1
|
Luo Y, Takau A, Li J, Fan T, Hopkins BR, Le Y, Ramirez SR, Matsuo T, Kopp A. Regulatory changes in the fatty acid elongase eloF underlie the evolution of sex-specific pheromone profiles in Drosophila prolongata. BMC Biol 2025; 23:117. [PMID: 40307835 PMCID: PMC12044895 DOI: 10.1186/s12915-025-02220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Pheromones play a key role in regulating sexual behavior throughout the animal kingdom. In Drosophila and other insects, many cuticular hydrocarbons (CHCs) are sexually dimorphic, and some are known to perform pheromonal functions. However, the genetic control of sex-specific CHC production is poorly understood outside of the model species D. melanogaster. A recent evolutionary change is found in D. prolongata, which, compared to its closest relatives, shows greatly increased sexual dimorphism in both CHCs and the chemosensory system responsible for their perception. A key transition involves a male-specific increase in the proportion of long-chain CHCs. RESULTS Perfuming D. prolongata females with the male-biased long-chain CHCs reduces copulation success, suggesting that these compounds function as sex pheromones. The evolutionary change in CHC profiles correlates with a male-specific increase in the expression of multiple genes involved in CHC biosynthesis, including fatty acid elongases, reductases and other key enzymes. In particular, elongase F, which is responsible for producing female-specific pheromones in D. melanogaster, is strongly upregulated in D. prolongata males compared both to females and to males of the sibling species. Mutations in eloF reduce the amount of long-chain CHCs, resulting in a partial feminization of pheromone profiles in D. prolongata males. Transgenic experiments show that sex-biased expression of eloF is caused in part by a putative transposable element honghaier insertion in its regulatory region. CONCLUSIONS These results show that cis-regulatory changes in the eloF gene, along with other changes in the CHC synthesis pathway, contribute to the evolution of sexual communication.
Collapse
Affiliation(s)
- Yige Luo
- Department of Evolution and Ecology, University of California, Davis, USA
| | - Ayumi Takau
- Department of Agricultural and Environmental Biology, The University of Tokyo, Tokyo, Japan
| | - Jiaxun Li
- Department of Evolution and Ecology, University of California, Davis, USA
- Georgia Institute of Technology, 225 North Avenue NW, Atlanta, GA, 30332, USA
| | - Tiezheng Fan
- Department of Evolution and Ecology, University of California, Davis, USA
| | - Ben R Hopkins
- Department of Evolution and Ecology, University of California, Davis, USA
| | - Yvonne Le
- Department of Evolution and Ecology, University of California, Davis, USA
- San Joaquin General Hospital, 500 W Hospital Road, French Camp, CA, 95231, USA
| | - Santiago R Ramirez
- Department of Evolution and Ecology, University of California, Davis, USA
| | - Takashi Matsuo
- Department of Agricultural and Environmental Biology, The University of Tokyo, Tokyo, Japan
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis, USA.
| |
Collapse
|
2
|
Nayal K, Krupp JJ, Abdalla OHMH, Levine JD. Cuticular hydrocarbons promote desiccation resistance by preventing transpiration in Drosophila melanogaster. J Exp Biol 2024; 227:jeb247752. [PMID: 39445981 PMCID: PMC11634026 DOI: 10.1242/jeb.247752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Desiccation is a fundamental challenge confronted by all terrestrial organisms, particularly insects. With a relatively small body size and large surface-to-volume ratio, insects are susceptible to rapid evaporative water loss and dehydration. To counter these physical constraints, insects have acquired specialized adaptations, including a hydrophobic cuticle that acts as a physical barrier to transpiration. We previously reported that genetic ablation of the oenocytes - specialized cells required to produce cuticular hydrocarbons (HCs) - significantly reduced survivorship under desiccative conditions in the fruit fly, Drosophila melanogaster. Although increased transpiration - resulting from the loss of the oenocytes and HCs - was hypothesized to be responsible for the decrease in desiccation survival, this possibility was not directly tested. Here, we investigated the underlying physiological mechanisms contributing to the reduced survival of oenocyte-less (oe-) flies. Using flow-through respirometry, we show that oe- flies, regardless of sex, exhibited an increased rate of transpiration relative to wild-type controls, and that coating oe- flies with fly-derived HC extract restored the rate to near-wild-type levels. Importantly, total body water stores, including metabolic water reserves, as well as dehydration tolerance, measured as the percentage of total body water lost at the time of death, were largely unchanged in oe- flies. Together, our results directly demonstrate the critically important role played by the oenocytes and cuticular HCs to promote desiccation resistance.
Collapse
Affiliation(s)
- Kamar Nayal
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6
| | - Joshua J. Krupp
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6
| | - Osama H. M. H. Abdalla
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6
| | - Joel D. Levine
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
| |
Collapse
|
3
|
Scanlan JL, Robin C. Genetic characterization of candidate ecdysteroid kinases in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae204. [PMID: 39208453 DOI: 10.1093/g3journal/jkae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/26/2024] [Indexed: 09/04/2024]
Abstract
Ecdysteroids are major hormones in insects and control molting, growth, reproduction, physiology, and behavior. The biosynthesis of ecdysteroids such as 20-hydroxyecdysone (20E) from dietary sterols is well characterized, but ecdysteroid catabolism is poorly understood. Ecdysteroid kinases (EcKs) mediate the reversible phosphorylation of ecdysteroids, which has been implicated in ecdysteroid recycling during embryogenesis and reproduction in various insects. However, to date, only 2 EcK-encoding genes have been identified, in the silkworm Bombyx mori and the mosquito Anopheles gambiae. Previously, we identified 2 ecdysteroid kinase-like (EcKL) genes-Wallflower (Wall) and Pinkman (pkm)-in the model fruit fly Drosophila melanogaster that are orthologs of the ecdysteroid 22-kinase gene BmEc22K. Here, using gene knockdown, knockout, and misexpression, we explore Wall and pkm's possible functions and genetically test the hypothesis that they encode EcKs. Wall and pkm null mutants are viable and fertile, suggesting that they are not essential for development or reproduction, whereas phenotypes arising from RNAi and somatic CRISPR appear to derive from off-target effects or other artifacts. However, misexpression of Wall results in dramatic phenotypes, including developmental arrest, and defects in trachea, cuticle, and pigmentation. Wall misexpression fails to phenocopy irreversible ecdysteroid catabolism through misexpression of Cyp18a1, suggesting that Wall does not directly inactivate 20E. Additionally, Wall misexpression phenotypes are not attenuated in Cyp18a1 mutants, strongly suggesting that Wall is not an ecdysteroid 26-kinase. We hypothesize that the substrate of Wall in this misexpression experiment and possibly generally is an unknown, atypical ecdysteroid that plays essential roles in Drosophila development, and may highlight aspects of insect endocrinology that are as-yet uncharacterized. We also provide preliminary evidence that CG5644 encodes an ecdysteroid 22-kinase conserved across Diptera.
Collapse
Affiliation(s)
- Jack L Scanlan
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria 3010, Australia
| | - Charles Robin
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria 3010, Australia
| |
Collapse
|
4
|
Luo Y, Takau A, Li J, Fan T, Hopkins BR, Le Y, Ramirez SR, Matsuo T, Kopp A. Regulatory Changes in the Fatty Acid Elongase eloF Underlie the Evolution of Sex-specific Pheromone Profiles in Drosophila prolongata. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617394. [PMID: 39464098 PMCID: PMC11507777 DOI: 10.1101/2024.10.09.617394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Pheromones play a key role in regulating sexual behavior throughout the animal kingdom. In Drosophila and other insects, many cuticular hydrocarbons (CHCs) are sexually dimorphic, and some are known to perform pheromonal functions. However, the genetic control of sex-specific CHC production is not understood outside of the model species D. melanogaster. A recent evolutionary change is found in D. prolongata, which, compared to its closest relatives, shows greatly increased sexual dimorphism in both CHCs and the chemosensory system responsible for their perception. A key transition involves a male-specific increase in the proportion of long-chain CHCs. Perfuming D. prolongata females with the male-biased CHCs reduces copulation success, suggesting that these compounds function as sex pheromones. The evolutionary change in CHC profiles correlates with a male-specific increase in the expression of multiple genes involved in CHC biosynthesis, including fatty acid elongases and reductases and other key enzymes. In particular, elongase F, which is responsible for producing female-specific pheromones in D. melanogaster, is strongly upregulated in D. prolongata males compared both to females and to males of the sibling species. Induced mutations in eloF reduce the amount of long-chain CHCs, resulting in a partial feminization of pheromone profiles in D. prolongata males while having minimal effect in females. Transgenic experiments show that sex-biased expression of eloF is caused in part by a putative transposable element insertion in its regulatory region. These results reveal one of the genetic mechanisms responsible for a recent evolutionary change in sexual communication.
Collapse
Affiliation(s)
- Yige Luo
- Department of Evolution and Ecology, University of California, Davis
| | - Ayumi Takau
- Department of Agricultural and Environmental Biology, The University of Tokyo
| | - Jiaxun Li
- Department of Evolution and Ecology, University of California, Davis
| | - Tiezheng Fan
- Department of Evolution and Ecology, University of California, Davis
| | - Ben R Hopkins
- Department of Evolution and Ecology, University of California, Davis
| | - Yvonne Le
- Department of Evolution and Ecology, University of California, Davis
| | | | - Takashi Matsuo
- Department of Agricultural and Environmental Biology, The University of Tokyo
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis
| |
Collapse
|
5
|
Lafont R, Dinan L. Insect Sterols and Steroids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39384701 DOI: 10.1007/5584_2024_823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Insects are incapable of biosynthesising sterols de novo so they need to obtain them from their diets or, in certain cases, from symbiotic microorganisms. Sterols serve a structural role in cellular membranes and act as precursors for signalling molecules and defence compounds. Many phytophagous insects dealkylate phytosterols to yield primarily cholesterol, which is also the main sterol that carnivorous and omnivorous insects obtain in their diets. Some phytophagous species have secondarily lost the capacity to dealkylate and consequently use phytosterols for structural and functional roles. The polyhydroxylated steroid hormones of insects, the ecdysteroids, are derived from cholesterol (or phytosterols in non-dealkylating phytophagous species) and regulate many crucial aspects of insect development and reproduction by means of precisely regulated titres resulting from controlled synthesis, storage and further metabolism/excretion. Ecdysteroids differ significantly from vertebrate steroid hormones in their chemical, biochemical and biological properties. Defensive steroids (cardenolides, bufadienolides, cucurbitacins and ecdysteroids) can be accumulated from host plants or biosynthesised within the insect, depending on species, stored in significant amounts in the insect and released when it is attacked. Other allelochemical steroids serve as pheromones. Vertebrate-type steroids have also been conclusively identified from insect sources, but debate continues about their significance. Side chain dealkylation of phytosterols, ecdysteroid metabolism and ecdysteroid mode of action are targets of potential insect control strategies.
Collapse
Affiliation(s)
- René Lafont
- BIOSIPE, Sorbonne Université, Paris, France.
| | | |
Collapse
|
6
|
Niu Y, Chi Y, Xu Y, Zhang S, Shi F, Zhao Y, Li M, Zong S, Tao J. Transcriptome analysis reveals the pheromone synthesis mechanism and mating response in Monochamus saltuarius (Coleoptera, Cerambycidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105975. [PMID: 39084766 DOI: 10.1016/j.pestbp.2024.105975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 08/02/2024]
Abstract
The pinewood nematode Bursaphelenchus xylophilus (Steiner and Buhrer 1934) causes pine wilt disease, which severely affects the biodiversity and economy of Eurasian coniferous forests. Monochamus saltuarius (Coleoptera, Cerambycidae) was first identified as nematode vectors in Liaoning Province, China, in 2017. M. saltuarius has high mating efficiency and reproductive capabilities, pheromones are crucial in these processes. However, the mechanisms of pheromone synthesis in M. saltuarius are unclear. This study performed morphometric and transcriptomic analyses of the internal reproductive systems of males and females at different developmental stages and analyzed mate selection behavior. We found a significant difference in the morphology of internal reproductive systems between sexually immature and mature insects. A total of 58 and 64 pheromone biosynthesis genes were identified in females and males, respectively. The expression of the analyzed genes differed between males and females in the initial and subsequent synthesis processes. Interference experiment indicated that knocking down SDR1 gene in male M. saltuarius reduces the content of pheromones. Behavioral analyses found that males preferred virgin females. This study identified key pheromone genes and synthesis pathway that could serve as potential targets for disrupting mating in M. saltuarius through the development of novel biological agents using genetic engineering techniques.
Collapse
Affiliation(s)
- Yiming Niu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Ye Chi
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Yabei Xu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Sainan Zhang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Fengming Shi
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Yuxuan Zhao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Meng Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Musselman LP, Truong HG, DiAngelo JR. Transcriptional Control of Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38782870 DOI: 10.1007/5584_2024_808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Transcriptional control of lipid metabolism uses a framework that parallels the control of lipid metabolism at the protein or enzyme level, via feedback and feed-forward mechanisms. Increasing the substrates for an enzyme often increases enzyme gene expression, for example. A paucity of product can likewise potentiate transcription or stability of the mRNA encoding the enzyme or enzymes needed to produce it. In addition, changes in second messengers or cellular energy charge can act as on/off switches for transcriptional regulators to control transcript (and protein) abundance. Insects use a wide range of DNA-binding transcription factors (TFs) that sense changes in the cell and its environment to produce the appropriate change in transcription at gene promoters. These TFs work together with histones, spliceosomes, and additional RNA processing factors to ultimately regulate lipid metabolism. In this chapter, we will first focus on the important TFs that control lipid metabolism in insects. Next, we will describe non-TF regulators of insect lipid metabolism such as enzymes that modify acetylation and methylation status, transcriptional coactivators, splicing factors, and microRNAs. To conclude, we consider future goals for studying the mechanisms underlying the control of lipid metabolism in insects.
Collapse
Affiliation(s)
- Laura Palanker Musselman
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Huy G Truong
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, USA
| | - Justin R DiAngelo
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, USA.
| |
Collapse
|
8
|
Poidevin M, Mazuras N, Bontonou G, Delamotte P, Denis B, Devilliers M, Akiki P, Petit D, de Luca L, Soulie P, Gillet C, Wicker-Thomas C, Montagne J. A fatty acid anabolic pathway in specialized-cells sustains a remote signal that controls egg activation in Drosophila. PLoS Genet 2024; 20:e1011186. [PMID: 38483976 DOI: 10.1371/journal.pgen.1011186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/26/2024] [Accepted: 02/14/2024] [Indexed: 03/27/2024] Open
Abstract
Egg activation, representing the critical oocyte-to-embryo transition, provokes meiosis completion, modification of the vitelline membrane to prevent polyspermy, and translation of maternally provided mRNAs. This transition is triggered by a calcium signal induced by spermatozoon fertilization in most animal species, but not in insects. In Drosophila melanogaster, mature oocytes remain arrested at metaphase-I of meiosis and the calcium-dependent activation occurs while the oocyte moves through the genital tract. Here, we discovered that the oenocytes of fruitfly females are required for egg activation. Oenocytes, cells specialized in lipid-metabolism, are located beneath the abdominal cuticle. In adult flies, they synthesize the fatty acids (FAs) that are the precursors of cuticular hydrocarbons (CHCs), including pheromones. The oenocyte-targeted knockdown of a set of FA-anabolic enzymes, involved in very-long-chain fatty acid (VLCFA) synthesis, leads to a defect in egg activation. Given that some but not all of the identified enzymes are required for CHC/pheromone biogenesis, this putative VLCFA-dependent remote control may rely on an as-yet unidentified CHC or may function in parallel to CHC biogenesis. Additionally, we discovered that the most posterior ventral oenocyte cluster is in close proximity to the uterus. Since oocytes dissected from females deficient in this FA-anabolic pathway can be activated in vitro, this regulatory loop likely operates upstream of the calcium trigger. To our knowledge, our findings provide the first evidence that a physiological extra-genital signal remotely controls egg activation. Moreover, our study highlights a potential metabolic link between pheromone-mediated partner recognition and egg activation.
Collapse
Affiliation(s)
- Mickael Poidevin
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Nicolas Mazuras
- Laboratoire Evolution, Génomes, Comportements, Ecologie (EGCE), CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Gwénaëlle Bontonou
- Laboratoire Evolution, Génomes, Comportements, Ecologie (EGCE), CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Delamotte
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Béatrice Denis
- Laboratoire Evolution, Génomes, Comportements, Ecologie (EGCE), CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Maëlle Devilliers
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Perla Akiki
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Delphine Petit
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Laura de Luca
- Centre Médical Universitaire, Department of Cell Physiology and Metabolism, Geneva, Switzerland
| | - Priscilla Soulie
- Centre Médical Universitaire, Department of Cell Physiology and Metabolism, Geneva, Switzerland
| | - Cynthia Gillet
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Claude Wicker-Thomas
- Laboratoire Evolution, Génomes, Comportements, Ecologie (EGCE), CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jacques Montagne
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| |
Collapse
|
9
|
Medeiros MJ, Seo L, Macias A, Price DK, Yew JY. Bacterial and fungal components of the microbiome have distinct roles in Hawaiian drosophila reproduction. ISME COMMUNICATIONS 2024; 4:ycae134. [PMID: 39678232 PMCID: PMC11643357 DOI: 10.1093/ismeco/ycae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 12/17/2024]
Abstract
The microbiome provides numerous physiological benefits for host animals. The role of bacterial members of microbiomes to host physiology is well-documented. However, much less is known about the contributions and interactions of fungal members, even though fungi are integral components of many microbiomes, including those of humans and insects. Here, we used antibacterial and antifungal drugs to manipulate the gut microbiome of a Hawaiian picture-wing Drosophila species, Drosophila grimshawi, and identified distinct effects for each treatment on microbiome community stability, reproduction, and lipid metabolism. Female oogenesis, fecundity, and mating drive were significantly diminished with antifungal treatment. In contrast, male fecundity was affected by antibacterial but not antifungal treatment. For males and females, simultaneous treatment with both antibacterial and antifungal drugs resulted in severely reduced fecundity and changes in fatty acid levels and composition. Microbial transplants using frass harvested from control flies partially restored microbiome composition and female fecundity. Overall, our results reveal that antibacterial and antifungal treatments have distinct effects on host fecundity, mating behavior, and lipid metabolism, and that interkingdom interactions contribute to microbial community stability and reproduction.
Collapse
Affiliation(s)
- Matthew J Medeiros
- Pacific Biosciences Research Center, University of Hawai`i at Mānoa, 1993 East West Rd., Honolulu, HI 96826, United States
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154-4004, United States
| | - Laura Seo
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154-4004, United States
| | - Aziel Macias
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154-4004, United States
| | - Donald K Price
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154-4004, United States
| | - Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai`i at Mānoa, 1993 East West Rd., Honolulu, HI 96826, United States
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154-4004, United States
| |
Collapse
|
10
|
Wu MS, Liao TW, Wu CY, Hsieh TH, Kuo PC, Li YC, Cheng KC, Chiang HC. Aversive conditioning information transmission in Drosophila. Cell Rep 2023; 42:113207. [PMID: 37782557 DOI: 10.1016/j.celrep.2023.113207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023] Open
Abstract
Animals rapidly acquire surrounding information to perform the appropriate behavior. Although social learning is more efficient and accessible than self-learning for animals, the detailed regulatory mechanism of social learning remains unknown, mainly because of the complicated information transfer between animals, especially for aversive conditioning information transmission. The current study revealed that, during social learning, the neural circuit in observer flies used to process acquired aversive conditioning information from demonstrator flies differs from the circuit used for self-learned classic aversive conditioning. This aversive information transfer is species dependent. Solitary flies cannot learn this information through social learning, suggesting that this ability is not an innate behavior. Neurons used to process and execute avoidance behavior to escape from electrically shocked flies are all in the same brain region, indicating that the fly brain has a common center for integrating external stimuli with internal states to generate flight behavior.
Collapse
Affiliation(s)
- Meng-Shiun Wu
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Ting-Wei Liao
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Chun-Yuan Wu
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Tzu-Han Hsieh
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yue-Chiun Li
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Chung Cheng
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Hsueh-Cheng Chiang
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan.
| |
Collapse
|
11
|
Li H, Luo X, Li N, Liu T, Zhang J. Insulin-like peptide 8 (Ilp8) regulates female fecundity in flies. Front Cell Dev Biol 2023; 11:1103923. [PMID: 36743416 PMCID: PMC9890075 DOI: 10.3389/fcell.2023.1103923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Introduction: Insulin-like peptides (Ilps) play crucial roles in nearly all life stages of insects. Ilp8 is involved in developmental stability, stress resistance and female fecundity in several insect species, but the underlying mechanisms are not fully understood. Here we report the functional characterization of Ilp8s in three fly species, including Bactrocera dorsalis, Drosophila mercatorum and Drosophila melanogaster. Methods: Phylogenetic analyses were performed to identify and characterize insect Ilp8s. The amino acid sequences of fly Ilp8s were aligned and the three-dimensional structures of fly Ilp8s were constructed and compared. The tissue specific expression pattern of fly Ilp8s were examined by qRT-PCR. In Bactrocera dorsalis and Drosophila mercatorum, dsRNAs were injected into virgin females to inhibit the expression of Ilp8 and the impacts on female fecundity were examined. In Drosophila melanogaster, the female fecundity of Ilp8 loss-of-function mutant was compared with wild type control flies. The mutant fruit fly strain was also used for sexual behavioral analysis and transcriptomic analysis. Results: Orthologs of Ilp8s are found in major groups of insects except for the lepidopterans and coleopterans, and Ilp8s are found to be well separated from other Ilps in three fly species. The key motif and the predicted three-dimensional structure of fly Ilp8s are well conserved. Ilp8 are specifically expressed in the ovary and are essential for female fecundity in three fly species. Behavior analysis demonstrates that Ilp8 mutation impairs female sexual attractiveness in fruit fly, which results in decreased mating success and is likely the cause of fecundity reduction. Further transcriptomic analysis indicates that Ilp8 might influence metabolism, immune activity, oocyte development as well as hormone homeostasis to collectively regulate female fecundity in the fruit fly. Discussion: Our findings support a universal role of insect Ilp8 in female fecundity, and also provide novel clues for understanding the modes of action of Ilp8.
Collapse
Affiliation(s)
- Haomiao Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xi Luo
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Na Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Tao Liu
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Junzheng Zhang
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China,*Correspondence: Junzheng Zhang,
| |
Collapse
|
12
|
Scanlan JL, Robin C, Mirth CK. Rethinking the ecdysteroid source during Drosophila pupal-adult development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103891. [PMID: 36481381 DOI: 10.1016/j.ibmb.2022.103891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Ecdysteroids, typified by 20-hydroxyecdysone (20E), are essential hormones for the development, reproduction and physiology of insects and other arthropods. For over half a century, the vinegar fly Drosophila melanogaster (Ephydroidea: Diptera) has been used as a model of ecdysteroid biology. Many aspects of the biosynthesis and regulation of ecdysteroids in this species are understood at the molecular level, particularly with respect to their secretion from the prothoracic gland (PG) cells of the ring gland, widely considered the dominant biosynthetic tissue during development. Discrete pulses of 20E orchestrate transitions during the D. melanogaster life cycle, the sources of which are generally well understood, apart from the large 20E pulse at the onset of pharate adult development, which has received little recent attention. As the source of this pharate adult pulse (PAP) is a curious blind spot in Drosophila endocrinology, we evaluate published biochemical and genetic data as they pertain to three hypotheses for the source of PAP 20E: the PG; an alternative biosynthetic tissue; or the recycling of stored 20E. Based on multiple lines of evidence, we contend the PAP cannot be derived from biosynthesis, with other data consistent with D. melanogaster able to recycle ecdysteroids before and during metamorphosis. Published data also suggest the PAP is conserved across Diptera, with evidence for pupal-adult ecdysteroid recycling occurring in other cyclorrhaphan flies. Further experimental work is required to test the ecdysteroid recycling hypothesis, which would establish fundamental knowledge of the function, regulation, and evolution of metamorphic hormones in dipterans and other insects.
Collapse
Affiliation(s)
- Jack L Scanlan
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia.
| | - Charles Robin
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| |
Collapse
|
13
|
Wang Z, Receveur JP, Pu J, Cong H, Richards C, Liang M, Chung H. Desiccation resistance differences in Drosophila species can be largely explained by variations in cuticular hydrocarbons. eLife 2022; 11:e80859. [PMID: 36473178 PMCID: PMC9757832 DOI: 10.7554/elife.80859] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Maintaining water balance is a universal challenge for organisms living in terrestrial environments, especially for insects, which have essential roles in our ecosystem. Although the high surface area to volume ratio in insects makes them vulnerable to water loss, insects have evolved different levels of desiccation resistance to adapt to diverse environments. To withstand desiccation, insects use a lipid layer called cuticular hydrocarbons (CHCs) to reduce water evaporation from the body surface. It has long been hypothesized that the water-proofing capability of this CHC layer, which can confer different levels of desiccation resistance, depends on its chemical composition. However, it is unknown which CHC components are important contributors to desiccation resistance and how these components can determine differences in desiccation resistance. In this study, we used machine-learning algorithms, correlation analyses, and synthetic CHCs to investigate how different CHC components affect desiccation resistance in 50 Drosophila and related species. We showed that desiccation resistance differences across these species can be largely explained by variation in CHC composition. In particular, length variation in a subset of CHCs, the methyl-branched CHCs (mbCHCs), is a key determinant of desiccation resistance. There is also a significant correlation between the evolution of longer mbCHCs and higher desiccation resistance in these species. Given that CHCs are almost ubiquitous in insects, we suggest that evolutionary changes in insect CHC components can be a general mechanism for the evolution of desiccation resistance and adaptation to diverse and changing environments.
Collapse
Affiliation(s)
- Zinan Wang
- Department of Entomology, Michigan State UniversityEast LansingUnited States
- Ecology, Evolution, and Behavior Program, Michigan State UniversityEast LansingUnited States
| | - Joseph P Receveur
- Department of Entomology, Michigan State UniversityEast LansingUnited States
- Ecology, Evolution, and Behavior Program, Michigan State UniversityEast LansingUnited States
- Institute for Genome Sciences, University of MarylandBaltimoreUnited States
| | - Jian Pu
- Department of Entomology, Michigan State UniversityEast LansingUnited States
- College of Agriculture, Sichuan Agricultural UniversitySichuanChina
| | - Haosu Cong
- Department of Entomology, Michigan State UniversityEast LansingUnited States
| | - Cole Richards
- Department of Entomology, Michigan State UniversityEast LansingUnited States
| | - Muxuan Liang
- Department of Biostatistics, University of FloridaGainesvilleUnited States
| | - Henry Chung
- Department of Entomology, Michigan State UniversityEast LansingUnited States
- Ecology, Evolution, and Behavior Program, Michigan State UniversityEast LansingUnited States
| |
Collapse
|
14
|
Wang ZY, McKenzie-Smith GC, Liu W, Cho HJ, Pereira T, Dhanerawala Z, Shaevitz JW, Kocher SD. Isolation disrupts social interactions and destabilizes brain development in bumblebees. Curr Biol 2022; 32:2754-2764.e5. [PMID: 35584698 PMCID: PMC9233014 DOI: 10.1016/j.cub.2022.04.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
Social isolation, particularly in early life, leads to deleterious physiological and behavioral outcomes. Here, we leverage new high-throughput tools to comprehensively investigate the impact of isolation in the bumblebee, Bombus impatiens, from behavioral, molecular, and neuroanatomical perspectives. We reared newly emerged bumblebees in complete isolation, in small groups, or in their natal colony, and then analyzed their behaviors while alone or paired with another bee. We find that when alone, individuals of each rearing condition show distinct behavioral signatures. When paired with a conspecific, bees reared in small groups or in the natal colony express similar behavioral profiles. Isolated bees, however, showed increased social interactions. To identify the neurobiological correlates of these differences, we quantified brain gene expression and measured the volumes of key brain regions for a subset of individuals from each rearing condition. Overall, we find that isolation increases social interactions and disrupts gene expression and brain development. Limited social experience in small groups is sufficient to preserve typical patterns of brain development and social behavior.
Collapse
Affiliation(s)
- Z Yan Wang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Grace C McKenzie-Smith
- Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Physics, Princeton University, Princeton, NJ, USA
| | - Weijie Liu
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Hyo Jin Cho
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Talmo Pereira
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Zahra Dhanerawala
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua W Shaevitz
- Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Physics, Princeton University, Princeton, NJ, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
15
|
Huang K, Liu Y, Perrimon N. Roles of Insect Oenocytes in Physiology and Their Relevance to Human Metabolic Diseases. FRONTIERS IN INSECT SCIENCE 2022; 2:859847. [PMID: 38468774 PMCID: PMC10926422 DOI: 10.3389/finsc.2022.859847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/14/2022] [Indexed: 03/13/2024]
Abstract
Oenocytes are large secretory cells present in the abdomen of insects known to synthesize very-long-chain fatty acids to produce hydrocarbons and pheromones that mediate courtship behavior in adult flies. In recent years, oenocytes have been implicated in the regulation of energy metabolism. These hepatocyte-like cells accumulate lipid droplets under starvation and can non-autonomously regulate tracheal waterproofing and adipocyte lipid composition. Here, we summarize evidence, mostly from Drosophila, establishing that oenocytes perform liver-like functions. We also compare the functional differences in oenocytes and the fat body, another lipid storage tissue which also performs liver-like functions. Lastly, we examine signaling pathways that regulate oenocyte metabolism derived from other metabolic tissues, as well as oenocyte-derived signals that regulate energy homeostasis.
Collapse
Affiliation(s)
- Kerui Huang
- Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| | - Ying Liu
- Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
- Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, United States
| |
Collapse
|
16
|
Loehlin DW, Kim JY, Paster CO. A tandem duplication in Drosophila melanogaster shows enhanced expression beyond the gene copy number. Genetics 2021; 220:6472349. [PMID: 35100388 PMCID: PMC9176294 DOI: 10.1093/genetics/iyab231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
Tandem duplicated genes are common features of genomes, but the phenotypic consequences of their origins are not well understood. It is not known whether a simple doubling of gene expression should be expected, or else some other expression outcome. This study describes an experimental framework using engineered deletions to assess any contribution of locally acting cis- and globally acting trans-regulatory factors to expression interactions of particular tandem duplicated genes. Acsx1L (CG6300) and Acsx1R (CG11659) are tandem duplicates of a putative acyl-CoA synthetase gene found in Drosophila melanogaster. Experimental deletions of the duplicated segments were used to investigate whether the presence of 1 tandem duplicated block influences the expression of its neighbor. Acsx1L, the gene in the left block, shows much higher expression than either its duplicate Acsx1R or the single Acsx1 in Drosophila simulans. Acsx1L expression decreases drastically upon deleting the right-hand duplicated block. Crosses among wildtype and deletion strains show that high tandem expression is primarily due to cis-acting interactions between the duplicated blocks. No effect of these genes on cuticular hydrocarbons was detected. Sequence and phylogenetic analysis suggest that the duplication rose to fixation in D. melanogaster and has been subject to extensive gene conversion. Some strains actually carry 3 tandem copies, yet strains with 3 Acsx1s do not have higher expression levels than strains with 2. Surveys of tandem duplicate expression have typically not found the expected 2-fold increase in expression. This study suggests that cis-regulatory interactions between duplicated blocks could be responsible for this trend.
Collapse
Affiliation(s)
- David W Loehlin
- Biology Department, Williams College, Williamstown, MA 01267, USA
| | - Jeremiah Y Kim
- Biology Department, Williams College, Williamstown, MA 01267, USA
| | - Caleigh O Paster
- Biology Department, Williams College, Williamstown, MA 01267, USA
| |
Collapse
|
17
|
Modulation of fatty acid elongation in cockroaches sustains sexually dimorphic hydrocarbons and female attractiveness. PLoS Biol 2021; 19:e3001330. [PMID: 34314414 PMCID: PMC8315507 DOI: 10.1371/journal.pbio.3001330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/18/2021] [Indexed: 11/19/2022] Open
Abstract
Insect cuticular hydrocarbons (CHCs) serve as important intersexual signaling chemicals and generally show variation between the sexes, but little is known about the generation of sexually dimorphic hydrocarbons (SDHCs) in insects. In this study, we report the molecular mechanism and biological significance that underlie the generation of SDHC in the German cockroach Blattella germanica. Sexually mature females possess more C29 CHCs, especially the contact sex pheromone precursor 3,11-DimeC29. RNA interference (RNAi) screen against the fatty acid elongase family members combined with heterologous expression of the genes in yeast revealed that both BgElo12 and BgElo24 were involved in hydrocarbon (HC) production, but BgElo24 is of wide catalytic activities and is able to provide substrates for BgElo12, and only the female-enriched BgElo12 is responsible for sustaining female-specific HC profile. Repressing BgElo12 masculinized the female CHC profile, decreased contact sex pheromone level, and consequently reduced the sexual attractiveness of female cockroaches. Moreover, the asymmetric expression of BgElo12 between the sexes is modulated by sex differentiation cascade. Specifically, male-specific BgDsx represses the transcription of BgElo12 in males, while BgTra is able to remove this effect in females. Our study reveals a novel molecular mechanism responsible for the formation of SDHCs and also provide evidences on shaping of the SDHCs by sexual selection, as females use them to generate high levels of contact sex pheromone. Sexual dimorphism of body waxes is prevalent in insects; this study reveals that the sex-differentiation pathway regulates fatty acid elongation, ensuring production of the sexually dimorphic cuticular hydrocarbons needed for high levels of sex pheromone and sexual attractiveness in female cockroaches.
Collapse
|
18
|
Sprenger PP, Hartke J, Schmitt T, Menzel F, Feldmeyer B. Candidate genes involved in cuticular hydrocarbon differentiation between cryptic, parabiotic ant species. G3-GENES GENOMES GENETICS 2021; 11:6174692. [PMID: 33729492 PMCID: PMC8104948 DOI: 10.1093/g3journal/jkab078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/03/2021] [Indexed: 11/14/2022]
Abstract
Insect cuticular hydrocarbons (CHCs) are highly diverse and have multiple functions, including communication and waterproofing. CHC profiles form species-specific, complex blends of up to 150 compounds. Especially in ants, even closely related species can have largely different profiles, raising the question how CHC differences are mirrored in the regulation of biosynthetic pathways. The neotropical ants Crematogaster levior and Camponotus femoratus both consist of two cryptic species each that are morphologically similar, but express strongly different CHC profiles. This is ideal to study the molecular basis of CHC differences. We thus investigated gene expression differences in fat-body transcriptomes of these ants. Despite common garden conditions, we found several thousand differentially expressed transcripts within each cryptic species pair. Many of these were related to metabolic processes, probably accounting for physiological differences. Moreover, we identified candidate genes from five gene families involved in CHC biosynthesis. By assigning candidate transcripts to orthologs in Drosophila, we inferred which CHCs might be influenced by differential gene expression. Expression of these candidate genes was often mirrored in the CHC profiles. For example, Cr. levior A, which has longer CHCs than its cryptic sister species, had a higher expression of elongases and a lower expression of fatty acyl- CoA reductases. This study is one of the first to identify CHC candidate genes in ants and will provide a basis for further research on the genetic basis of CHC biosynthesis.
Collapse
Affiliation(s)
- Philipp P Sprenger
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes-Gutenberg-University Mainz, 55128 Mainz, Germany.,Department of Animal Ecology and Tropical Biology, University of Würzburg, 97074 Würzburg, Germany
| | - Juliane Hartke
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes-Gutenberg-University Mainz, 55128 Mainz, Germany.,Senckenberg Research Institute, 60325 Frankfurt am Main, Germany
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, University of Würzburg, 97074 Würzburg, Germany
| | - Florian Menzel
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes-Gutenberg-University Mainz, 55128 Mainz, Germany
| | | |
Collapse
|
19
|
Physiological characterization of chitin synthase A responsible for the biosynthesis of cuticle chitin in Culex pipiens pallens (Diptera: Culicidae). Parasit Vectors 2021; 14:234. [PMID: 33933137 PMCID: PMC8088658 DOI: 10.1186/s13071-021-04741-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
Background The pathogens transmitted by mosquitoes to humans and animals cause several emerging and resurgent infectious diseases. Increasing insecticide resistance requires rational action to control the target vector population. Chitin is indispensable for insect growth and development and absent from vertebrates and higher plants. Chitin synthase A (CHSA) is a crucial enzyme in chitin synthesis; therefore, identifying and characterizing how CHSA determines chitin content may contribute to the development of novel vector control strategies. Results The injection of small interfering RNA targeting CHSA (siCHSA) to knockdown CHSA transcripts in larval, pupal and adult stages of Culex pipiens pallens resulted in the appearance of different lethal phenotypes. When larval and pupal stages were injected with siCHSA, CHSA knockdown prevented larval molting, pupation and adult eclosion, and affected the production of chitin and chitin degradation, which resulted in an ecdysis defect phenotype of mosquitoes. When siCHSA was injected into mosquitoes in the adult stage, CHSA knockdown also affected the laminar organization of the mesoderm and the formation of pseudo-orthogonal patterns of the large fibers of the endoderm. Conclusion We provide a systematic and comprehensive description of the effects of CHSA on morphogenesis and metamorphosis. The results show that CHSA not only affects chitin synthesis during molting, but also might be involved in chitin degradation. Our results further show that CHSA is important for the structural integrity of the adult mosquito cuticle. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04741-2.
Collapse
|
20
|
Hamida ZC, Farine JP, Ferveur JF, Soltani N. Pre-imaginal exposure to Oberon® disrupts fatty acid composition, cuticular hydrocarbon profile and sexual behavior in Drosophila melanogaster adults. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108981. [PMID: 33493665 DOI: 10.1016/j.cbpc.2021.108981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Oberon® is a commercial formulation of spiromesifen, a pesticide inhibitor of lipid biosynthesis via acetyl CoA carboxylase, widely used in agricultural crop protection. However, its mode of action requires further analysis. We currently examined the effect of this product on Drosophila melanogaster as a non-target and model organism. Different concentrations of spiromesifen were administered by ingestion (and contact) during pre-imaginal development, and we evaluated its delayed action on adults. Our results suggest that spiromesifen induced insecticidal activity on D. melanogaster. Moreover, spiromesifen treatment significantly increased the duration of larval and pupal development at all tested concentrations while it shortened longevity in exposed males as compared to control males. Also, pre-imaginal exposure to spiromesifen quantitatively affected fatty acids supporting its primary mode of action on lipid synthesis. In addition, this product was found to modify cuticular hydrocarbon profiles in exposed female and male flies as well as their sexual behavior and reproductive capacity.
Collapse
Affiliation(s)
- Z C Hamida
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria; Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - J P Farine
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - J F Ferveur
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - N Soltani
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria.
| |
Collapse
|
21
|
Wang Y, Ferveur JF, Moussian B. Eco-genetics of desiccation resistance in Drosophila. Biol Rev Camb Philos Soc 2021; 96:1421-1440. [PMID: 33754475 DOI: 10.1111/brv.12709] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Climate change globally perturbs water circulation thereby influencing ecosystems including cultivated land. Both harmful and beneficial species of insects are likely to be vulnerable to such changes in climate. As small animals with a disadvantageous surface area to body mass ratio, they face a risk of desiccation. A number of behavioural, physiological and genetic strategies are deployed to solve these problems during adaptation in various Drosophila species. Over 100 desiccation-related genes have been identified in laboratory and wild populations of the cosmopolitan fruit fly Drosophila melanogaster and its sister species in large-scale and single-gene approaches. These genes are involved in water sensing and homeostasis, and barrier formation and function via the production and composition of surface lipids and via pigmentation. Interestingly, the genetic strategy implemented in a given population appears to be unpredictable. In part, this may be due to different experimental approaches in different studies. The observed variability may also reflect a rich standing genetic variation in Drosophila allowing a quasi-random choice of response strategies through soft-sweep events, although further studies are needed to unravel any underlying principles. These findings underline that D. melanogaster is a robust species well adapted to resist climate change-related desiccation. The rich data obtained in Drosophila research provide a framework to address and understand desiccation resistance in other insects. Through the application of powerful genetic tools in the model organism D. melanogaster, the functions of desiccation-related genes revealed by correlative studies can be tested and the underlying molecular mechanisms of desiccation tolerance understood. The combination of the wealth of available data and its genetic accessibility makes Drosophila an ideal bioindicator. Accumulation of data on desiccation resistance in Drosophila may allow us to create a world map of genetic evolution in response to climate change in an insect genome. Ultimately these efforts may provide guidelines for dealing with the effects of climate-related perturbations on insect population dynamics in the future.
Collapse
Affiliation(s)
- Yiwen Wang
- Interfaculty Institute of Cell Biology, Section Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, Tübingen, 72076, Germany.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Université de Bourgogne, 6, Bd Gabriel, Dijon, 21000, France
| | - Bernard Moussian
- Interfaculty Institute of Cell Biology, Section Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, Tübingen, 72076, Germany.,Institute of Biology Valrose, Université Côte d'Azur, CNRS, Inserm, Parc Valrose, Nice CEDEX 2, 06108, France
| |
Collapse
|
22
|
Bensafi-Gheraibia H, Kissoum N, Hamida ZC, Farine JP, Soltani N. Topical bioassay of Oberon® on Drosophila melanogaster pupae: delayed effects on ovarian proteins, cuticular hydrocarbons and sexual behaviour. INVERTEBR REPROD DEV 2021. [DOI: 10.1080/07924259.2020.1862315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hanene Bensafi-Gheraibia
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| | - Nesrine Kissoum
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| | - Zahia Cirine Hamida
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| | - Jean Pierre Farine
- Centre des Sciences du Goût et de l’Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Noureddine Soltani
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| |
Collapse
|
23
|
Rajpurohit S, Vrkoslav V, Hanus R, Gibbs AG, Cvačka J, Schmidt PS. Post-eclosion temperature effects on insect cuticular hydrocarbon profiles. Ecol Evol 2021; 11:352-364. [PMID: 33437434 PMCID: PMC7790616 DOI: 10.1002/ece3.7050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022] Open
Abstract
The insect cuticle is the interface between internal homeostasis and the often harsh external environment. Cuticular hydrocarbons (CHCs) are key constituents of this hard cuticle and are associated with a variety of functions including stress response and communication. CHC production and deposition on the insect cuticle vary among natural populations and are affected by developmental temperature; however, little is known about CHC plasticity in response to the environment experienced following eclosion, during which time the insect cuticle undergoes several crucial changes. We targeted this crucial to important phase and studied post-eclosion temperature effects on CHC profiles in two natural populations of Drosophila melanogaster. A forty-eight hour post-eclosion exposure to three different temperatures (18, 25, and 30°C) significantly affected CHCs in both ancestral African and more recently derived North American populations of D. melanogaster. A clear shift from shorter to longer CHCs chain length was observed with increasing temperature, and the effects of post-eclosion temperature varied across populations and between sexes. The quantitative differences in CHCs were associated with variation in desiccation tolerance among populations. Surprisingly, we did not detect any significant differences in water loss rate between African and North American populations. Overall, our results demonstrate strong genetic and plasticity effects in CHC profiles in response to environmental temperatures experienced at the adult stage as well as associations with desiccation tolerance, which is crucial in understanding holometabolan responses to stress.
Collapse
Affiliation(s)
- Subhash Rajpurohit
- Division of Biological and Life SciencesSchool of Arts and SciencesAhmedabad UniversityAhmedabadIndia
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry AS CRPragueCzech Republic
| | - Robert Hanus
- Institute of Organic Chemistry and Biochemistry AS CRPragueCzech Republic
| | - Allen G. Gibbs
- School of Life SciencesUniversity of NevadaLas VegasNVUSA
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry AS CRPragueCzech Republic
| | - Paul S Schmidt
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
24
|
Grigoraki L, Grau-Bové X, Carrington Yates H, Lycett GJ, Ranson H. Isolation and transcriptomic analysis of Anopheles gambiae oenocytes enables the delineation of hydrocarbon biosynthesis. eLife 2020; 9:e58019. [PMID: 32538778 PMCID: PMC7351493 DOI: 10.7554/elife.58019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/12/2020] [Indexed: 12/29/2022] Open
Abstract
The surface of insects is coated in cuticular hydrocarbons (CHCs); variations in the composition of this layer affect a range of traits including adaptation to arid environments and defence against pathogens and toxins. In the African malaria vector, Anopheles gambiae quantitative and qualitative variance in CHC composition have been associated with speciation, ecological habitat and insecticide resistance. Understanding how these modifications arise will inform us of how mosquitoes are responding to climate change and vector control interventions. CHCs are synthesised in sub-epidermal cells called oenocytes that are very difficult to isolate from surrounding tissues. Here we utilise a transgenic line with fluorescent oenocytes to purify these cells for the first time. Comparative transcriptomics revealed the enrichment of biological processes related to long chain fatty acyl-CoA biosynthesis and elongation of mono-, poly-unsaturated and saturated fatty acids and enabled us to delineate, and partially validate, the hydrocarbon biosynthetic pathway in An. gambiae.
Collapse
Affiliation(s)
- Linda Grigoraki
- Liverpool School of Tropical Medicine, Vector Biology DepartmentLiverpoolUnited Kingdom
| | - Xavier Grau-Bové
- Liverpool School of Tropical Medicine, Vector Biology DepartmentLiverpoolUnited Kingdom
| | | | - Gareth J Lycett
- Liverpool School of Tropical Medicine, Vector Biology DepartmentLiverpoolUnited Kingdom
| | - Hilary Ranson
- Liverpool School of Tropical Medicine, Vector Biology DepartmentLiverpoolUnited Kingdom
| |
Collapse
|
25
|
Interactions with ectoparasitic mites induce host metabolic and immune responses in flies at the expense of reproduction-associated factors. Parasitology 2020; 147:1196-1205. [PMID: 32498733 DOI: 10.1017/s0031182020000918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Parasites cause harm to their hosts and represent pervasive causal agents of natural selection. Understanding host proximate responses during interactions with parasites can help predict which genes and molecular pathways are targets of this selection. In the current study, we examined transcriptional changes arising from interactions between Drosophila melanogaster and their naturally occurring ectoparasitic mite, Gamasodes queenslandicus. Shifts in host transcript levels associated with behavioural avoidance revealed the involvement of genes underlying nutrient metabolism. These genetic responses were reflected in altered body lipid and glycogen levels in the flies. Mite infestation triggered a striking immune response, while male accessory gland protein transcript levels were simultaneously reduced, suggesting a trade-off between host immune responses to parasite challenge and reproduction. Comparison of transcriptional analyses during mite infestation to those during nematode and parasitoid attack identified host genes similarly expressed in flies during these interactions. Validation of the involvement of specific genes with RNA interference lines revealed candidates that may directly mediate fly-ectoparasite interactions. Our physiological and molecular characterization of the Drosophila-Gamasodes interface reveals new proximate mechanisms underlying host-parasite interactions, specifically host transcriptional shifts associated with behavioural avoidance and infestation. The results identify potential general mechanisms underlying host resistance and evolutionarily relevant trade-offs.
Collapse
|
26
|
Krupp JJ, Nayal K, Wong A, Millar JG, Levine JD. Desiccation resistance is an adaptive life-history trait dependent upon cuticular hydrocarbons, and influenced by mating status and temperature in D. melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2020; 121:103990. [PMID: 31830467 DOI: 10.1016/j.jinsphys.2019.103990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/31/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Terrestrial insects are susceptible to desiccation and conserve internal water stores by preventing the loss of water due to transpiration across the cuticle. The epicuticle, a thin waxy layer on the outer surface of the insect cuticle is comprised primarily of a complex blend of cuticular hydrocarbons (CHCs) and is integral to preventing cuticular water loss. How the composition of epicuticular lipids (quantity and quality of the specific hydrocarbons) relates to desiccation resistance, however, has been difficult to determine. Here, we establish a model system to test the capacity of CHCs to protect against desiccation in the vinegar fly, Drosophila melanogaster. Using this system, we demonstrate that the oenocytes and CHCs produced by these cells are critically important for desiccation resistance, as measured by survival under desiccative conditions. Additionally, we show that both mating status and developmental temperature influence desiccation resistance. Prior mating increased desiccation survival through the direct transfer of CHCs between sexual partners, as well as through a female-specific response to a male-derived factor transferred during copulation. Together, our results demonstrate that desiccation resistance is an adaptive life-history trait dependent upon CHCs and influenced by prior social interactions and environmental conditions.
Collapse
Affiliation(s)
- Joshua J Krupp
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Kamar Nayal
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Amy Wong
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Jocelyn G Millar
- Department of Entomology, University of California, 3401 Watkins Drive, Riverside, CA 92521, USA
| | - Joel D Levine
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.
| |
Collapse
|
27
|
Agrawal P, Kao D, Chung P, Looger LL. The neuropeptide Drosulfakinin regulates social isolation-induced aggression in Drosophila. J Exp Biol 2020; 223:jeb207407. [PMID: 31900346 PMCID: PMC7033730 DOI: 10.1242/jeb.207407] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/19/2019] [Indexed: 01/09/2023]
Abstract
Social isolation strongly modulates behavior across the animal kingdom. We utilized the fruit fly Drosophila melanogaster to study social isolation-driven changes in animal behavior and gene expression in the brain. RNA-seq identified several head-expressed genes strongly responding to social isolation or enrichment. Of particular interest, social isolation downregulated expression of the gene encoding the neuropeptide Drosulfakinin (Dsk), the homologue of vertebrate cholecystokinin (CCK), which is critical for many mammalian social behaviors. Dsk knockdown significantly increased social isolation-induced aggression. Genetic activation or silencing of Dsk neurons each similarly increased isolation-driven aggression. Our results suggest a U-shaped dependence of social isolation-induced aggressive behavior on Dsk signaling, similar to the actions of many neuromodulators in other contexts.
Collapse
Affiliation(s)
- Pavan Agrawal
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Damian Kao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Phuong Chung
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| |
Collapse
|
28
|
Yew JY. Natural Product Discovery by Direct Analysis in Real Time Mass Spectrometry. Mass Spectrom (Tokyo) 2020; 8:S0081. [PMID: 33299731 PMCID: PMC7709883 DOI: 10.5702/massspectrometry.s0081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
Direct analysis in real time mass spectrometry (DART MS) is one of the first ambient ionization methods to be introduced and commercialized. Analysis by DART MS requires minimal sample preparation, produces nearly instantaneous results, and provides detection over a broad range of compounds. These advantageous features are particularly well-suited for the inherent complexity of natural product analysis. This review highlights recent applications of DART MS for species identification by chemotaxonomy, chemical profiling, genetic screening, and chemical spatial analysis from plants, insects, microbes, and metabolites from living systems.
Collapse
Affiliation(s)
- Joanne Y. Yew
- Pacific Biosciences Research Center, University of
Hawai‘i at Mānoa, 1993 East West Road, Honolulu, HI 96822, USA
| |
Collapse
|
29
|
Weaver LN, Drummond-Barbosa D. The nuclear receptor seven up functions in adipocytes and oenocytes to control distinct steps of Drosophila oogenesis. Dev Biol 2019; 456:179-189. [PMID: 31470019 PMCID: PMC6884690 DOI: 10.1016/j.ydbio.2019.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/23/2019] [Indexed: 02/09/2023]
Abstract
Reproduction is intimately linked to the physiology of an organism. Nuclear receptors are widely expressed transcription factors that mediate the effects of many circulating molecules on physiology and reproduction. While multiple studies have focused on the roles of nuclear receptors intrinsically in the ovary, it remains largely unknown how the actions of nuclear receptors in peripheral tissues influence oogenesis. We identified the nuclear receptor encoded by svp as a novel regulator of oogenesis in adult Drosophila. Global somatic knockdown of svp reduces egg production by increasing GSC loss, death of early germline cysts, and degeneration of vitellogenic follicles. Tissue-specific knockdown experiments revealed that svp remotely controls these different steps of oogenesis through separate mechanisms involving distinct tissues. Specifically, adipocyte-specific svp knockdown impairs GSC maintenance and early germline cyst survival, whereas oenocyte-specific svp knockdown increases the death of vitellogenic follicles without any effects on GSCs or early cysts. These results illustrate that nuclear receptors can control reproduction through a variety of mechanisms involving peripheral tissues.
Collapse
Affiliation(s)
- Lesley N Weaver
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
30
|
Pontier SM, Schweisguth F. Response to "Does pupal communication influence Wolbachia-mediated cytoplasmic incompatibility?". Curr Biol 2019; 27:R55-R56. [PMID: 28118586 DOI: 10.1016/j.cub.2016.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In a recent Current Biology paper [1], we reported that pheromone communication occurred during metamorphosis in Drosophila melanogaster. Female pheromones appeared to influence various aspects of the physiology and development of adult males. In particular, we observed that this communication regulated testis development and had a positive impact on reproduction, as measured by a difference in the % of eggs developing into larvae in crosses involving adult male flies that had developed at metamorphosis with or without female pupae [1].
Collapse
Affiliation(s)
- Stephanie M Pontier
- Institut Pasteur, Department of Developmental and Stem Cell Biology, F-75015 Paris, France; CNRS, UMR3738, F-75015 Paris, France.
| | - François Schweisguth
- Institut Pasteur, Department of Developmental and Stem Cell Biology, F-75015 Paris, France; CNRS, UMR3738, F-75015 Paris, France
| |
Collapse
|
31
|
Massey JH, Akiyama N, Bien T, Dreisewerd K, Wittkopp PJ, Yew JY, Takahashi A. Pleiotropic Effects of ebony and tan on Pigmentation and Cuticular Hydrocarbon Composition in Drosophila melanogaster. Front Physiol 2019; 10:518. [PMID: 31118901 PMCID: PMC6504824 DOI: 10.3389/fphys.2019.00518] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly Drosophila melanogaster also affect traits such as circadian rhythms, vision, and mating behavior. Here, we present evidence that two pigmentation genes, ebony and tan, which encode enzymes catalyzing reciprocal reactions in the melanin biosynthesis pathway, also affect cuticular hydrocarbon (CHC) composition in D. melanogaster females. More specifically, we report that ebony loss-of-function mutants have a CHC profile that is biased toward long (>25C) chain CHCs, whereas tan loss-of-function mutants have a CHC profile that is biased toward short (<25C) chain CHCs. Moreover, pharmacological inhibition of dopamine synthesis, a key step in the melanin synthesis pathway, reversed the changes in CHC composition seen in ebony mutants, making the CHC profiles similar to those seen in tan mutants. These observations suggest that genetic variation affecting ebony and/or tan activity might cause correlated changes in pigmentation and CHC composition in natural populations. We tested this possibility using the Drosophila Genetic Reference Panel (DGRP) and found that CHC composition covaried with pigmentation as well as levels of ebony and tan expression in newly eclosed adults in a manner consistent with the ebony and tan mutant phenotypes. These data suggest that the pleiotropic effects of ebony and tan might contribute to covariation of pigmentation and CHC profiles in Drosophila.
Collapse
Affiliation(s)
- Jonathan H. Massey
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Noriyoshi Akiyama
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Tanja Bien
- Institute for Hygiene, University of Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| | - Klaus Dreisewerd
- Institute for Hygiene, University of Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| | - Patricia J. Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Joanne Y. Yew
- Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| | - Aya Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
32
|
Huang K, Chen W, Zhu F, Li PWL, Kapahi P, Bai H. RiboTag translatomic profiling of Drosophila oenocytes under aging and induced oxidative stress. BMC Genomics 2019; 20:50. [PMID: 30651069 PMCID: PMC6335716 DOI: 10.1186/s12864-018-5404-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Aging is accompanied with loss of tissue homeostasis and accumulation of cellular damages. As one of the important metabolic centers, liver shows age-related dysregulation of lipid metabolism, impaired detoxification pathway, increased inflammation and oxidative stress response. However, the mechanisms for these age-related changes still remain unclear. In the fruit fly, Drosophila melanogaster, liver-like functions are controlled by two distinct tissues, fat body and oenocytes. Compared to fat body, little is known about how oenocytes age and what are their roles in aging regulation. To characterize age- and stress-regulated gene expression in oenocytes, we performed cell-type-specific ribosome profiling (RiboTag) to examine the impacts of aging and oxidative stress on oenocyte translatome in Drosophila. RESULTS We show that aging and oxidant paraquat significantly increased the levels of reactive oxygen species (ROS) in adult oenocytes of Drosophila, and aged oenocytes exhibited reduced sensitivity to paraquat treatment. Through RiboTag sequencing, we identified 3324 and 949 differentially expressed genes in oenocytes under aging and paraquat treatment, respectively. Aging and paraquat exhibit both shared and distinct regulations on oenocyte translatome. Among all age-regulated genes, oxidative phosphorylation, ribosome, proteasome, fatty acid metabolism, and cytochrome P450 pathways were down-regulated, whereas DNA replication and immune response pathways were up-regulated. In addition, most of the peroxisomal genes were down-regulated in aged oenocytes, including genes involved in peroxisomal biogenesis factors and fatty acid beta-oxidation. Many age-related mRNA translational changes in oenocytes are similar to aged mammalian liver, such as up-regulation of innate immune response and Ras/MAPK signaling pathway and down-regulation of peroxisome and fatty acid metabolism. Furthermore, oenocytes highly expressed genes involving in liver-like processes (e.g., ketogenesis). CONCLUSIONS Our oenocyte-specific translatome analysis identified many genes and pathways that are shared between Drosophila oenocytes and mammalian liver, highlighting the molecular and functional similarities between the two tissues. Many of these genes were altered in both oenocytes and liver during aging. Thus, our translatome analysis provide important genomic resource for future dissection of oenocyte function and its role in lipid metabolism, stress response and aging regulation.
Collapse
Affiliation(s)
- Kerui Huang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Wenhao Chen
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
33
|
Storelli G, Nam HJ, Simcox J, Villanueva CJ, Thummel CS. Drosophila HNF4 Directs a Switch in Lipid Metabolism that Supports the Transition to Adulthood. Dev Cell 2018; 48:200-214.e6. [PMID: 30554999 DOI: 10.1016/j.devcel.2018.11.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/09/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022]
Abstract
Animals must adjust their metabolism as they progress through development in order to meet the needs of each stage in the life cycle. Here, we show that the dHNF4 nuclear receptor acts at the onset of Drosophila adulthood to direct an essential switch in lipid metabolism. Lipid stores are consumed shortly after metamorphosis but contribute little to energy metabolism. Rather, dHNF4 directs their conversion to very long chain fatty acids and hydrocarbons, which waterproof the animal to preserve fluid homeostasis. Similarly, HNF4α is required in mouse hepatocytes for the expression of fatty acid elongases that contribute to a waterproof epidermis, suggesting that this pathway is conserved through evolution. This developmental switch in Drosophila lipid metabolism promotes lifespan and desiccation resistance in adults and suppresses hallmarks of diabetes, including elevated glucose levels and intolerance to dietary sugars. These studies establish dHNF4 as a regulator of the adult metabolic state.
Collapse
Affiliation(s)
- Gilles Storelli
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA.
| | - Hyuck-Jin Nam
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - Judith Simcox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Claudio J Villanueva
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA.
| |
Collapse
|
34
|
Analysis of natural female post-mating responses of Anopheles gambiae and Anopheles coluzzii unravels similarities and differences in their reproductive ecology. Sci Rep 2018; 8:6594. [PMID: 29700344 PMCID: PMC5920108 DOI: 10.1038/s41598-018-24923-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/20/2018] [Indexed: 11/18/2022] Open
Abstract
Anopheles gambiae and An. coluzzii, the two most important malaria vectors in sub-Saharan Africa, are recently radiated sibling species that are reproductively isolated even in areas of sympatry. In females from these species, sexual transfer of male accessory gland products, including the steroid hormone 20-hydroxyecdysone (20E), induces vast behavioral, physiological, and transcriptional changes that profoundly shape their post-mating ecology, and that may have contributed to the insurgence of post-mating, prezygotic reproductive barriers. As these barriers can be detected by studying transcriptional changes induced by mating, we set out to analyze the post-mating response of An. gambiae and An. coluzzii females captured in natural mating swarms in Burkina Faso. While the molecular pathways shaping short- and long-term mating-induced changes are largely conserved in females from the two species, we unravel significant inter-specific differences that suggest divergent regulation of key reproductive processes such as egg development, processing of seminal secretion, and mating behavior, that may have played a role in reproductive isolation. Interestingly, a number of these changes occur in genes previously shown to be regulated by the sexual transfer of 20E and may be due to divergent utilization of this steroid hormone in the two species.
Collapse
|
35
|
The role of cuticular hydrocarbons in mate recognition in Drosophila suzukii. Sci Rep 2018; 8:4996. [PMID: 29567945 PMCID: PMC5864920 DOI: 10.1038/s41598-018-23189-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 03/07/2018] [Indexed: 11/25/2022] Open
Abstract
Cuticular hydrocarbons (CHCs) play a central role in the chemical communication of many insects. In Drosophila suzukii, an economically important pest insect, very little is known about chemical communication and the possible role of CHCs. In this study, we identified 60 CHCs of Drosophila suzukii and studied their changes in function of age (maturation), sex and interactions with the opposite sex. We demonstrate that age (maturation) is the key factor driving changes in the CHC profiles. We then test the effect on courtship behaviour and mating of six CHCs, five of which were positively associated with maturation and one negatively. The results of these experiments demonstrate that four of the major CHC peaks with a chain length of 23 carbons, namely 9-tricosene (9-C23:1), 7-tricosene (7-C23:1), 5-tricosene (5-C23:1) and tricosane (n-C23), negatively regulated courtship and mating, even though all these compounds were characteristic for sexually mature flies. We then go on to show that this effect on courtship and mating is likely due to the disruption of the natural ratios in which these hydrocarbons occur in Drosophila suzukii. Overall, these results provide key insights into the cuticular hydrocarbon signals that play a role in D. suzukii mate recognition.
Collapse
|
36
|
Billeter JC, Wolfner MF. Chemical Cues that Guide Female Reproduction in Drosophila melanogaster. J Chem Ecol 2018; 44:750-769. [PMID: 29557077 DOI: 10.1007/s10886-018-0947-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/21/2018] [Accepted: 03/13/2018] [Indexed: 01/05/2023]
Abstract
Chemicals released into the environment by food, predators and conspecifics play critical roles in Drosophila reproduction. Females and males live in an environment full of smells, whose molecules communicate to them the availability of food, potential mates, competitors or predators. Volatile chemicals derived from fruit, yeast growing on the fruit, and flies already present on the fruit attract Drosophila, concentrating flies at food sites, where they will also mate. Species-specific cuticular hydrocarbons displayed on female Drosophila as they mature are sensed by males and act as pheromones to stimulate mating by conspecific males and inhibit heterospecific mating. The pheromonal profile of a female is also responsive to her nutritional environment, providing an honest signal of her fertility potential. After mating, cuticular and semen hydrocarbons transferred by the male change the female's chemical profile. These molecules make the female less attractive to other males, thus protecting her mate's sperm investment. Females have evolved the capacity to counteract this inhibition by ejecting the semen hydrocarbon (along with the rest of the remaining ejaculate) a few hours after mating. Although this ejection can temporarily restore the female's attractiveness, shortly thereafter another male pheromone, a seminal peptide, decreases the female's propensity to re-mate, thus continuing to protect the male's investment. Females use olfaction and taste sensing to select optimal egg-laying sites, integrating cues for the availability of food for her offspring, and the presence of other flies and of harmful species. We argue that taking into account evolutionary considerations such as sexual conflict, and the ecological conditions in which flies live, is helpful in understanding the role of highly species-specific pheromones and blends thereof, as well as an individual's response to the chemical cues in its environment.
Collapse
Affiliation(s)
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
37
|
Abstract
Excess adipose fat accumulation, or obesity, is a growing problem worldwide in terms of both the rate of incidence and the severity of obesity-associated metabolic disease. Adipose tissue evolved in animals as a specialized dynamic lipid storage depot: adipose cells synthesize fat (a process called lipogenesis) when energy is plentiful and mobilize stored fat (a process called lipolysis) when energy is needed. When a disruption of lipid homeostasis favors increased fat synthesis and storage with little turnover owing to genetic predisposition, overnutrition or sedentary living, complications such as diabetes and cardiovascular disease are more likely to arise. The vinegar fly Drosophila melanogaster (Diptera: Drosophilidae) is used as a model to better understand the mechanisms governing fat metabolism and distribution. Flies offer a wealth of paradigms with which to study the regulation and physiological effects of fat accumulation. Obese flies accumulate triacylglycerols in the fat body, an organ similar to mammalian adipose tissue, which specializes in lipid storage and catabolism. Discoveries in Drosophila have ranged from endocrine hormones that control obesity to subcellular mechanisms that regulate lipogenesis and lipolysis, many of which are evolutionarily conserved. Furthermore, obese flies exhibit pathophysiological complications, including hyperglycemia, reduced longevity and cardiovascular function - similar to those observed in obese humans. Here, we review some of the salient features of the fly that enable researchers to study the contributions of feeding, absorption, distribution and the metabolism of lipids to systemic physiology.
Collapse
Affiliation(s)
- Laura Palanker Musselman
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Ronald P Kühnlein
- Department of Biochemistry 1, Institute of Molecular Biosciences, University of Graz, Humboldtstraβe 50/II, A-8010 Graz, Austria.,BioTechMed-Graz, Graz, Austria
| |
Collapse
|
38
|
Barwell T, DeVeale B, Poirier L, Zheng J, Seroude F, Seroude L. Regulating the UAS/GAL4 system in adult Drosophila with Tet-off GAL80 transgenes. PeerJ 2017; 5:e4167. [PMID: 29259847 PMCID: PMC5733373 DOI: 10.7717/peerj.4167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/24/2017] [Indexed: 01/16/2023] Open
Abstract
The UAS/GAL4 system is the most used method in Drosophila melanogaster for directing the expression of a gene of interest to a specific tissue. However, the ability to control the temporal activity of GAL4 with this system is very limited. This study constructed and characterized Tet-off GAL80 transgenes designed to allow temporal control of GAL4 activity in aging adult muscles. By placing GAL80 under the control of a Tet-off promoter, GAL4 activity is regulated by the presence or absence of tetracycline in the diet. Almost complete inhibition of the expression of UAS transgenes during the pre-adult stages of the life cycle is obtained by using four copies and two types of Tet-off GAL80 transgenes. Upon treatment of newly emerged adults with tetracycline, induction of GAL4 activity is observed but the level of induction is influenced by the concentration of the inducer, the age, the sex and the anatomical location of the expression. The inhibition of GAL4 activity and the maintenance of induced expression are altered in old animals. This study reveals that the repressive ability of GAL80 is affected by the age and sex of the animal which is a major limitation to regulate gene expression with GAL80 in aged Drosophila.
Collapse
Affiliation(s)
- Taylor Barwell
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Brian DeVeale
- Department of Biology, Queen's University, Kingston, ON, Canada.,Department of Biology, Queen's University, Kingston, ON, Canada
| | - Luc Poirier
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Jie Zheng
- Department of Biology, Queen's University, Kingston, ON, Canada.,Department of Biology, Queen's University, Kingston, ON, Canada
| | | | - Laurent Seroude
- Department of Biology, Queen's University, Kingston, ON, Canada
| |
Collapse
|
39
|
Yew JY, Chung H. Drosophila as a holistic model for insect pheromone signaling and processing. CURRENT OPINION IN INSECT SCIENCE 2017; 24:15-20. [PMID: 29208218 DOI: 10.1016/j.cois.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/13/2017] [Accepted: 09/06/2017] [Indexed: 05/10/2023]
Abstract
In recent years, research into the chemical ecology of the vinegar fly, Drosophila melanogaster, has yielded a wealth of information on the neural substrates that detect and process pheromones and control behavior. The studies reveal at the cellular and molecular level how behavioral responses to pheromones are initiated and modulated by social, environmental, and physiological factors. By taking into account both the complexity of the chemical world and the intricacies of the animal's physiological state, the emerging holistic perspective provides insight not only into chemical communication but more generally, how organisms balance internal and external signals when making behavioral decisions.
Collapse
Affiliation(s)
- Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, 1993 East West Road, Honolulu, HI 96822, USA.
| | - Henry Chung
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA; Ecology, Evolutionary Biology and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
40
|
Aribi N, Oulhaci MC, Kilani-Morakchi S, Sandoz JC, Kaiser L, Denis B, Joly D. Azadirachtin impact on mate choice, female sexual receptivity and male activity in Drosophila melanogaster (Diptera: Drosophilidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:95-101. [PMID: 29183617 DOI: 10.1016/j.pestbp.2017.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/05/2017] [Accepted: 09/02/2017] [Indexed: 06/07/2023]
Abstract
Azadirachtin, a neem compound (Azadirachta indica) with medical and anti-insect properties, is one the most successful botanical pesticides in agricultural use. However, its controversial impact on non-targeted species and its mechanism of action need to be clarified. In addition, Azadirachtin impact on pre- and post-mating traits remains largely undocumented. The current study examined the effects of Azadirachtin on Drosophila melanogaster as a non-target and model species. Azadirachtin was applied topically at its LD50 (0.63μg) on the day of adult emergence and its effect was evaluated on several traits of reproductive behavior: mate choice, male activity, female sexual receptivity, sperm storage and female sterility. In choice and no choice conditions, only male treatment reduced mating probability. Female treatment impaired mating probability only when males had the choice. Males' mating ability may have been impaired by an effect of the treatment on their mobility. Such an effect was observed in the actimeter, which revealed that treated males were less active than untreated ones, and this effect persisted over 8days. Azadirachtin treatment had, however, no effect on the nycthemeral rhythm of those males. Even when mating occurred, Azadirachtin treatment impaired post-mating responses especially when females or both sexes were treated: remating probability increases and female fertility (presence of larvae) decreases. No impairment was observed on the efficiency of mating, evaluated by the presence of sperm in the spermatheca or the ventral receptacle. Male treatment only had no significant effect on these post-mating responses. These findings provide clear evidence that Azadirachtin alters the reproductive behavior of both sexes in D. melanogaster via mating and post-mating processes.
Collapse
Affiliation(s)
- N Aribi
- Laboratoire de Biologie Animale Appliquée, Faculté des Sciences, Université Badji Mokhtar Annaba, BP12, 23000 Annaba, Algeria.
| | - M C Oulhaci
- Laboratoire de Biologie Animale Appliquée, Faculté des Sciences, Université Badji Mokhtar Annaba, BP12, 23000 Annaba, Algeria
| | - S Kilani-Morakchi
- Laboratoire de Biologie Animale Appliquée, Faculté des Sciences, Université Badji Mokhtar Annaba, BP12, 23000 Annaba, Algeria
| | - J C Sandoz
- Laboratoire Evolution, Génomes, Comportement, Ecologie, UMR 9191, CNRS, IRD, Université Paris-Sud et Université Paris-Saclay, Avenue de la Terrasse, F- 91198 Gif-sur-Yvette, France
| | - L Kaiser
- Laboratoire Evolution, Génomes, Comportement, Ecologie, UMR 9191, CNRS, IRD, Université Paris-Sud et Université Paris-Saclay, Avenue de la Terrasse, F- 91198 Gif-sur-Yvette, France
| | - B Denis
- Laboratoire Evolution, Génomes, Comportement, Ecologie, UMR 9191, CNRS, IRD, Université Paris-Sud et Université Paris-Saclay, Avenue de la Terrasse, F- 91198 Gif-sur-Yvette, France
| | - D Joly
- Laboratoire Evolution, Génomes, Comportement, Ecologie, UMR 9191, CNRS, IRD, Université Paris-Sud et Université Paris-Saclay, Avenue de la Terrasse, F- 91198 Gif-sur-Yvette, France
| |
Collapse
|
41
|
Etges WJ, de Oliveira CC, Rajpurohit S, Gibbs AG. Effects of temperature on transcriptome and cuticular hydrocarbon expression in ecologically differentiated populations of desert Drosophila. Ecol Evol 2017; 7:619-637. [PMID: 28116058 PMCID: PMC5243788 DOI: 10.1002/ece3.2653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 12/20/2022] Open
Abstract
We assessed the effects of temperature differences on gene expression using whole-transcriptome microarrays and cuticular hydrocarbon variation in populations of cactophilic Drosophila mojavensis. Four populations from Baja California and mainland Mexico and Arizona were each reared on two different host cacti, reared to sexual maturity on laboratory media, and adults were exposed for 12 hr to 15, 25, or 35°C. Temperature differences influenced the expression of 3,294 genes, while population differences and host plants affected >2,400 each in adult flies. Enriched, functionally related groups of genes whose expression changed at high temperatures included heat response genes, as well as genes affecting chromatin structure. Gene expression differences between mainland and peninsular populations included genes involved in metabolism of secondary compounds, mitochondrial activity, and tRNA synthases. Flies reared on the ancestral host plant, pitaya agria cactus, showed upregulation of genes involved in metabolism, while flies reared on organ pipe cactus had higher expression of DNA repair and chromatin remodeling genes. Population × environment (G × E) interactions had widespread effects on the transcriptome where population × temperature interactions affected the expression of >5,000 orthologs, and there were >4,000 orthologs that showed temperature × host plant interactions. Adults exposed to 35°C had lower amounts of most cuticular hydrocarbons than those exposed to 15 or 25°C, including abundant unsaturated alkadienes. For insects adapted to different host plants and climatic regimes, our results suggest that temperature shifts associated with climate change have large and significant effects on transcriptomes of genetically differentiated natural populations.
Collapse
Affiliation(s)
- William J. Etges
- Program in Ecology and Evolutionary BiologyDepartment of Biological SciencesUniversity of ArkansasFayettevilleAR 72701USA
| | - Cássia C. de Oliveira
- Program in Ecology and Evolutionary BiologyDepartment of Biological SciencesUniversity of ArkansasFayettevilleAR 72701USA
- Present address: Math and Science DivisionLyon CollegeBatesvilleAR72501USA
| | - Subhash Rajpurohit
- School of Life SciencesUniversity of NevadaLas VegasNV 89919USA
- Present address: Department of BiologyUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Allen G. Gibbs
- School of Life SciencesUniversity of NevadaLas VegasNV 89919USA
| |
Collapse
|
42
|
Dion E, Monteiro A, Yew JY. Phenotypic plasticity in sex pheromone production in Bicyclus anynana butterflies. Sci Rep 2016; 6:39002. [PMID: 27966579 PMCID: PMC5155268 DOI: 10.1038/srep39002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023] Open
Abstract
Phenotypic plasticity refers to the environmental control of phenotypes. Cues experienced during development (developmental plasticity) or during adulthood (acclimatization) can both affect adult phenotypes. Phenotypic plasticity has been described in many traits but examples of developmental plasticity in physiological traits, in particular, remain scarce. We examined developmental plasticity and acclimatization in pheromone production in the butterfly Bicyclus anynana in response to rearing temperature. B. anynana lives in the African tropics where warm rearing temperatures of the wet season produce active males that court and females that choose, whereas cooler temperatures of the dry season lead to choosy less active males and courting females. We hypothesized that if male pheromone production is costly, it should be reduced in the dry season form. After describing the ultrastructure of pheromone producing cells, we showed that dry season males produced significantly less sex pheromones than wet season males, partly due to acclimatization and partly due to developmental plasticity. Variation in levels of one of the compounds is associated with differential regulation of a pheromone biosynthetic enzyme gene. This plasticity might be an adaptation to minimize pheromone production costs during the stressful dry season.
Collapse
Affiliation(s)
- Emilie Dion
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore.,Temasek Life Sciences Laboratory, 1 Research Link, 118173, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore.,Yale-NUS College, 6 College Avenue East, 138614, Singapore
| | - Joanne Y Yew
- Pacific Biosciences Research Center, 1993 East West Road, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
43
|
Cinnamon E, Makki R, Sawala A, Wickenberg LP, Blomquist GJ, Tittiger C, Paroush Z, Gould AP. Drosophila Spidey/Kar Regulates Oenocyte Growth via PI3-Kinase Signaling. PLoS Genet 2016; 12:e1006154. [PMID: 27500738 PMCID: PMC4976899 DOI: 10.1371/journal.pgen.1006154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/08/2016] [Indexed: 11/19/2022] Open
Abstract
Cell growth and proliferation depend upon many different aspects of lipid metabolism. One key signaling pathway that is utilized in many different anabolic contexts involves Phosphatidylinositide 3-kinase (PI3K) and its membrane lipid products, the Phosphatidylinositol (3,4,5)-trisphosphates. It remains unclear, however, which other branches of lipid metabolism interact with the PI3K signaling pathway. Here, we focus on specialized fat metabolizing cells in Drosophila called larval oenocytes. In the presence of dietary nutrients, oenocytes undergo PI3K-dependent cell growth and contain very few lipid droplets. In contrast, during starvation, oenocytes decrease PI3K signaling, shut down cell growth and accumulate abundant lipid droplets. We now show that PI3K in larval oenocytes, but not in fat body cells, functions to suppress lipid droplet accumulation. Several enzymes of fatty acid, triglyceride and hydrocarbon metabolism are required in oenocytes primarily for lipid droplet induction rather than for cell growth. In contrast, a very long chain fatty-acyl-CoA reductase (FarO) and a putative lipid dehydrogenase/reductase (Spidey, also known as Kar) not only promote lipid droplet induction but also inhibit oenocyte growth. In the case of Spidey/Kar, we show that the growth suppression mechanism involves inhibition of the PI3K signaling pathway upstream of Akt activity. Together, the findings in this study show how Spidey/Kar and FarO regulate the balance between the cell growth and lipid storage of larval oenocytes. Lipids play diverse roles in health and disease. Some types of lipids function as metabolic fuels for energy homeostasis, whereas others act as components of cell membranes or serve as signals regulating cell behaviors. Much, however, remains to be discovered about the molecular connections between different categories of lipids. Phosphatidylinositide 3-kinase (PI3K) is an enzyme that synthesizes phosphatidylinositide lipids, which act as signals essential for growth during normal development and cancer. Using genetics in the fruit fly, Drosophila, we identify new regulatory links between phosphatidylinositides and lipid oxidoreductases in specialized fat-metabolizing cells called oenocytes. We find that an enzyme metabolizing very long chain fatty acids (VLCFAs) and also a putative lipid dehydrogenase/reductase both act to prevent the inappropriate overgrowth of oenocytes. In the case of the latter enzyme, it suppresses cell growth by inhibiting phosphatidylinositide signaling. Future studies will determine whether similar lipid enzymes regulate PI3K signaling in other cell and tissue types during normal development and tumorigenesis.
Collapse
Affiliation(s)
- Einat Cinnamon
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, United Kingdom
| | - Rami Makki
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, United Kingdom
| | - Annick Sawala
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, United Kingdom
| | - Leah P. Wickenberg
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, Nevada, United States of America
| | - Gary J. Blomquist
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, Nevada, United States of America
| | - Claus Tittiger
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, Nevada, United States of America
| | - Ze'ev Paroush
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Alex P. Gould
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, United Kingdom
- * E-mail:
| |
Collapse
|