the integration of current research findings.
Collapse
Affiliation(s)
| | | | | | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (N.J.); (Y.L.); (L.Y.)
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (N.J.); (Y.L.); (L.Y.)
| |
Collapse
|
4
|
Li Y, Wang Y, Tan YQ, Yue Q, Guo Y, Yan R, Meng L, Zhai H, Tong L, Yuan Z, Li W, Wang C, Han S, Ren S, Yan Y, Wang W, Gao L, Tan C, Hu T, Zhang H, Liu L, Yang P, Jiang W, Ye Y, Tan H, Wang Y, Lu C, Li X, Xie J, Yuan G, Cui Y, Shen B, Wang C, Guan Y, Li W, Shi Q, Lin G, Ni T, Sun Z, Ye L, Vourekas A, Guo X, Lin M, Zheng K. The landscape of RNA binding proteins in mammalian spermatogenesis. Science 2024; 386:eadj8172. [PMID: 39208083 DOI: 10.1126/science.adj8172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Despite continuous expansion of the RNA binding protein (RBP) world, there is a lack of systematic understanding of RBPs in the mammalian testis, which harbors one of the most complex tissue transcriptomes. We adapted RNA interactome capture to mouse male germ cells, building an RBP atlas characterized by multiple layers of dynamics along spermatogenesis. Trapping of RNA-cross-linked peptides showed that the glutamic acid-arginine (ER) patch, a residue-coevolved polyampholytic element present in coiled coils, enhances RNA binding of its host RBPs. Deletion of this element in NONO (non-POU domain-containing octamer-binding protein) led to a defective mitosis-to-meiosis transition due to compromised NONO-RNA interactions. Whole-exome sequencing of over 1000 infertile men revealed a prominent role of RBPs in the human genetic architecture of male infertility and identified risk ER patch variants.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuanyuan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Andrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University, Nanjing 210008, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ruoyu Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Huicong Zhai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lingxiu Tong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zihan Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wu Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cuicui Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shenglin Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Sen Ren
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yitong Yan
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Weixu Wang
- Institute of Computational Biology, Helmholtz Center Munich, Munich 85764, Germany
| | - Lei Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Tongyao Hu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Liya Liu
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Pinglan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wanyin Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiting Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chenyu Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xin Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Gege Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Yichun Guan
- Center for Reproductive Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Anastasios Vourekas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
- Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213000, China
- Division of Birth Cohort Study, Fujian Maternity and Child Health Hospital, Fuzhou 350014, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
5
|
Bi X, Jin H, Wan F, Xia Y, Guo H, Chen S, Wang B. Loss-of-function variant in TDRD6 cause male infertility with severe oligo-astheno-teratozoospermia in human and mice. J Cell Mol Med 2024; 28:e18580. [PMID: 39331689 PMCID: PMC11431060 DOI: 10.1111/jcmm.18580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 09/29/2024] Open
Abstract
Oligo-astheno-teratozoospermia (OAT) is a common cause of male infertility, but the genetic basis of most OAT cases is still unknown. Here, one homozygous loss-of-function (LOF) variant in TDRD6, c.G1825T/p.Gly609X, was identified in an infertile patient with severe OAT by whole-exome sequencing (WES) and Sanger confirmation. Furthermore, Tdrd6-mutant mice (p.Gly615X; equivalent to p.Gly609X in human TDRD6) were generated. Remarkably, the Tdrd6-mutated mice mimicked the severe OAT symptoms of the patient. In addition, the architecture of chromatoid bodies (CBs) were disrupted in round spermatids from Tdrd6-mutant mice, leading to blocked spermatogenesis in the round spermatids. The assembly of PIWIL1, TDRD1, TDRD7 and DDX25 in CBs was disturbed in the Tdrd6-mutant mice. Applying immunoprecipitation-mass spectrometry (IP-MS), we identified some TDRD6-interacting partners, including CB proteins TDRD7, MAEL and PCBP1. Moreover, we described the assisted reproductive technology (ART) outcomes of the infertile patient and his partner. Altogether, our findings provide necessary evidences to support the idea that the homozygous LOF variant in TDRD6 induces male infertility with severe OAT, suggesting that TDRD6 could be a useful genetic diagnostic target for male infertility.
Collapse
Affiliation(s)
- Xinying Bi
- Center for GeneticsNational Research Institute for Family PlanningBeijingChina
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Huijuan Jin
- Key Laboratory of Cell Proliferation and Regulation Biology, Department of Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Feng Wan
- The Reproductive Medicine Center, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yanqing Xia
- The Reproductive Medicine Center, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Haibin Guo
- The Reproductive Medicine Center, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Suren Chen
- Key Laboratory of Cell Proliferation and Regulation Biology, Department of Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Binbin Wang
- Center for GeneticsNational Research Institute for Family PlanningBeijingChina
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
6
|
Vrettos N, Oppelt J, Zoch A, Sgourdou P, Yoshida H, Song B, Fink R, O’Carroll D, Mourelatos Z. MIWI N-terminal arginines orchestrate generation of functional pachytene piRNAs and spermiogenesis. Nucleic Acids Res 2024; 52:6558-6570. [PMID: 38520410 PMCID: PMC11194079 DOI: 10.1093/nar/gkae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
N-terminal arginine (NTR) methylation is a conserved feature of PIWI proteins, which are central components of the PIWI-interacting RNA (piRNA) pathway. The significance and precise function of PIWI NTR methylation in mammals remains unknown. In mice, PIWI NTRs bind Tudor domain containing proteins (TDRDs) that have essential roles in piRNA biogenesis and the formation of the chromatoid body. Using mouse MIWI (PIWIL1) as paradigm, we demonstrate that the NTRs are essential for spermatogenesis through the regulation of transposons and gene expression. The loss of TDRD5 and TDRKH interaction with MIWI results in attenuation of piRNA amplification. We find that piRNA amplification is necessary for transposon control and for sustaining piRNA levels including select, nonconserved, pachytene piRNAs that target specific mRNAs required for spermatogenesis. Our findings support the notion that the vast majority of pachytene piRNAs are dispensable, acting as self-serving genetic elements that rely for propagation on MIWI piRNA amplification. MIWI-NTRs also mediate interactions with TDRD6 that are necessary for chromatoid body compaction. Furthermore, MIWI-NTRs promote stabilization of spermiogenic transcripts that drive nuclear compaction, which is essential for sperm formation. In summary, the NTRs underpin the diversification of MIWI protein function.
Collapse
Affiliation(s)
- Nicholas Vrettos
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jan Oppelt
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ansgar Zoch
- Centre for Regenerative Medicine, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Paraskevi Sgourdou
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Haruka Yoshida
- Centre for Regenerative Medicine, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
| | - Brian Song
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan Fink
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dónal O’Carroll
- Centre for Regenerative Medicine, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Zissimos Mourelatos
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Guo R, Wu H, Zhu X, Wang G, Hu K, Li K, Geng H, Xu C, Zu C, Gao Y, Tang D, Cao Y, He X. Bi-allelic variants in chromatoid body protein TDRD6 cause spermiogenesis defects and severe oligoasthenoteratozoospermia in humans. J Med Genet 2024; 61:553-565. [PMID: 38341271 DOI: 10.1136/jmg-2023-109766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND The association between the TDRD6 variants and human infertility remains unclear, as only one homozygous missense variant of TDRD6 was found to be associated with oligoasthenoteratozoospermia (OAT). METHODS Whole-exome sequencing and Sanger sequencing were employed to identify potential pathogenic variants of TDRD6 in infertile men. Histology, immunofluorescence, immunoblotting and ultrastructural analyses were conducted to clarify the structural and functional abnormalities of sperm in mutated patients. Tdrd6-knockout mice were generated using the CRISPR-Cas9 system. Total RNA-seq and single-cell RNA-seq (scRNA-seq) analyses were used to elucidate the underlying molecular mechanisms, followed by validation through quantitative RT-PCR and immunostaining. Intracytoplasmic sperm injection (ICSI) was also used to assess the efficacy of clinical treatment. RESULTS Bi-allelic TDRD6 variants were identified in five unrelated Chinese individuals with OAT, including homozygous loss-of-function variants in two consanguineous families. Notably, besides reduced concentrations and impaired motility, a significant occurrence of acrosomal hypoplasia was detected in multiple spermatozoa among five patients. Using the Tdrd6-deficient mice, we further elucidate the pivotal role of TDRD6 in spermiogenesis and acrosome identified. In addition, the mislocalisation of crucial chromatoid body components DDX4 (MVH) and UPF1 was also observed in round spermatids from patients harbouring TDRD6 variants. ScRNA-seq analysis of germ cells from a patient with TDRD6 variants revealed that TDRD6 regulates mRNA metabolism processes involved in spermatid differentiation and cytoplasmic translation. CONCLUSION Our findings strongly suggest that TDRD6 plays a conserved role in spermiogenesis and confirms the causal relationship between TDRD6 variants and human OAT. Additionally, this study highlights the unfavourable ICSI outcomes in individuals with bi-allelic TDRD6 variants, providing insights for potential clinical treatment strategies.
Collapse
Affiliation(s)
- Rui Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Huan Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Xiaoyu Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Guanxiong Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Kaiqin Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artifical Organs, Ministry of Education, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Kuokuo Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artifical Organs, Ministry of Education, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Hao Geng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artifical Organs, Ministry of Education, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Chuan Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artifical Organs, Ministry of Education, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Chenwan Zu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artifical Organs, Ministry of Education, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Yang Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artifical Organs, Ministry of Education, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Dongdong Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Mercier BC, Labaronne E, Cluet D, Guiguettaz L, Fontrodona N, Bicknell A, Corbin A, Wencker M, Aube F, Modolo L, Jouravleva K, Auboeuf D, Moore MJ, Ricci EP. Translation-dependent and -independent mRNA decay occur through mutually exclusive pathways defined by ribosome density during T cell activation. Genome Res 2024; 34:394-409. [PMID: 38508694 PMCID: PMC11067875 DOI: 10.1101/gr.277863.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
mRNA translation and decay are tightly interconnected processes both in the context of mRNA quality-control pathways and for the degradation of functional mRNAs. Cotranslational mRNA degradation through codon usage, ribosome collisions, and the recruitment of specific proteins to ribosomes is an important determinant of mRNA turnover. However, the extent to which translation-dependent mRNA decay (TDD) and translation-independent mRNA decay (TID) pathways participate in the degradation of mRNAs has not been studied yet. Here we describe a comprehensive analysis of basal and signal-induced TDD and TID in mouse primary CD4+ T cells. Our results indicate that most cellular transcripts are decayed to some extent in a translation-dependent manner. Our analysis further identifies the length of untranslated regions, the density of ribosomes, and GC3 content as important determinants of TDD magnitude. Consistently, all transcripts that undergo changes in ribosome density within their coding sequence upon T cell activation display a corresponding change in their TDD level. Moreover, we reveal a dynamic modulation in the relationship between GC3 content and TDD upon T cell activation, with a reversal in the impact of GC3- and AU3-rich codons. Altogether, our data show a strong and dynamic interconnection between mRNA translation and decay in mammalian primary cells.
Collapse
Affiliation(s)
- Blandine C Mercier
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Emmanuel Labaronne
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
- ADLIN Science, 9100 Evry-Courcouronnes, France
| | - David Cluet
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
| | - Laura Guiguettaz
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
| | - Nicolas Fontrodona
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
| | - Alicia Bicknell
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Antoine Corbin
- Centre International de Recherche en Infectiologie Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Mélanie Wencker
- Centre International de Recherche en Infectiologie Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Fabien Aube
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
| | - Laurent Modolo
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
| | - Karina Jouravleva
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
| | - Didier Auboeuf
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
| | - Melissa J Moore
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA;
| | - Emiliano P Ricci
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France;
| |
Collapse
|
9
|
Vrettos N, Oppelt J, Zoch A, Sgourdou P, Yoshida H, Song B, Fink R, O’Carroll D, Mourelatos Z. MIWI arginines orchestrate generation of functional pachytene piRNAs and spermiogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573779. [PMID: 38260298 PMCID: PMC10802271 DOI: 10.1101/2023.12.31.573779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
N-terminal arginine (NTR) methylation is a conserved feature of PIWI proteins, which are central components of the PIWI-interacting RNA (piRNA) pathway. The significance and precise function of PIWI NTR methylation in mammals remains unknown. In mice, PIWI NTRs bind Tudor domain containing proteins (TDRDs) that have essential roles in piRNA biogenesis and the formation of the chromatoid body. Using mouse MIWI (PIWIL1) as paradigm, we demonstrate that the NTRs are essential for spermatogenesis through the regulation of transposons and gene expression. Surprisingly, the loss of TDRD5 and TDRKH interaction with MIWI results in defective piRNA amplification, rather than an expected failure of piRNA biogenesis. We find that piRNA amplification is necessary for both transposon control and for sustaining levels of select, nonconserved, pachytene piRNAs that target specific mRNAs required for spermatogenesis. Our findings support the notion that the vast majority of pachytene piRNAs are dispensable, acting as autonomous genetic elements that rely for propagation on MIWI piRNA amplification. MIWI-NTRs also mediate interactions with TDRD6 that are necessary for chromatoid body compaction. Furthermore, MIWI-NTRs promote stabilization of spermiogenic transcripts that drive nuclear compaction, which is essential for sperm formation. In summary, the NTRs underpin the diversification of MIWI protein function.
Collapse
Affiliation(s)
- Nicholas Vrettos
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jan Oppelt
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ansgar Zoch
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences
| | - Paraskevi Sgourdou
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Haruka Yoshida
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences
| | - Brian Song
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ryan Fink
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dónal O’Carroll
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Zissimos Mourelatos
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
10
|
Abstract
In meiosis, homologous chromosome synapsis is mediated by a supramolecular protein structure, the synaptonemal complex (SC), that assembles between homologous chromosome axes. The mammalian SC comprises at least eight largely coiled-coil proteins that interact and self-assemble to generate a long, zipper-like structure that holds homologous chromosomes in close proximity and promotes the formation of genetic crossovers and accurate meiotic chromosome segregation. In recent years, numerous mutations in human SC genes have been associated with different types of male and female infertility. Here, we integrate structural information on the human SC with mouse and human genetics to describe the molecular mechanisms by which SC mutations can result in human infertility. We outline certain themes in which different SC proteins are susceptible to different types of disease mutation and how genetic variants with seemingly minor effects on SC proteins may act as dominant-negative mutations in which the heterozygous state is pathogenic.
Collapse
Affiliation(s)
- Ian R Adams
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
11
|
Valcarce DG, Riesco MF, Cuesta-Martín L, Esteve-Codina A, Martínez-Vázquez JM, Robles V. Stress decreases spermatozoa quality and induces molecular alterations in zebrafish progeny. BMC Biol 2023; 21:70. [PMID: 37013516 PMCID: PMC10071778 DOI: 10.1186/s12915-023-01570-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Chronic stress can produce a severe negative impact on health not only in the exposed individuals but also in their offspring. Indeed, chronic stress may be contributing to the current worldwide scenario of increasing infertility and decreasing gamete quality in human populations. Here, we evaluate the effect of chronic stress on behavior and male reproductive parameters in zebrafish. Our goal is to provide information on the impact that chronic stress has at molecular, histological, and physiological level in a vertebrate model species. RESULTS We evaluated the effects of a 21-day chronic stress protocol covering around three full waves of spermatogenesis in Danio rerio adult males. The induction of chronic stress produced anxiety-like behavior in stressed males as assessed by a novel tank test. At a molecular level, the induction of chronic stress consistently resulted in the overexpression of two genes related to endoplasmic reticulum (ER) stress in the brain. Gene set enrichment analysis (GSEA) of testes suggested a dysregulation of the nonsense-mediated decay (NMD) pathway, which was also confirmed on qPCR analysis. Histological analysis of the testicle did not show significant differences in terms of the relative proportions of each germ-cell type; however, the quality of sperm from stressed males was compromised in terms of motility. RNA-seq analysis in stress-derived larval progenies revealed molecular alterations, including those predicted to affect translation initiation, DNA repair, cell cycle control, and response to stress. CONCLUSIONS Induction of chronic stress during a few cycles of spermatogenesis in the vertebrate zebrafish model affects behavior, gonadal gene expression, final gamete quality, and progeny. The NMD surveillance pathway (a key cellular mechanism that regulates the stability of both normal and mutant transcripts) is severely affected in the testes by chronic stress and therefore the control and regulation of RNAs during spermatogenesis may be affected altering the molecular status in the progeny.
Collapse
Affiliation(s)
- David G Valcarce
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
- Instituto Español de Oceanografía, Centro Oceanográfico de Santander (COST-IEO), CSIC, Calle Severiano Ballesteros 16. 39004, Santander, Spain
| | - Marta F Riesco
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Leyre Cuesta-Martín
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Juan Manuel Martínez-Vázquez
- Instituto Español de Oceanografía, Centro Oceanográfico de Santander (COST-IEO), CSIC, Calle Severiano Ballesteros 16. 39004, Santander, Spain
| | - Vanesa Robles
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| |
Collapse
|
12
|
Tan X, Zheng C, Zhuang Y, Jin P, Wang F. The m6A reader PRRC2A is essential for meiosis I completion during spermatogenesis. Nat Commun 2023; 14:1636. [PMID: 36964127 PMCID: PMC10039029 DOI: 10.1038/s41467-023-37252-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/08/2023] [Indexed: 03/26/2023] Open
Abstract
N6-methyladenosine (m6A) and its reader proteins YTHDC1, YTHDC2, and YTHDF2 have been shown to exert essential functions during spermatogenesis. However, much remains unknown about m6A regulation mechanisms and the functions of specific readers during the meiotic cell cycle. Here, we show that the m6A reader Proline rich coiled-coil 2A (PRRC2A) is essential for male fertility. Germ cell-specific knockout of Prrc2a causes XY asynapsis and impaired meiotic sex chromosome inactivation in late-prophase spermatocytes. Moreover, PRRC2A-null spermatocytes exhibit delayed metaphase entry, chromosome misalignment, and spindle disorganization at metaphase I and are finally arrested at this stage. Sequencing data reveal that PRRC2A decreases the RNA abundance or improves the translation efficiency of targeting transcripts. Specifically, PRRC2A recognizes spermatogonia-specific transcripts and downregulates their RNA abundance to maintain the spermatocyte expression pattern during the meiosis prophase. For genes involved in meiotic cell division, PRRC2A improves the translation efficiency of their transcripts. Further, co-immunoprecipitation data show that PRRC2A interacts with several proteins regulating mRNA metabolism or translation (YBX1, YBX2, PABPC1, FXR1, and EIF4G3). Our study reveals post-transcriptional functions of PRRC2A and demonstrates its critical role in the completion of meiosis I in spermatogenesis.
Collapse
Affiliation(s)
- Xinshui Tan
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Caihong Zheng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, 100101, China
| | - Yinghua Zhuang
- National Institute of Biological Sciences, Beijing, China
| | - Pengpeng Jin
- National Institute of Biological Sciences, Beijing, China
| | - Fengchao Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|
13
|
Lehtiniemi T, Bourgery M, Ma L, Ahmedani A, Mäkelä M, Asteljoki J, Olotu O, Laasanen S, Zhang FP, Tan K, Chousal JN, Burow D, Koskinen S, Laiho A, Elo L, Chalmel F, Wilkinson M, Kotaja N. SMG6 localizes to the chromatoid body and shapes the male germ cell transcriptome to drive spermatogenesis. Nucleic Acids Res 2022; 50:11470-11491. [PMID: 36259644 PMCID: PMC9723633 DOI: 10.1093/nar/gkac900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 12/24/2022] Open
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA turnover pathway that depends on the endonuclease SMG6. Here, we show that SMG6 is essential for male germ cell differentiation in mice. Germ-cell conditional knockout (cKO) of Smg6 induces extensive transcriptome misregulation, including a failure to eliminate meiotically expressed transcripts in early haploid cells, and accumulation of NMD target mRNAs with long 3' untranslated regions (UTRs). Loss of SMG6 in the male germline results in complete arrest of spermatogenesis at the early haploid cell stage. We find that SMG6 is strikingly enriched in the chromatoid body (CB), a specialized cytoplasmic granule in male germ cells also harboring PIWI-interacting RNAs (piRNAs) and the piRNA-binding protein PIWIL1. This raises the possibility that SMG6 and the piRNA pathway function together, which is supported by several findings, including that Piwil1-KO mice phenocopy Smg6-cKO mice and that SMG6 and PIWIL1 co-regulate many genes in round spermatids. Together, our results demonstrate that SMG6 is an essential regulator of the male germline transcriptome, and highlight the CB as a molecular platform coordinating RNA regulatory pathways to control sperm production and fertility.
Collapse
Affiliation(s)
- Tiina Lehtiniemi
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Matthieu Bourgery
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Lin Ma
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Ammar Ahmedani
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Margareeta Mäkelä
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Juho Asteljoki
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Opeyemi Olotu
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Samuli Laasanen
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Fu-Ping Zhang
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
- GM-Unit, Helsinki Institute of Life Science, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jennifer N Chousal
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Dana Burow
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Satu Koskinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L Elo
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Frédéric Chalmel
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine (IGM), University of California, San Diego, La Jolla, CA 92093, USA
| | - Noora Kotaja
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| |
Collapse
|
14
|
Berry CW, Olivares GH, Gallicchio L, Ramaswami G, Glavic A, Olguín P, Li JB, Fuller MT. Developmentally regulated alternate 3' end cleavage of nascent transcripts controls dynamic changes in protein expression in an adult stem cell lineage. Genes Dev 2022; 36:916-935. [PMID: 36175033 PMCID: PMC9575692 DOI: 10.1101/gad.349689.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/12/2022] [Indexed: 02/03/2023]
Abstract
Alternative polyadenylation (APA) generates transcript isoforms that differ in the position of the 3' cleavage site, resulting in the production of mRNA isoforms with different length 3' UTRs. Although widespread, the role of APA in the biology of cells, tissues, and organisms has been controversial. We identified >500 Drosophila genes that express mRNA isoforms with a long 3' UTR in proliferating spermatogonia but a short 3' UTR in differentiating spermatocytes due to APA. We show that the stage-specific choice of the 3' end cleavage site can be regulated by the arrangement of a canonical polyadenylation signal (PAS) near the distal cleavage site but a variant or no recognizable PAS near the proximal cleavage site. The emergence of transcripts with shorter 3' UTRs in differentiating cells correlated with changes in expression of the encoded proteins, either from off in spermatogonia to on in spermatocytes or vice versa. Polysome gradient fractionation revealed >250 genes where the long 3' UTR versus short 3' UTR mRNA isoforms migrated differently, consistent with dramatic stage-specific changes in translation state. Thus, the developmentally regulated choice of an alternative site at which to make the 3' end cut that terminates nascent transcripts can profoundly affect the suite of proteins expressed as cells advance through sequential steps in a differentiation lineage.
Collapse
Affiliation(s)
- Cameron W Berry
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Gonzalo H Olivares
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Center for Genome Regulation (CRG), Universidad de Chile, Santiago 7810000, Chile
- Drosophila Ring in Developmental Adaptations to Nutritional Stress (DRiDANS), Universidad de Chile, Santiago 7810000, Chile
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7810000, Chile
- Program of Human Genetics, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Escuela de Kinesiología, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Huechuraba 8580745, Chile
- Center of Integrative Biology (CIB), Universidad Mayor, Huechuraba 8580745, Chile
| | - Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Gokul Ramaswami
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Alvaro Glavic
- Center for Genome Regulation (CRG), Universidad de Chile, Santiago 7810000, Chile
- Drosophila Ring in Developmental Adaptations to Nutritional Stress (DRiDANS), Universidad de Chile, Santiago 7810000, Chile
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7810000, Chile
| | - Patricio Olguín
- Drosophila Ring in Developmental Adaptations to Nutritional Stress (DRiDANS), Universidad de Chile, Santiago 7810000, Chile
- Program of Human Genetics, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Jin Billy Li
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
15
|
Morgan M, Kumar L, Li Y, Baptissart M. Post-transcriptional regulation in spermatogenesis: all RNA pathways lead to healthy sperm. Cell Mol Life Sci 2021; 78:8049-8071. [PMID: 34748024 DOI: 10.1007/s00018-021-04012-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 01/22/2023]
Abstract
Multiple RNA pathways are required to produce functional sperm. Here, we review RNA post-transcriptional regulation during spermatogenesis with particular emphasis on the role of 3' end modifications. From early studies in the 1970s, it became clear that spermiogenesis transcripts could be stored for days only to be translated at advanced stages of spermatid differentiation. The transition between the translationally repressed and active states was observed to correlate with the shortening of the transcripts' poly(A) tail, establishing a link between RNA 3' end metabolism and male germ cell differentiation. Since then, numerous RNA metabolic pathways have been implicated not only in the progression through spermatogenesis, but also in the maintenance of genomic integrity. Recent studies have characterized the elusive 3' biogenesis of Piwi-interacting RNAs (piRNAs), identified a critical role for messenger RNA (mRNA) 3' uridylation in meiotic progression, established the mechanisms that destabilize transcripts with long 3' untranslated regions (3'UTRs) in post-mitotic cells, and defined the physiological relevance of RNA exonucleases and deadenylases in male germ cells. In this review, we discuss RNA processing in the male germline in the light of the most recent findings. A brief recollection of different RNA-processing events will aid future studies exploring post-transcriptional regulation in spermatogenesis.
Collapse
Affiliation(s)
- Marcos Morgan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA.
| | - Lokesh Kumar
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Yin Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Marine Baptissart
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| |
Collapse
|
16
|
Zhang J, He X, Wu H, Zhang X, Yang S, Liu C, Liu S, Hua R, Zhou S, Zhao S, Hu F, Zhang J, Liu W, Cheng H, Gao Y, Zhang F, Cao Y, Liu M. Loss of DRC1 function leads to multiple morphological abnormalities of the sperm flagella and male infertility in human and mouse. Hum Mol Genet 2021; 30:1996-2011. [PMID: 34169321 PMCID: PMC8522639 DOI: 10.1093/hmg/ddab171] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
Motile cilia and flagellar defects can result in primary ciliary dyskinesia, which is a
multisystemic genetic disorder that affects roughly 1:10 000 individuals. The nexin-dynein
regulatory complex (N-DRC) links neighboring doublet microtubules within flagella, serving
as a central regulatory hub for motility in Chlamydomonas. Herein, we identified two
homozygous DRC1 variants in human patients that were associated with
multiple morphological abnormalities of the sperm flagella (MMAF) and male infertility.
Drc1−/−, Drc1R554X/R554X and
Drc1W244X/W244X mice on the C57BL/6 background suffered from
pre-pubertal mortality. However, when the ICR background was introduced, some of these
mice were able to survive and recapitulate the MMAF phenotypes detected in human patients.
By analyzing these animals, we determined that DRC1 is an essential regulator of N-DRC
assembly in cilia and flagella. When DRC1 is absent, this results in the shortening of
cilia and consequent impairment of their motility. Damage associated with DRC1 deficiency
in sperm flagella was more pronounced than in cilia, as manifested by complete axoneme
structural disorder in addition to the loss of the DRC structure. Altogether, these
findings suggest that DRC1 is required for the structural stability of flagella but not
cilia, emphasizing the key role of this protein in mammalian species.
Collapse
Affiliation(s)
- Jintao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Shenmin Yang
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou 215002, China
| | - Chunyu Liu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Siyu Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Rong Hua
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Shushu Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Shuqin Zhao
- State Key Laboratory of Reproductive Medicine, Animal Core Facility of Nanjing Medical University, Nanjing 211166, China
| | - Fan Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Junqiang Zhang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
| | - Wangjie Liu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Huiru Cheng
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
17
|
Bianchi E, Stermer A, Nolan T, Li H, Hall S, Boekelheide K, Sigman M, Hwang K. Highly conserved sperm function-related transcripts across three species: human, rat and mouse. Reprod Toxicol 2021; 104:44-51. [PMID: 34174366 DOI: 10.1016/j.reprotox.2021.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/24/2023]
Abstract
Assessing male reproductive toxicity of environmental and therapeutic agents relies on the histopathology of the testis and epididymis in a pre-clinical setting. Animal histopathology poorly correlates with human sperm parameters, and none of these current methods are strong indicators of sperm health or reproductive potential. Therefore, there is an urgent need to identify a translatable, non-invasive and reliable approach to monitor environmental and therapeutic agents' effects on male reproductive health. mRNA sequences were analyzed in mouse, rat and human sperm samples to identify sperm transcriptomic similarities across species that could be used as biomarkers to predict male reproductive toxicity in animal models. Semen specimens were collected from men aged 18 to 55 years with proven fertility. Rat and mouse semen specimens were collected via needle punctures of the cauda epididymides. Sperm RNAs were extracted using an optimized sperm RNA isolation protocol and subjected to polyA-purified mRNA-sequencing. Bioinformatics analyses, including differential abundance and gene set enrichment analysis, were used to investigate the biological and molecular functions of all shared and differentially abundant transcripts across species. Transcriptome profiling identified 6,684 similarly expressed transcripts within the three species of which 1,579 transcripts were found to be involved in spermatogenic functions. Our findings have shown that sperm transcriptome is highly species dependent, however, there are some key similarities among transcripts that are required for fertility. Based on these similarities, sperm mRNA biomarker may be developed to monitor male reproductive toxicity where rodent models would make suitable laboratory substitutes for human.
Collapse
Affiliation(s)
- Enrica Bianchi
- Division of Urology, Rhode Island Hospital, Providence, RI, USA; Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Angela Stermer
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Timothy Nolan
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Hui Li
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Susan Hall
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Mark Sigman
- Division of Urology, Rhode Island Hospital, Providence, RI, USA; Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Kathleen Hwang
- Department of Urology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Tian H, Petkov PM. Mouse EWSR1 is crucial for spermatid post-meiotic transcription and spermiogenesis. Development 2021; 148:269056. [PMID: 34100066 DOI: 10.1242/dev.199414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022]
Abstract
Spermatogenesis is precisely controlled by complex gene-expression programs. During mammalian male germ-cell development, a crucial feature is the repression of transcription before spermatid elongation. Previously, we discovered that the RNA-binding protein EWSR1 plays an important role in meiotic recombination in mouse, and showed that EWSR1 is highly expressed in late meiotic cells and post-meiotic cells. Here, we used an Ewsr1 pachytene stage-specific knockout mouse model to study the roles of Ewsr1 in late meiotic prophase I and in spermatozoa maturation. We show that loss of EWSR1 in late meiotic prophase I does not affect proper meiosis completion, but does result in defective spermatid elongation and chromocenter formation in the developing germ cells. As a result, male mice lacking EWSR1 after pachynema are sterile. We found that, in Ewsr1 CKO round spermatids, transition from a meiotic gene-expression program to a post-meiotic and spermatid gene expression program related to DNA condensation is impaired, suggesting that EWSR1 plays an important role in regulation of spermiogenesis-related mRNA synthesis necessary for spermatid differentiation into mature sperm.
Collapse
Affiliation(s)
- Hui Tian
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
19
|
Kitamura Y, Uranishi K, Hirasaki M, Nishimoto M, Suzuki A, Okuda A. Identification of germ cell-specific Mga variant mRNA that promotes meiosis via impediment of a non-canonical PRC1. Sci Rep 2021; 11:9737. [PMID: 33958653 PMCID: PMC8102552 DOI: 10.1038/s41598-021-89123-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023] Open
Abstract
A non-canonical PRC1 (PRC1.6) prevents precocious meiotic onset. Germ cells alleviate its negative effect by reducing their amount of MAX, a component of PRC1.6, as a prerequisite for their bona fide meiosis. Here, we found that germ cells produced Mga variant mRNA bearing a premature termination codon (PTC) during meiosis as an additional mechanism to impede the function of PRC1.6. The variant mRNA encodes an anomalous MGA protein that lacks the bHLHZ domain and thus functions as a dominant negative regulator of PRC1.6. Notwithstanding the presence of PTC, the Mga variant mRNA are rather stably present in spermatocytes and spermatids due to their intrinsic inefficient background of nonsense-mediated mRNA decay. Thus, our data indicate that meiosis is controlled in a multi-layered manner in which both MAX and MGA, which constitute the core of PRC1.6, are at least used as targets to deteriorate the integrity of the complex to ensure progression of meiosis.
Collapse
Affiliation(s)
- Yuka Kitamura
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan
| | - Kousuke Uranishi
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan
| | - Masataka Hirasaki
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan
- Department of Clinical Cancer Genomics, International Medical Center, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan
| | - Masazumi Nishimoto
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan
- Biomedical Research Center, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan
| | - Ayumu Suzuki
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan.
| | - Akihiko Okuda
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan.
| |
Collapse
|
20
|
Wang X, Wen Y, Zhang J, Swanson G, Guo S, Cao C, Krawetz SA, Zhang Z, Yuan S. MFN2 interacts with nuage-associated proteins and is essential for male germ cell development by controlling mRNA fate during spermatogenesis. Development 2021; 148:dev.196295. [PMID: 33674260 DOI: 10.1242/dev.196295] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/26/2021] [Indexed: 01/06/2023]
Abstract
Mitochondria play a crucial role in spermatogenesis and are regulated by several mitochondrial fusion proteins. However, their functional importance associated with their structure formation and mRNA fate regulation during spermatogenesis remains unclear. Here, we show that mitofusin 2 (MFN2), a mitochondrial fusion protein, interacts with nuage-associated proteins (including MIWI, DDX4, TDRKH and GASZ) in mice. Conditional mutation of Mfn2 in postnatal germ cells results in male sterility due to germ cell developmental defects. Moreover, MFN2 interacts with MFN1, another mitochondrial fusion protein with a high-sequence similarity to MFN2, in testes to facilitate spermatogenesis. Simultaneous mutation of Mfn1 and Mfn2 in testes causes very severe infertile phenotypes. Importantly, we show that MFN2 is enriched in polysome fractions of testes and interacts with MSY2, a germ cell-specific DNA/RNA-binding protein, to control gamete-specific mRNA (such as Spata19) translational activity during spermatogenesis. Collectively, our findings demonstrate that MFN2 interacts with nuage-associated proteins and MSY2 to regulate male germ cell development by controlling several gamete-specific mRNA fates.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jin Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Grace Swanson
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Shuangshuang Guo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Congcong Cao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Stephen A Krawetz
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Zhibing Zhang
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA.,Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
21
|
McNicoll F, Kühnel A, Biswas U, Hempel K, Whelan G, Eichele G, Jessberger R. Meiotic sex chromosome cohesion and autosomal synapsis are supported by Esco2. Life Sci Alliance 2020; 3:e201900564. [PMID: 32051254 PMCID: PMC7025286 DOI: 10.26508/lsa.201900564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/25/2022] Open
Abstract
In mitotic cells, establishment of sister chromatid cohesion requires acetylation of the cohesin subunit SMC3 (acSMC3) by ESCO1 and/or ESCO2. Meiotic cohesin plays additional but poorly understood roles in the formation of chromosome axial elements (AEs) and synaptonemal complexes. Here, we show that levels of ESCO2, acSMC3, and the pro-cohesion factor sororin increase on meiotic chromosomes as homologs synapse. These proteins are less abundant on the largely unsynapsed sex chromosomes, whose sister chromatid cohesion appears weaker throughout the meiotic prophase. Using three distinct conditional Esco2 knockout mouse strains, we demonstrate that ESCO2 is essential for male gametogenesis. Partial depletion of ESCO2 in prophase I spermatocytes delays chromosome synapsis and further weakens cohesion along sex chromosomes, which show extensive separation of AEs into single chromatids. Unsynapsed regions of autosomes are associated with the sex chromatin and also display split AEs. This study provides the first evidence for a specific role of ESCO2 in mammalian meiosis, identifies a particular ESCO2 dependence of sex chromosome cohesion and suggests support of autosomal synapsis by acSMC3-stabilized cohesion.
Collapse
Affiliation(s)
- François McNicoll
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anne Kühnel
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Uddipta Biswas
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kai Hempel
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gabriela Whelan
- Department of Genes and Behaviour, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Gregor Eichele
- Department of Genes and Behaviour, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
22
|
Tang C, Xie Y, Yu T, Liu N, Wang Z, Woolsey RJ, Tang Y, Zhang X, Qin W, Zhang Y, Song G, Zheng W, Wang J, Chen W, Wei X, Xie Z, Klukovich R, Zheng H, Quilici DR, Yan W. m 6A-dependent biogenesis of circular RNAs in male germ cells. Cell Res 2020; 30:211-228. [PMID: 32047269 PMCID: PMC7054367 DOI: 10.1038/s41422-020-0279-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
The majority of circular RNAs (circRNAs) spliced from coding genes contain open reading frames (ORFs) and thus, have protein coding potential. However, it remains unknown what regulates the biogenesis of these ORF-containing circRNAs, whether they are actually translated into proteins and what functions they play in specific physiological contexts. Here, we report that a large number of circRNAs are synthesized with increasing abundance when late pachytene spermatocytes develop into round and then elongating spermatids during murine spermatogenesis. For a subset of circRNAs, the back splicing appears to occur mostly at m6A-enriched sites, which are usually located around the start and stop codons in linear mRNAs. Consequently, approximately a half of these male germ cell circRNAs contain large ORFs with m6A-modified start codons in their junctions, features that have been recently shown to be associated with protein-coding potential. Hundreds of peptides encoded by the junction sequences of these circRNAs were detected using liquid chromatography coupled with mass spectrometry, suggesting that these circRNAs can indeed be translated into proteins in both developing (spermatocytes and spermatids) and mature (spermatozoa) male germ cells. The present study discovered not only a novel role of m6A in the biogenesis of coding circRNAs, but also a potential mechanism to ensure stable and long-lasting protein production in the absence of linear mRNAs, i.e., through production of circRNAs containing large ORFs and m6A-modified start codons in junction sequences.
Collapse
Affiliation(s)
- Chong Tang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA.
- BGI Co. Ltd., Shenzhen, 518083, China.
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Tian Yu
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Na Liu
- BGI Co. Ltd., Shenzhen, 518083, China
| | - Zhuqing Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Rebekah J Woolsey
- Nevada Proteomics Center, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Yunge Tang
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
- Family Planning Research Institute of Guangdong Province, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
| | - Xinzong Zhang
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
- Family Planning Research Institute of Guangdong Province, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
| | - Weibing Qin
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
- Family Planning Research Institute of Guangdong Province, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
| | - Ying Zhang
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
- Family Planning Research Institute of Guangdong Province, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
| | - Ge Song
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
- Family Planning Research Institute of Guangdong Province, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
| | - Weiwei Zheng
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
- Family Planning Research Institute of Guangdong Province, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
| | - Juan Wang
- BGI Co. Ltd., Shenzhen, 518083, China
| | | | | | - Zhe Xie
- BGI Co. Ltd., Shenzhen, 518083, China
- Department of Cell Biology and Physiology, University of Copenhagen 13, 2100, Copenhagen, Denmark
| | - Rachel Klukovich
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - David R Quilici
- Nevada Proteomics Center, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA.
- Department of Obstetrics and Gynecology, University of Nevada, Reno, School of Medicine, Reno, NV, 89557, USA.
- Department of Biology, University of Nevada, Reno, Reno, NV, 89557, USA.
| |
Collapse
|
23
|
Mitochondria Associated Germinal Structures in Spermatogenesis: piRNA Pathway Regulation and Beyond. Cells 2020; 9:cells9020399. [PMID: 32050598 PMCID: PMC7072634 DOI: 10.3390/cells9020399] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/24/2022] Open
Abstract
Multiple specific granular structures are present in the cytoplasm of germ cells, termed nuage, which are electron-dense, non-membranous, close to mitochondria and/or nuclei, variant size yielding to different compartments harboring different components, including intermitochondrial cement (IMC), piP-body, and chromatoid body (CB). Since mitochondria exhibit different morphology and topographical arrangements to accommodate specific needs during spermatogenesis, the distribution of mitochondria-associated nuage is also dynamic. The most relevant nuage structure with mitochondria is IMC, also called pi-body, present in prospermatogonia, spermatogonia, and spermatocytes. IMC is primarily enriched with various Piwi-interacting RNA (piRNA) proteins and mainly functions as piRNA biogenesis, transposon silencing, mRNA translation, and mitochondria fusion. Importantly, our previous work reported that mitochondria-associated ER membranes (MAMs) are abundant in spermatogenic cells and contain many crucial proteins associated with the piRNA pathway. Provocatively, IMC functionally communicates with other nuage structures, such as piP-body, to perform its complex functions in spermatogenesis. Although little is known about the formation of both IMC and MAMs, its distinctive characters have attracted considerable attention. Here, we review the insights gained from studying the structural components of mitochondria-associated germinal structures, including IMC, CB, and MAMs, which are pivotal structures to ensure genome integrity and male fertility. We discuss the roles of the structural components in spermatogenesis and piRNA biogenesis, which provide new insights into mitochondria-associated germinal structures in germ cell development and male reproduction.
Collapse
|
24
|
Song H, Wang L, Chen D, Li F. The Function of Pre-mRNA Alternative Splicing in Mammal Spermatogenesis. Int J Biol Sci 2020; 16:38-48. [PMID: 31892844 PMCID: PMC6930371 DOI: 10.7150/ijbs.34422] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/20/2019] [Indexed: 01/05/2023] Open
Abstract
Alternative pre-mRNA splicing plays important roles in co-transcriptional and post-transcriptional regulation of gene expression functioned during many developmental processes, such as spermatogenesis. The studies focusing on alternative splicing on spermatogenesis supported the notion that the development of testis is regulated by a higher level of alternative splicing than other tissues. Here, we aim to review the mechanisms underlying alternative splicing, particularly the splicing variants functioned in the process of spermatogenesis and the male infertility. There are five points regarding the alternative splicing including ⅰ) a brief introduction of alternative pre-mRNA splicing; ⅱ) the alternative splicing events in spermatogenesis-associated genes enriched in different stages of spermatogenesis; ⅲ) the mechanisms of alternative splicing regulation, such as splicing factors and m6A demethylation; ⅳ) the splice site recognition and alternative splicing, including the production and degradation of abnormal transcripts caused by gene variations and nonsense-mediated mRNA decay, respectively; ⅴ) abnormal alternative splicing correlated with male infertility. Taking together, this review highlights the impacts of alternative splicing and splicing variants in mammal spermatogenesis and provides new insights of the potential application of the alternative splicing into the therapy of male infertility.
Collapse
Affiliation(s)
- Huibin Song
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ling Wang
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dake Chen
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Fenge Li
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China
| |
Collapse
|
25
|
Montesanto A, Crocco P, Dato S, Geracitano S, Frangipane F, Colao R, Maletta R, Passarino G, Bruni AC, Rose G. Uncoupling protein 4 ( UCP4) gene variability in neurodegenerative disorders: further evidence of association in Frontotemporal dementia. Aging (Albany NY) 2019; 10:3283-3293. [PMID: 30425186 PMCID: PMC6286830 DOI: 10.18632/aging.101632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/28/2018] [Indexed: 02/05/2023]
Abstract
Ongoing research suggests that mitochondrial dysfunction is a common hallmark in neurodegenerative diseases, pointing to mitochondrial uncoupling process as a critical player. We recently reported that rs9472817-C/G, an intronic variant of neuronal mitochondrial uncoupling protein-4 (UCP4/SLC25A27) gene affects the risk of late onset Alzheimer's disease (LOAD), and that the variant's effect is strongly dependent on APOE-ε4 status. Here, we extended our analysis to a cohort of 751 subjects including late-onset familial and sporadic cases of frontotemporal dementia (FTD; 213), Parkinson disease (PD;96), and 442 healthy controls. In all subgroups, carriers of APOE-ε4 allele were at higher risk of disease. Regarding the rs9472817, no association was detected in familial FTD and both subgroups of PD patients. In sporadic FTD, as in LOAD, we found that the C allele increased the risk of disease of about 1.51-fold in a dose-dependent manner (p=0.013) independently from that conferred by APOE-ε4. Expression quantitative trait loci (eQTL) data of different brain regions suggest that rs9472817 likely exerts its effect by a cis-regulatory mechanism involving modulation of UCP4. If validated, the involvement of UCP4 in both FTD and LOAD might indicate interesting shared etiological factors which might give future therapeutic clues.
Collapse
Affiliation(s)
- Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Paolina Crocco
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Silvana Geracitano
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | | | - Rosanna Colao
- Regional Neurogenetic Centre, ASP CZ, Lamezia Terme, Italy
| | | | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Amalia C Bruni
- Regional Neurogenetic Centre, ASP CZ, Lamezia Terme, Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
26
|
Shulman ED, Elkon R. Cell-type-specific analysis of alternative polyadenylation using single-cell transcriptomics data. Nucleic Acids Res 2019; 47:10027-10039. [PMID: 31501864 PMCID: PMC6821429 DOI: 10.1093/nar/gkz781] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/27/2019] [Accepted: 09/01/2019] [Indexed: 12/22/2022] Open
Abstract
Alternative polyadenylation (APA) is emerging as an important layer of gene regulation because the majority of mammalian protein-coding genes contain multiple polyadenylation (pA) sites in their 3' UTR. By alteration of 3' UTR length, APA can considerably affect post-transcriptional gene regulation. Yet, our understanding of APA remains rudimentary. Novel single-cell RNA sequencing (scRNA-seq) techniques allow molecular characterization of different cell types to an unprecedented degree. Notably, the most popular scRNA-seq protocols specifically sequence the 3' end of transcripts. Building on this property, we implemented a method for analysing patterns of APA regulation from such data. Analyzing multiple datasets from diverse tissues, we identified widespread modulation of APA in different cell types resulting in global 3' UTR shortening/lengthening and enhanced cleavage at intronic pA sites. Our results provide a proof-of-concept demonstration that the huge volume of scRNA-seq data that accumulates in the public domain offers a unique resource for the exploration of APA based on a very broad collection of cell types and biological conditions.
Collapse
Affiliation(s)
- Eldad David Shulman
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Han X, Wei Y, Wang H, Wang F, Ju Z, Li T. Nonsense-mediated mRNA decay: a 'nonsense' pathway makes sense in stem cell biology. Nucleic Acids Res 2019; 46:1038-1051. [PMID: 29272451 PMCID: PMC5814811 DOI: 10.1093/nar/gkx1272] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/09/2017] [Indexed: 01/04/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a highly conserved post-transcriptional regulatory mechanism of gene expression in eukaryotes. Originally, NMD was identified as an RNA surveillance machinery in degrading 'aberrant' mRNA species with premature termination codons. Recent studies indicate that NMD regulates the stability of natural gene transcripts that play significant roles in cell functions. Although components and action modes of the NMD machinery in degrading its RNA targets have been extensively studied with biochemical and structural approaches, the biological roles of NMD remain to be defined. Stem cells are rare cell populations, which play essential roles in tissue homeostasis and hold great promises in regenerative medicine. Stem cells self-renew to maintain the cellular identity and differentiate into somatic lineages with specialized functions to sustain tissue integrity. Transcriptional regulations and epigenetic modulations have been extensively implicated in stem cell biology. However, post-transcriptional regulatory mechanisms, such as NMD, in stem cell regulation are largely unknown. In this paper, we summarize the recent findings on biological roles of NMD factors in embryonic and tissue-specific stem cells. Furthermore, we discuss the possible mechanisms of NMD in regulating stem cell fates.
Collapse
Affiliation(s)
- Xin Han
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Yanling Wei
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Hua Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Feilong Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Zhenyu Ju
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Tangliang Li
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| |
Collapse
|
28
|
Abstract
Most human genes have multiple sites at which RNA 3' end cleavage and polyadenylation can occur, enabling the expression of distinct transcript isoforms under different conditions. Novel methods to sequence RNA 3' ends have generated comprehensive catalogues of polyadenylation (poly(A)) sites; their analysis using innovative computational methods has revealed how poly(A) site choice is regulated by core RNA 3' end processing factors, such as cleavage factor I and cleavage and polyadenylation specificity factor, as well as by other RNA-binding proteins, particularly splicing factors. Here, we review the experimental and computational methods that have enabled the global mapping of mRNA and of long non-coding RNA 3' ends, quantification of the resulting isoforms and the discovery of regulators of alternative cleavage and polyadenylation (APA). We highlight the different types of APA-derived isoforms and their functional differences, and illustrate how APA contributes to human diseases, including cancer and haematological, immunological and neurological diseases.
Collapse
|
29
|
MacDonald CC. Tissue-specific mechanisms of alternative polyadenylation: Testis, brain, and beyond (2018 update). WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1526. [PMID: 30816016 PMCID: PMC6617714 DOI: 10.1002/wrna.1526] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/05/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
Alternative polyadenylation (APA) is how genes choose different sites for 3' end formation for mRNAs during transcription. APA often occurs in a tissue- or developmental stage-specific manner that can significantly affect gene activity by changing the protein product generated, the stability of the transcript, its localization within the cell, or its translatability. Despite the important regulatory effects that APA has on tissue-specific gene expression, only a few examples have been characterized mechanistically. In this 2018 update to our 2010 review, we examine mechanisms for the control of APA and update our understanding of the older mechanisms since 2010. We once postulated the existence of tissue-specific factors in APA. However, while a few tissue-specific polyadenylation factors are known, the emerging conclusion is that the majority of APA is accomplished by altering levels of core polyadenylation proteins. Examples of those core proteins include CSTF2, CPSF1, and subunits of mammalian cleavage factor I. But despite support for these mechanisms, no one has yet documented any of these proteins changing in either a tissue-specific or developmental manner. Given the profound effect that APA can have on gene expression and human health, improved understanding of tissue-specific APA could lead to numerous advances in gene activity control. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Clinton C. MacDonald
- Department of Cell Biology & BiochemistryTexas Tech University Health Sciences CenterLubbockTexas
| |
Collapse
|
30
|
Fu K, Tian S, Tan H, Wang C, Wang H, Wang M, Wang Y, Chen Z, Wang Y, Yue Q, Xu Q, Zhang S, Li H, Xie J, Lin M, Luo M, Chen F, Ye L, Zheng K. Biological and RNA regulatory function of MOV10 in mammalian germ cells. BMC Biol 2019; 17:39. [PMID: 31088452 PMCID: PMC6515687 DOI: 10.1186/s12915-019-0659-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Background RNA regulation by RNA-binding proteins (RBPs) involve extremely complicated mechanisms. MOV10 and MOV10L1 are two homologous RNA helicases implicated in distinct intracellular pathways. MOV10L1 participates specifically in Piwi-interacting RNA (piRNA) biogenesis and protects mouse male fertility. In contrast, the functional complexity of MOV10 remains incompletely understood, and its role in the mammalian germline is unknown. Here, we report a study of the biological and molecular functions of the RNA helicase MOV10 in mammalian male germ cells. Results MOV10 is a nucleocytoplasmic protein mainly expressed in spermatogonia. Knockdown and transplantation experiments show that MOV10 deficiency has a negative effect on spermatogonial progenitor cells (SPCs), limiting proliferation and in vivo repopulation capacity. This effect is concurrent with a global disturbance of RNA homeostasis and downregulation of factors critical for SPC proliferation and/or self-renewal. Unexpectedly, microRNA (miRNA) biogenesis is impaired due partially to decrease of miRNA primary transcript levels and/or retention of miRNA via splicing control. Genome-wide analysis of RNA targetome reveals that MOV10 binds preferentially to mRNAs with long 3′-UTR and also interacts with various non-coding RNA species including those in the nucleus. Intriguingly, nuclear MOV10 associates with an array of splicing factors, particularly with SRSF1, and its intronic binding sites tend to reside in proximity to splice sites. Conclusions These data expand the landscape of MOV10 function and highlight a previously unidentified role initiated from the nucleus, suggesting that MOV10 is a versatile RBP involved in a broader RNA regulatory network. Electronic supplementary material The online version of this article (10.1186/s12915-019-0659-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaiqiang Fu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Suwen Tian
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Preventive Medicine, Heze Medical College, Heze, 274000, China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Caifeng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Hanben Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Min Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yuanyuan Wang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Zhen Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qiushi Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Shuya Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Haixin Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Mingyan Lin
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Mengcheng Luo
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
31
|
Fernandes R, Nogueira G, da Costa PJ, Pinto F, Romão L. Nonsense-Mediated mRNA Decay in Development, Stress and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:41-83. [DOI: 10.1007/978-3-030-19966-1_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
MacDonald CC, Grozdanov PN. Nonsense in the testis: multiple roles for nonsense-mediated decay revealed in male reproduction. Biol Reprod 2018; 96:939-947. [PMID: 28444146 PMCID: PMC5803779 DOI: 10.1093/biolre/iox033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/20/2017] [Indexed: 01/23/2023] Open
Abstract
Nonsense-mediated mRNA decay, or NMD, is a quality control mechanism that identifies cytoplasmic mRNAs containing translational termination (stop) codons in specific contexts—either premature termination codons or unusually long 3΄ untranslated regions (UTRs)—and targets them for degradation. In recent studies, researchers in different labs have knocked out important genes involved in NMD, the up-frameshift genes Upf2 and Upf3a, and one component of chromatoid bodies, the Tudor domain-containing protein Tdrd6, and examined the consequences for spermatogenesis. Disruption of Upf2 during early stages of spermatogenesis resulted in disappearance of nearly all spermatogenic cells through loss of NMD. However, disruption of Upf2 during postmeiotic stages resulted in decreased long 3΄ UTR-mediated NMD but no interruption of exon junction-associated NMD. This difference in NMD targeting is possibly due to increased expression of Upf3a in postmeiotic germ cells that antagonizes the functions of Upf3b and somehow favors long 3΄ UTR-mediated NMD. Tying these all together, loss of Tdrd6, a structural component of the germ cell-specific cytoplasmic structures called chromatoid bodies, also resulted in loss of long 3΄ UTR-mediated NMD by interfering with UPF1/UPF2 interactions, delocalizing UPF1, and destroying chromatoid body integrity. These results suggest that chromatoid bodies play a specialized role in modulating the NMD machinery in postmeiotic spermatids.
Collapse
Affiliation(s)
- Clinton C. MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
- Correspondence: Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430-6540, USA. Tel: +1-806-743-2524; Fax: +1-806-743-2990; E-mail:
| | - Petar N. Grozdanov
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
33
|
Sha YW, Wang X, Su ZY, Wang C, Ji ZY, Mei LB, Zhang L, Deng BB, Huang XJ, Yan W, Chen J, Li P, Cui YQ, Qu QL, Yin C, He XM. TDRD6 is associated with oligoasthenoteratozoospermia by sequencing the patient from a consanguineous family. Gene 2018; 659:84-88. [PMID: 29551503 DOI: 10.1016/j.gene.2018.03.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/06/2018] [Accepted: 03/15/2018] [Indexed: 01/28/2023]
Abstract
Oligoasthenoteratozoospermia (OAT) is characterized as low sperm count, decreased sperm motility and structural abnormalities of the sperm head in the same patient. However, very few studies reported the genetic alterations associated with OAT. Here we report a 38-year-old patient with OAT from a consanguineous family, with 2-6 million/mL sperm density, 2.1-3.8% normal sperm morphology and immotile sperm. Whole-exome sequencing (WES) identified homozygous variant c.1259A>G:p.Y420C in the TDRD6 gene. TDRD6 is a testis-specific expressed protein that was localized to the chromatoid bodies in germ cells and played an important role in the nonsense-mediated decay pathway. This rare variant co-segregated with the OAT phenotype in this family. Bioinformatic analysis also suggested the variant a pathogenic mutation. Two intracytoplasmic sperm injection (ICSI) cycles were carried out in the patient's wife, but she did not become pregnant after embryo transfer. So the mutations in TDRD6 may be associated with human male infertility and early embryonic lethality.
Collapse
Affiliation(s)
- Yan-Wei Sha
- Department of Reproductive Medicine, Xiamen Maternity and Child Care Hospital, Xiamen, Fujian 361005, China
| | - Xiong Wang
- Reproductive Medicine Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Zhi-Ying Su
- Department of Reproductive Medicine, Xiamen Maternity and Child Care Hospital, Xiamen, Fujian 361005, China
| | - Chengrong Wang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing 100026, China
| | - Zhi-Yong Ji
- Department of Reproductive Medicine, Xiamen Maternity and Child Care Hospital, Xiamen, Fujian 361005, China
| | - Li-Bin Mei
- Department of Reproductive Medicine, Xiamen Maternity and Child Care Hospital, Xiamen, Fujian 361005, China
| | - Ling Zhang
- Department of Reproductive Medicine, Xiamen Maternity and Child Care Hospital, Xiamen, Fujian 361005, China
| | - Bing-Bing Deng
- Department of Reproductive Medicine, Xiamen Maternity and Child Care Hospital, Xiamen, Fujian 361005, China
| | - Xian-Jing Huang
- Department of Reproductive Medicine, Xiamen Maternity and Child Care Hospital, Xiamen, Fujian 361005, China
| | - Wei Yan
- Reproductive Medicine Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Jie Chen
- Reproductive Medicine Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Ping Li
- Department of Reproductive Medicine, Xiamen Maternity and Child Care Hospital, Xiamen, Fujian 361005, China
| | - Yuan-Qing Cui
- Reproductive Medicine Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Qing-Lan Qu
- Reproductive Medicine Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China.
| | - Chenghong Yin
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing 100026, China.
| | - Xue-Mei He
- Department of Reproductive Medicine, Xiamen Maternity and Child Care Hospital, Xiamen, Fujian 361005, China.
| |
Collapse
|
34
|
Beyond quality control: The role of nonsense-mediated mRNA decay (NMD) in regulating gene expression. Semin Cell Dev Biol 2018; 75:78-87. [DOI: 10.1016/j.semcdb.2017.08.053] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 11/23/2022]
|
35
|
ALKBH5-dependent m6A demethylation controls splicing and stability of long 3'-UTR mRNAs in male germ cells. Proc Natl Acad Sci U S A 2017; 115:E325-E333. [PMID: 29279410 DOI: 10.1073/pnas.1717794115] [Citation(s) in RCA: 391] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
N6-methyladenosine (m6A) represents one of the most common RNA modifications in eukaryotes. Specific m6A writer, eraser, and reader proteins have been identified. As an m6A eraser, ALKBH5 specifically removes m6A from target mRNAs and inactivation of Alkbh5 leads to male infertility in mice. However, the underlying molecular mechanism remains unknown. Here, we report that ALKBH5-mediated m6A erasure in the nuclei of spermatocytes and round spermatids is essential for correct splicing and the production of longer 3'-UTR mRNAs, and failure to do so leads to aberrant splicing and production of shorter transcripts with elevated levels of m6A that are rapidly degraded. Our study identified reversible m6A modification as a critical mechanism of posttranscriptional control of mRNA fate in late meiotic and haploid spermatogenic cells.
Collapse
|
36
|
Lehtiniemi T, Kotaja N. Germ granule-mediated RNA regulation in male germ cells. Reproduction 2017; 155:R77-R91. [PMID: 29038333 DOI: 10.1530/rep-17-0356] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/09/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022]
Abstract
Germ cells have exceptionally diverse transcriptomes. Furthermore, the progress of spermatogenesis is accompanied by dramatic changes in gene expression patterns, the most drastic of them being near-to-complete transcriptional silencing during the final steps of differentiation. Therefore, accurate RNA regulatory mechanisms are critical for normal spermatogenesis. Cytoplasmic germ cell-specific ribonucleoprotein (RNP) granules, known as germ granules, participate in posttranscriptional regulation in developing male germ cells. Particularly, germ granules provide platforms for the PIWI-interacting RNA (piRNA) pathway and appear to be involved both in piRNA biogenesis and piRNA-targeted RNA degradation. Recently, other RNA regulatory mechanisms, such as the nonsense-mediated mRNA decay pathway have also been associated to germ granules providing new exciting insights into the function of germ granules. In this review article, we will summarize our current knowledge on the role of germ granules in the control of mammalian male germ cell's transcriptome and in the maintenance of fertility.
Collapse
Affiliation(s)
| | - Noora Kotaja
- Institute of BiomedicineUniversity of Turku, Turku, Finland
| |
Collapse
|
37
|
Goetz AE, Wilkinson M. Stress and the nonsense-mediated RNA decay pathway. Cell Mol Life Sci 2017; 74:3509-3531. [PMID: 28503708 PMCID: PMC5683946 DOI: 10.1007/s00018-017-2537-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 01/09/2023]
Abstract
Cells respond to internal and external cellular stressors by activating stress-response pathways that re-establish homeostasis. If homeostasis is not achieved in a timely manner, stress pathways trigger programmed cell death (apoptosis) to preserve organism integrity. A highly conserved stress pathway is the unfolded protein response (UPR), which senses excessive amounts of unfolded proteins in the ER. While a physiologically beneficial pathway, the UPR requires tight regulation to provide a beneficial outcome and avoid deleterious consequences. Recent work has demonstrated that a conserved and highly selective RNA degradation pathway-nonsense-mediated RNA decay (NMD)-serves as a major regulator of the UPR pathway. NMD degrades mRNAs encoding UPR components to prevent UPR activation in response to innocuous ER stress. In response to strong ER stress, NMD is inhibited by the UPR to allow for a full-magnitude UPR response. Recent studies have indicated that NMD also has other stress-related functions, including promoting the timely termination of the UPR to avoid apoptosis; NMD also regulates responses to non-ER stressors, including hypoxia, amino-acid deprivation, and pathogen infection. NMD regulates stress responses in species across the phylogenetic scale, suggesting that it has conserved roles in shaping stress responses. Stress pathways are frequently constitutively activated or dysregulated in human disease, raising the possibility that "NMD therapy" may provide clinical benefit by downmodulating stress responses.
Collapse
Affiliation(s)
- Alexandra E Goetz
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, USA
| | - Miles Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, USA.
| |
Collapse
|
38
|
Human nonsense-mediated RNA decay regulates EMT by targeting the TGF-ß signaling pathway in lung adenocarcinoma. Cancer Lett 2017; 403:246-259. [PMID: 28663146 DOI: 10.1016/j.canlet.2017.06.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/04/2017] [Accepted: 06/16/2017] [Indexed: 11/20/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a highly conserved pathway that selectively degrades aberrant RNA transcripts. In this study, we proved that NMD regulates the epithelial-mesenchymal transition (EMT) of lung adenocarcinoma (ADC). Moreover, we found that NMD core factor UP-frameshift 1 tends to be expressed at lower levels in human ADC tissues than in normal lung tissues, thereby raising the possibility that NMD may be downregulated to permit ADC oncogenesis. Our experiments in human ADC cell lines showed that downregulating NMD can promote EMT. Moreover, EMT can be inhibited by upregulating NMD. We tested the role of TGF-ß signaling and found that NMD influences EMT by targeting the TGF-ß signaling pathway. Our findings reveal that NMD is a potential tumor regulatory mechanism and may be a potential therapeutic target for ADC.
Collapse
|
39
|
Zhang Y, Tang C, Yu T, Zhang R, Zheng H, Yan W. MicroRNAs control mRNA fate by compartmentalization based on 3' UTR length in male germ cells. Genome Biol 2017; 18:105. [PMID: 28615029 PMCID: PMC5471846 DOI: 10.1186/s13059-017-1243-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022] Open
Abstract
Background Post-transcriptional regulation of gene expression can be achieved through the control of mRNA stability, cytoplasmic compartmentalization, 3′ UTR length and translational efficacy. Spermiogenesis, a process through which haploid male germ cells differentiate into spermatozoa, represents an ideal model for studying post-transcriptional regulation in vivo because it involves a large number of transcripts that are physically sequestered in ribonucleoprotein particles (RNPs) and thus subjected to delayed translation. To explore how small RNAs regulate mRNA fate, we conducted RNA-Seq analyses to determine not only the levels of both mRNAs and small noncoding RNAs, but also their cytoplasmic compartmentalization during spermiogenesis. Result Among all small noncoding RNAs studied, miRNAs displayed the most dynamic changes in both abundance and subcytoplasmic localization. mRNAs with shorter 3′ UTRs became increasingly enriched in RNPs from pachytene spermatocytes to round spermatids, and the enrichment of shorter 3′ UTR mRNAs in RNPs coincided with newly synthesized miRNAs that target these mRNAs at sites closer to the stop codon. In contrast, the translocation of longer 3′ UTR mRNAs from RNPs to polysomes correlated with the production of new miRNAs that target these mRNAs at sites distal to the stop codon. Conclusions miRNAs appear to control cytoplasmic compartmentalization of mRNAs based on 3′ UTR length. Our data suggest that transcripts with longer 3′ UTRs tend to contain distal miRNA binding sites and are thus targeted to polysomes for translation followed by degradation. In contrast, those with shorter 3′ UTRs only possess proximal miRNA binding sites, which, therefore, are targeted into RNPs for enrichment and delayed translation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1243-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA
| | - Chong Tang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA
| | - Tian Yu
- Department of Biology, University of Nevada, Reno, 1664 North Virginia Street, MS575, Reno, NV, 89557, USA
| | - Ruirui Zhang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA. .,Department of Biology, University of Nevada, Reno, 1664 North Virginia Street, MS575, Reno, NV, 89557, USA.
| |
Collapse
|
40
|
Kresoja-Rakic J, Sulemani M, Kirschner MB, Ronner M, Reid G, Kao S, Schwaller B, Weder W, Stahel RA, Felley-Bosco E. Posttranscriptional Regulation Controls Calretinin Expression in Malignant Pleural Mesothelioma. Front Genet 2017; 8:70. [PMID: 28611824 PMCID: PMC5447031 DOI: 10.3389/fgene.2017.00070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/12/2017] [Indexed: 01/08/2023] Open
Abstract
Calretinin (CALB2) is a diagnostic and prognostic marker in malignant pleural mesothelioma (MPM). We previously reported that calretinin expression is regulated at the mRNA level. The presence of a medium-sized (573 nucleotide) 3' untranslated region (3'UTR) predicted to contain binding sites for miR-30a/b/c/d/e and miR-9 as well as an adenine/uridine-rich element (ARE) in all three transcripts arising from the CALB2 gene, suggests that calretinin expression is regulated via posttranscriptional mechanisms. Our aim was to investigate the role of the CALB2-3'UTR in the posttranscriptional regulation of calretinin expression in MPM. CALB2-3'UTR was inserted downstream of the luciferase reporter gene using pmiRGLO vector and reporter expression was determined after transfection into MPM cells. Targeted mutagenesis was used to generate variants harboring mutated miR-30 family and ARE binding sites. Electrophoretic mobility shift assay was used to test for the presence of ARE binding proteins. CALB2-3'UTR significantly decreased luciferase activity in MPM cells. Analysis of mutation in the ARE site revealed a further destabilization of the reporter and human antigen R (HuR) binding to the ARE sequence was detected. The mutation of two miR-30 binding sites abolished CALB2-3'UTR destabilization effect; a transient delivery of miR-30e-5p mimics or anti-miR into MPM cells resulted in a significant decrease/increase of the luciferase reporter expression and calretinin protein, respectively. Moreover, overexpression of CALB2-3'UTR quenched the effect of miR-30e-5p mimics on calretinin protein levels, possibly by sequestering the mimics, thereby suggesting a competitive endogenous RNA network. Finally, by data mining we observed that expression of miR-30e-5p was negatively correlated with the calretinin expression in a cohort of MPM patient samples. Our data show the role of (1) adenine-uridine (AU)-binding proteins in calretinin stabilization and (2) miR-30e-5p in the posttranscriptional negative regulation of calretinin expression via interaction with its 3'UTR. Furthermore, our study demonstrates a possible physiological role of calretinin's alternatively spliced transcripts.
Collapse
Affiliation(s)
- Jelena Kresoja-Rakic
- Laboratory of Molecular Oncology, Division of Thoracic SurgeryUniversity Hospital Zurich, Switzerland
| | - Merve Sulemani
- Laboratory of Molecular Oncology, Division of Thoracic SurgeryUniversity Hospital Zurich, Switzerland
| | | | - Manuel Ronner
- Laboratory of Molecular Oncology, Division of Thoracic SurgeryUniversity Hospital Zurich, Switzerland
| | - Glen Reid
- Asbestos Diseases Research Institute, SydneyNSW, Australia.,School of Medicine, The University of Sydney, SydneyNSW, Australia
| | - Steven Kao
- Asbestos Diseases Research Institute, SydneyNSW, Australia.,School of Medicine, The University of Sydney, SydneyNSW, Australia.,Department of Medical Oncology, Chris O'Brien Lifehouse, SydneyNSW, Australia
| | - Beat Schwaller
- Department of Medicine, Anatomy, University of FribourgFribourg, Switzerland
| | - Walter Weder
- Division of Thoracic SurgeryUniversity Hospital Zurich, Switzerland
| | - Rolf A Stahel
- Clinic for OncologyUniversity Hospital Zurich, Zurich
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Division of Thoracic SurgeryUniversity Hospital Zurich, Switzerland
| |
Collapse
|
41
|
Son HG, Seo M, Ham S, Hwang W, Lee D, An SWA, Artan M, Seo K, Kaletsky R, Arey RN, Ryu Y, Ha CM, Kim YK, Murphy CT, Roh TY, Nam HG, Lee SJV. RNA surveillance via nonsense-mediated mRNA decay is crucial for longevity in daf-2/insulin/IGF-1 mutant C. elegans. Nat Commun 2017; 8:14749. [PMID: 28276441 PMCID: PMC5347137 DOI: 10.1038/ncomms14749] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/30/2017] [Indexed: 12/14/2022] Open
Abstract
Long-lived organisms often feature more stringent protein and DNA quality control. However, whether RNA quality control mechanisms, such as nonsense-mediated mRNA decay (NMD), which degrades both abnormal as well as some normal transcripts, have a role in organismal aging remains unexplored. Here we show that NMD mediates longevity in C. elegans strains with mutations in daf-2/insulin/insulin-like growth factor 1 receptor. We find that daf-2 mutants display enhanced NMD activity and reduced levels of potentially aberrant transcripts. NMD components, including smg-2/UPF1, are required to achieve the longevity of several long-lived mutants, including daf-2 mutant worms. NMD in the nervous system of the animals is particularly important for RNA quality control to promote longevity. Furthermore, we find that downregulation of yars-2/tyrosyl-tRNA synthetase, an NMD target transcript, by daf-2 mutations contributes to longevity. We propose that NMD-mediated RNA surveillance is a crucial quality control process that contributes to longevity conferred by daf-2 mutations.
Collapse
Affiliation(s)
- Heehwa G. Son
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Mihwa Seo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, South Korea
| | - Seokjin Ham
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Wooseon Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Seon Woo A. An
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Murat Artan
- Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Keunhee Seo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Rachel Kaletsky
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Rachel N. Arey
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Youngjae Ryu
- Research Division, Korea Brain Research Institute, Daegu 41068, South Korea
| | - Chang Man Ha
- Research Division, Korea Brain Research Institute, Daegu 41068, South Korea
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, South Korea
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Coleen T. Murphy
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Tae-Young Roh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, South Korea
- Department of New Biology, DGIST, Daegu 42988, South Korea
| | - Seung-Jae V. Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
- Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
42
|
Akpınar M, Lesche M, Fanourgakis G, Fu J, Anasstasiadis K, Dahl A, Jessberger R. TDRD6 mediates early steps of spliceosome maturation in primary spermatocytes. PLoS Genet 2017; 13:e1006660. [PMID: 28263986 PMCID: PMC5358835 DOI: 10.1371/journal.pgen.1006660] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/20/2017] [Accepted: 02/26/2017] [Indexed: 12/24/2022] Open
Abstract
Tudor containing protein 6 (TDRD6) is a male germ line-specific protein essential for chromatoid body (ChB) structure, elongated spermatid development and male fertility. Here we show that in meiotic prophase I spermatocytes TDRD6 interacts with the key protein arginine methyl transferase PRMT5, which supports splicing. TDRD6 also associates with spliceosomal core protein SmB in the absence of RNA and in an arginine methylation dependent manner. In Tdrd6-/- diplotene spermatocytes PRMT5 association with SmB and arginine dimethylation of SmB are much reduced. TDRD6 deficiency impairs the assembly of spliceosomes, which feature 3.5-fold increased levels of U5 snRNPs. In the nucleus, these deficiencies in spliceosome maturation correlate with decreased numbers of SMN-positive bodies and Cajal bodies involved in nuclear snRNP maturation. Transcriptome analysis of TDRD6-deficient diplotene spermatocytes revealed high numbers of splicing defects such as aberrant usage of intron and exons as well as aberrant representation of splice junctions. Together, this study demonstrates a novel function of TDRD6 in spliceosome maturation and mRNA splicing in prophase I spermatocytes.
Collapse
Affiliation(s)
- Müge Akpınar
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mathias Lesche
- Deep Sequencing Group SFB 655, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Grigorios Fanourgakis
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jun Fu
- Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | | | - Andreas Dahl
- Deep Sequencing Group SFB 655, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
43
|
Jones SH, Wilkinson M. RNA decay, evolution, and the testis. RNA Biol 2017; 14:146-155. [PMID: 27911186 PMCID: PMC5324745 DOI: 10.1080/15476286.2016.1265199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/16/2016] [Accepted: 11/19/2016] [Indexed: 01/23/2023] Open
Abstract
NMD is a highly conserved pathway that degrades specific subsets of RNAs. There is increasing evidence for roles of NMD in development. In this commentary, we focus on spermatogenesis, a process dramatically impeded upon loss or disruption of NMD. NMD requires strict regulation for normal spermatogenesis, as loss of a newly discovered NMD repressor, UPF3A, also causes spermatogenic defects, most prominently during meiosis. We discuss the unusual evolution of UPF3A, whose paralog, UPF3B, has the opposite biochemical function and acts in brain development. We also discuss the regulation of NMD during germ cell development, including in chromatoid bodies, which are specifically found in haploid germ cells. The ability of NMD to coordinately degrade batteries of RNAs in a regulated fashion during development is akin to the action of transcriptional pathways, yet has the advantage of driving rapid changes in gene expression.
Collapse
Affiliation(s)
- Samantha H. Jones
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Miles Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
44
|
Abstract
Alternative polyadenylation (APA) is an RNA-processing mechanism that generates distinct 3' termini on mRNAs and other RNA polymerase II transcripts. It is widespread across all eukaryotic species and is recognized as a major mechanism of gene regulation. APA exhibits tissue specificity and is important for cell proliferation and differentiation. In this Review, we discuss the roles of APA in diverse cellular processes, including mRNA metabolism, protein diversification and protein localization, and more generally in gene regulation. We also discuss the molecular mechanisms underlying APA, such as variation in the concentration of core processing factors and RNA-binding proteins, as well as transcription-based regulation.
Collapse
|
45
|
Mühlemann O. Spermatogenesis Studies Reveal a Distinct Nonsense-Mediated mRNA Decay (NMD) Mechanism for mRNAs with Long 3'UTRs. PLoS Genet 2016; 12:e1005979. [PMID: 27149371 PMCID: PMC4858265 DOI: 10.1371/journal.pgen.1005979] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|