1
|
Kandemir B, Kurnaz IA. The Role of Pea3 Transcription Factor Subfamily in the Nervous System. Mol Neurobiol 2025; 62:3293-3304. [PMID: 39269548 DOI: 10.1007/s12035-024-04432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/08/2024] [Indexed: 09/15/2024]
Abstract
ETS domain transcription factor superfamily is highly conserved throughout metazoa and is involved in many aspects of development and tissue morphogenesis, and as such, the deregulation of ETS proteins is quite common in many diseases, including cancer. The PEA3 subfamily in particular has been extensively studied with respect to tumorigenesis and metastasis; however, they are also involved in the development of many tissues with branching morphogenesis, such as lung or kidney development. In this review, we aim to summarize findings from various studies on the role of Pea3 subfamily members in nervous system development in the embryo, as well as their functions in the adult neurons. We further discuss the different signals that were shown to regulate the function of the Pea3 family and indicate how this signal-dependent regulation of Pea3 proteins can generate neuronal circuit specificity through unique gene regulation. Finally, we discuss how these developmental roles of Pea3 proteins relate to their role in tumorigenesis.
Collapse
Affiliation(s)
- Basak Kandemir
- Department of Molecular Biology and Genetics, Baskent University, 06790, Etimesgut, Ankara, Turkey
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Isil Aksan Kurnaz
- Department of Molecular Biology and Genetics, Molecular Neurobiology Laboratory (AxanLab), Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
2
|
Liao S, Sun C, Lagunas-Rangel FA, Liu W, Yi S, Browne-Johnson D, Eklund F, Zhang Y, Kudłak B, Williams MJ, Schiöth HB. Perfluorooctanoic acid induces transgenerational modifications in reproduction, metabolism, locomotor activity, and sleep behavior in Drosophila melanogaster and deleterious effects in human cancer cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177472. [PMID: 39522787 DOI: 10.1016/j.scitotenv.2024.177472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Perfluorooctanoic acid (PFOA) has been widely documented to affect various aspects of health, including development, metabolism and neuronal function in a variety of organisms. Despite numerous reports detailing these effects, a comprehensive mechanistic model remains elusive, especially with regard to the long-term effects of PFOA, as it bioaccumulates in food chains with a long half-life. In this study, we evaluated the impact of PFOA on several critical physiological states of Drosophila melanogaster. Our findings indicate that PFOA exposure significantly decreases reproductive capacity and induces alterations in starvation resistance and feeding behavior in flies. Interestingly, PFOA exposure also caused changes in locomotor activity and sleep patterns compared with flies receiving a standard diet. Notably, compared with controls, the F2 generation showed increased locomotion and shorter sleep duration during the dark phase, even without direct exposure to PFOA, indicating possible transgenerational effects. Transcriptomic analysis revealed that PFOA also disrupts fatty acid metabolism and alters the expression of immune-responsive genes in Drosophila. In the U-2 OS human osteosarcoma cell line, we examined the impact of PFOA on circadian rhythm regulatory proteins and discovered that, compared with controls, BMAL1 levels increased at concentrations from 10 nM to 10 μM. In summary, this research highlights the influence of PFOA on diverse biological processes, including reproduction, feeding behavior, starvation resistance, locomotion, and sleep activity in Drosophila. It also highlights the ability of PFOA to alter BMAL1 expression patterns in human osteosarcoma cells with deleterious effects.
Collapse
Affiliation(s)
- Sifang Liao
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Chengxi Sun
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | | | - Wen Liu
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Shiyao Yi
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Dalia Browne-Johnson
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Filippa Eklund
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Błażej Kudłak
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Michael J Williams
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Li YX, Tan ZN, Li XH, Ma B, Adu Nti F, Lv XQ, Tian ZJ, Yan R, Man HY, Ma XM. Increased gene dosage of RFWD2 causes autistic-like behaviors and aberrant synaptic formation and function in mice. Mol Psychiatry 2024; 29:2496-2509. [PMID: 38503925 PMCID: PMC11412905 DOI: 10.1038/s41380-024-02515-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interactions, communication deficits and repetitive behaviors. A study of autistic human subjects has identified RFWD2 as a susceptibility gene for autism, and autistic patients have 3 copies of the RFWD2 gene. The role of RFWD2 as an E3 ligase in neuronal functions, and its contribution to the pathophysiology of ASD, remain unknown. We generated RFWD2 knockin mice to model the human autistic condition of high gene dosage of RFWD2. We found that heterozygous knockin (Rfwd2+/-) male mice exhibited the core symptoms of autism. Rfwd2+/- male mice showed deficits in social interaction and communication, increased repetitive and anxiety-like behavior, and spatial memory deficits, whereas Rfwd2+/- female mice showed subtle deficits in social communication and spatial memory but were normal in anxiety-like, repetitive, and social behaviors. These autistic-like behaviors in males were accompanied by a reduction in dendritic spine density and abnormal synaptic function on layer II/III pyramidal neurons in the prelimbic area of the medial prefrontal cortex (mPFC), as well as decreased expression of synaptic proteins. Impaired social behaviors in Rfwd2+/- male mice were rescued by the expression of ETV5, one of the major substrates of RFWD2, in the mPFC. These findings indicate an important role of RFWD2 in the pathogenesis of autism.
Collapse
Affiliation(s)
- Yong-Xia Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhi-Nei Tan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Boyu Ma
- Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Frank Adu Nti
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiao-Qiang Lv
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhen-Jun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, China
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, USA.
| | - Xin-Ming Ma
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
4
|
Huang Y, Yu G, Yang Y. MIGGRI: A multi-instance graph neural network model for inferring gene regulatory networks for Drosophila from spatial expression images. PLoS Comput Biol 2023; 19:e1011623. [PMID: 37939200 PMCID: PMC10659162 DOI: 10.1371/journal.pcbi.1011623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 11/20/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Recent breakthrough in spatial transcriptomics has brought great opportunities for exploring gene regulatory networks (GRNs) from a brand-new perspective. Especially, the local expression patterns and spatio-temporal regulation mechanisms captured by spatial expression images allow more delicate delineation of the interplay between transcript factors and their target genes. However, the complexity and size of spatial image collections pose significant challenges to GRN inference using image-based methods. Extracting regulatory information from expression images is difficult due to the lack of supervision and the multi-instance nature of the problem, where a gene often corresponds to multiple images captured from different views. While graph models, particularly graph neural networks, have emerged as a promising method for leveraging underlying structure information from known GRNs, incorporating expression images into graphs is not straightforward. To address these challenges, we propose a two-stage approach, MIGGRI, for capturing comprehensive regulatory patterns from image collections for each gene and known interactions. Our approach involves a multi-instance graph neural network (GNN) model for GRN inference, which first extracts gene regulatory features from spatial expression images via contrastive learning, and then feeds them to a multi-instance GNN for semi-supervised learning. We apply our approach to a large set of Drosophila embryonic spatial gene expression images. MIGGRI achieves outstanding performance in the inference of GRNs for early eye development and mesoderm development of Drosophila, and shows robustness in the scenarios of missing image information. Additionally, we perform interpretable analysis on image reconstruction and functional subgraphs that may reveal potential pathways or coordinate regulations. By leveraging the power of graph neural networks and the information contained in spatial expression images, our approach has the potential to advance our understanding of gene regulation in complex biological systems.
Collapse
Affiliation(s)
- Yuyang Huang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai, China
| | - Gufeng Yu
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai, China
| | - Yang Yang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai, China
| |
Collapse
|
5
|
Contreras A, Jones MK, Eldon ED, Klig LS. Inositol in Disease and Development: Roles of Catabolism via myo-Inositol Oxygenase in Drosophila melanogaster. Int J Mol Sci 2023; 24:4185. [PMID: 36835596 PMCID: PMC9967586 DOI: 10.3390/ijms24044185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Inositol depletion has been associated with diabetes and related complications. Increased inositol catabolism, via myo-inositol oxygenase (MIOX), has been implicated in decreased renal function. This study demonstrates that the fruit fly Drosophila melanogaster catabolizes myo-inositol via MIOX. The levels of mRNA encoding MIOX and MIOX specific activity are increased when fruit flies are grown on a diet with inositol as the sole sugar. Inositol as the sole dietary sugar can support D. melanogaster survival, indicating that there is sufficient catabolism for basic energy requirements, allowing for adaptation to various environments. The elimination of MIOX activity, via a piggyBac WH-element inserted into the MIOX gene, results in developmental defects including pupal lethality and pharate flies without proboscises. In contrast, RNAi strains with reduced levels of mRNA encoding MIOX and reduced MIOX specific activity develop to become phenotypically wild-type-appearing adult flies. myo-Inositol levels in larval tissues are highest in the strain with this most extreme loss of myo-inositol catabolism. Larval tissues from the RNAi strains have inositol levels higher than wild-type larval tissues but lower levels than the piggyBac WH-element insertion strain. myo-Inositol supplementation of the diet further increases the myo-inositol levels in the larval tissues of all the strains, without any noticeable effects on development. Obesity and blood (hemolymph) glucose, two hallmarks of diabetes, were reduced in the RNAi strains and further reduced in the piggyBac WH-element insertion strain. Collectively, these data suggest that moderately increased myo-inositol levels do not cause developmental defects and directly correspond to reduced larval obesity and blood (hemolymph) glucose.
Collapse
Affiliation(s)
- Altagracia Contreras
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Melissa K. Jones
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
- Genentech, South San Francisco, CA 94080, USA
| | - Elizabeth D. Eldon
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Lisa S. Klig
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
6
|
The Fly Homologue of MFSD11 Is Possibly Linked to Nutrient Homeostasis and Has a Potential Role in Locomotion: A First Characterization of the Atypical Solute Carrier CG18549 in Drosophila Melanogaster. INSECTS 2021; 12:insects12111024. [PMID: 34821824 PMCID: PMC8621210 DOI: 10.3390/insects12111024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The body is dependent on nutrients and ions to work normally. Within the hu-man body there is a group of proteins named transporters or solute carriers. These transporters are vital for the transport of nutrients such as glucose, amino acids, and fats, as well as ions such as sodium, calcium, and potassium. Despite being vital for normal physiology, as well as pathophysiology, a large number (approximately one third) of the transporters are orphans, where information about their expression and function is missing. Here, we aimed to begin to unravel the expression and function of one of these orphan transporters, MFSD11, by studying its orthologue in fruit flies (CG18549). We found that the fly orthologue is expressed in the brain of fruit flies and that it is possibly involved in metabolism and/or locomotion of the flies. The exact mechanism behind the observed behaviors is not fully understood, but our study provides new insights into the expression and function of CG18549. Clearly, these results, among others about the orphan transporters, provide a strong example as to why it is vital to fully characterize them and through that gain knowledge about the body during normal condition and disease. Abstract Cellular transport and function are dependent on substrate influx and efflux of various compounds. In humans, the largest superfamily of transporters is the SoLute Carriers (SLCs). Many transporters are orphans and little to nothing is known about their expression and/or function, yet they have been assigned to a cluster called atypical SLCs. One of these atypical SLCs is MFSD11. Here we present a first in-depth characterization of the MFSD11, CG18549. By gene expression and behavior analysis on ubiquitous and brain-specific knockdown flies. CG18549 knockdown flies were found to have altered adipokinetic hormone and adipokinteic hormone receptor expression as well as reduced vesicular monoamine transporter expression; to exhibit an altered locomotor behavior, and to have an altered reaction to stress stimuli. Furthermore, the gene expression of CG18549 in the brain was visualized and abundant expression in both the larvae and adult brain was observed, a result that is coherent with the FlyAtlas Anatomy microarray. The exact mechanism behind the observed behaviors is not fully understood, but this study provides new insights into the expression and function of CG18549. Clearly, these results provide a strong example as to why it is vital to fully characterize orphan transporters and through that gain knowledge about the body during normal condition and disease.
Collapse
|
7
|
Rivera MJ, Contreras A, Nguyen LT, Eldon ED, Klig LS. Regulated inositol synthesis is critical for balanced metabolism and development in Drosophila melanogaster. Biol Open 2021; 10:272639. [PMID: 34710213 PMCID: PMC8565467 DOI: 10.1242/bio.058833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/31/2021] [Indexed: 01/23/2023] Open
Abstract
Myo-inositol is a precursor of the membrane phospholipid, phosphatidylinositol (PI). It is involved in many essential cellular processes including signal transduction, energy metabolism, endoplasmic reticulum stress, and osmoregulation. Inositol is synthesized from glucose-6-phosphate by myo-inositol-3-phosphate synthase (MIPSp). The Drosophila melanogaster Inos gene encodes MIPSp. Abnormalities in myo-inositol metabolism have been implicated in type 2 diabetes, cancer, and neurodegenerative disorders. Obesity and high blood (hemolymph) glucose are two hallmarks of diabetes, which can be induced in Drosophila melanogaster third-instar larvae by high-sucrose diets. This study shows that dietary inositol reduces the obese-like and high-hemolymph glucose phenotypes of third-instar larvae fed high-sucrose diets. Furthermore, this study demonstrates Inos mRNA regulation by dietary inositol; when more inositol is provided there is less Inos mRNA. Third-instar larvae with dysregulated high levels of Inos mRNA and MIPSp show dramatic reductions of the obese-like and high-hemolymph glucose phenotypes. These strains, however, also display developmental defects and pupal lethality. The few individuals that eclose die within two days with striking defects: structural alterations of the wings and legs, and heads lacking proboscises. This study is an exciting extension of the use of Drosophila melanogaster as a model organism for exploring the junction of development and metabolism. Summary: Inositol reduces obesity and high blood (hemolymph) glucose, but can cause dramatic developmental defects. This study uses the model organism Drosophila melanogaster to explore the junction of development and metabolism.
Collapse
Affiliation(s)
- Maria J Rivera
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Altagracia Contreras
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - LongThy T Nguyen
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Elizabeth D Eldon
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Lisa S Klig
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
8
|
Liu W, Cao H, Liao S, Kudłak B, Williams MJ, Schiöth HB. Dibutyl phthalate disrupts conserved circadian rhythm in Drosophila and human cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147038. [PMID: 34088158 DOI: 10.1016/j.scitotenv.2021.147038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/18/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
People are constantly exposed to phthalates, due to their common use in the production of plastics, pharmaceuticals, cosmetics and skin care products. The ability of phthalates to disrupt endocrine signaling, leading to developmental, reproductive and metabolic defects, has been studied, yet how phthalates interfere with these biological functions is still unclear. To uncover DBP interacting molecular pathways, we raised Drosophila melanogaster on food containing dibutyl phthalate (DBP) at various concentrations. Whole transcriptome analysis of adult Drosophila reveals that DBP exposure throughout development disrupts the expression of genes central to circadian rhythm regulation, including increased expression of vrille (vri, human NFIL3), timeless (tim, human TIMELESS) and period (per, human PER3), with decreased expression of Pigment-dispersing factor (Pdf). DBP exposure also alters the expression of the evolutionarily conserved nuclear receptor Hormone receptor-like in 38 (Hr38, human NR4A2), which is known to regulate Pdf expression. Furthermore, behavioral assays determined that exposing Drosophila to DBP throughout development modifies the circadian rhythm of adults. Although DBP inhibits the expression of signaling systems regulating vision, including Rh5 and Rh6, two light-sensing G-protein coupled receptors involved in the daily resetting of circadian rhythm, it does not influence eye development. Circadian rhythm genes are well conserved from flies to humans; therefore, we tested the effect of DBP exposure on human breast cells (MCF10A) and demonstrate that, similar to the fruit fly model, this exposure disrupts circadian rhythm (BMAL1 expression) at doses that promote the proliferation and migration ability of MCF10A cells. Our results are the first to provide comprehensive evidence that DBP interferes with circadian rhythm in both adult Drosophila and human cells, which may help to explain the broad physiological action of phthalates.
Collapse
Affiliation(s)
- Wen Liu
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Hao Cao
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Sifang Liao
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Błażej Kudłak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Michael J Williams
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden; Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
9
|
Cindi Z, Maartens G, Bradford Y, Venter F, Sokhela S, Chandiwana N, Haas DW, Sinxadi P. Genetic Associations with Weight Gain among South Africans who Initiated Dolutegravir-Containing and Tenofovir-Containing Regimens. J Acquir Immune Defic Syndr 2021; 87:1002-1009. [PMID: 33625064 PMCID: PMC8192425 DOI: 10.1097/qai.0000000000002661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/01/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Excessive weight gain affects some HIV-positive individuals prescribed dolutegravir-containing regimens. Mechanisms underlying such weight gain are unknown. SETTING Data and DNA from antiretroviral therapy-naïve participants who were randomized to initiate dolutegravir with emtricitabine plus either tenofovir alafenamide (TAF) or tenofovir disoproxil fumarate (TDF) in the ADVANCE study (NCT03122262) were used to characterize associations between human genetic polymorphisms and magnitude of weight gain. METHODS Associations with percent weight gain from baseline to week 48 were assessed using multivariable linear regression models. Primary analyses a priori considered 59 polymorphisms and 10 genes of potential relevance to dolutegravir, TAF, or TDF pharmacokinetics. We also explored genome-wide associations. RESULTS Among the 314 (92%) of 340 dolutegravir recipients who were successfully genotyped, 160 (47%) and 154 (45%) were randomized to TAF/emtricitabine and TDF/emtricitabine, respectively. In target gene analyses, the lowest P-values for the dolutegravir and tenofovir groups were ABCG2 rs4148149 (P = 7.0 × 10-4) and ABCC10 rs67861980 (P = 1.0 × 10-2), respectively, which were not significant after correction for multiple testing. In genome-wide analyses, the lowest P-values were rs7590091 in TMEM163 (P = 3.7 × 10-8) for dolutegravir, rs17137701 in LOC105379130 (P = 6.4 × 10-8) for TAF, and rs76771105 in LOC105371716 (P = 9.7 × 10-8) for TDF. CONCLUSIONS Among South African participants in a randomized clinical trial of dolutegravir plus either TAF/emtricitabine or TDF/emtricitabine, we identified several potential genetic associations with weight gain. Only TMEM163 rs7590091 withstood correction for multiple testing. These associations warrant replication in other cohorts.
Collapse
Affiliation(s)
- Zinhle Cindi
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Yuki Bradford
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Francois Venter
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Simiso Sokhela
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nomathemba Chandiwana
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - David W. Haas
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Internal Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Phumla Sinxadi
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Mao Z, Feng M, Li Z, Zhou M, Xu L, Pan K, Wang S, Su W, Zhang W. ETV5 Regulates Hepatic Fatty Acid Metabolism Through PPAR Signaling Pathway. Diabetes 2021; 70:214-226. [PMID: 33093014 DOI: 10.2337/db20-0619] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/15/2020] [Indexed: 11/13/2022]
Abstract
ETV5 is an ETS transcription factor that has been associated with obesity in genomic association studies. However, little is known about the role of ETV5 in hepatic lipid metabolism and nonalcoholic fatty liver disease. In the current study, we found that ETV5 protein expression was increased in diet- and genetically induced steatotic liver. ETV5 responded to the nutrient status in a mammalian target of rapamycin complex 1 (mTORC1)-dependent manner and in turn, regulated mTORC1 activity. Both viral-mediated and genetic depletion of ETV5 in mice led to increased lipid accumulation in the liver. RNA sequencing analysis revealed that peroxisome proliferator-activated receptor (PPAR) signaling and fatty acid degradation/metabolism pathways were significantly downregulated in ETV5-deficient hepatocytes in vivo and in vitro. Mechanistically, ETV5 could bind to the PPAR response element region of downstream genes and enhance its transactivity. Collectively, our study identifies ETV5 as a novel transcription factor for the regulation of hepatic fatty acid metabolism, which is required for the optimal β-oxidation process. ETV5 may provide a therapeutic target for the treatment of hepatic steatosis.
Collapse
Affiliation(s)
- Zhuo Mao
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong Province, China
| | - Mingji Feng
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong Province, China
| | - Zhuoran Li
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong Province, China
| | - Minsi Zhou
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong Province, China
| | - Langning Xu
- Department of Neurosurgery, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Ke Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Shaoxiang Wang
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong Province, China
| | - Wen Su
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong Province, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Science, Peking University Health Science Center, Beijing, China
| |
Collapse
|
11
|
Moulin TC, Covill LE, Itskov PM, Williams MJ, Schiöth HB. Rodent and fly models in behavioral neuroscience: An evaluation of methodological advances, comparative research, and future perspectives. Neurosci Biobehav Rev 2020; 120:1-12. [PMID: 33242563 DOI: 10.1016/j.neubiorev.2020.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/25/2020] [Accepted: 11/12/2020] [Indexed: 01/31/2023]
Abstract
The assessment of behavioral outcomes is a central component of neuroscientific research, which has required continuous technological innovations to produce more detailed and reliable findings. In this article, we provide an in-depth review on the progress and future implications for three model organisms (mouse, rat, and Drosophila) essential to our current understanding of behavior. By compiling a comprehensive catalog of popular assays, we are able to compare the diversity of tasks and usage of these animal models in behavioral research. This compilation also allows for the evaluation of existing state-of-the-art methods and experimental applications, including optogenetics, machine learning, and high-throughput behavioral assays. We go on to discuss novel apparatuses and inter-species analyses for centrophobism, feeding behavior, aggression and mating paradigms, with the goal of providing a unique view on comparative behavioral research. The challenges and recent advances are evaluated in terms of their translational value, ethical procedures, and trustworthiness for behavioral research.
Collapse
Affiliation(s)
- Thiago C Moulin
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Laura E Covill
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden; Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pavel M Itskov
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden; Department of Pharmacology, Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia; Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Michael J Williams
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
12
|
Vijayalingam S, Ezekiel UR, Xu F, Subramanian T, Geerling E, Hoelscher B, San K, Ganapathy A, Pemberton K, Tycksen E, Pinto AK, Brien JD, Beck DB, Chung WK, Gurnett CA, Chinnadurai G. Human iPSC-Derived Neuronal Cells From CTBP1-Mutated Patients Reveal Altered Expression of Neurodevelopmental Gene Networks. Front Neurosci 2020; 14:562292. [PMID: 33192249 PMCID: PMC7653094 DOI: 10.3389/fnins.2020.562292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022] Open
Abstract
A recurrent de novo mutation in the transcriptional corepressor CTBP1 is associated with neurodevelopmental disabilities in children (Beck et al., 2016, 2019; Sommerville et al., 2017). All reported patients harbor a single recurrent de novo heterozygous missense mutation (p.R342W) within the cofactor recruitment domain of CtBP1. To investigate the transcriptional activity of the pathogenic CTBP1 mutant allele in physiologically relevant human cell models, we generated induced pluripotent stem cells (iPSC) from the dermal fibroblasts derived from patients and normal donors. The transcriptional profiles of the iPSC-derived “early” neurons were determined by RNA-sequencing. Comparison of the RNA-seq data of the neurons from patients and normal donors revealed down regulation of gene networks involved in neurodevelopment, synaptic adhesion and anti-viral (interferon) response. Consistent with the altered gene expression patterns, the patient-derived neurons exhibited morphological and electrophysiological abnormalities, and susceptibility to viral infection. Taken together, our studies using iPSC-derived neuron models provide novel insights into the pathological activities of the CTBP1 p.R342W allele.
Collapse
Affiliation(s)
- S Vijayalingam
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, St. Louis, MO, United States
| | - Uthayashanker R Ezekiel
- Department of Clinical Health Sciences, Doisy College of Health Science, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Fenglian Xu
- Department of Biology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - T Subramanian
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, St. Louis, MO, United States
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, St. Louis, MO, United States
| | - Brittany Hoelscher
- Department of Biology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - KayKay San
- Department of Clinical Health Sciences, Doisy College of Health Science, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Aravinda Ganapathy
- Department of Clinical Health Sciences, Doisy College of Health Science, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Kyle Pemberton
- Department of Biology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Eric Tycksen
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States
| | - Amelia K Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, St. Louis, MO, United States
| | - James D Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, St. Louis, MO, United States
| | - David B Beck
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University Medical Center, New York, NY, United States
| | - Christina A Gurnett
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - G Chinnadurai
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, St. Louis, MO, United States
| |
Collapse
|
13
|
Ceder MM, Aggarwal T, Hosseini K, Maturi V, Patil S, Perland E, Williams MJ, Fredriksson R. CG4928 Is Vital for Renal Function in Fruit Flies and Membrane Potential in Cells: A First In-Depth Characterization of the Putative Solute Carrier UNC93A. Front Cell Dev Biol 2020; 8:580291. [PMID: 33163493 PMCID: PMC7591606 DOI: 10.3389/fcell.2020.580291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/16/2020] [Indexed: 01/23/2023] Open
Abstract
The number of transporter proteins that are not fully characterized is immense. Here, we used Drosophila melanogaster and human cell lines to perform a first in-depth characterization of CG4928, an ortholog to the human UNC93A, of which little is known. Solute carriers regulate and maintain biochemical pathways important for the body, and malfunctioning transport is associated with multiple diseases. Based on phylogenetic analysis, CG4928 is closely related to human UNC93A and has a secondary and a tertiary protein structure and folding similar to major facilitator superfamily transporters. Ubiquitous knockdown of CG4928 causes flies to have a reduced secretion rate from the Malpighian tubules; altering potassium content in the body and in the Malpighian tubules, homologous to the renal system; and results in the development of edema. The edema could be rescued by using amiloride, a common diuretic, and by maintaining the flies on ion-free diets. CG4928-overexpressing cells did not facilitate the transport of sugars and amino acids; however, proximity ligation assay revealed that CG4928 co-localized with TASK1 channels. Overexpression of CG4928 resulted in induced apoptosis and cytotoxicity, which could be restored when cells were kept in high-sodium media. Furthermore, the basal membrane potential was observed to be disrupted. Taken together, the results indicate that CG4928 is of importance for generating the cellular membrane potential by an unknown manner. However, we speculate that it most likely acts as a regulator or transporter of potassium flows over the membrane.
Collapse
Affiliation(s)
- Mikaela M Ceder
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, Uppsala, Sweden
| | - Tanya Aggarwal
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, Uppsala, Sweden
| | - Kimia Hosseini
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, Uppsala, Sweden
| | - Varun Maturi
- Department of Pharmacy, Drug Delivery, Uppsala University, Uppsala, Sweden
| | - Sourabh Patil
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, Uppsala, Sweden
| | - Emelie Perland
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, Uppsala, Sweden
| | - Michael J Williams
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Moulin TC, Ferro F, Berkins S, Hoyer A, Williams MJ, Schiöth HB. Transient Administration of Dopaminergic Precursor Causes Inheritable Overfeeding Behavior in Young Drosophila melanogaster Adults. Brain Sci 2020; 10:brainsci10080487. [PMID: 32731370 PMCID: PMC7465534 DOI: 10.3390/brainsci10080487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/13/2020] [Accepted: 07/25/2020] [Indexed: 11/16/2022] Open
Abstract
Imbalances in dopaminergic signaling during development have been indicated as part of the underlying neurobiology of several psychiatric illnesses, including schizophrenia, major depression, bipolar disorder, and food addiction. Yet, how transient manipulation of dopaminergic signaling influences long-lasting behavioral consequences, or if these modifications can induce inheritable traits, it is still not understood. In this study, we used the Drosophila melanogaster model to test if transient pharmacological activation of the dopaminergic system leads to modulations of feeding and locomotion in adult flies. We observed that transient administration of a dopaminergic precursor, levodopa, at 6 h, 3 days or 5 days post-eclosion, induced overfeeding behavior, while we did not find significant effects on locomotion. Moreover, this phenotype was inherited by the offspring of flies treated 6 h or 3 days post-eclosion, but not the offspring of those treated 5 days post-eclosion. These results indicate that transient alterations in dopaminergic signaling can produce behavioral alterations in adults, which can then be carried to descendants. These findings provide novel insights into the conditions in which environmental factors can produce transgenerational eating disorders.
Collapse
Affiliation(s)
- Thiago C. Moulin
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.F.); (S.B.); (A.H.); (M.J.W.); (H.B.S.)
- Correspondence:
| | - Federico Ferro
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.F.); (S.B.); (A.H.); (M.J.W.); (H.B.S.)
| | - Samuel Berkins
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.F.); (S.B.); (A.H.); (M.J.W.); (H.B.S.)
| | - Angela Hoyer
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.F.); (S.B.); (A.H.); (M.J.W.); (H.B.S.)
| | - Michael J. Williams
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.F.); (S.B.); (A.H.); (M.J.W.); (H.B.S.)
| | - Helgi B. Schiöth
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.F.); (S.B.); (A.H.); (M.J.W.); (H.B.S.)
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| |
Collapse
|
15
|
Williams MJ, Cao H, Lindkvist T, Mothes TJ, Schiöth HB. Exposure to the environmental pollutant bisphenol A diglycidyl ether (BADGE) causes cell over-proliferation in Drosophila. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25261-25270. [PMID: 32347502 PMCID: PMC7329772 DOI: 10.1007/s11356-020-08899-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/14/2020] [Indexed: 05/05/2023]
Abstract
Bisphenol A diglycidyl ether (BADGE), a derivative of bisphenol A (BPA), is widely used in the manufacture of epoxy resins as well as a coating on food containers. Recent studies have demonstrated the adverse effects of BADGE on reproduction and development in rodents and amphibians, but how BADGE affects biological activity is not understood. To gain a better understanding of the biological effects of BADGE exposure during development, we used the model organism Drosophila melanogaster and performed whole transcriptome sequencing. Interestingly, when Drosophila are raised on food containing BADGE, genes having significantly increased transcript numbers are enriched for those involved in regulating cell proliferation, including DNA replication and cell cycle control. Furthermore, raising larvae on BADGE-containing food induces hemocyte (blood cell) over-proliferation. This effect can be stimulated with even lower concentrations of BADGE if the hemocytes are already primed for cell proliferation by the expression of dominant active Ras GTPase. We conclude that chronic exposure to the xenobiotic BADGE throughout development can induce cell proliferation.
Collapse
Affiliation(s)
- Michael J Williams
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Husargatan 3, Box 593, 75 124, Uppsala, Sweden.
| | - Hao Cao
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Husargatan 3, Box 593, 75 124, Uppsala, Sweden
| | - Therese Lindkvist
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Husargatan 3, Box 593, 75 124, Uppsala, Sweden
| | - Tobias J Mothes
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Husargatan 3, Box 593, 75 124, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Husargatan 3, Box 593, 75 124, Uppsala, Sweden
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
16
|
Bahrami S, Steen NE, Shadrin A, O’Connell K, Frei O, Bettella F, Wirgenes KV, Krull F, Fan CC, Dale AM, Smeland OB, Djurovic S, Andreassen OA. Shared Genetic Loci Between Body Mass Index and Major Psychiatric Disorders: A Genome-wide Association Study. JAMA Psychiatry 2020; 77:503-512. [PMID: 31913414 PMCID: PMC6990967 DOI: 10.1001/jamapsychiatry.2019.4188] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/30/2019] [Indexed: 01/02/2023]
Abstract
Importance People with major psychiatric disorders (MPDs) have a 10- to 20-year shorter life span than the rest of the population, and this difference is mainly due to comorbid cardiovascular diseases. Genome-wide association studies have identified common variants involved in schizophrenia (SCZ), bipolar disorder (BIP), and major depression (MD) and body mass index (BMI), a key cardiometabolic risk factor. However, genetic variants jointly influencing MPD and BMI remain largely unknown. Objective To assess the extent of the overlap between the genetic architectures of MPDs and BMI and identify genetic loci shared between them. Design, Setting, and Participants Using a conditional false discovery rate statistical framework, independent genome-wide association study data on individuals with SCZ (n = 82 315), BIP (n = 51 710), MD (n = 480 359), and BMI (n = 795 640) were analyzed. The UK Biobank cohort (n = 29 740) was excluded from the MD data set to avoid sample overlap. Data were collected from August 2017 to May 2018, and analysis began July 2018. Main Outcomes and Measures The primary outcomes were a list of genetic loci shared between BMI and MPDs and their functional pathways. Results Genome-wide association study data from 1 380 284 participants were analyzed, and the genetic correlation between BMI and MPDs varied (SCZ: r for genetic = -0.11, P = 2.1 × 10-10; BIP: r for genetic = -0.06, P = .0103; MD: r for genetic = 0.12, P = 6.7 × 10-10). Overall, 63, 17, and 32 loci shared between BMI and SCZ, BIP, and MD, respectively, were analyzed at conjunctional false discovery rate less than 0.01. Of the shared loci, 34% (73 of 213) in SCZ, 52% (36 of 69) in BIP, and 57% (56 of 99) in MD had risk alleles associated with higher BMI (conjunctional false discovery rate <0.05), while the rest had opposite directions of associations. Functional analyses indicated that the overlapping loci are involved in several pathways including neurodevelopment, neurotransmitter signaling, and intracellular processes, and the loci with concordant and opposite association directions pointed mostly to different pathways. Conclusions and Relevance In this genome-wide association study, extensive polygenic overlap between BMI and SCZ, BIP, and MD were found, and 111 shared genetic loci were identified, implicating novel functional mechanisms. There was mixture of association directions in SCZ and BMI, albeit with a preponderance of discordant ones.
Collapse
Affiliation(s)
- Shahram Bahrami
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Alexey Shadrin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Kevin O’Connell
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Francesco Bettella
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | | | - Florian Krull
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Chun C. Fan
- Department of Radiology, University of California, San Diego, La Jolla
- Department of Cognitive Science, University of California, San Diego, La Jolla
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla
- Multimodal Imaging Laboratory, University of California, San Diego, La Jolla
- Department of Psychiatry, University of California, San Diego, La Jolla
- Department of Neurosciences, University of California, San Diego, La Jolla
| | - Olav B. Smeland
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole A. Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
17
|
CCAP regulates feeding behavior via the NPF pathway in Drosophila adults. Proc Natl Acad Sci U S A 2020; 117:7401-7408. [PMID: 32179671 DOI: 10.1073/pnas.1914037117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The intake of macronutrients is crucial for the fitness of any animal and is mainly regulated by peripheral signals to the brain. How the brain receives and translates these peripheral signals or how these interactions lead to changes in feeding behavior is not well-understood. We discovered that 2 crustacean cardioactive peptide (CCAP)-expressing neurons in Drosophila adults regulate feeding behavior and metabolism. Notably, loss of CCAP, or knocking down the CCAP receptor (CCAP-R) in 2 dorsal median neurons, inhibits the release of neuropeptide F (NPF), which regulates feeding behavior. Furthermore, under starvation conditions, flies normally have an increased sensitivity to sugar; however, loss of CCAP, or CCAP-R in 2 dorsal median NPF neurons, inhibited sugar sensitivity in satiated and starved flies. Separate from its regulation of NPF signaling, the CCAP peptide also regulates triglyceride levels. Additionally, genetic and optogenetic studies demonstrate that CCAP signaling is necessary and sufficient to stimulate a reflexive feeding behavior, the proboscis extension reflex (PER), elicited when external food cues are interpreted as palatable. Dopaminergic signaling was also sufficient to induce a PER. On the other hand, although necessary, NPF neurons were not able to induce a PER. These data illustrate that the CCAP peptide is a central regulator of feeding behavior and metabolism in adult flies, and that NPF neurons have an important regulatory role within this system.
Collapse
|
18
|
Pisanu C, Williams MJ, Ciuculete DM, Olivo G, Del Zompo M, Squassina A, Schiöth HB. Evidence that genes involved in hedgehog signaling are associated with both bipolar disorder and high BMI. Transl Psychiatry 2019; 9:315. [PMID: 31754094 PMCID: PMC6872724 DOI: 10.1038/s41398-019-0652-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/23/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022] Open
Abstract
Patients with bipolar disorder (BD) show higher frequency of obesity and type 2 diabetes (T2D), but the underlying genetic determinants and molecular pathways are not well studied. Using large publicly available datasets, we (1) conducted a gene-based analysis using MAGMA to identify genes associated with BD and body mass index (BMI) or T2D and investigated their functional enrichment; and (2) performed two meta-analyses between BD and BMI, as well as BD and T2D using Metasoft. Target druggability was assessed using the Drug Gene Interaction Database (DGIdb). We identified 518 and 390 genes significantly associated with BD and BMI or BD and T2D, respectively. A total of 52 and 12 genes, respectively, were significant after multiple testing correction. Pathway analyses conducted on nominally significant targets showed that genes associated with BD and BMI were enriched for the Neuronal cell body Gene Ontology (GO) term (p = 1.0E-04; false discovery rate (FDR) = 0.025) and different pathways, including the Signaling by Hedgehog pathway (p = 4.8E-05, FDR = 0.02), while genes associated with BD and T2D showed no specific enrichment. The meta-analysis between BD and BMI identified 64 relevant single nucleotide polymorphisms (SNPs). While the majority of these were located in intergenic regions or in a locus on chromosome 16 near and in the NPIPL1 and SH2B1 genes (best SNP: rs4788101, p = 2.1E-24), five were located in the ETV5 gene (best SNP: rs1516725, p = 1E-24), which was previously associated with both BD and obesity, and one in the RPGRIP1L gene (rs1477199, p = 5.7E-09), which was also included in the Signaling by Hedgehog pathway. The meta-analysis between BD and T2D identified six significant SNPs, three of which were located in ALAS1 (best SNP: rs352165, p = 3.4E-08). Thirteen SNPs associated with BD and BMI, and one with BD and T2D, were located in genes which are part of the druggable genome. Our results support the hypothesis of shared genetic determinants between BD and BMI and point to genes involved in Hedgehog signaling as promising targets.
Collapse
Affiliation(s)
- Claudia Pisanu
- Unit of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden.
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Michael J Williams
- Unit of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Diana M Ciuculete
- Unit of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Gaia Olivo
- Unit of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Maria Del Zompo
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Helgi B Schiöth
- Unit of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden.
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
19
|
Abstract
Objective: We reviewed important clinical aspects of bipolar depression, a progressive psychiatric condition that is commonly treated in primary care. Bipolar depression is associated with considerable burden of illness, high suicide risk, and greater morbidity and mortality than bipolar mania. Methods: We identified articles relevant to our narrative review using a multistep search of the literature and applying terms that were relevant to bipolar depression or bipolar disorder. Results: Bipolar depression accounts for the majority of time spent unwell for patients with bipolar disorder; high rates of morbidity and mortality arise from full symptomatic episodes and interepisode subsyndromal symptoms. Bipolar depression is an important contributor to long-term dysfunction for patients with bipolar disorder due to psychosocial impairment, loss of work productivity and high rates of substance abuse. Missed and delayed diagnosis is prevalent due to overlapping symptoms with unipolar depression and other diagnoses. Medical comorbidities (i.e. cardiovascular disease, hypertension, obesity, metabolic syndrome) and psychiatric comorbidities (i.e. anxiety disorder, personality disorder, eating disorder, attention-deficit/hyperactivity disorder) are common. Currently, only three treatments are FDA-approved for bipolar depression; monotherapy antidepressants are not a recommended treatment option. Conclusions: Bipolar disorder is common among primary care patients presenting with depression; it is often treated exclusively in primary care. Clinicians should be alert for symptoms of bipolar disorder in undiagnosed patients, know what symptoms probabilistically suggest bipolar versus unipolar depression, have expertise in providing ongoing treatment to diagnosed patients, and be knowledgeable about managing common medication-related side effects and comorbidities. Prompt and accurate diagnosis is critical.
Collapse
Affiliation(s)
- Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network , Toronto , Canada
| | | |
Collapse
|
20
|
Abstract
Excess adipose fat accumulation, or obesity, is a growing problem worldwide in terms of both the rate of incidence and the severity of obesity-associated metabolic disease. Adipose tissue evolved in animals as a specialized dynamic lipid storage depot: adipose cells synthesize fat (a process called lipogenesis) when energy is plentiful and mobilize stored fat (a process called lipolysis) when energy is needed. When a disruption of lipid homeostasis favors increased fat synthesis and storage with little turnover owing to genetic predisposition, overnutrition or sedentary living, complications such as diabetes and cardiovascular disease are more likely to arise. The vinegar fly Drosophila melanogaster (Diptera: Drosophilidae) is used as a model to better understand the mechanisms governing fat metabolism and distribution. Flies offer a wealth of paradigms with which to study the regulation and physiological effects of fat accumulation. Obese flies accumulate triacylglycerols in the fat body, an organ similar to mammalian adipose tissue, which specializes in lipid storage and catabolism. Discoveries in Drosophila have ranged from endocrine hormones that control obesity to subcellular mechanisms that regulate lipogenesis and lipolysis, many of which are evolutionarily conserved. Furthermore, obese flies exhibit pathophysiological complications, including hyperglycemia, reduced longevity and cardiovascular function - similar to those observed in obese humans. Here, we review some of the salient features of the fly that enable researchers to study the contributions of feeding, absorption, distribution and the metabolism of lipids to systemic physiology.
Collapse
Affiliation(s)
- Laura Palanker Musselman
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Ronald P Kühnlein
- Department of Biochemistry 1, Institute of Molecular Biosciences, University of Graz, Humboldtstraβe 50/II, A-8010 Graz, Austria.,BioTechMed-Graz, Graz, Austria
| |
Collapse
|
21
|
Mechaly AS, Richardson E, Rinkwitz S. Activity of etv5a and etv5b genes in the hypothalamus of fasted zebrafish is influenced by serotonin. Gen Comp Endocrinol 2017; 246:233-240. [PMID: 28041791 DOI: 10.1016/j.ygcen.2016.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/03/2016] [Accepted: 12/19/2016] [Indexed: 11/28/2022]
Abstract
Serotonin has been implicated in the inhibition of food intake in vertebrates. However, the mechanisms through which serotonin acts has yet to be elucidated. Recently, ETV5 (ets variant gene 5) has been associated with obesity and food intake control mechanisms in mammals. We have analyzed a putative physiological function of the two etv5 paralogous genes (etv5a and etv5b) in neuronal food intake control in adult zebrafish that have been exposed to different nutritional conditions. A feeding assay was established and fluoxetine, a selective serotonin re-uptake inhibitor (SSRI), was applied. Gene expression changes in the hypothalamus were determined using real-time PCR. Fasting induced an up-regulation of etv5a and etv5b in the hypothalamus, whereas increased serotonin levels in the fasted fish counteracted the increase in expression. To investigate potential mechanisms the expression of further food intake control genes was determined. The results show that an increase of serotonin in fasting fish causes a reduction in the activity of genes stimulating food intake. This is in line with a previously demonstrated anorexigenic function of serotonin. Our results suggest that obesity-associated ETV5 has a food intake stimulating function and that this function is modulated through serotonin.
Collapse
Affiliation(s)
- Alejandro S Mechaly
- Dept. of Physiology, Sydney Medical School, University of Sydney, Camperdown 2050, Australia.
| | - Ebony Richardson
- Dept. of Physiology, Sydney Medical School, University of Sydney, Camperdown 2050, Australia
| | - Silke Rinkwitz
- Dept. of Physiology, Sydney Medical School, University of Sydney, Camperdown 2050, Australia.
| |
Collapse
|