1
|
Tian R, Yang Z, Yang R, Wang S, Shen Q, Wang G, Wang H, Zhou Q, Tang J, Fu Z. Regulation of maize kernel development via divergent activation of α-Zein genes by transcription factors O11, O2, and PBF1. J Genet Genomics 2025:S1673-8527(25)00117-1. [PMID: 40254161 DOI: 10.1016/j.jgg.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/22/2025]
Abstract
α-Zeins, the major maize endosperm storage proteins, are transcriptionally regulated by Opaque 2 (O2) and PROLAMIN-BOX BINDING FACTOR1 (PBF1), with Opaque 11 (O11) functioning upstream of them. However, whether O11 directly binds to α-zein genes and its regulatory interactions with O2 and PBF1 remain unclear. Using the small-kernel mutant sw1, which exhibits decreased 19-kDa and increased 22-kDa α-zein, we positionally cloned O11 and found it directly binds to G-box/E-box motifs. O11 activates 19-kDa α-zein transcription, stronger than PBF1 but weaker than O2. Notably, PBF1 competitively binds to overlapping E-box/P-box motif, and represses O11-mediated transactivation. Although O11 does not physically interact with O2, it participates in the O2-centered hierarchical network to enhance α-zein expression. sw1 o2 and sw1 pbf1 double mutants exhibit smaller, more opaque kernels with further reduced 19-kDa and 22-kDa α-zeins compared to the single mutants, suggesting distinct regulatory effects of these transcription factors on 19-kDa and 22-kDa α-zein genes. Promoter motif analysis suggests that O11, PBF1, and O2 directly regulate 19-kDa α-zein genes, while O11 indirectly controls 22-kDa α-zein genes via O2 and PBF1 modulation. These findings identify the unique and coordinated roles of O11, O2, and PBF1 in regulating α-zein genes and kernel development.
Collapse
Affiliation(s)
- Runmiao Tian
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Zeyuan Yang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Ruihua Yang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Sihao Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Qingwen Shen
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Guifeng Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Hongqiu Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Qingqian Zhou
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Jihua Tang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China.
| | - Zhiyuan Fu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China.
| |
Collapse
|
2
|
Li D, Hao A, Shao W, Zhang W, Jiao F, Zhang H, Dong X, Zhan Y, Liu X, Mu C, Ding Z, Xue D, Chen J, Wang M. Maize kernel nutritional quality-an old challenge for modern breeders. PLANTA 2025; 261:43. [PMID: 39856412 DOI: 10.1007/s00425-025-04627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
MAIN CONCLUSION This article offers a comprehensive overview of the starch, protein, oil, and carotenoids content in maize kernels, while also outlining future directions for research in this area. Maize is one of the most important cereal crops globally. Maize kernels serve as a vital source of feed and food, and their nutritional quality directly impacts the dietary intake of both animals and humans. Maize kernels contain starch, protein, oil, carotenoids, and a variety of vitamins and minerals, all of which are important for maintaining life and promoting health. This review presents the current understanding of the content of starch, protein, amino acids, oil, and carotenoids in maize kernels, while also highlighting knowledge gaps that need to be addressed.
Collapse
Affiliation(s)
- Decui Li
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Anqi Hao
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wen Shao
- Shandong Seed Industry Group Yellow River Delta Co., Ltd, Dongying, 257000, China
| | - Weiwei Zhang
- Shandong Seed Industry Group Yellow River Delta Co., Ltd, Dongying, 257000, China
| | - Fuchao Jiao
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haiyan Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xueyan Dong
- Shandong Seed Industry Group Yellow River Delta Co., Ltd, Dongying, 257000, China
| | - Yuan Zhan
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xia Liu
- Shandong Academy of Agricultural Science, Jinan, 250100, China
| | - Chunhua Mu
- Shandong Academy of Agricultural Science, Jinan, 250100, China
| | - Zhaohua Ding
- Shandong Academy of Agricultural Science, Jinan, 250100, China
| | - De Xue
- Zibo Boxin Agricultural Technology Co., Ltd, Zibo, 255000, China
| | - Jingtang Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
- Zibo Boxin Agricultural Technology Co., Ltd, Zibo, 255000, China.
| | - Ming Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
3
|
Zhao Y, Lu J, Hu B, Jiao P, Gao B, Jiang Z, Liu S, Guan S, Ma Y. Cloning and functional analysis of ZmMADS42 gene in maize. GM CROPS & FOOD 2024; 15:105-117. [PMID: 38466176 PMCID: PMC10936638 DOI: 10.1080/21645698.2024.2328384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Maize (Zea mays L.) is the most important cereal crop in the world. Flowering period and photoperiod play important roles in the reproductive development of maize. This study, investigated ZmMADS42, a gene that is highly expressed in the shoot apical meristem. Agrobacterium infection was used to successfully obtain overexpressed ZmMADS42 plants. Fluorescence quantitative PCR revealed that the expression of the ZmMADS42 gene in the shoot apical meristem of transgenic plants was 2.8 times higher than that of the wild-type(WT). In addition, the expression of the ZmMADS42 gene in the endosperm was 2.4 times higher than that in the wild-type. The seed width of the T2 generation increased by 5.35%, whereas the seed length decreased by 7.78% compared with that of the wild-type. Dissection of the shoot tips of transgenic and wild-type plants from the 7-leaf stage to the 9-leaf stage revealed that the transgenic plants entered the differentiation stage earlier and exhibited more tassel meristems during their vegetative growth period. The mature transgenic plants were approximately 20 cm shorter in height and had a lower panicle position than the wild-type plants. Comparing the flowering period, the tasseling, powdering, and silking stages of the transgenic plants occurred 10 days earlier than those of the wild-type plants. The results showed that the ZmMADS42 gene played a significant role in regulating the flowering period and plant height of maize.
Collapse
Affiliation(s)
- Yang Zhao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jianyu Lu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Bo Hu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Peng Jiao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Bai Gao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhenzhong Jiang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Siyan Liu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Shuyan Guan
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Yiyong Ma
- College of Agronomy, Jilin Agricultural University, Changchun, China
| |
Collapse
|
4
|
Gage JL, Romay MC, Buckler ES. Maize inbreds show allelic variation for diel transcription patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628400. [PMID: 39763849 PMCID: PMC11702552 DOI: 10.1101/2024.12.16.628400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Circadian entrainment and external cues can cause gene transcript abundance to oscillate throughout the day, and these patterns of diel transcript oscillation vary across genes and plant species. Less is known about within-species allelic variation for diel patterns of transcript oscillation, or about how regulatory sequence variation influences diel transcription patterns. In this study, we evaluated diel transcript abundance for 24 diverse maize inbred lines. We observed extensive natural variation in diel transcription patterns, with two-fold variation in the number of genes that oscillate over the course of the day. A convolutional neural network trained to predict oscillation from promoter sequence identified sequences previously reported as binding motifs for known circadian clock genes in other plant systems. Genes showing diel transcription patterns that cosegregate with promoter sequence haplotypes are enriched for associations with photoperiod sensitivity and may have been indirect targets of selection as maize was adapted to longer day lengths at higher latitudes. These findings support the idea that cis-regulatory sequence variation influences patterns of gene expression, which in turn can have effects on phenotypic plasticity and local adaptation.
Collapse
Affiliation(s)
- Joseph L. Gage
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695
- NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, 27606
| | - M. Cinta Romay
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853
| | - Edward S. Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853
- USDA-ARS, Ithaca, NY 14850
- School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University, Ithaca NY 14853
| |
Collapse
|
5
|
Xu L, Yang L, Li A, Guo J, Wang H, Qi H, Li M, Yang P, Song S. An AP2/ERF transcription factor confers chilling tolerance in rice. SCIENCE ADVANCES 2024; 10:eado4788. [PMID: 39196924 PMCID: PMC11352847 DOI: 10.1126/sciadv.ado4788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
Cold stress, a prominent adverse environmental factor, severely hinders rice growth and productivity. Unraveling the complex mechanisms governing chilling tolerance in rice is crucial for molecular breeding of cold-tolerant varieties. Here, we identify an APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factor, OsERF52, as a positive modulator in response to low temperatures. OsERF52 directly regulates the expression of C-Repeat Binding Factor (CBF) genes in rice. In addition, Osmotic Stress/ABA-Activated Protein Kinase 9-mediated phosphorylation of OsERF52 at S261 enhances its stability and interaction with Ideal Plant Architecture 1 and OsbHLH002/OsICE1. This collaborative activation leads to the expression of OsCBFs, thereby initiating the chilling response in rice. Notably, plants with base-edited OsERF52S261D-3HA exhibit enhanced chilling resistance without yield penalty. Our findings unveil the mechanism orchestrated by a regulatory framework involving a protein kinase and transcription factors from diverse families, offering potential genetic resources for developing chilling-tolerant rice varieties.
Collapse
Affiliation(s)
- Liang Xu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lijia Yang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Aipeng Li
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiazhuo Guo
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Huanyu Wang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Haoyue Qi
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ming Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430026, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430026, China
| | - Shiyong Song
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Peng D, Pan S, Du X, Chen E, He J, Zhang Z. Central Roles of ZmNAC128 and ZmNAC130 in Nutrient Uptake and Storage during Maize Grain Filling. Genes (Basel) 2024; 15:663. [PMID: 38927600 PMCID: PMC11203180 DOI: 10.3390/genes15060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Grain filling is critical for determining yield and quality, raising the question of whether central coordinators exist to facilitate the uptake and storage of various substances from maternal to filial tissues. The duplicate NAC transcription factors ZmNAC128 and ZmNAC130 could potentially serve as central coordinators. By analyzing differentially expressed genes from zmnac128 zmnac130 mutants across different genetic backgrounds and growing years, we identified 243 highly and differentially expressed genes (hdEGs) as the core target genes. These 243 hdEGs were associated with storage metabolism and transporters. ZmNAC128 and ZmNAC130 play vital roles in storage metabolism, and this study revealed two additional starch metabolism-related genes, sugary enhancer1 and hexokinase1, as their direct targets. A key finding of this study was the inclusion of 17 transporter genes within the 243 hdEGs, with significant alterations in the levels of more than 10 elements/substances in mutant kernels. Among them, six out of the nine upregulated transporter genes were linked to the transport of heavy metals and metalloids (HMMs), which was consistent with the enrichment of cadmium, lead, and arsenic observed in mutant kernels. Interestingly, the levels of Mg and Zn, minerals important to biofortification efforts, were reduced in mutant kernels. In addition to their direct involvement in sugar transport, ZmNAC128 and ZmNAC130 also activate the expression of the endosperm-preferential nitrogen and phosphate transporters ZmNPF1.1 and ZmPHO1;2. This coordinated regulation limits the intake of HMMs, enhances biofortification, and facilitates the uptake and storage of essential nutrients.
Collapse
Affiliation(s)
- Di Peng
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (D.P.); (S.P.); (X.D.); (E.C.)
| | - Shuxing Pan
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (D.P.); (S.P.); (X.D.); (E.C.)
| | - Xin Du
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (D.P.); (S.P.); (X.D.); (E.C.)
| | - Erwang Chen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (D.P.); (S.P.); (X.D.); (E.C.)
| | - Junjun He
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China;
| | - Zhiyong Zhang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (D.P.); (S.P.); (X.D.); (E.C.)
| |
Collapse
|
7
|
Yang T, Huang Y, Liao L, Wang S, Zhang H, Pan J, Huang Y, Li X, Chen D, Liu T, Lu X, Wu Y. Sucrose-associated SnRK1a1-mediated phosphorylation of Opaque2 modulates endosperm filling in maize. MOLECULAR PLANT 2024; 17:788-806. [PMID: 38615195 DOI: 10.1016/j.molp.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
During maize endosperm filling, sucrose not only serves as a source of carbon skeletons for storage-reserve synthesis but also acts as a stimulus to promote this process. However, the molecular mechanisms underlying sucrose and endosperm filling are poorly understood. In this study, we found that sucrose promotes the expression of endosperm-filling hub gene Opaque2 (O2), coordinating with storage-reserve accumulation. We showed that the protein kinase SnRK1a1 can attenuate O2-mediated transactivation, but sucrose can release this suppression. Biochemical assays revealed that SnRK1a1 phosphorylates O2 at serine 41 (S41), negatively affecting its protein stability and transactivation ability. We observed that mutation of SnRK1a1 results in larger seeds with increased kernel weight and storage reserves, while overexpression of SnRK1a1 causes the opposite effect. Overexpression of the native O2 (O2-OE), phospho-dead (O2-SA), and phospho-mimetic (O2-SD) variants all increased 100-kernel weight. Although O2-SA seeds exhibit smaller kernel size, they have higher accumulation of starch and proteins, resulting in larger vitreous endosperm and increased test weight. O2-SD seeds display larger kernel size but unchanged levels of storage reserves and test weight. O2-OE seeds show elevated kernel dimensions and nutrient storage, like a mixture of O2-SA and O2-SD seeds. Collectively, our study discovers a novel regulatory mechanism of maize endosperm filling. Identification of S41 as a SnRK1-mediated phosphorylation site in O2 offers a potential engineering target for enhancing storage-reserve accumulation and yield in maize.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yunqin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Longyu Liao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shanshan Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haoyu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jingying Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yongcai Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoling Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Di Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Tao Liu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
8
|
Hurst JP, Sato S, Ferris T, Yobi A, Zhou Y, Angelovici R, Clemente TE, Holding DR. Editing the 19 kDa alpha-zein gene family generates non-opaque2-based quality protein maize. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:946-959. [PMID: 37988568 PMCID: PMC10955486 DOI: 10.1111/pbi.14237] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Maize grain is deficient in lysine. While the opaque2 mutation increases grain lysine, o2 is a transcription factor that regulates a wide network of genes beyond zeins, which leads to pleiotropic and often negative effects. Additionally, the drastic reduction in 19 kDa and 22 kDa alpha-zeins causes a floury kernel, unsuitable for agricultural use. Quality protein maize (QPM) overcame the undesirable kernel texture through the introgression of modifying alleles. However, QPM still lacks a functional o2 transcription factor, which has a penalty on non-lysine amino acids due to the o2 mutation. CRISPR/cas9 gives researchers the ability to directly target genes of interest. In this paper, gene editing was used to specifically target the 19 kDa alpha zein gene family. This allows for proteome rebalancing to occur without an o2 mutation and without a total alpha-zein knockout. The results showed that editing some, but not all, of the 19 kDa zeins resulted in up to 30% more lysine. An edited line displayed an increase of 30% over the wild type. While not quite the 55% lysine increase displayed by QPM, the line had little collateral impact on other amino acid levels compared to QPM. Additionally, the edited line containing a partially reduced 19 kDa showed an advantage in kernel texture that had a complete 19 kDa knockout. These results serve as proof of concept that editing the 19 kDa alpha-zein family alone can enhance lysine while retaining vitreous endosperm and a functional O2 transcription factor.
Collapse
Affiliation(s)
- J. Preston Hurst
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraskaUSA
- Center for Plant Science InnovationLincolnNebraskaUSA
| | - Shirley Sato
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Tyler Ferris
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraskaUSA
- Center for Plant Science InnovationLincolnNebraskaUSA
| | - Abou Yobi
- University of Missouri‐ColumbiaColumbiaMissouriUSA
| | - You Zhou
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | | | - Tom E. Clemente
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - David R. Holding
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraskaUSA
- Center for Plant Science InnovationLincolnNebraskaUSA
| |
Collapse
|
9
|
Chen E, Yu H, He J, Peng D, Zhu P, Pan S, Wu X, Wang J, Ji C, Chao Z, Xu Z, Wu Y, Chao D, Wu Y, Zhang Z. The transcription factors ZmNAC128 and ZmNAC130 coordinate with Opaque2 to promote endosperm filling in maize. THE PLANT CELL 2023; 35:4066-4090. [PMID: 37542515 PMCID: PMC10615213 DOI: 10.1093/plcell/koad215] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 08/07/2023]
Abstract
Endosperm filling in maize (Zea mays), which involves nutrient uptake and biosynthesis of storage reserves, largely determines grain yield and quality. However, much remains unclear about the synchronization of these processes. Here, we comprehensively investigated the functions of duplicate NAM, ATAF1/2, and CUC2 (NAC)-type transcription factors, namely, ZmNAC128 and ZmNAC130, in endosperm filling. The gene-edited double mutant zmnac128 zmnac130 exhibits a poorly filled kernel phenotype such that the kernels have an inner cavity. RNA sequencing and protein abundance analysis revealed that the expression of many genes involved in the biosynthesis of zein and starch is reduced in the filling endosperm of zmnac128 zmnac130. Further, DNA affinity purification and sequencing combined with chromatin-immunoprecipitation quantitative PCR and promoter transactivation assays demonstrated that ZmNAC128 and ZmNAC130 are direct regulators of 3 (16-, 27-, and 50-kD) γ-zein genes and 6 important starch metabolism genes (Brittle2 [Bt2], pullulanase-type starch debranching enzyme [Zpu1], granule-bound starch synthase 1 [GBSS1], starch synthase 1 [SS1], starch synthase IIa [SSIIa], and sucrose synthase 1 [Sus1]). ZmNAC128 and ZmNAC130 recognize an additional cis-element in the Opaque2 (O2) promoter to regulate its expression. The triple mutant zmnac128 zmnac130 o2 exhibits extremely poor endosperm filling, which results in more than 70% of kernel weight loss. ZmNAC128 and ZmNAC130 regulate the expression of the transporter genes sugars that will eventually be exported transporter 4c (ZmSWEET4c), sucrose and glucose carrier 1 (ZmSUGCAR1), and yellow stripe-like2 (ZmYSL2) and in turn facilitate nutrient uptake, while O2 plays a supporting role. In conclusion, ZmNAC128 and ZmNAC130 cooperate with O2 to facilitate endosperm filling, which involves nutrient uptake in the basal endosperm transfer layer (BETL) and the synthesis of zeins and starch in the starchy endosperm (SE).
Collapse
Affiliation(s)
- Erwang Chen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Huiqin Yu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Juan He
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Di Peng
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Panpan Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Shuxing Pan
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Xu Wu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Jincang Wang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Chen Ji
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032,China
| | - Zhenfei Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032,China
| | - Zhuopin Xu
- Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031,China
| | - Yuejin Wu
- Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031,China
| | - Daiyin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032,China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032,China
| | - Zhiyong Zhang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| |
Collapse
|
10
|
Wang X, Liu Y, Hao C, Li T, Majeed U, Liu H, Li H, Hou J, Zhang X. Wheat NAC-A18 regulates grain starch and storage proteins synthesis and affects grain weight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:123. [PMID: 37147554 DOI: 10.1007/s00122-023-04365-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/14/2023] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE Wheat NAC-A18 regulates both starch and storage protein synthesis in the grain, and a haplotype with positive effects on grain weight showed increased frequency during wheat breeding in China. Starch and seed storage protein (SSP) directly affect the processing quality of wheat grain. The synthesis of starch and SSP are also regulated at the transcriptional level. However, only a few starch and SSP regulators have been identified in wheat. In this study, we discovered a NAC transcription factor, designated as NAC-A18, which acts as a regulator of both starch and SSP synthesis. NAC-A18, is predominately expressed in wheat developing grains, encodes a transcription factor localized in the nucleus, with both activation and repression domains. Ectopic expression of wheat NAC-A18 in rice significantly decreased starch accumulation and increased SSP accumulation and grain size and weight. Dual-luciferase reporter assays indicated that NAC-A18 could reduce the expression of TaGBSSI-A1 and TaGBSSI-A2, and enhance the expression of TaLMW-D6 and TaLMW-D1. A yeast one hybrid assay demonstrated that NAC-A18 bound directly to the cis-element "ACGCAA" in the promoters of TaLMW-D6 and TaLMW-D1. Further analysis indicated that two haplotypes were formed at NAC-A18, and that NAC-A18_h1 was a favorable haplotype correlated with higher thousand grain weight. Based on limited population data, NAC-A18_h1 underwent positive selection during Chinese wheat breeding. Our study demonstrates that wheat NAC-A18 regulates starch and SSP accumulation and grain size. A molecular marker was developed for the favorable allele for breeding applications.
Collapse
Affiliation(s)
- Xiaolu Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunchuan Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Uzma Majeed
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongxia Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huifang Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Hou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
11
|
Zhu W, Miao X, Qian J, Chen S, Jin Q, Li M, Han L, Zhong W, Xie D, Shang X, Li L. A translatome-transcriptome multi-omics gene regulatory network reveals the complicated functional landscape of maize. Genome Biol 2023; 24:60. [PMID: 36991439 PMCID: PMC10053466 DOI: 10.1186/s13059-023-02890-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/04/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Maize (Zea mays L.) is one of the most important crops worldwide. Although sophisticated maize gene regulatory networks (GRNs) have been constructed for functional genomics and phenotypic dissection, a multi-omics GRN connecting the translatome and transcriptome is lacking, hampering our understanding and exploration of the maize regulatome. RESULTS We collect spatio-temporal translatome and transcriptome data and systematically explore the landscape of gene transcription and translation across 33 tissues or developmental stages of maize. Using this comprehensive transcriptome and translatome atlas, we construct a multi-omics GRN integrating mRNAs and translated mRNAs, demonstrating that translatome-related GRNs outperform GRNs solely using transcriptomic data and inter-omics GRNs outperform intra-omics GRNs in most cases. With the aid of the multi-omics GRN, we reconcile some known regulatory networks. We identify a novel transcription factor, ZmGRF6, which is associated with growth. Furthermore, we characterize a function related to drought response for the classic transcription factor ZmMYB31. CONCLUSIONS Our findings provide insights into spatio-temporal changes across maize development at both the transcriptome and translatome levels. Multi-omics GRNs represent a useful resource for dissection of the regulatory mechanisms underlying phenotypic variation.
Collapse
Affiliation(s)
- Wanchao Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Xinxin Miao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Jia Qian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Sijia Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qixiao Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Mingzhu Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Linqian Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Wanshun Zhong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Dan Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Xiaoyang Shang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- HuBei HongShan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
12
|
Yang T, Wu X, Wang W, Wu Y. Regulation of seed storage protein synthesis in monocot and dicot plants: A comparative review. MOLECULAR PLANT 2023; 16:145-167. [PMID: 36495013 DOI: 10.1016/j.molp.2022.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Seeds are a major source of nutrients for humans and animal livestock worldwide. With improved living standards, high nutritional quality has become one of the main targets for breeding. Storage protein content in seeds, which is highly variable depending on plant species, serves as a pivotal criterion of seed nutritional quality. In the last few decades, our understanding of the molecular genetics and regulatory mechanisms of storage protein synthesis has greatly advanced. Here, we systematically and comprehensively summarize breakthroughs on the conservation and divergence of storage protein synthesis in dicot and monocot plants. With regard to storage protein accumulation, we discuss evolutionary origins, developmental processes, characteristics of main storage protein fractions, regulatory networks, and genetic modifications. In addition, we discuss potential breeding strategies to improve storage protein accumulation and provide perspectives on some key unanswered problems that need to be addressed.
Collapse
Affiliation(s)
- Tao Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xingguo Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Wenqin Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
13
|
Lu X, Zhou Z, Wang Y, Wang R, Hao Z, Li M, Zhang D, Yong H, Han J, Wang Z, Weng J, Zhou Y, Li X. Genetic basis of maize kernel protein content revealed by high-density bin mapping using recombinant inbred lines. FRONTIERS IN PLANT SCIENCE 2022; 13:1045854. [PMID: 36589123 PMCID: PMC9798238 DOI: 10.3389/fpls.2022.1045854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Maize with a high kernel protein content (PC) is desirable for human food and livestock fodder. However, improvements in its PC have been hampered by a lack of desirable molecular markers. To identify quantitative trait loci (QTL) and candidate genes for kernel PC, we employed a genotyping-by-sequencing strategy to construct a high-resolution linkage map with 6,433 bin markers for 275 recombinant inbred lines (RILs) derived from a high-PC female Ji846 and low-PC male Ye3189. The total genetic distance covered by the linkage map was 2180.93 cM, and the average distance between adjacent markers was 0.32 cM, with a physical distance of approximately 0.37 Mb. Using this linkage map, 11 QTLs affecting kernel PC were identified, including qPC7 and qPC2-2, which were identified in at least two environments. For the qPC2-2 locus, a marker named IndelPC2-2 was developed with closely linked polymorphisms in both parents, and when tested in 30 high and 30 low PC inbred lines, it showed significant differences (P = 1.9E-03). To identify the candidate genes for this locus, transcriptome sequencing data and PC best linear unbiased estimates (BLUE) for 348 inbred lines were combined, and the expression levels of the four genes were correlated with PC. Among the four genes, Zm00001d002625, which encodes an S-adenosyl-L-methionine-dependent methyltransferase superfamily protein, showed significantly different expression levels between two RIL parents in the endosperm and is speculated to be a potential candidate gene for qPC2-2. This study will contribute to further research on the mechanisms underlying the regulation of maize PC, while also providing a genetic basis for marker-assisted selection in the future.
Collapse
Affiliation(s)
- Xin Lu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiqiang Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunhe Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ruiqi Wang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhuanfang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingshun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Degui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongjun Yong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jienan Han
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenhua Wang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Zhou
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xinhai Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Liu J, Wu MW, Liu CM. Cereal Endosperms: Development and Storage Product Accumulation. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:255-291. [PMID: 35226815 DOI: 10.1146/annurev-arplant-070221-024405] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The persistent triploid endosperms of cereal crops are the most important source of human food and animal feed. The development of cereal endosperms progresses through coenocytic nuclear division, cellularization, aleurone and starchy endosperm differentiation, and storage product accumulation. In the past few decades, the cell biological processes involved in endosperm formation in most cereals have been described. Molecular genetic studies performed in recent years led to the identification of the genes underlying endosperm differentiation, regulatory network governing storage product accumulation, and epigenetic mechanism underlying imprinted gene expression. In this article, we outline recent progress in this area and propose hypothetical models to illustrate machineries that control aleurone and starchy endosperm differentiation, sugar loading, and storage product accumulations. A future challenge in this area is to decipher the molecular mechanisms underlying coenocytic nuclear division, endosperm cellularization, and programmed cell death.
Collapse
Affiliation(s)
- Jinxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
| | - Ming-Wei Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| |
Collapse
|
15
|
Yang T, Wang H, Guo L, Wu X, Xiao Q, Wang J, Wang Q, Ma G, Wang W, Wu Y. ABA-induced phosphorylation of basic leucine zipper 29, ABSCISIC ACID INSENSITIVE 19, and Opaque2 by SnRK2.2 enhances gene transactivation for endosperm filling in maize. THE PLANT CELL 2022; 34:1933-1956. [PMID: 35157077 PMCID: PMC9048887 DOI: 10.1093/plcell/koac044] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/03/2022] [Indexed: 05/23/2023]
Abstract
Opaque2 (O2) functions as a central regulator of the synthesis of starch and storage proteins and the O2 gene is transcriptionally regulated by a hub coordinator of seed development and grain filling, ABSCISIC ACID INSENSITIVE 19 (ZmABI19), in maize (Zea mays). Here, we identified a second hub coordinator, basic Leucine Zipper 29 (ZmbZIP29) that interacts with ZmABI19 to regulate O2 expression. Like zmabi19, zmbzip29 mutations resulted in a dramatic decrease of transcript and protein levels of O2 and thus a significant reduction of starch and storage proteins. zmbzip29 seeds developed slower and had a smaller size at maturity than those of the wild type. The zmbzip29;zmabi19 double mutant displayed more severe seed phenotypes and a greater reduction of storage reserves compared to the single mutants, whereas overexpression of the two transcription factors enhanced O2 expression, storage-reserve accumulation, and kernel weight. ZmbZIP29, ZmABI19, and O2 expression was induced by abscisic acid (ABA). With ABA treatment, ZmbZIP29 and ZmABI19 synergistically transactivated the O2 promoter. Through liquid chromatography tandem-mass spectrometry analysis, we established that the residues threonine(T) 57 in ZmABI19, T75 in ZmbZIP29, and T387 in O2 were phosphorylated, and that SnRK2.2 was responsible for the phosphorylation. The ABA-induced phosphorylation at these sites was essential for maximum transactivation of downstream target genes for endosperm filling in maize.
Collapse
Affiliation(s)
- Tao Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haonan Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Liangxing Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xingguo Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Qiao Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiong Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guangjin Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqin Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | | |
Collapse
|
16
|
Wang T, Chang Y, Zhao K, Dong Q, Yang J. Maize RNA 3'-terminal phosphate cyclase-like protein promotes 18S pre-rRNA cleavage and is important for kernel development. THE PLANT CELL 2022; 34:1957-1979. [PMID: 35167702 PMCID: PMC9048941 DOI: 10.1093/plcell/koac052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Plant ribosomes contain four specialized ribonucleic acids, the 5S, 5.8S, 18S, and 25S ribosomal RNAs (rRNAs). Maturation of the latter three rRNAs requires cooperative processing of a single transcript by several endonucleases and exonucleases at specific sites. In maize (Zea mays), the exact nucleases and components required for rRNA processing remain poorly understood. Here, we characterized a conserved RNA 3'-terminal phosphate cyclase (RCL)-like protein, RCL1, that functions in 18S rRNA maturation. RCL1 is highly expressed in the embryo and endosperm during early seed development. Loss of RCL1 function resulted in lethality due to aborted embryo cell differentiation. We also observed pleiotropic defects in the rcl1 endosperm, including abnormal basal transfer cell layer growth and aleurone cell identity, and reduced storage reserve accumulation. The rcl1 seeds had lower levels of mature 18S rRNA and the related precursors were altered in abundance compared with wild type. Analysis of transcript levels and protein accumulation in rcl1 revealed that the observed lower levels of zein and starch synthesis enzymes mainly resulted from effects at the transcriptional and translational levels, respectively. These results demonstrate that RCL1-mediated 18S pre-rRNA processing is essential for ribosome function and messenger RNA translation during maize seed development.
Collapse
Affiliation(s)
- Tao Wang
- School of Life Sciences, The National Engineering Laboratory of Crop Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Yumei Chang
- School of Life Sciences, The National Engineering Laboratory of Crop Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Kai Zhao
- School of Life Sciences, The National Engineering Laboratory of Crop Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Qing Dong
- Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | | |
Collapse
|
17
|
Feng Y, Ma Y, Feng F, Chen X, Qi W, Ma Z, Song R. Accumulation of 22 kDa α-zein-mediated nonzein protein in protein body of maize endosperm. THE NEW PHYTOLOGIST 2022; 233:265-281. [PMID: 34637530 DOI: 10.1111/nph.17796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Protein bodies (PBs), the major protein storage organelle in maize (Zea mays) endosperm, comprise zeins and numerous nonzein proteins (NZPs). Unlike zeins, how NZPs accumulate in PBs remains unclear. We characterized a maize miniature kernel mutant, mn*, that produces small kernels and is embryo-lethal. After cloning the Mn* locus, we determined that it encodes the mitochondrial 50S ribosomal protein L10 (mRPL10). MN* localized to mitochondria and PBs as an NZP; therefore, we renamed MN* Non-zein Protein 1 (NZP1). Like other mutations affecting mitochondrial proteins, mn* impaired mitochondrial function and morphology. To investigate its accumulation mechanism to PBs, we performed protein interaction assays between major zein proteins and NZP1, and found that NZP1 interacts with 22 kDa α-zein. Levels of NZP1 and 22 kDa α-zein in various opaque mutants were correlated. Furthermore, NZP1 accumulation in induced PBs depended on its interaction with 22 kDa α-zein. Comparative proteomic analysis of PBs between wild-type and opaque2 revealed additional NZPs. A new NZP with plastidial localization was also found to accumulate in induced PBs via interaction with 22 kDa α-zein. This study thus reveals a mechanism for accumulation of NZPs in PBs and suggests a potential application for the accumulation of foreign proteins in maize PBs.
Collapse
Affiliation(s)
- Yang Feng
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yafei Ma
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Fan Feng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xinze Chen
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
18
|
Luo G, Shen L, Zhao S, Li R, Song Y, Song S, Yu K, Yang W, Li X, Sun J, Wang Y, Gao C, Liu D, Zhang A. Genome-wide identification of seed storage protein gene regulators in wheat through coexpression analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1704-1720. [PMID: 34634158 DOI: 10.1111/tpj.15538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 09/27/2021] [Indexed: 12/31/2022]
Abstract
Only a few transcriptional regulators of seed storage protein (SSP) genes have been identified in common wheat (Triticum aestivum L.). Coexpression analysis could be an efficient approach to characterize novel transcriptional regulators at the genome-scale considering the correlated expression between transcriptional regulators and target genes. As the A genome donor of common wheat, Triticum urartu is more suitable for coexpression analysis than common wheat considering the diploid genome and single gene copy. In this work, the transcriptome dynamics in endosperm of T. urartu throughout grain filling were revealed by RNA-Seq analysis. In the coexpression analysis, a total of 71 transcription factors (TFs) from 23 families were found to be coexpressed with SSP genes. Among these TFs, TuNAC77 enhanced the transcription of SSP genes by binding to cis-elements distributed in promoters. The homolog of TuNAC77 in common wheat, TaNAC77, shared an identical function, and the total SSPs were reduced by about 24% in common wheat when TaNAC77 was knocked down. This is the first genome-wide identification of transcriptional regulators of SSP genes in wheat, and the newly characterized transcriptional regulators will undoubtedly expand our knowledge of the transcriptional regulation of SSP synthesis.
Collapse
Affiliation(s)
- Guangbin Luo
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shancen Zhao
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Ruidong Li
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California, Riverside, CA, USA
| | - Yanhong Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- College of Agronomy, The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Shuyi Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- College of Agronomy, The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Kang Yu
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Wenlong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Dongcheng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071000, China
| |
Collapse
|
19
|
Li Y, Ma S, Zhao Q, Lv D, Wang B, Xiao K, Zhu J, Li S, Yang W, Liu X, Wang H, Zhou X, Chen R. ZmGRAS11, transactivated by Opaque2, positively regulates kernel size in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:2031-2037. [PMID: 34850567 DOI: 10.1111/jipb.13198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Although the genetic basis for endosperm development in maize (Zea mays) has been well studied, the mechanism for coordinating grain filling with increasing kernel size remains elusive. Here, we report that increased kernel size was selected during modern breeding and identify a novel DELLA-like transcriptional regulator, ZmGRAS11, which positively regulates kernel size and kernel weight in maize. We find that Opaque2, a core transcription factor for zein protein and starch accumulation, transactivates the expression of ZmGRAS11. Our data suggest that the Opaque2-ZmGRAS11 module mediates synergistic endosperm enlargement with grain filling.
Collapse
Affiliation(s)
- Ye Li
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Shuai Ma
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qianqian Zhao
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Di Lv
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baobao Wang
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ke Xiao
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Jiameng Zhu
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Suzhen Li
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenzhu Yang
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoqing Liu
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haiyang Wang
- College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaojin Zhou
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rumei Chen
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
20
|
Li R, Tan Y, Zhang H. Regulators of Starch Biosynthesis in Cereal Crops. Molecules 2021; 26:molecules26237092. [PMID: 34885674 PMCID: PMC8659000 DOI: 10.3390/molecules26237092] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 01/07/2023] Open
Abstract
Starch is the main food source for human beings and livestock all over the world, and it is also the raw material for production of industrial alcohol and biofuel. A considerable part of the world’s annual starch production comes from crops and their seeds. With the increasing demand for starch from food and non-food industries and the growing loss of arable land due to urbanization, understanding starch biosynthesis and its regulators is essential to produce the desirable traits as well as more and better polymers via biotechnological approaches in cereal crops. Because of the complexity and flexibility of carbon allocation in the formation of endosperm starch, cereal crops require a broad range of enzymes and one matching network of regulators to control the providential functioning of these starch biosynthetic enzymes. Here, we comprehensively summarize the current knowledge about regulatory factors of starch biosynthesis in cereal crops, with an emphasis on the transcription factors that directly regulate starch biosynthesis. This review will provide new insights for the manipulation of bioengineering and starch biosynthesis to improve starch yields or qualities in our diets and in industry.
Collapse
Affiliation(s)
- Ruiqing Li
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310029, China;
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Yuanyuan Tan
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China;
| | - Huali Zhang
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310029, China;
- Correspondence:
| |
Collapse
|
21
|
Trihelix Transcription Factor ZmThx20 Is Required for Kernel Development in Maize. Int J Mol Sci 2021; 22:ijms222212137. [PMID: 34830019 PMCID: PMC8624104 DOI: 10.3390/ijms222212137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/26/2022] Open
Abstract
Maize kernels are the harvested portion of the plant and are related to the yield and quality of maize. The endosperm of maize is a large storage organ that constitutes 80–90% of the dry weight of mature kernels. Maize kernels have long been the study of cereal grain development to increase yield. In this study, a natural mutation that causes abnormal kernel development, and displays a shrunken kernel phenotype, was identified and named “shrunken 2008 (sh2008)”. The starch grains in sh2008 are loose and have a less proteinaceous matrix surrounding them. The total storage protein and the major storage protein zeins are ~70% of that in the wild-type control (WT); in particular, the 19 kDa and 22 kDa α-zeins. Map-based cloning revealed that sh2008 encodes a GT-2 trihelix transcription factor, ZmThx20. Using CRISPR/Cas9, two other alleles with mutated ZmThx20 were found to have the same abnormal kernel. Shrunken kernels can be rescued by overexpressing normal ZmThx20. Comparative transcriptome analysis of the kernels from sh2008 and WT showed that the GO terms of translation, ribosome, and nutrient reservoir activity were enriched in the down-regulated genes (sh2008/WT). In short, these changes can lead to defects in endosperm development and storage reserve filling in seeds.
Collapse
|
22
|
Li J, Xie L, Tian X, Liu S, Xu D, Jin H, Song J, Dong Y, Zhao D, Li G, Li Y, Zhang Y, Zhang Y, Xia X, He Z, Cao S. TaNAC100 acts as an integrator of seed protein and starch synthesis exerting pleiotropic effects on agronomic traits in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:829-840. [PMID: 34492155 DOI: 10.1111/tpj.15485] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/08/2021] [Accepted: 09/02/2021] [Indexed: 05/12/2023]
Abstract
High-molecular-weight glutenin subunits (HMW-GS) are major components of seed storage proteins (SSPs) and largely determine the processing properties of wheat (Triticum aestivum) flour. HMW-GS are encoded by the GLU-1 loci and regulated at the transcriptional level by interaction between cis-elements and transcription factors (TFs). We recently validated the function of conserved cis-regulatory modules (CCRMs) in GLU-1 promoters, but their interacting TFs remained uncharacterized. Here we identified a CCRM-binding NAM-ATAF-CUC (NAC) protein, TaNAC100, through yeast one-hybrid (Y1H) library screening. Transactivation assays demonstrated that TaNAC100 could bind to the GLU-1 promoters and repress their transcription activity in tobacco (Nicotiana benthamiana). Overexpression of TaNAC100 in wheat significantly reduced the contents of HMW-GS and other SSPs as well as total seed protein. This was confirmed by transcriptome analyses. Conversely, enhanced expression of TaNAC100 increased seed starch contents and expression of key starch synthesis-related genes, such as TaGBSS1 and TaSUS2. Y1H assays also indicated TaNAC100 binding with the promoters of TaGBSS1 and TaSUS2. These results suggest that TaNAC100 functions as a hub controlling seed protein and starch synthesis. Phenotypic analyses showed that TaNAC100 overexpression repressed plant height, increased heading date, and promoted seed size and thousand kernel weight. We also investigated sequence variations in a panel of cultivars, but did not identify significant association of TaNAC100 haplotypes with agronomic traits. The findings not only uncover a useful gene for wheat breeding but also provide an entry point to reveal the mechanism underlying metabolic balance of seed storage products.
Collapse
Affiliation(s)
- Jihu Li
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongysse North Street, Jinan, Shandong, 250100, China
| | - Lina Xie
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xiuling Tian
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Siyang Liu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Dengan Xu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Hui Jin
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Street, Harbin, 150086, Heilongjiang, China
| | - Jie Song
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yan Dong
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Dehui Zhao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Genying Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongysse North Street, Jinan, Shandong, 250100, China
| | - Yulian Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongysse North Street, Jinan, Shandong, 250100, China
| | - Yan Zhang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yong Zhang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
23
|
Luo G, Shen L, Song Y, Yu K, Ji J, Zhang C, Yang W, Li X, Sun J, Zhan K, Cui D, Wang Y, Gao C, Liu D, Zhang A. The MYB family transcription factor TuODORANT1 from Triticum urartu and the homolog TaODORANT1 from Triticum aestivum inhibit seed storage protein synthesis in wheat. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1863-1877. [PMID: 33949074 PMCID: PMC8428827 DOI: 10.1111/pbi.13604] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/11/2021] [Indexed: 05/08/2023]
Abstract
Seed storage proteins (SSPs) are determinants of wheat end-product quality. SSP synthesis is mainly regulated at the transcriptional level. Few transcriptional regulators of SSP synthesis have been identified in wheat and this study aims to identify novel SSP gene regulators. Here, the R2R3 MYB transcription factor TuODORANT1 from Triticum urartu was found to be preferentially expressed in the developing endosperm during grain filling. In common wheat (Triticum aestivum) overexpressing TuODORANT1, the transcription levels of all the SSP genes tested by RNA-Seq analysis were reduced by 49.71% throughout grain filling, which contributed to 13.38%-35.60% declines in the total SSP levels of mature grains. In in vitro assays, TuODORANT1 inhibited both the promoter activities and the transcription of SSP genes by 1- to 13-fold. The electrophoretic mobility shift assay (EMSA) and ChIP-qPCR analysis demonstrated that TuODORANT1 bound to the cis-elements 5'-T/CAACCA-3' and 5'-T/CAACT/AG-3' in SSP gene promoters both in vitro and in vivo. Similarly, the homolog TaODORANT1 in common wheat hindered both the promoter activities and the transcription of SSP genes by 1- to 112-fold in vitro. Knockdown of TaODORANT1 in common wheat led to 14.73%-232.78% increases in the transcription of the tested SSP genes, which contributed to 11.43%-19.35% elevation in the total SSP levels. Our data show that both TuODORANT1 and TaODORANT1 are repressors of SSP synthesis.
Collapse
Affiliation(s)
- Guangbin Luo
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yanhong Song
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- BGI GenomicsBGI‐ShenzhenShenzhenChina
| | - Kang Yu
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Jingjing Ji
- Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Chi Zhang
- Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Wenlong Yang
- State Key Laboratory of North China Crop Improvement and RegulationCollege of AgronomyHebei Agricultural UniversityBaodingHebeiChina
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | | | | | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Dongcheng Liu
- College of Agronomy/Collaborative Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| |
Collapse
|
24
|
Hurst P, Schnable JC, Holding DR. Tandem duplicate expression patterns are conserved between maize haplotypes of the α-zein gene family. PLANT DIRECT 2021; 5:e346. [PMID: 34541444 PMCID: PMC8438537 DOI: 10.1002/pld3.346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/12/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Tandem duplication gives rise to copy number variation and subsequent functional novelty among genes as well as diversity between individuals in a species. Functional novelty can result from either divergence in coding sequence or divergence in patterns of gene transcriptional regulation. Here, we investigate conservation and divergence of both gene sequence and gene regulation between the copies of the α-zein gene family in maize inbreds B73 and W22. We used RNA-seq data generated from developing, self-pollinated kernels at three developmental stages timed to coincide with early and peak zein expression. The reference genome annotations for B73 and W22 were modified to ensure accurate inclusion of their respective α-zein gene models to accurately assess copy-specific expression. Expression analysis indicated that although the total expression of α-zeins is higher in W22, the pattern of expression in both lines is conserved. Additional analysis of publicly available RNA-seq data from a diverse population of maize inbreds also demonstrates variation in absolute expression, but conservation of expression patterns across a wide range of maize genotypes and α-zein haplotypes.
Collapse
Affiliation(s)
- Preston Hurst
- Department of Agronomy and Horticulture, Center for Plant Science InnovationUniversity of NebraskaLincolnNebraskaUSA
| | - James C. Schnable
- Department of Agronomy and Horticulture, Center for Plant Science InnovationUniversity of NebraskaLincolnNebraskaUSA
| | - David R. Holding
- Department of Agronomy and Horticulture, Center for Plant Science InnovationUniversity of NebraskaLincolnNebraskaUSA
| |
Collapse
|
25
|
Fiaz S, Ahmar S, Saeed S, Riaz A, Mora-Poblete F, Jung KH. Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security. Int J Mol Sci 2021; 22:5585. [PMID: 34070430 PMCID: PMC8197453 DOI: 10.3390/ijms22115585] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022] Open
Abstract
A world with zero hunger is possible only through a sustainable increase in food production and distribution and the elimination of poverty. Scientific, logistical, and humanitarian approaches must be employed simultaneously to ensure food security, starting with farmers and breeders and extending to policy makers and governments. The current agricultural production system is facing the challenge of sustainably increasing grain quality and yield and enhancing resistance to biotic and abiotic stress under the intensifying pressure of climate change. Under present circumstances, conventional breeding techniques are not sufficient. Innovation in plant breeding is critical in managing agricultural challenges and achieving sustainable crop production. Novel plant breeding techniques, involving a series of developments from genome editing techniques to speed breeding and the integration of omics technology, offer relevant, versatile, cost-effective, and less time-consuming ways of achieving precision in plant breeding. Opportunities to edit agriculturally significant genes now exist as a result of new genome editing techniques. These range from random (physical and chemical mutagens) to non-random meganucleases (MegaN), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein system 9 (CRISPR/Cas9), the CRISPR system from Prevotella and Francisella1 (Cpf1), base editing (BE), and prime editing (PE). Genome editing techniques that promote crop improvement through hybrid seed production, induced apomixis, and resistance to biotic and abiotic stress are prioritized when selecting for genetic gain in a restricted timeframe. The novel CRISPR-associated protein system 9 variants, namely BE and PE, can generate transgene-free plants with more frequency and are therefore being used for knocking out of genes of interest. We provide a comprehensive review of the evolution of genome editing technologies, especially the application of the third-generation genome editing technologies to achieve various plant breeding objectives within the regulatory regimes adopted by various countries. Future development and the optimization of forward and reverse genetics to achieve food security are evaluated.
Collapse
Affiliation(s)
- Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur 22620, Pakistan
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile
| | - Sajjad Saeed
- Department of Forestry and Wildlife Management, University of Haripur, Haripur 22620, Pakistan
| | - Aamir Riaz
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile
| | - Ki-Hung Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
26
|
Shen L, Luo G, Song Y, Xu J, Ji J, Zhang C, Gregová E, Yang W, Li X, Sun J, Zhan K, Cui D, Liu D, Zhang A. A novel NAC family transcription factor SPR suppresses seed storage protein synthesis in wheat. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:992-1007. [PMID: 33305445 PMCID: PMC8131056 DOI: 10.1111/pbi.13524] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/11/2020] [Accepted: 12/01/2020] [Indexed: 05/23/2023]
Abstract
The synthesis of seed storage protein (SSP) is mainly regulated at the transcriptional level. However, few transcriptional regulators of SSP synthesis have been characterized in common wheat (Triticum aestivum) owing to the complex genome. As the A genome donor of common wheat, Triticum urartu could be an elite model in wheat research considering its simple genome. Here, a novel NAC family transcription factor TuSPR from T. urartu was found preferentially expressed in developing endosperm during grain-filling stages. In common wheat transgenically overexpressing TuSPR, the content of total SSPs was reduced by c. 15.97% attributed to the transcription declines of SSP genes. Both in vitro and in vivo assays showed that TuSPR bound to the cis-element 5'-CANNTG-3' distributed in SSP gene promoters and suppressed the transcription. The homolog in common wheat TaSPR shared a conserved function with TuSPR on SSP synthesis suppression. The knock-down of TaSPR in common wheat resulted in 7.07%-20.34% increases in the total SSPs. Both TuSPR and TaSPR could be superior targets in genetic engineering to manipulate SSP content in wheat, and this work undoubtedly expands our knowledge of SSP gene regulation.
Collapse
Affiliation(s)
- Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Guangbin Luo
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
- Agronomy DepartmentUniversity of FloridaGainesvilleFLUSA
| | - Yanhong Song
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
- Agronomy CollegeNational Key Laboratory of Wheat and Maize Crop ScienceCollaborative Innovation Center of Grain Crops in HenanHenan Agricultural UniversityZhengzhouChina
| | | | | | - Chi Zhang
- BGI GenomicsBGI‐ShenzhenShenzhenChina
| | - Edita Gregová
- National Agricultural and Food CentreResearch Institute of Plant ProductionPiešťanySlovakia
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Kehui Zhan
- Agronomy CollegeNational Key Laboratory of Wheat and Maize Crop ScienceCollaborative Innovation Center of Grain Crops in HenanHenan Agricultural UniversityZhengzhouChina
| | - Dangqun Cui
- Agronomy CollegeNational Key Laboratory of Wheat and Maize Crop ScienceCollaborative Innovation Center of Grain Crops in HenanHenan Agricultural UniversityZhengzhouChina
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
- Advanced Biotechnology and Application Research CenterSchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
| |
Collapse
|
27
|
Dai D, Ma Z, Song R. Maize endosperm development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:613-627. [PMID: 33448626 DOI: 10.1111/jipb.13069] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 05/22/2023]
Abstract
Recent breakthroughs in transcriptome analysis and gene characterization have provided valuable resources and information about the maize endosperm developmental program. The high temporal-resolution transcriptome analysis has yielded unprecedented access to information about the genetic control of seed development. Detailed spatial transcriptome analysis using laser-capture microdissection has revealed the expression patterns of specific populations of genes in the four major endosperm compartments: the basal endosperm transfer layer (BETL), aleurone layer (AL), starchy endosperm (SE), and embryo-surrounding region (ESR). Although the overall picture of the transcriptional regulatory network of endosperm development remains fragmentary, there have been some exciting advances, such as the identification of OPAQUE11 (O11) as a central hub of the maize endosperm regulatory network connecting endosperm development, nutrient metabolism, and stress responses, and the discovery that the endosperm adjacent to scutellum (EAS) serves as a dynamic interface for endosperm-embryo crosstalk. In addition, several genes that function in BETL development, AL differentiation, and the endosperm cell cycle have been identified, such as ZmSWEET4c, Thk1, and Dek15, respectively. Here, we focus on current advances in understanding the molecular factors involved in BETL, AL, SE, ESR, and EAS development, including the specific transcriptional regulatory networks that function in each compartment during endosperm development.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
28
|
Yang T, Guo L, Ji C, Wang H, Wang J, Zheng X, Xiao Q, Wu Y. The B3 domain-containing transcription factor ZmABI19 coordinates expression of key factors required for maize seed development and grain filling. THE PLANT CELL 2021; 33:104-128. [PMID: 33751093 PMCID: PMC8136913 DOI: 10.1093/plcell/koaa008] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/30/2020] [Indexed: 05/06/2023]
Abstract
Grain filling in maize (Zea mays) is regulated by a group of spatiotemporally synchronized transcription factors (TFs), but the factors that coordinate their expression remain unknown. We used the promoter of the grain filling-specific TF gene Opaque2 (O2) to screen upstream regulatory factors and identified a B3 domain TF, ZmABI19, that directly binds to the O2 promoter for transactivation. zmabi19 mutants displayed developmental defects in the endosperm and embryo, and mature kernels were opaque and reduced in size. The accumulation of zeins, starch and lipids dramatically decreased in zmabi19 mutants. RNA sequencing revealed an alteration of the nutrient reservoir activity and starch and sucrose metabolism in zmabi19 endosperms, and plant phytohormone signal transduction and lipid metabolism in zmabi19 embryos. Chromatin immunoprecipitation followed by sequencing coupled with differential expression analysis identified 106 high-confidence direct ZmABI19 targets. ZmABI19 directly regulates multiple key grain filling TFs including O2, Prolamine-box binding factor 1, ZmbZIP22, NAC130, and Opaque11 in the endosperm and Viviparous1 in the embryo. A number of phytohormone-related genes were also bound and regulated by ZmABI19. Our results demonstrate that ZmABI19 functions as a grain filling initiation regulator. ZmABI19 roles in coupling early endosperm and embryo development are also discussed.
Collapse
Affiliation(s)
- Tao Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liangxing Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Ji
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xixi Zheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Author for communication:
| |
Collapse
|
29
|
Qiao Z, Wang X, Zhang H, Han J, Feng H, Wu Z. Single-Cell Transcriptomics Reveals That Metabolites Produced by Paenibacillus bovis sp. nov. BD3526 Ameliorate Type 2 Diabetes in GK Rats by Downregulating the Inflammatory Response. Front Microbiol 2021; 11:568805. [PMID: 33424779 PMCID: PMC7793688 DOI: 10.3389/fmicb.2020.568805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/23/2020] [Indexed: 01/03/2023] Open
Abstract
Chronic low-grade inflammation is widely involved in the development and progression of metabolic syndrome, which can lead to type 2 diabetes mellitus (T2DM). Dysregulation of proinflammatory and anti-inflammatory cytokines not only impairs insulin secretion by pancreatic β-cells but also results in systemic complications in late diabetes. In our previous work, metabolites produced by Paenibacillus bovis sp. nov. BD3526, which were isolated from Tibetan yak milk, demonstrated antidiabetic effects in Goto–Kakizaki (GK) rats. In this work, we used single-cell RNA sequencing (scRNA-seq) to further explore the impact of BD3526 metabolites on the intestinal cell composition of GK rats. Oral administration of the metabolites significantly reduced the number of adipocytes in the colon tissue of GK rats. In addition, cluster analysis of immune cells confirmed that the metabolites reduced the expression of interleukin (IL)-1β in macrophages in the colon and increased the numbers of dendritic cells (DCs) and regulatory T (Treg) cells. Further mechanistic studies of DCs confirmed that activation of the WNT/β-catenin pathway in DCs promoted the expression of IL-10 and transforming growth factor (TGF)-β, thereby increasing the number of Treg cells.
Collapse
Affiliation(s)
- Zhenyi Qiao
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China.,State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Postdoctoral Workstation of Bright Dairy-Shanghai Jiao Tong University, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Xiaohua Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Huanchang Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Jin Han
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Huafeng Feng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Zhengjun Wu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| |
Collapse
|
30
|
Ko DK, Brandizzi F. A temporal hierarchy underpins the transcription factor-DNA interactome of the maize UPR. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:254-270. [PMID: 33098715 PMCID: PMC7942231 DOI: 10.1111/tpj.15044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 05/10/2023]
Abstract
Adverse environmental conditions reduce crop productivity and often increase the load of unfolded or misfolded proteins in the endoplasmic reticulum (ER). This potentially lethal condition, known as ER stress, is buffered by the unfolded protein response (UPR), a set of signaling pathways designed to either recover ER functionality or ignite programmed cell death. Despite the biological significance of the UPR to the life of the organism, the regulatory transcriptional landscape underpinning ER stress management is largely unmapped, especially in crops. To fill this significant knowledge gap, we performed a large-scale systems-level analysis of the protein-DNA interaction (PDI) network in maize (Zea mays). Using 23 promoter fragments of six UPR marker genes in a high-throughput enhanced yeast one-hybrid assay, we identified a highly interconnected network of 262 transcription factors (TFs) associated with significant biological traits and 831 PDIs underlying the UPR. We established a temporal hierarchy of TF binding to gene promoters within the same family as well as across different families of TFs. Cistrome analysis revealed the dynamic activities of a variety of cis-regulatory elements (CREs) in ER stress-responsive gene promoters. By integrating the cistrome results into a TF network analysis, we mapped a subnetwork of TFs associated with a CRE that may contribute to UPR management. Finally, we validated the role of a predicted network hub gene using the Arabidopsis system. The PDIs, TF networks, and CREs identified in our work are foundational resources for understanding transcription-regulatory mechanisms in the stress responses and crop improvement.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824
- Correspondence:
| |
Collapse
|
31
|
Dai D, Ma Z, Song R. Maize kernel development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:2. [PMID: 37309525 PMCID: PMC10231577 DOI: 10.1007/s11032-020-01195-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays) is a leading cereal crop in the world. The maize kernel is the storage organ and the harvest portion of this crop and is closely related to its yield and quality. The development of maize kernel is initiated by the double fertilization event, leading to the formation of a diploid embryo and a triploid endosperm. The embryo and endosperm are then undergone independent developmental programs, resulting in a mature maize kernel which is comprised of a persistent endosperm, a large embryo, and a maternal pericarp. Due to the well-characterized morphogenesis and powerful genetics, maize kernel has long been an excellent model for the study of cereal kernel development. In recent years, with the release of the maize reference genome and the development of new genomic technologies, there has been an explosive expansion of new knowledge for maize kernel development. In this review, we overviewed recent progress in the study of maize kernel development, with an emphasis on genetic mapping of kernel traits, transcriptome analysis during kernel development, functional gene cloning of kernel mutants, and genetic engineering of kernel traits.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
32
|
Wang J, Chen Z, Zhang Q, Meng S, Wei C. The NAC Transcription Factors OsNAC20 and OsNAC26 Regulate Starch and Storage Protein Synthesis. PLANT PHYSIOLOGY 2020; 184:1775-1791. [PMID: 32989010 PMCID: PMC7723083 DOI: 10.1104/pp.20.00984] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/16/2020] [Indexed: 05/06/2023]
Abstract
Starch and storage proteins determine the weight and quality of cereal grains. Synthesis of these two grain components has been comprehensively investigated, but the transcription factors responsible for their regulation remain largely unknown. In this study, we investigated the roles of NAM, ATAF, and CUC (NAC) transcription factors, OsNAC20, and OsNAC26 in starch and storage protein synthesis in rice (Oryza sativa) endosperm. OsNAC20 and OsNAC26 showed high levels of amino acid sequence similarity. Both were localized in the aleurone layer, starchy endosperm, and embryo. Mutation of OsNAC20 or OsNAC26 alone had no effect on the grain, while the osnac20/26 double mutant had significantly decreased starch and storage protein content. OsNAC20 and OsNAC26 alone could directly transactivate the expression of starch synthaseI (SSI), pullulanase (Pul), glutelin A1 (GluA1), glutelin B4/5 (GluB4/5), α-globulin, and 16 kD prolamin and indirectly influenced plastidial disproportionating enzyme1 (DPE1) expression to regulate starch and storage protein synthesis. Although they could also bind to the promoters of ADP-Glc pyrophosphorylase small subunit 2b (AGPS2b), ADP-Glc pyrophosphorylase large subunit 2 (AGPL2), and starch branching enzymeI (SBEI), and the expression of the three genes was largely decreased in the osnac20/26 mutant, ADP-Glc pyrophosphorylase and starch branching enzyme activities were unchanged in this double mutant. In addition, OsNAC20 and OsNAC26 are main regulators of Pul, GluB4, α-globulin, and 16 kD prolamin In conclusion, OsNAC20 and OsNAC26 play an essential and redundant role in the regulation of starch and storage protein synthesis.
Collapse
Affiliation(s)
- Juan Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zichun Chen
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qing Zhang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Shanshan Meng
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Cunxu Wei
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
33
|
Zang J, Huo Y, Liu J, Zhang H, Liu J, Chen H. Maize YSL2 is required for iron distribution and development in kernels. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5896-5910. [PMID: 32687576 DOI: 10.1093/jxb/eraa332] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/13/2020] [Indexed: 05/22/2023]
Abstract
Iron (Fe) is an essential micronutrient and plays an irreplaceable role in plant growth and development. Although its uptake and translocation are important biological processes, little is known about the molecular mechanism of Fe translocation within seed. Here, we characterized a novel small kernel mutant yellow stripe like 2 (ysl2) in maize (Zea mays). ZmYSL2 was predominantly expressed in developing endosperm and was found to encode a plasma membrane-localized metal-nicotianamine (NA) transporter ZmYSL2. Analysis of transporter activity revealed ZmYSL2-mediated Fe transport from endosperm to embryo during kernel development. Dysfunction of ZmYSL2 resulted in the imbalance of Fe homeostasis and abnormality of protein accumulation and starch deposition in the kernel. Significant changes of nitric oxide accumulation, mitochondrial Fe-S cluster content, and mitochondrial morphology indicated that the proper function of mitochondria was also affected in ysl2. Collectively, our study demonstrated that ZmYSL2 had a pivotal role in mediating Fe distribution within the kernel and kernel development in maize.
Collapse
Affiliation(s)
- Jie Zang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanqing Huo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huairen Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Juan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Li C, Song R. The regulation of zein biosynthesis in maize endosperm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1443-1453. [PMID: 31897513 DOI: 10.1007/s00122-019-03520-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/18/2019] [Indexed: 05/06/2023]
Abstract
We review the current knowledge regarding the regulation of zein storage proteins biosynthesis and protein body formation, which are crucial processes for the successful accumulation of nutrients in maize kernels. Storage proteins in the seeds of crops in the grass family (Poaceae) are a major source of dietary protein for humans. In maize (Zea mays), proteins are the second largest nutrient component in the kernels, accounting for ~ 10% of the kernel weight. Over half of the storage proteins in maize kernels are zeins, which lack two essential amino acids, lysine and tryptophan. This deficiency limits the use of maize proteins in the food and feed industries. Zeins are encoded by a large super-gene family. During endosperm development, zeins accumulate in protein bodies, which are derived from the rough endoplasmic reticulum. In recent years, our knowledge of the pathways of zein biosynthesis and their deposition within the endosperm has been greatly expanded. In this review, we summarize the current understanding of zeins, including the genes encoding these proteins, their expression patterns and transcriptional regulation, the process of protein body formation, and other biological processes affecting zein accumulation.
Collapse
Affiliation(s)
- Chaobin Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
35
|
Ku HK, Ha SH. Improving Nutritional and Functional Quality by Genome Editing of Crops: Status and Perspectives. FRONTIERS IN PLANT SCIENCE 2020; 11:577313. [PMID: 33193521 PMCID: PMC7644509 DOI: 10.3389/fpls.2020.577313] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/15/2020] [Indexed: 05/07/2023]
Abstract
Genome-editing tools including meganucleases, zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats (CRISPR) system have been applied to improve the quality of staple, oilseed, and horticultural crops with great accuracy and efficiency compared to conventional breeding. In particular, the CRISPR method has proven to be a feasible, cost-effective and versatile tool allowing precise and efficient editing of plant genomes in recent years, showing great potential in crop improvement. Until now, various genome-edited crops with enhanced commercial value have been developed by not only global companies but also small laboratories in universities, suggesting low entry barriers with respect to manpower and capital. In this study, we review the current applications of genome editing technologies to improve the nutritional and functional quality and preferred traits of various crops. Combining this rapidly advancing genome-editing technology and conventional breeding will greatly extend the potential of genome-edited crops and their commercialization.
Collapse
Affiliation(s)
| | - Sun-Hwa Ha
- *Correspondence: Sun-Hwa Ha, ; orcid.org/0000-0002-0260-7645
| |
Collapse
|
36
|
Khan NU, Sheteiwy M, Lihua N, Khan MMU, Han Z. An update on the maize zein-gene family in the post-genomics era. FOOD PRODUCTION, PROCESSING AND NUTRITION 2019. [DOI: 10.1186/s43014-019-0012-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractMaize (Zea mays) is a cereal crop of global food importance. However, the deficiency of essential amino acids, more importantly lysine, methionine and tryptophan, in the major seed storage zein proteins makes corn nutritionally of low value for human consumption. The idea of improving maize nutritional value prompted the search for maize natural mutants harboring low zein contents and higher amount of lysine. These studies resulted in the identification of more than dozens of maize opaque mutants in the previous few decades,o2mutant being the most extensively studied one. However, the high lysine contents but soft kernel texture and chalky endosperm halted the widespread application and commercial success of maize opaque mutants, which ultimately paved the way for the development of Quality Protein Maize (QPM) by modifying the soft endosperm ofo2 mutant into lysine-rich hard endosperm. The previous few decades have witnessed a marked progress in maize zein research. It includes elucidation of molecular mechanism underlying the role of different zein genes in seed endosperm development by cloning different components of zein family, exploring the general organization, function and evolution of zein family members within maize species and among other cereals, and elucidating the cis- and trans-regulatory elements modulating the regulation of different molecular players of maize seed endosperm development. The current advances in high quality reference genomes of maize lines B73 and Mo17 plus the completion of ongoing pan genome sequencing projects of more maize lines with NGS technologies are expected to revolutionize maize zein gene research in near future. This review highlights the recent advances in QPM development and its practical application in the post genomic era, genomic and physical composition and evolution of zein family, and expression, regulation and downstream role of zein genes in endosperm development. Moreover, recent genomic tools and methods developed for functional validation of maize zein genes are also discussed.Graphical abstract
Collapse
|
37
|
Kumari K, Rai MP, Bansal N, Rama Prashat G, Kumari S, Krishnan V, Srivathsa R, Dahuja A, Sachdev A, Praveen S, Vinutha T. Analysis of γ-Tocopherol methyl transferase3 promoter activity and study of methylation patterns of the promoter and its gene body. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:375-385. [PMID: 31622940 DOI: 10.1016/j.plaphy.2019.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/11/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Soybeans are known for its good source of protein (40%), oil (20%) and also serve as a source of nutraceutical compounds including tocopherols (toc). To know the molecular basis of differential α-toc accumulation in two contrasting soybean genotypes: DS74 (low α-toc - 1.36 μg/g and total-toc -29.72 μg/g) and Bragg (high α-toc - 10.48 μg/g and total-toc 178.91 μg/g), the analysis of γ-TMT3 promoter activity and its methylation patterns were carried out. The sequencing results revealed nucleotide variation between Bragg:γ-TMT3-P and DS74:γ-TMT3-P, however none of the variations were found in core-promoter region or in cis-elements. The histochemical GUS assay revealed higher promoter activity of Bragg:γ-TMT3-P than that of DS74:γ-TMT3-P and correlated with significantly higher and lower (P < 0.05) expression of γ-TMT3 gene respectively. To know the molecular basis of differential accumulation of α-toc in these contrasting soybean genotypes, the DNA methylation pattern of γ-TMT3 gene body and its promoter was studied in both varieties. The results showed higher percentage (62.5%) of methylation in DS74:γ-TMT3-P than in Bragg:γ-TMT3-P (50%). Out of all the methylation sites in the promoter region, one of methylation site was found at CAAT box (-190 bp) of DS74:γ-TMT3-P. Further gene body methylation patterns revealed lowest % (40%) of CG methylation in DS74:γ-TMT3 gene as compared to Bragg:γ-TMT3 (64.2%). Thus our study revealed that, expression of γ-TMT3 gene was influenced by its promoter activity and methylation patterns in cis-elements of γ-TMT3 promoter and gene body. This study will help us to understand the possible role of methylation and promoter activity in determining the α-toc content in soybean seeds.
Collapse
Affiliation(s)
- Khushboo Kumari
- Division of Biochemistry, IARI, New Delhi, 110012, India; Amity University, Noida, Uttar Pradesh, 201313, India
| | | | - Navita Bansal
- Division of Biochemistry, IARI, New Delhi, 110012, India; Amity University, Noida, Uttar Pradesh, 201313, India
| | | | - Sweta Kumari
- Division of Biochemistry, IARI, New Delhi, 110012, India
| | - Veda Krishnan
- Division of Biochemistry, IARI, New Delhi, 110012, India
| | - Rohini Srivathsa
- National Research Centre for Plant Biotechnology, Pusa, New Delhi, 110012, India
| | - Anil Dahuja
- Division of Biochemistry, IARI, New Delhi, 110012, India
| | | | - Shelly Praveen
- Division of Biochemistry, IARI, New Delhi, 110012, India.
| | - T Vinutha
- Division of Biochemistry, IARI, New Delhi, 110012, India.
| |
Collapse
|
38
|
Dissecting a heterotic gene through GradedPool-Seq mapping informs a rice-improvement strategy. Nat Commun 2019; 10:2982. [PMID: 31278256 PMCID: PMC6611799 DOI: 10.1038/s41467-019-11017-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Hybrid rice breeding for exploiting hybrid vigor, heterosis, has greatly increased grain yield. However, the heterosis-related genes associated with rice grain production remain largely unknown, partly because comprehensive mapping of heterosis-related traits is still labor-intensive and time-consuming. Here, we present a quantitative trait locus (QTL) mapping method, GradedPool-Seq, for rapidly mapping QTLs by whole-genome sequencing of graded-pool samples from F2 progeny via bulked-segregant analysis. We implement this method and map-based cloning to dissect the heterotic QTL GW3p6 from the female line. We then generate the near isogenic line NIL-FH676::GW3p6 by introgressing the GW3p6 allele from the female line Guangzhan63-4S into the male inbred line Fuhui676. The NIL-FH676::GW3p6 exhibits grain yield highly increased compared to Fuhui676. This study demonstrates that it may be possible to achieve a high level of grain production in inbred rice lines without the need to construct hybrids. Developing hybrid rice cultivars requires time consuming random crossing. Here, the authors develop a new next generation sequencing-based quantitative trait locus mapping method to dissect heterotic gene OsMADS1 and demonstrate the feasibility of pyramiding two genes to achieve large heterotic effect.
Collapse
|
39
|
Song W, Zhu J, Zhao H, Li Y, Liu J, Zhang X, Huang L, Lai J. OS1 functions in the allocation of nutrients between the endosperm and embryo in maize seeds. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:706-727. [PMID: 30506638 DOI: 10.1111/jipb.12755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/27/2018] [Indexed: 05/05/2023]
Abstract
Uncovering the genetic basis of seed development will provide useful tools for improving both crop yield and nutritional value. However, the genetic regulatory networks of maize (Zea mays) seed development remain largely unknown. The maize opaque endosperm and small germ 1 (os1) mutant has opaque endosperm and a small embryo. Here, we cloned OS1 and show that it encodes a putative transcription factor containing an RWP-RK domain. Transcriptional analysis indicated that OS1 expression is elevated in early endosperm development, especially in the basal endosperm transfer layer (BETL), conducting zone (CZ), and central starch endosperm (CSE) cells. RNA sequencing (RNA-Seq) analysis of the os1 mutant revealed sharp downregulation of certain genes in specific cell types, including ZmMRP-1 and Meg1 in BETL cells and a majority of zein- and starch-related genes in CSE cells. Using a haploid induction system, we show that wild-type endosperm could rescue the smaller size of os1 embryo, which suggests that nutrients are allocated by the wild-type endosperm. Therefore, our data imply that the network regulated by OS1 accomplishes a key step in nutrient allocation between endosperm and embryo within maize seeds. Identification of this network will help uncover the mechanisms regulating the nutritional balance between endosperm and embryo.
Collapse
Affiliation(s)
- Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Jinjie Zhu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Haiming Zhao
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Yingnan Li
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Jiangtao Liu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Xiangbo Zhang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Liangliang Huang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| |
Collapse
|
40
|
Zuo Y, Feng F, Qi W, Song R. Dek42 encodes an RNA-binding protein that affects alternative pre-mRNA splicing and maize kernel development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:728-748. [PMID: 30839161 DOI: 10.1111/jipb.12798] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/28/2019] [Indexed: 05/22/2023]
Abstract
RNA-binding proteins (RBPs) play an important role in post-transcriptional gene regulation. However, the functions of RBPs in plants remain poorly understood. Maize kernel mutant dek42 has small defective kernels and lethal seedlings. Dek42 was cloned by Mutator tag isolation and further confirmed by an independent mutant allele and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 materials. Dek42 encodes an RRM_RBM48 type RNA-binding protein that localizes to the nucleus. Dek42 is constitutively expressed in various maize tissues. The dek42 mutation caused a significant reduction in the accumulation of DEK42 protein in mutant kernels. RNA-seq analysis showed that the dek42 mutation significantly disturbed the expression of thousands of genes during maize kernel development. Sequence analysis also showed that the dek42 mutation significantly changed alternative splicing in expressed genes, which were especially enriched for the U12-type intron-retained type. Yeast two-hybrid screening identified SF3a1 as a DEK42-interacting protein. DEK42 also interacts with the spliceosome component U1-70K. These results suggested that DEK42 participates in the regulation of pre-messenger RNA splicing through its interaction with other spliceosome components. This study showed the function of a newly identified RBP and provided insights into alternative splicing regulation during maize kernel development.
Collapse
Affiliation(s)
- Yi Zuo
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Fan Feng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
41
|
NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. Proc Natl Acad Sci U S A 2019; 116:11223-11228. [PMID: 31110006 DOI: 10.1073/pnas.1904995116] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Grain starch and protein are synthesized during endosperm development, prompting the question of what regulatory mechanism underlies the synchronization of the accumulation of secondary and primary gene products. We found that two endosperm-specific NAC transcription factors, ZmNAC128 and ZmNAC130, have such a regulatory function. Knockdown of expression of ZmNAC128 and ZmNAC130 with RNA interference (RNAi) caused a shrunken kernel phenotype with significant reduction of starch and protein. We could show that ZmNAC128 and ZmNAC130 regulate the transcription of Bt2 and then reduce its protein level, a rate-limiting step in starch synthesis of maize endosperm. Lack of ZmNAC128 and ZmNAC130 also reduced accumulation of zeins and nonzeins by 18% and 24% compared with nontransgenic siblings, respectively. Although ZmNAC128 and ZmNAC130 affected expression of zein genes in general, they specifically activated transcription of the 16-kDa γ-zein gene. The two transcription factors did not dimerize with each other but exemplified redundancy, whereas individual discovery of their function was not amenable to conventional genetics but illustrated the power of RNAi. Given that both the Bt2 and the 16-kDa γ-zein genes were activated by ZmNAC128 or ZmNAC130, we could identify a core binding site ACGCAA contained within their target promoter regions by combining Dual-Luciferase Reporter and Electrophoretic Mobility Shift assays. Consistent with these properties, transcriptomic profiling uncovered that lack of ZmNAC128 and ZmNAC130 had a pleiotropic effect on the utilization of carbohydrates and amino acids.
Collapse
|
42
|
Dong Q, Wang F, Kong J, Xu Q, Li T, Chen L, Chen H, Jiang H, Li C, Cheng B. Functional analysis of ZmMADS1a reveals its role in regulating starch biosynthesis in maize endosperm. Sci Rep 2019; 9:3253. [PMID: 30824731 PMCID: PMC6397188 DOI: 10.1038/s41598-019-39612-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/22/2019] [Indexed: 11/30/2022] Open
Abstract
MADS-box family proteins play an important role in grain formation and flower development; however, the molecular mechanisms by which transcription factors regulate the starch metabolism pathway are unclear in maize. Here, we report a transcription factor, ZmMADS1a, that controls starch biosynthesis in maize (Zea mays L.). We demonstrate the expression of ZmMADS1a in tassel, silk, and endosperm, and show that the protein is localized to the cell nucleus. Compared with the control, seeds of overexpressing ZmMADS1a increased starch content (especially amylose content), had smaller starch granules and altered chemical structure. Meanwhile, overexpression of ZmMADS1a resulted in increases in the contents of soluble sugars and reducing sugars in maize. ZmMADS1a plays a positive regulatory role in the starch biosynthesis pathway by up-regulating several starch biosynthesis related genes. We also show that ZmMADS1a has a similar adjustment mechanism of starch biosynthesis in rice. Collectively, our study suggests that ZmMADS1a functions as a positive regulator of starch biosynthesis by regulating the expression of key starch metabolism genes during seed development.
Collapse
Affiliation(s)
- Qing Dong
- Maize Research Center, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.,National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Fang Wang
- Maize Research Center, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jingjing Kong
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Qianqian Xu
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Tingchun Li
- Maize Research Center, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Long Chen
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Hongjian Chen
- Maize Research Center, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Cheng Li
- Maize Research Center, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
43
|
He Y, Wang J, Qi W, Song R. Maize Dek15 Encodes the Cohesin-Loading Complex Subunit SCC4 and Is Essential for Chromosome Segregation and Kernel Development. THE PLANT CELL 2019; 31:465-485. [PMID: 30705131 PMCID: PMC6447020 DOI: 10.1105/tpc.18.00921] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/22/2019] [Accepted: 01/31/2019] [Indexed: 05/18/2023]
Abstract
Cohesin complexes maintain sister chromatid cohesion to ensure proper chromosome segregation during mitosis and meiosis. In plants, the exact components and functions of the cohesin complex remain poorly understood. Here, we positionally cloned the classic maize (Zea mays) mutant defective kernel 15 (dek15), revealing that it encodes a homolog of SISTER CHROMATID COHESION PROTEIN 4 (SCC4), a loader subunit of the cohesin ring. Developing dek15 kernels contained fewer cells than the wild type, but had a highly variable cell size. The dek15 mutation was found to disrupt the mitotic cell cycle and endoreduplication, resulting in a reduced endosperm and embryo lethality. The cells in the dek15 endosperm and embryo exhibited precocious sister chromatid separation and other chromosome segregation errors, including misaligned chromosomes, lagging chromosomes, and micronuclei, resulting in a high percentage of aneuploid cells. The loss of Dek15/Scc4 function upregulated the expression of genes involved in cell cycle progression and stress responses, and downregulated key genes involved in organic synthesis during maize endosperm development. Our yeast two-hybrid screen identified the chromatin remodeling proteins chromatin remodeling factor 4, chromatin remodeling complex subunit B (CHB)102, CHB105, and CHB106 as SCC4-interacting proteins, suggesting a possible mechanism by which the cohesin ring is loaded onto chromatin in plant cells. This study revealed biological functions for DEK15/SCC4 in mitotic chromosome segregation and kernel development in maize.
Collapse
Affiliation(s)
- Yonghui He
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jinguang Wang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
44
|
Zha K, Xie H, Ge M, Wang Z, Wang Y, Si W, Gu L. Expression of Maize MADS Transcription Factor ZmES22 Negatively Modulates Starch Accumulation in Rice Endosperm. Int J Mol Sci 2019; 20:ijms20030483. [PMID: 30678069 PMCID: PMC6387075 DOI: 10.3390/ijms20030483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 01/05/2023] Open
Abstract
As major component in cereals grains, starch has been one of the most important carbohydrate consumed by a majority of world’s population. However, the molecular mechanism for regulation of biosynthesis of starch remains elusive. In the present study, ZmES22, encoding a MADS-type transcription factor, was modestly characterized from maize inbred line B73. ZmES22 exhibited high expression level in endosperm at 10 days after pollination (DAP) and peaked in endosperm at 20 DAP, indicating that ZmES22 was preferentially expressed in maize endosperm during active starch synthesis. Transient expression of ZmES22 in tobacco leaf revealed that ZmES22 protein located in nucleus. No transactivation activity could be detected for ZmES22 protein via yeast one-hybrid assay. Transformation of overexpressing plasmid 35S::ZmES22 into rice remarkedly reduced 1000-grain weight as well as the total starch content, while the soluble sugar was significantly higher in transgenic rice lines. Moreover, overexpressing ZmES22 reduced fractions of long branched starch. Scanning electron microscopy images of transverse sections of rice grains revealed that altered expression of ZmES22 also changed the morphology of starch granule from densely packed, polyhedral starch granules into loosely packed, spherical granules with larger spaces. Furthermore, RNA-seq results indicated that overexpressing ZmES22 could significantly influence mRNA expression levels of numerous key regulatory genes in starch synthesis pathway. Y1H assay illustrated that ZmES22 protein could bind to the promoter region of OsGIF1 and downregulate its mRNA expression during rice grain filling stages. These findings suggest that ZmES22 was a novel regulator during starch synthesis process in rice endosperm.
Collapse
Affiliation(s)
- Kangyong Zha
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Haoxun Xie
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Min Ge
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Zimeng Wang
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Yu Wang
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Weina Si
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Longjiang Gu
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
45
|
Castelli S, Mascheretti I, Cosentino C, Lazzari B, Pirona R, Ceriotti A, Viotti A, Lauria M. Uniparental and transgressive expression of α-zeins in maize endosperm of o2 hybrid lines. PLoS One 2018; 13:e0206993. [PMID: 30439980 PMCID: PMC6237297 DOI: 10.1371/journal.pone.0206993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/23/2018] [Indexed: 11/18/2022] Open
Abstract
The α-zein gene family encodes the most abundant storage proteins of maize (Zea mays) endosperm. Members of this family are expressed in a parent-of-origin manner. To characterize this phenomenon further, we investigated the expression of a subset of α-zein polypeptides in reciprocal crosses between o2 lines that were characterized by a simplified α-zein pattern. Maize lines that suppressed the expression of α-zeins when used as female parents were identified. The suppression was cross-specific, occurring only when specific genetic backgrounds were combined. Four α-zein sequences that were sensitive to uniparental expression were isolated. Molecular characterization of these α-zeins confirmed that their expression or suppression depended on the genetic proprieties of the endosperm tissue instead of their parental origin. DNA methylation analysis of both maternally and paternally expressed α-zeins revealed no clear correlation between this epigenetic marker and parent-of-origin allelic expression, suggesting that an additional factor(s) is involved in this process. Genetic analyses revealed that the ability of certain lines to suppress α-zein expression was unstable after one round of heterozygosity with non-suppressing lines. Interestingly, α-zeins also showed a transgressive expression pattern because unexpressed isoforms were reactivated in both F2 and backcross plants. Collectively, our results suggest that parent-of-origin expression of specific α-zein alleles depends on a complex interaction between genotypes in a manner that is reminiscent of paramutation-like phenomena.
Collapse
Affiliation(s)
- Silvana Castelli
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Iride Mascheretti
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Cristian Cosentino
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Barbara Lazzari
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Raul Pirona
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Aldo Ceriotti
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Angelo Viotti
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
- * E-mail: (AV); (ML)
| | - Massimiliano Lauria
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
- * E-mail: (AV); (ML)
| |
Collapse
|
46
|
Zhan J, Li G, Ryu CH, Ma C, Zhang S, Lloyd A, Hunter BG, Larkins BA, Drews GN, Wang X, Yadegari R. Opaque-2 Regulates a Complex Gene Network Associated with Cell Differentiation and Storage Functions of Maize Endosperm. THE PLANT CELL 2018; 30:2425-2446. [PMID: 30262552 PMCID: PMC6241275 DOI: 10.1105/tpc.18.00392] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 05/19/2023]
Abstract
Development of the cereal endosperm involves cell differentiation processes that enable nutrient uptake from the maternal plant, accumulation of storage products, and their utilization during germination. However, little is known about the regulatory mechanisms that link cell differentiation processes with those controlling storage product synthesis and deposition, including the activation of zein genes by the maize (Zea mays) bZIP transcription factor Opaque-2 (O2). Here, we mapped in vivo binding sites of O2 in B73 endosperm and compared the results with genes differentially expressed in B73 and B73o2 We identified 186 putative direct O2 targets and 1677 indirect targets, encoding a broad set of gene functionalities. Examination of the temporal expression patterns of O2 targets revealed at least two distinct modes of O2-mediated gene activation. Two O2-activated genes, bZIP17 and NAKED ENDOSPERM2 (NKD2), encode transcription factors, which can in turn coactivate other O2 network genes with O2. NKD2 (with its paralog NKD1) was previously shown to be involved in regulation of aleurone development. Collectively, our results provide insights into the complexity of the O2-regulated network and its role in regulation of endosperm cell differentiation and function.
Collapse
Affiliation(s)
- Junpeng Zhan
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Guosheng Li
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Choong-Hwan Ryu
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Chuang Ma
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Shanshan Zhang
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Alan Lloyd
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Brenda G Hunter
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Brian A Larkins
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68588
| | - Gary N Drews
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Xiangfeng Wang
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Ramin Yadegari
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
47
|
Li C, Yue Y, Chen H, Qi W, Song R. The ZmbZIP22 Transcription Factor Regulates 27-kD γ-Zein Gene Transcription during Maize Endosperm Development. THE PLANT CELL 2018; 30:2402-2424. [PMID: 30242039 PMCID: PMC6241260 DOI: 10.1105/tpc.18.00422] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/05/2018] [Accepted: 09/19/2018] [Indexed: 05/18/2023]
Abstract
Zeins are the most abundant storage proteins in maize (Zea mays) kernels, thereby affecting the nutritional quality and texture of this crop. 27-kD γ-zein is highly expressed and plays a crucial role in protein body formation. Several transcription factors (TFs) (O2, PBF1, OHP1, and OHP2) regulate the expression of the 27-kD γ-zein gene, but the complexity of its transcriptional regulation is not fully understood. Here, using probe affinity purification and mass spectrometry analysis, we identified ZmbZIP22, a TF that binds to the 27-kD γ-zein promoter. ZmbZIP22 is a bZIP-type TF that is specifically expressed in endosperm. ZmbZIP22 bound directly to the ACAGCTCA box in the 27-kD γ-zein promoter and activated its expression in wild tobacco (Nicotiana benthamiana) cells. 27-kD γ-zein gene expression was significantly reduced in CRISPR/Cas9-generated zmbzip22 mutants. ChIP-seq (chromatin immunoprecipitation coupled to high-throughput sequencing) confirmed that ZmbZIP22 binds to the 27-kD γ-zein promoter in vivo and identified additional direct targets of ZmbZIP22. ZmbZIP22 can interact with PBF1, OHP1, and OHP2, but not O2. Transactivation assays using various combinations of these TFs revealed multiple interaction modes for the transcriptional activity of the 27-kD γ-zein promoter. Therefore, ZmbZIP22 regulates 27-kD γ-zein gene expression together with other known TFs.
Collapse
Affiliation(s)
- Chaobin Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yihong Yue
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hanjun Chen
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Rentao Song
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
48
|
Zhang S, Zhan J, Yadegari R. Maize opaque mutants are no longer so opaque. PLANT REPRODUCTION 2018; 31:319-326. [PMID: 29978299 PMCID: PMC6105308 DOI: 10.1007/s00497-018-0344-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/23/2018] [Indexed: 05/02/2023]
Abstract
The endosperm of angiosperms is a zygotic seed organ that stores nutrient reserves to support embryogenesis and seed germination. Cereal endosperm is also a major source of human calories and an industrial feedstock. Maize opaque endosperm mutants commonly exhibit opaque, floury kernels, along with other abnormal seed and/or non-seed phenotypes. The opaque endosperm phenotype is sometimes accompanied by a soft kernel texture and increased nutritional quality, including a higher lysine content, which are valuable agronomic traits that have drawn attention of maize breeders. Recently, an increasing number of genes that underlie opaque mutants have been cloned, and their characterization has begun to shed light on the molecular basis of the opaque endosperm phenotype. These mutants are categorized by disruption of genes encoding zein or non-zein proteins localized to protein bodies, enzymes involved in endosperm metabolic processes, or transcriptional regulatory proteins associated with endosperm storage programs.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Junpeng Zhan
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Ramin Yadegari
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
49
|
Yu J, Miao J, Zhang Z, Xiong H, Zhu X, Sun X, Pan Y, Liang Y, Zhang Q, Abdul Rehman RM, Li J, Zhang H, Li Z. Alternative splicing of OsLG3b controls grain length and yield in japonica rice. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1667-1678. [PMID: 29479793 PMCID: PMC6097128 DOI: 10.1111/pbi.12903] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/31/2017] [Accepted: 02/03/2018] [Indexed: 05/18/2023]
Abstract
Grain size, one of the important components determining grain yield in rice, is controlled by the multiple quantitative trait loci (QTLs). Intensive artificial selection for grain size during domestication is evidenced in modern cultivars compared to their wild relatives. Here, we report the molecular cloning and characterization of OsLG3b, a QTL for grain length in tropical japonica rice that encodes MADS-box transcription factor 1 (OsMADS1). Six SNPs in the OsLG3b region led to alternative splicing, which were associated with grain length in an association analysis of candidate region. Quantitative PCR analysis indicated that OsLG3b expression was higher during the panicle and seed development stages. Analysis of haplotypes and introgression regions revealed that the long-grain allele of OsLG3b might have arisen after domestication of tropical japonica and spread to subspecies indica or temperate japonica by natural crossing and artificial selection. OsLG3b is therefore a target of human selection for adaptation to tropical regions during domestication and/or improvement of rice. Phylogenetic analysis and pedigree records showed that OsLG3b had been employed by breeders, but the gene still has much breeding potential for increasing grain length in indica. These findings will not only aid efforts to elucidate the molecular basis of grain development and domestication, but also facilitate the genetic improvement of rice yield.
Collapse
Affiliation(s)
- Jianping Yu
- Key Laboratory of Crop Heterosis and UtilizationMinistry of Education/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Jinli Miao
- Key Laboratory of Crop Heterosis and UtilizationMinistry of Education/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Zhanying Zhang
- Key Laboratory of Crop Heterosis and UtilizationMinistry of Education/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Haiyan Xiong
- Key Laboratory of Crop Heterosis and UtilizationMinistry of Education/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Xiaoyang Zhu
- Key Laboratory of Crop Heterosis and UtilizationMinistry of Education/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Xingming Sun
- Key Laboratory of Crop Heterosis and UtilizationMinistry of Education/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Yinghua Pan
- China/Guangxi Key Laboratory of Rice Genetics and BreedingRice Research InstituteGuangxi Academy of Agricultural SciencesNanningGuangxiChina
| | - Yuntao Liang
- China/Guangxi Key Laboratory of Rice Genetics and BreedingRice Research InstituteGuangxi Academy of Agricultural SciencesNanningGuangxiChina
| | - Qiang Zhang
- Key Laboratory of Crop Heterosis and UtilizationMinistry of Education/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Rashid Muhammad Abdul Rehman
- Key Laboratory of Crop Heterosis and UtilizationMinistry of Education/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Jinjie Li
- Key Laboratory of Crop Heterosis and UtilizationMinistry of Education/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Hongliang Zhang
- Key Laboratory of Crop Heterosis and UtilizationMinistry of Education/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Zichao Li
- Key Laboratory of Crop Heterosis and UtilizationMinistry of Education/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| |
Collapse
|
50
|
Feng F, Qi W, Lv Y, Yan S, Xu L, Yang W, Yuan Y, Chen Y, Zhao H, Song R. OPAQUE11 Is a Central Hub of the Regulatory Network for Maize Endosperm Development and Nutrient Metabolism. THE PLANT CELL 2018; 30:375-396. [PMID: 29436476 PMCID: PMC5868688 DOI: 10.1105/tpc.17.00616] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/22/2018] [Accepted: 02/06/2018] [Indexed: 05/18/2023]
Abstract
Maize (Zea mays) endosperm is a primary tissue for nutrient storage and is highly differentiated during development. However, the regulatory networks of endosperm development and nutrient metabolism remain largely unknown. Maize opaque11 (o11) is a classic seed mutant with a small and opaque endosperm showing decreased starch and protein accumulation. We cloned O11 and found that it encodes an endosperm-specific bHLH transcription factor (TF). Loss of function of O11 significantly affected transcription of carbohydrate/amino acid metabolism and stress response genes. Genome-wide binding site analysis revealed 9885 O11 binding sites distributed over 6033 genes. Using chromatin immunoprecipitation sequencing (ChIP-seq) coupled with RNA sequencing (RNA-seq) assays, we identified 259 O11-modulated target genes. O11 was found to directly regulate key TFs in endosperm development (NKD2 and ZmDOF3) and nutrient metabolism (O2 and PBF). Moreover, O11 directly regulates cyPPDKs and multiple carbohydrate metabolic enzymes. O11 is an activator of ZmYoda, suggesting its regulatory function through the MAPK pathway in endosperm development. Many stress-response genes are also direct targets of O11. In addition, 11 O11-interacting proteins were identified, including ZmIce1, which coregulates stress response targets and ZmYoda with O11. Therefore, this study reveals an endosperm regulatory network centered around O11, which coordinates endosperm development, metabolism and stress responses.
Collapse
Affiliation(s)
- Fan Feng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yuanda Lv
- Institute of Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shumei Yan
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Liming Xu
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wenyao Yang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yue Yuan
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yihan Chen
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Han Zhao
- Institute of Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
- National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China
| |
Collapse
|