1
|
Kittke V, Zhao C, Lam DD, Harrer P, Krezel W, Schormair B, Oexle K, Winkelmann J. RLS-associated MEIS transcription factors control distinct processes in human neural stem cells. Sci Rep 2024; 14:28986. [PMID: 39578497 PMCID: PMC11584712 DOI: 10.1038/s41598-024-80266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
MEIS1 and MEIS2 encode highly conserved homeodomain transcription factors crucial for developmental processes in a wide range of tissues, including the brain. They can execute redundant functions when co-expressed in the same cell types, but their roles during early stages of neural differentiation have not been systematically compared. By separate knockout and overexpression of MEIS1 and MEIS2 in human neural stem cells, we find they control specific sets of target genes, associated with distinct biological processes. Integration of DNA binding sites with differential transcriptomics implicates MEIS1 to co-regulate gene expression by interaction with transcription factors of the SOX and FOX families. MEIS1 harbors the strongest risk factor for restless legs syndrome (RLS). Our data suggest that MEIS1 can directly regulate the RLS-associated genes NTNG1, MDGA1 and DACH1, constituting new approaches to study the elusive pathomechanism or RLS.
Collapse
Affiliation(s)
- Volker Kittke
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany.
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
- DZPG (German Center for Mental Health), Munich, Germany.
| | - Chen Zhao
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Daniel D Lam
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Philip Harrer
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Barbara Schormair
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany.
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
- DZPG (German Center for Mental Health), Munich, Germany.
| | - Konrad Oexle
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany.
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany.
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
- DZPG (German Center for Mental Health), Munich, Germany.
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany.
| |
Collapse
|
2
|
Altıntaş UB, Seo JH, Giambartolomei C, Ozturan D, Fortunato BJ, Nelson GM, Goldman SR, Adelman K, Hach F, Freedman ML, Lack NA. Decoding the epigenetics and chromatin loop dynamics of androgen receptor-mediated transcription. Nat Commun 2024; 15:9494. [PMID: 39489778 PMCID: PMC11532539 DOI: 10.1038/s41467-024-53758-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Androgen receptor (AR)-mediated transcription plays a critical role in development and prostate cancer growth. AR drives gene expression by binding to thousands of cis-regulatory elements (CRE) that loop to hundreds of target promoters. With multiple CREs interacting with a single promoter, it remains unclear how individual AR bound CREs contribute to gene expression. To characterize the involvement of these CREs, we investigate the AR-driven epigenetic and chromosomal chromatin looping changes by generating a kinetic multi-omic dataset comprised of steady-state mRNA, chromatin accessibility, transcription factor binding, histone modifications, chromatin looping, and nascent RNA. Using an integrated regulatory network, we find that AR binding induces sequential changes in the epigenetic features at CREs, independent of gene expression. Further, we show that binding of AR does not result in a substantial rewiring of chromatin loops, but instead increases the contact frequency of pre-existing loops to target promoters. Our results show that gene expression strongly correlates to the changes in contact frequency. We then propose and experimentally validate an unbalanced multi-enhancer model where the impact on gene expression of AR-bound enhancers is heterogeneous, and is proportional to their contact frequency with target gene promoters. Overall, these findings provide insights into AR-mediated gene expression upon acute androgen simulation and develop a mechanistic framework to investigate nuclear receptor mediated perturbations.
Collapse
Grants
- 221Z116 Türkiye Bilimsel ve Teknolojik Araştirma Kurumu (Scientific and Technological Research Council of Turkey)
- R01 CA259058 NCI NIH HHS
- R01 CA227237 NCI NIH HHS
- W81XWH-21-1-0339 U.S. Department of Defense (United States Department of Defense)
- R01 CA251555 NCI NIH HHS
- W81XWH-21-1-0234 U.S. Department of Defense (United States Department of Defense)
- PJT-173331 Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
- W81XWH-22-1-0951 U.S. Department of Defense (United States Department of Defense)
- R01 CA262577 NCI NIH HHS
- N.A.L. was supported by funding from TUBITAK (221Z116), W81XWH-21-1-0234 (DoD), and CIHR PJT-173331.
- M.L.F. was supported by the Claudia Adams Barr Program for Innovative Cancer Research, the Dana-Farber Cancer Institute Presidential Initiatives Fund, the H.L. Snyder Medical Research Foundation, the Cutler Family Fund for Prevention and Early Detection, the Donahue Family Fund, W81XWH-21-1-0339, W81XWH-22-1-0951 (DoD), NIH Awards R01CA251555, R01CA227237, R01CA262577, R01CA259058 and a Movember PCF Challenge Award.
Collapse
Affiliation(s)
- Umut Berkay Altıntaş
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Ji-Heui Seo
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Claudia Giambartolomei
- Integrative Data Analysis Unit, Health Data Science Centre, Human Technopole, Milan, 20157, Italy
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Dogancan Ozturan
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Brad J Fortunato
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Geoffrey M Nelson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth R Goldman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- The Eli and Edythe L. Broad Institute, Boston, MA, 02142, USA
| | - Faraz Hach
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Department of Computer Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Matthew L Freedman
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- The Eli and Edythe L. Broad Institute, Boston, MA, 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Nathan A Lack
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada.
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.
- Department of Medical Pharmacology, School of Medicine, Koç University, Istanbul, 34450, Turkey.
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, 34450, Istanbul, Turkey.
| |
Collapse
|
3
|
Mikula Mrstakova S, Kozmik Z. Genetic analysis of medaka fish illuminates conserved and divergent roles of Pax6 in vertebrate eye development. Front Cell Dev Biol 2024; 12:1448773. [PMID: 39512904 PMCID: PMC11541176 DOI: 10.3389/fcell.2024.1448773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/18/2024] [Indexed: 11/15/2024] Open
Abstract
Landmark discovery of eye defects caused by Pax6 gene mutations in humans, rodents, and even fruit flies combined with Pax6 gene expression studies in various phyla, led to the master control gene hypothesis postulating that the gene is required almost universally for animal visual system development. However, this assumption has not been broadly tested in genetically trackable organisms such as vertebrates. Here, to determine the functional role of the fish orthologue of mammalian Pax6 in eye development we analyzed mutants in medaka Pax6.1 gene generated by genome editing. We found that transcription factors implicated in vertebrate lens development (Prox1a, MafB, c-Maf, FoxE3) failed to initiate expression in the presumptive lens tissue of Pax6.1 mutant fish resulting in aphakia, a phenotype observed previously in Pax6 mutant mice. Surprisingly, the overall differentiation potential of Pax6.1-deficient retinal progenitor cells (RPCs) is not severely compromised, and the only cell types affected by the absence of Pax6.1 transcription factor are retinal ganglion cells. This is in stark contrast to the situation in mice where the Pax6 gene is required cell-autonomously for the expansion of RPCs, and the differentiation of all retina cell types. Our results provide novel insight into the conserved and divergent roles of Pax6 gene orthologues in vertebrate eye development indicating that the lens-specific role is more evolutionarily conserved than the role in retina differentiation.
Collapse
Affiliation(s)
| | - Zbynek Kozmik
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
4
|
Asma H, Tieke E, Deem KD, Rahmat J, Dong T, Huang X, Tomoyasu Y, Halfon MS. Regulatory genome annotation of 33 insect species. eLife 2024; 13:RP96738. [PMID: 39392676 PMCID: PMC11469670 DOI: 10.7554/elife.96738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Annotation of newly sequenced genomes frequently includes genes, but rarely covers important non-coding genomic features such as the cis-regulatory modules-e.g., enhancers and silencers-that regulate gene expression. Here, we begin to remedy this situation by developing a workflow for rapid initial annotation of insect regulatory sequences, and provide a searchable database resource with enhancer predictions for 33 genomes. Using our previously developed SCRMshaw computational enhancer prediction method, we predict over 2.8 million regulatory sequences along with the tissues where they are expected to be active, in a set of insect species ranging over 360 million years of evolution. Extensive analysis and validation of the data provides several lines of evidence suggesting that we achieve a high true-positive rate for enhancer prediction. One, we show that our predictions target specific loci, rather than random genomic locations. Two, we predict enhancers in orthologous loci across a diverged set of species to a significantly higher degree than random expectation would allow. Three, we demonstrate that our predictions are highly enriched for regions of accessible chromatin. Four, we achieve a validation rate in excess of 70% using in vivo reporter gene assays. As we continue to annotate both new tissues and new species, our regulatory annotation resource will provide a rich source of data for the research community and will have utility for both small-scale (single gene, single species) and large-scale (many genes, many species) studies of gene regulation. In particular, the ability to search for functionally related regulatory elements in orthologous loci should greatly facilitate studies of enhancer evolution even among distantly related species.
Collapse
Affiliation(s)
- Hasiba Asma
- Program in Genetics, Genomics, and Bioinformatics, University at Buffalo-State University of New YorkBuffaloUnited States
| | - Ellen Tieke
- Department of Biology, Miami UniversityOxfordUnited States
| | - Kevin D Deem
- Department of Biology, Miami UniversityOxfordUnited States
| | - Jabale Rahmat
- Department of Biology, Miami UniversityOxfordUnited States
| | - Tiffany Dong
- Department of Biochemistry, University at Buffalo-State University of New YorkBuffaloUnited States
| | - Xinbo Huang
- Department of Biochemistry, University at Buffalo-State University of New YorkBuffaloUnited States
| | | | - Marc S Halfon
- Program in Genetics, Genomics, and Bioinformatics, University at Buffalo-State University of New YorkBuffaloUnited States
- Department of Biochemistry, University at Buffalo-State University of New YorkBuffaloUnited States
- Department of Biomedical Informatics, University at Buffalo-State University of New YorkBuffaloUnited States
- Department of Biological Sciences, University at Buffalo-State University of New YorkBuffaloUnited States
| |
Collapse
|
5
|
Panara V, Yu H, Peng D, Staxäng K, Hodik M, Filipek-Gorniok B, Kazenwadel J, Skoczylas R, Mason E, Allalou A, Harvey NL, Haitina T, Hogan BM, Koltowska K. Multiple cis-regulatory elements control prox1a expression in distinct lymphatic vascular beds. Development 2024; 151:dev202525. [PMID: 38722096 PMCID: PMC11128278 DOI: 10.1242/dev.202525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/21/2024] [Indexed: 05/15/2024]
Abstract
During embryonic development, lymphatic endothelial cell (LEC) precursors are distinguished from blood endothelial cells by the expression of Prospero-related homeobox 1 (Prox1), which is essential for lymphatic vasculature formation in mouse and zebrafish. Prox1 expression initiation precedes LEC sprouting and migration, serving as the marker of specified LECs. Despite its crucial role in lymphatic development, Prox1 upstream regulation in LECs remains to be uncovered. SOX18 and COUP-TFII are thought to regulate Prox1 in mice by binding its promoter region. However, the specific regulation of Prox1 expression in LECs remains to be studied in detail. Here, we used evolutionary conservation and chromatin accessibility to identify enhancers located in the proximity of zebrafish prox1a active in developing LECs. We confirmed the functional role of the identified sequences through CRISPR/Cas9 mutagenesis of a lymphatic valve enhancer. The deletion of this region results in impaired valve morphology and function. Overall, our results reveal an intricate control of prox1a expression through a collection of enhancers. Ray-finned fish-specific distal enhancers drive pan-lymphatic expression, whereas vertebrate-conserved proximal enhancers refine expression in functionally distinct subsets of lymphatic endothelium.
Collapse
Affiliation(s)
- Virginia Panara
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
- Beijer Gene and Neuro Laboratory, Uppsala University, Uppsala 75185, Sweden
| | - Hujun Yu
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology and Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Di Peng
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
| | - Karin Staxäng
- BioVis Core Facility, Platform EM, Uppsala University, Uppsala 75185, Sweden
| | - Monika Hodik
- BioVis Core Facility, Platform EM, Uppsala University, Uppsala 75185, Sweden
| | - Beata Filipek-Gorniok
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
| | - Jan Kazenwadel
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5001, Australia
| | - Renae Skoczylas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
| | - Elizabeth Mason
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Amin Allalou
- Uppsala University, Department of Information Technology, Division of Visual Information and Interaction, and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala 75185, Sweden
| | - Natasha L. Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5001, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, Uppsala 75236, Sweden
| | - Benjamin M. Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology and Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Katarzyna Koltowska
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
- Beijer Gene and Neuro Laboratory, Uppsala University, Uppsala 75185, Sweden
| |
Collapse
|
6
|
Camerino M, Chang W, Cvekl A. Analysis of long-range chromatin contacts, compartments and looping between mouse embryonic stem cells, lens epithelium and lens fibers. Epigenetics Chromatin 2024; 17:10. [PMID: 38643244 PMCID: PMC11031936 DOI: 10.1186/s13072-024-00533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/08/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Nuclear organization of interphase chromosomes involves individual chromosome territories, "open" and "closed" chromatin compartments, topologically associated domains (TADs) and chromatin loops. The DNA- and RNA-binding transcription factor CTCF together with the cohesin complex serve as major organizers of chromatin architecture. Cellular differentiation is driven by temporally and spatially coordinated gene expression that requires chromatin changes of individual loci of various complexities. Lens differentiation represents an advantageous system to probe transcriptional mechanisms underlying tissue-specific gene expression including high transcriptional outputs of individual crystallin genes until the mature lens fiber cells degrade their nuclei. RESULTS Chromatin organization between mouse embryonic stem (ES) cells, newborn (P0.5) lens epithelium and fiber cells were analyzed using Hi-C. Localization of CTCF in both lens chromatins was determined by ChIP-seq and compared with ES cells. Quantitative analyses show major differences between number and size of TADs and chromatin loop size between these three cell types. In depth analyses show similarities between lens samples exemplified by overlaps between compartments A and B. Lens epithelium-specific CTCF peaks are found in mostly methylated genomic regions while lens fiber-specific and shared peaks occur mostly within unmethylated DNA regions. Major differences in TADs and loops are illustrated at the ~ 500 kb Pax6 locus, encoding the critical lens regulatory transcription factor and within a larger ~ 15 Mb WAGR locus, containing Pax6 and other loci linked to human congenital diseases. Lens and ES cell Hi-C data (TADs and loops) together with ATAC-seq, CTCF, H3K27ac, H3K27me3 and ENCODE cis-regulatory sites are shown in detail for the Pax6, Sox1 and Hif1a loci, multiple crystallin genes and other important loci required for lens morphogenesis. The majority of crystallin loci are marked by unexpectedly high CTCF-binding across their transcribed regions. CONCLUSIONS Our study has generated the first data on 3-dimensional (3D) nuclear organization in lens epithelium and lens fibers and directly compared these data with ES cells. These findings generate novel insights into lens-specific transcriptional gene control, open new research avenues to study transcriptional condensates in lens fiber cells, and enable studies of non-coding genetic variants linked to cataract and other lens and ocular abnormalities.
Collapse
Affiliation(s)
- Michael Camerino
- The Departments Genetics, Albert Einstein College of Medicine, NY10461, Bronx, USA
| | - William Chang
- Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, NY10461, Bronx, USA
| | - Ales Cvekl
- The Departments Genetics, Albert Einstein College of Medicine, NY10461, Bronx, USA.
- Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, NY10461, Bronx, USA.
| |
Collapse
|
7
|
Lack N, Altintas UB, Seo JH, Giambartolomei C, Ozturan D, Fortunato B, Nelson G, Goldman S, Adelman K, Hach F, Freedman M. Decoding the Epigenetics and Chromatin Loop Dynamics of Androgen Receptor-Mediated Transcription. RESEARCH SQUARE 2024:rs.3.rs-3854707. [PMID: 38352568 PMCID: PMC10862967 DOI: 10.21203/rs.3.rs-3854707/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Androgen receptor (AR)-mediated transcription plays a critical role in normal prostate development and prostate cancer growth. AR drives gene expression by binding to thousands of cis-regulatory elements (CRE) that loop to hundreds of target promoters. With multiple CREs interacting with a single promoter, it remains unclear how individual AR bound CREs contribute to gene expression. To characterize the involvement of these CREs, we investigated the AR-driven epigenetic and chromosomal chromatin looping changes. We collected a kinetic multi-omic dataset comprised of steady-state mRNA, chromatin accessibility, transcription factor binding, histone modifications, chromatin looping, and nascent RNA. Using an integrated regulatory network, we found that AR binding induces sequential changes in the epigenetic features at CREs, independent of gene expression. Further, we showed that binding of AR does not result in a substantial rewiring of chromatin loops, but instead increases the contact frequency of pre-existing loops to target promoters. Our results show that gene expression strongly correlates to the changes in contact frequency. We then proposed and experimentally validated an unbalanced multi-enhancer model where the impact on gene expression of AR-bound enhancers is heterogeneous, and is proportional to their contact frequency with target gene promoters. Overall, these findings provide new insight into AR-mediated gene expression upon acute androgen simulation and develop a mechanistic framework to investigate nuclear receptor mediated perturbations.
Collapse
|
8
|
Uttley K, Papanastasiou AS, Lahne M, Brisbane JM, MacDonald RB, Bickmore WA, Bhatia S. Unique activities of two overlapping PAX6 retinal enhancers. Life Sci Alliance 2023; 6:e202302126. [PMID: 37643867 PMCID: PMC10465922 DOI: 10.26508/lsa.202302126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Enhancers play a critical role in development by precisely modulating spatial, temporal, and cell type-specific gene expression. Sequence variants in enhancers have been implicated in diseases; however, establishing the functional consequences of these variants is challenging because of a lack of understanding of precise cell types and developmental stages where the enhancers are normally active. PAX6 is the master regulator of eye development, with a regulatory landscape containing multiple enhancers driving the expression in the eye. Whether these enhancers perform additive, redundant or distinct functions is unknown. Here, we describe the precise cell types and regulatory activity of two PAX6 retinal enhancers, HS5 and NRE. Using a unique combination of live imaging and single-cell RNA sequencing in dual enhancer-reporter zebrafish embryos, we uncover differences in the spatiotemporal activity of these enhancers. Our results show that although overlapping, these enhancers have distinct activities in different cell types and therefore likely nonredundant functions. This work demonstrates that unique cell type-specific activities can be uncovered for apparently similar enhancers when investigated at high resolution in vivo.
Collapse
Affiliation(s)
- Kirsty Uttley
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Andrew S Papanastasiou
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Manuela Lahne
- UCL Institute of Ophthalmology, University College London, Greater London, UK
| | - Jennifer M Brisbane
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Ryan B MacDonald
- UCL Institute of Ophthalmology, University College London, Greater London, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Shipra Bhatia
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Kemmler CL, Smolikova J, Moran HR, Mannion BJ, Knapp D, Lim F, Czarkwiani A, Hermosilla Aguayo V, Rapp V, Fitch OE, Bötschi S, Selleri L, Farley E, Braasch I, Yun M, Visel A, Osterwalder M, Mosimann C, Kozmik Z, Burger A. Conserved enhancers control notochord expression of vertebrate Brachyury. Nat Commun 2023; 14:6594. [PMID: 37852970 PMCID: PMC10584899 DOI: 10.1038/s41467-023-42151-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
The cell type-specific expression of key transcription factors is central to development and disease. Brachyury/T/TBXT is a major transcription factor for gastrulation, tailbud patterning, and notochord formation; however, how its expression is controlled in the mammalian notochord has remained elusive. Here, we identify the complement of notochord-specific enhancers in the mammalian Brachyury/T/TBXT gene. Using transgenic assays in zebrafish, axolotl, and mouse, we discover three conserved Brachyury-controlling notochord enhancers, T3, C, and I, in human, mouse, and marsupial genomes. Acting as Brachyury-responsive, auto-regulatory shadow enhancers, in cis deletion of all three enhancers in mouse abolishes Brachyury/T/Tbxt expression selectively in the notochord, causing specific trunk and neural tube defects without gastrulation or tailbud defects. The three Brachyury-driving notochord enhancers are conserved beyond mammals in the brachyury/tbxtb loci of fishes, dating their origin to the last common ancestor of jawed vertebrates. Our data define the vertebrate enhancers for Brachyury/T/TBXTB notochord expression through an auto-regulatory mechanism that conveys robustness and adaptability as ancient basis for axis development.
Collapse
Affiliation(s)
- Cassie L Kemmler
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jana Smolikova
- Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Hannah R Moran
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brandon J Mannion
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
| | - Dunja Knapp
- Technische Universität Dresden, CRTD Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Fabian Lim
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Anna Czarkwiani
- Technische Universität Dresden, CRTD Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Viviana Hermosilla Aguayo
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Vincent Rapp
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Olivia E Fitch
- Department of Integrative Biology and Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Seraina Bötschi
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Licia Selleri
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Emma Farley
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ingo Braasch
- Department of Integrative Biology and Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Maximina Yun
- Technische Universität Dresden, CRTD Center for Regenerative Therapies Dresden, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Marco Osterwalder
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Christian Mosimann
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic.
| | - Alexa Burger
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
10
|
Robert S, Rada-Iglesias A. The interaction between enhancer variants and environmental factors as an overlooked aetiological paradigm in human complex disease. Bioessays 2023; 45:e2300038. [PMID: 37170707 DOI: 10.1002/bies.202300038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
The interactions between genetic and environmental risk factors contribute to the aetiology of complex human diseases. Genome-wide association studies (GWAS) have revealed that most of the genetic variants associated with complex diseases are located in the non-coding part of the genome, preferentially within enhancers. Enhancers are distal cis-regulatory elements composed of clusters of transcription factors binding sites that positively regulate the expression of their target genes. The generation of genome-wide maps for histone marks (e.g., H3K27ac), chromatin accessibility and transcription factor and coactivator (e.g., p300) binding profiles have enabled the identification of enhancers across many human cell types and tissues. Nonetheless, the functional and pathological consequences of the majority of disease-associated genetic variants located within enhancers seem to be rather minor under normal conditions, thus questioning their medical relevance. Here we propose that, due to the prevalence of enhancer redundancy, the pathological effects of many disease-associated non-coding genetic variants might be preferentially (or even only) manifested under environmental stress.
Collapse
Affiliation(s)
- Sarah Robert
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de, Santander, Cantabria, Spain
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de, Santander, Cantabria, Spain
| |
Collapse
|
11
|
Sun C, Ruzycki PA, Chen S. Rho enhancers play unexpectedly minor roles in Rhodopsin transcription and rod cell integrity. Sci Rep 2023; 13:12899. [PMID: 37558693 PMCID: PMC10412641 DOI: 10.1038/s41598-023-39979-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
Enhancers function with a basal promoter to control the transcription of target genes. Enhancer regulatory activity is often studied using reporter-based transgene assays. However, unmatched results have been reported when selected enhancers are silenced in situ. In this study, using genomic deletion analysis in mice, we investigated the roles of two previously identified enhancers and the promoter of the Rho gene that codes for the visual pigment rhodopsin. The Rho gene is robustly expressed by rod photoreceptors of the retina, and essential for the subcellular structure and visual function of rod photoreceptors. Mutations in RHO cause severe vision loss in humans. We found that each Rho regulatory region can independently mediate local epigenomic changes, but only the promoter is absolutely required for establishing active Rho chromatin configuration and transcription and maintaining the cell integrity and function of rod photoreceptors. To our surprise, two Rho enhancers that enable strong promoter activation in reporter assays are largely dispensable for Rho expression in vivo. Only small and age-dependent impact is detectable when both enhancers are deleted. Our results demonstrate context-dependent roles of enhancers and highlight the importance of studying functions of cis-regulatory regions in the native genomic context.
Collapse
Affiliation(s)
- Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University, Saint Louis, MO, USA
| | - Philip A Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University, Saint Louis, MO, USA.
- Department of Genetics, Washington University, 660 South Euclid Avenue, MSC 8096-0006-11, Saint Louis, MO, 63110, USA.
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University, Saint Louis, MO, USA.
- Department of Developmental Biology, Washington University, 660 South Euclid Avenue, MSC 8096-0006-06, Saint Louis, MO, 63110, USA.
| |
Collapse
|
12
|
Duarte P, Brattig Correia R, Nóvoa A, Mallo M. Regulatory changes associated with the head to trunk developmental transition. BMC Biol 2023; 21:170. [PMID: 37553620 PMCID: PMC10408190 DOI: 10.1186/s12915-023-01675-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Development of vertebrate embryos is characterized by early formation of the anterior tissues followed by the sequential extension of the axis at their posterior end to build the trunk and tail structures, first by the activity of the primitive streak and then of the tail bud. Embryological, molecular and genetic data indicate that head and trunk development are significantly different, suggesting that the transition into the trunk formation stage involves major changes in regulatory gene networks. RESULTS We explored those regulatory changes by generating differential interaction networks and chromatin accessibility profiles from the posterior epiblast region of mouse embryos at embryonic day (E)7.5 and E8.5. We observed changes in various cell processes, including several signaling pathways, ubiquitination machinery, ion dynamics and metabolic processes involving lipids that could contribute to the functional switch in the progenitor region of the embryo. We further explored the functional impact of changes observed in Wnt signaling associated processes, revealing a switch in the functional relevance of Wnt molecule palmitoleoylation, essential during gastrulation but becoming differentially required for the control of axial extension and progenitor differentiation processes during trunk formation. We also found substantial changes in chromatin accessibility at the two developmental stages, mostly mapping to intergenic regions and presenting differential footprinting profiles to several key transcription factors, indicating a significant switch in the regulatory elements controlling head or trunk development. Those chromatin changes are largely independent of retinoic acid, despite the key role of this factor in the transition to trunk development. We also tested the functional relevance of potential enhancers identified in the accessibility assays that reproduced the expression profiles of genes involved in the transition. Deletion of these regions by genome editing had limited effect on the expression of those genes, suggesting the existence of redundant enhancers that guarantee robust expression patterns. CONCLUSIONS This work provides a global view of the regulatory changes controlling the switch into the axial extension phase of vertebrate embryonic development. It also revealed mechanisms by which the cellular context influences the activity of regulatory factors, channeling them to implement one of several possible biological outputs.
Collapse
Affiliation(s)
- Patrícia Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Rion Brattig Correia
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
| |
Collapse
|
13
|
Daruich A, Duncan M, Robert MP, Lagali N, Semina EV, Aberdam D, Ferrari S, Romano V, des Roziers CB, Benkortebi R, De Vergnes N, Polak M, Chiambaretta F, Nischal KK, Behar-Cohen F, Valleix S, Bremond-Gignac D. Congenital aniridia beyond black eyes: From phenotype and novel genetic mechanisms to innovative therapeutic approaches. Prog Retin Eye Res 2023; 95:101133. [PMID: 36280537 PMCID: PMC11062406 DOI: 10.1016/j.preteyeres.2022.101133] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Congenital PAX6-aniridia, initially characterized by the absence of the iris, has progressively been shown to be associated with other developmental ocular abnormalities and systemic features making congenital aniridia a complex syndromic disorder rather than a simple isolated disease of the iris. Moreover, foveal hypoplasia is now recognized as a more frequent feature than complete iris hypoplasia and a major visual prognosis determinant, reversing the classical clinical picture of this disease. Conversely, iris malformation is also a feature of various anterior segment dysgenesis disorders caused by PAX6-related developmental genes, adding a level of genetic complexity for accurate molecular diagnosis of aniridia. Therefore, the clinical recognition and differential genetic diagnosis of PAX6-related aniridia has been revealed to be much more challenging than initially thought, and still remains under-investigated. Here, we update specific clinical features of aniridia, with emphasis on their genotype correlations, as well as provide new knowledge regarding the PAX6 gene and its mutational spectrum, and highlight the beneficial utility of clinically implementing targeted Next-Generation Sequencing combined with Whole-Genome Sequencing to increase the genetic diagnostic yield of aniridia. We also present new molecular mechanisms underlying aniridia and aniridia-like phenotypes. Finally, we discuss the appropriate medical and surgical management of aniridic eyes, as well as innovative therapeutic options. Altogether, these combined clinical-genetic approaches will help to accelerate time to diagnosis, provide better determination of the disease prognosis and management, and confirm eligibility for future clinical trials or genetic-specific therapies.
Collapse
Affiliation(s)
- Alejandra Daruich
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Melinda Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Matthieu P Robert
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; Borelli Centre, UMR 9010, CNRS-SSA-ENS Paris Saclay-Paris Cité University, Paris, France
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, 581 83, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| | - Elena V Semina
- Department of Pediatrics, Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI, 53226, USA
| | - Daniel Aberdam
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, Via Paccagnella 11, Venice, Italy
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiolological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Italy
| | - Cyril Burin des Roziers
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Rabia Benkortebi
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Nathalie De Vergnes
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, AP-HP, Paris Cité University, INSERM U1016, Institut IMAGINE, France
| | | | - Ken K Nischal
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; UPMC Eye Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francine Behar-Cohen
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Sophie Valleix
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France.
| |
Collapse
|
14
|
Fletcher A, Wunderlich Z, Enciso G. Shadow enhancers mediate trade-offs between transcriptional noise and fidelity. PLoS Comput Biol 2023; 19:e1011071. [PMID: 37205714 DOI: 10.1371/journal.pcbi.1011071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/03/2023] [Indexed: 05/21/2023] Open
Abstract
Enhancers are stretches of regulatory DNA that bind transcription factors (TFs) and regulate the expression of a target gene. Shadow enhancers are two or more enhancers that regulate the same target gene in space and time and are associated with most animal developmental genes. These multi-enhancer systems can drive more consistent transcription than single enhancer systems. Nevertheless, it remains unclear why shadow enhancer TF binding sites are distributed across multiple enhancers rather than within a single large enhancer. Here, we use a computational approach to study systems with varying numbers of TF binding sites and enhancers. We employ chemical reaction networks with stochastic dynamics to determine the trends in transcriptional noise and fidelity, two key performance objectives of enhancers. This reveals that while additive shadow enhancers do not differ in noise and fidelity from their single enhancer counterparts, sub- and superadditive shadow enhancers have noise and fidelity trade-offs not available to single enhancers. We also use our computational approach to compare the duplication and splitting of a single enhancer as mechanisms for the generation of shadow enhancers and find that the duplication of enhancers can decrease noise and increase fidelity, although at the metabolic cost of increased RNA production. A saturation mechanism for enhancer interactions similarly improves on both of these metrics. Taken together, this work highlights that shadow enhancer systems may exist for several reasons: genetic drift or the tuning of key functions of enhancers, including transcription fidelity, noise and output.
Collapse
Affiliation(s)
- Alvaro Fletcher
- Mathematical, Computational, and Systems Biology, University of California, Irvine, Irvine, CA, United States of America
| | - Zeba Wunderlich
- Department of Biology, Boston University, Boston, MA, United States of America
- Biological Design Center, Boston University, Boston, MA, United States of America
| | - German Enciso
- Department of Mathematics, University of California, Irvine, Irvine, CA, United States of America
| |
Collapse
|
15
|
Uyehara CM, Apostolou E. 3D enhancer-promoter interactions and multi-connected hubs: Organizational principles and functional roles. Cell Rep 2023; 42:112068. [PMID: 37059094 PMCID: PMC10556201 DOI: 10.1016/j.celrep.2023.112068] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/25/2022] [Accepted: 01/20/2023] [Indexed: 04/16/2023] Open
Abstract
The spatiotemporal control of gene expression is dependent on the activity of cis-acting regulatory sequences, called enhancers, which regulate target genes over variable genomic distances and, often, by skipping intermediate promoters, suggesting mechanisms that control enhancer-promoter communication. Recent genomics and imaging technologies have revealed highly complex enhancer-promoter interaction networks, whereas advanced functional studies have started interrogating the forces behind the physical and functional communication among multiple enhancers and promoters. In this review, we first summarize our current understanding of the factors involved in enhancer-promoter communication, with a particular focus on recent papers that have revealed new layers of complexities to old questions. In the second part of the review, we focus on a subset of highly connected enhancer-promoter "hubs" and discuss their potential functions in signal integration and gene regulation, as well as the putative factors that might determine their dynamics and assembly.
Collapse
Affiliation(s)
- Christopher M Uyehara
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
16
|
Kemmler CL, Smolikova J, Moran HR, Mannion BJ, Knapp D, Lim F, Czarkwiani A, Hermosilla Aguayo V, Rapp V, Fitch OE, Bötschi S, Selleri L, Farley E, Braasch I, Yun M, Visel A, Osterwalder M, Mosimann C, Kozmik Z, Burger A. Conserved enhancer logic controls the notochord expression of vertebrate Brachyury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.536761. [PMID: 37131681 PMCID: PMC10153258 DOI: 10.1101/2023.04.20.536761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The cell type-specific expression of key transcription factors is central to development. Brachyury/T/TBXT is a major transcription factor for gastrulation, tailbud patterning, and notochord formation; however, how its expression is controlled in the mammalian notochord has remained elusive. Here, we identify the complement of notochord-specific enhancers in the mammalian Brachyury/T/TBXT gene. Using transgenic assays in zebrafish, axolotl, and mouse, we discover three Brachyury-controlling notochord enhancers T3, C, and I in human, mouse, and marsupial genomes. Acting as Brachyury-responsive, auto-regulatory shadow enhancers, deletion of all three enhancers in mouse abolishes Brachyury/T expression selectively in the notochord, causing specific trunk and neural tube defects without gastrulation or tailbud defects. Sequence and functional conservation of Brachyury-driving notochord enhancers with the brachyury/tbxtb loci from diverse lineages of fishes dates their origin to the last common ancestor of jawed vertebrates. Our data define the enhancers for Brachyury/T/TBXTB notochord expression as ancient mechanism in axis development.
Collapse
Affiliation(s)
- Cassie L. Kemmler
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jana Smolikova
- Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Hannah R. Moran
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brandon J. Mannion
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA 94720, USA
| | - Dunja Knapp
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Fabian Lim
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Anna Czarkwiani
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Viviana Hermosilla Aguayo
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Vincent Rapp
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Olivia E. Fitch
- Department of Integrative Biology and Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Seraina Bötschi
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Licia Selleri
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Emma Farley
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA USA
| | - Ingo Braasch
- Department of Integrative Biology and Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Maximina Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Marco Osterwalder
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cardiology, Berne University Hospital, Berne, Switzerland
| | - Christian Mosimann
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Alexa Burger
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
17
|
Disatham J, Brennan L, Cvekl A, Kantorow M. Multiomics Analysis Reveals Novel Genetic Determinants for Lens Differentiation, Structure, and Transparency. Biomolecules 2023; 13:693. [PMID: 37189439 PMCID: PMC10136076 DOI: 10.3390/biom13040693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Recent advances in next-generation sequencing and data analysis have provided new gateways for identification of novel genome-wide genetic determinants governing tissue development and disease. These advances have revolutionized our understanding of cellular differentiation, homeostasis, and specialized function in multiple tissues. Bioinformatic and functional analysis of these genetic determinants and the pathways they regulate have provided a novel basis for the design of functional experiments to answer a wide range of long-sought biological questions. A well-characterized model for the application of these emerging technologies is the development and differentiation of the ocular lens and how individual pathways regulate lens morphogenesis, gene expression, transparency, and refraction. Recent applications of next-generation sequencing analysis on well-characterized chicken and mouse lens differentiation models using a variety of omics techniques including RNA-seq, ATAC-seq, whole-genome bisulfite sequencing (WGBS), chip-seq, and CUT&RUN have revealed a wide range of essential biological pathways and chromatin features governing lens structure and function. Multiomics integration of these data has established new gene functions and cellular processes essential for lens formation, homeostasis, and transparency including the identification of novel transcription control pathways, autophagy remodeling pathways, and signal transduction pathways, among others. This review summarizes recent omics technologies applied to the lens, methods for integrating multiomics data, and how these recent technologies have advanced our understanding ocular biology and function. The approach and analysis are relevant to identifying the features and functional requirements of more complex tissues and disease states.
Collapse
Affiliation(s)
- Joshua Disatham
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA; (J.D.); (L.B.)
| | - Lisa Brennan
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA; (J.D.); (L.B.)
| | - Ales Cvekl
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Marc Kantorow
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA; (J.D.); (L.B.)
| |
Collapse
|
18
|
Song BP, Ragsac MF, Tellez K, Jindal GA, Grudzien JL, Le SH, Farley EK. Diverse logics and grammar encode notochord enhancers. Cell Rep 2023; 42:112052. [PMID: 36729834 PMCID: PMC10387507 DOI: 10.1016/j.celrep.2023.112052] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/07/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023] Open
Abstract
The notochord is a defining feature of all chordates. The transcription factors Zic and ETS regulate enhancer activity within the notochord. We conduct high-throughput screens of genomic elements within developing Ciona embryos to understand how Zic and ETS sites encode notochord activity. Our screen discovers an enhancer located near Lama, a gene critical for notochord development. Reversing the orientation of an ETS site within this enhancer abolishes expression, indicating that enhancer grammar is critical for notochord activity. Similarly organized clusters of Zic and ETS sites occur within mouse and human Lama1 introns. Within a Brachyury (Bra) enhancer, FoxA and Bra, in combination with Zic and ETS binding sites, are necessary and sufficient for notochord expression. This binding site logic also occurs within other Ciona and vertebrate Bra enhancers. Collectively, this study uncovers the importance of grammar within notochord enhancers and discovers signatures of enhancer logic and grammar conserved across chordates.
Collapse
Affiliation(s)
- Benjamin P Song
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Michelle F Ragsac
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Krissie Tellez
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Granton A Jindal
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jessica L Grudzien
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Sophia H Le
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Emma K Farley
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
19
|
Chang W, Zhao Y, Rayêe D, Xie Q, Suzuki M, Zheng D, Cvekl A. Dynamic changes in whole genome DNA methylation, chromatin and gene expression during mouse lens differentiation. Epigenetics Chromatin 2023; 16:4. [PMID: 36698218 PMCID: PMC9875507 DOI: 10.1186/s13072-023-00478-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Cellular differentiation is marked by temporally and spatially coordinated gene expression regulated at multiple levels. DNA methylation represents a universal mechanism to control chromatin organization and its accessibility. Cytosine methylation of CpG dinucleotides regulates binding of methylation-sensitive DNA-binding transcription factors within regulatory regions of transcription, including promoters and distal enhancers. Ocular lens differentiation represents an advantageous model system to examine these processes as lens comprises only two cell types, the proliferating lens epithelium and postmitotic lens fiber cells all originating from the epithelium. RESULTS Using whole genome bisulfite sequencing (WGBS) and microdissected lenses, we investigated dynamics of DNA methylation and chromatin changes during mouse lens fiber and epithelium differentiation between embryos (E14.5) and newborns (P0.5). Histone H3.3 variant chromatin landscapes were also generated for both P0.5 lens epithelium and fibers by chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq). Tissue-specific features of DNA methylation patterns are demonstrated via comparative studies with embryonic stem (ES) cells and neural progenitor cells (NPCs) at Nanog, Pou5f1, Sox2, Pax6 and Six3 loci. Comparisons with ATAC-seq and RNA-seq data demonstrate that reduced methylation is associated with increased expression of fiber cell abundant genes, including crystallins, intermediate filament (Bfsp1 and Bfsp2) and gap junction proteins (Gja3 and Gja8), marked by high levels of histone H3.3 within their transcribed regions. Interestingly, Pax6-binding sites exhibited predominantly DNA hypomethylation in lens chromatin. In vitro binding of Pax6 proteins showed Pax6's ability to interact with sites containing one or two methylated CpG dinucleotides. CONCLUSIONS Our study has generated the first data on methylation changes between two different stages of mammalian lens development and linked these data with chromatin accessibility maps, presence of histone H3.3 and gene expression. Reduced DNA methylation correlates with expression of important genes involved in lens morphogenesis and lens fiber cell differentiation.
Collapse
Affiliation(s)
- William Chang
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yilin Zhao
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Danielle Rayêe
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Qing Xie
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Masako Suzuki
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Deyou Zheng
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
20
|
Hall HN, Bengani H, Hufnagel RB, Damante G, Ansari M, Marsh JA, Grimes GR, von Kriegsheim A, Moore D, McKie L, Rahmat J, Mio C, Blyth M, Keng WT, Islam L, McEntargart M, Mannens MM, Heyningen VV, Rainger J, Brooks BP, FitzPatrick DR. Monoallelic variants resulting in substitutions of MAB21L1 Arg51 Cause Aniridia and microphthalmia. PLoS One 2022; 17:e0268149. [PMID: 36413568 PMCID: PMC9681113 DOI: 10.1371/journal.pone.0268149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Classical aniridia is a congenital and progressive panocular disorder almost exclusively caused by heterozygous loss-of-function variants at the PAX6 locus. We report nine individuals from five families with severe aniridia and/or microphthalmia (with no detectable PAX6 mutation) with ultrarare monoallelic missense variants altering the Arg51 codon of MAB21L1. These mutations occurred de novo in 3/5 families, with the remaining families being compatible with autosomal dominant inheritance. Mice engineered to carry the p.Arg51Leu change showed a highly-penetrant optic disc anomaly in heterozygous animals with severe microphthalmia in homozygotes. Substitutions of the same codon (Arg51) in MAB21L2, a close homolog of MAB21L1, cause severe ocular and skeletal malformations in humans and mice. The predicted nucleotidyltransferase function of MAB21L1 could not be demonstrated using purified protein with a variety of nucleotide substrates and oligonucleotide activators. Induced expression of GFP-tagged wildtype and mutant MAB21L1 in human cells caused only modest transcriptional changes. Mass spectrometry of immunoprecipitated protein revealed that both mutant and wildtype MAB21L1 associate with transcription factors that are known regulators of PAX6 (MEIS1, MEIS2 and PBX1) and with poly(A) RNA binding proteins. Arg51 substitutions reduce the association of wild-type MAB21L1 with TBL1XR1, a component of the NCoR complex. We found limited evidence for mutation-specific interactions with MSI2/Musashi-2, an RNA-binding proteins with effects on many different developmental pathways. Given that biallelic loss-of-function variants in MAB21L1 result in a milder eye phenotype we suggest that Arg51-altering monoallelic variants most plausibly perturb eye development via a gain-of-function mechanism.
Collapse
Affiliation(s)
- Hildegard Nikki Hall
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Hemant Bengani
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert B. Hufnagel
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States of America
| | | | - Morad Ansari
- South East Scotland Genetic Service, Western General Hospital, Edinburgh, United Kingdom
| | - Joseph A. Marsh
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Graeme R. Grimes
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - David Moore
- South East Scotland Genetic Service, Western General Hospital, Edinburgh, United Kingdom
| | - Lisa McKie
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jamalia Rahmat
- Ophthalmology Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Catia Mio
- Department of Medicine, University of Udine, Udine, Italy
| | - Moira Blyth
- University of Leeds, St. James’s University Hospital, Leeds, United Kingdom
| | - Wee Teik Keng
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Lily Islam
- West Midlands Regional Genetics Service, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, England
| | - Meriel McEntargart
- Medical Genetics, St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Marcel M. Mannens
- Genome Diagnostics laboratory, Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Veronica Van Heyningen
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Joe Rainger
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian P. Brooks
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - David R. FitzPatrick
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Drobek M. Paralogous Genes Involved in Embryonic Development: Lessons from the Eye and Other Tissues. Genes (Basel) 2022; 13:2082. [PMID: 36360318 PMCID: PMC9690401 DOI: 10.3390/genes13112082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/23/2022] [Accepted: 11/05/2022] [Indexed: 07/09/2024] Open
Abstract
During evolution, gene duplications lead to a naturally increased gene dosage. Duplicated genes can be further retained or eliminated over time by purifying selection pressure. The retention probability is increased by functional diversification and by the acquisition of novel functions. Interestingly, functionally diverged paralogous genes can maintain a certain level of functional redundancy and at least a partial ability to replace each other. In such cases, diversification probably occurred at the level of transcriptional regulation. Nevertheless, some duplicated genes can maintain functional redundancy after duplication and the ability to functionally compensate for the loss of each other. Many of them are involved in proper embryonic development. The development of particular tissues/organs and developmental processes can be more or less sensitive to the overall gene dosage. Alterations in the gene dosage or a decrease below a threshold level may have dramatic phenotypic consequences or even lead to embryonic lethality. The number of functional alleles of particular paralogous genes and their mutual cooperation and interactions influence the gene dosage, and therefore, these factors play a crucial role in development. This review will discuss individual interactions between paralogous genes and gene dosage sensitivity during development. The eye was used as a model system, but other tissues are also included.
Collapse
Affiliation(s)
- Michaela Drobek
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Praha 4, Czech Republic
- Laboratory of RNA Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Praha 4, Czech Republic
| |
Collapse
|
22
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
23
|
Sunny SS, Lachova J, Dupacova N, Kozmik Z. Multiple roles of Pax6 in postnatal cornea development. Dev Biol 2022; 491:1-12. [PMID: 36049534 DOI: 10.1016/j.ydbio.2022.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022]
Abstract
Mammalian corneal development is a multistep process, including formation of the corneal epithelium (CE), endothelium and stroma during embryogenesis, followed by postnatal stratification of the epithelial layers and continuous renewal of the epithelium to replace the outermost corneal cells. Here, we employed the Cre-loxP system to conditionally deplete Pax6 proteins in two domains of ocular cells, i.e., the ocular surface epithelium (cornea, limbus and conjunctiva) (OSE) or postnatal CE via K14-cre or Aldh3-cre, respectively. Earlier and broader inactivation of Pax6 in the OSE resulted in thickened OSE with CE and limbal cells adopting the conjunctival keratin expression pattern. More restricted depletion of Pax6 in postnatal CE resulted in an abnormal cornea marked by reduced epithelial thickness despite increased epithelial cell proliferation. Immunofluorescence studies revealed loss of intermediate filament Cytokeratin 12 and diffused expression of adherens junction components, together with reduced tight junction protein, Zonula occludens-1. Furthermore, the expression of Cytokeratin 14, a basal cell marker in apical layers, indicates impaired differentiation of CE cells. Collectively, our data demonstrate that Pax6 is essential for maintaining proper differentiation and strong intercellular adhesion in postnatal CE cells, whereas limbal Pax6 is required to prevent the outgrowth of conjunctival cells to the cornea.
Collapse
Affiliation(s)
- Sweetu Susan Sunny
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Praha 4, 142 20, Czech Republic
| | - Jitka Lachova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Praha 4, 142 20, Czech Republic
| | - Naoko Dupacova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Praha 4, 142 20, Czech Republic
| | - Zbynek Kozmik
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Praha 4, 142 20, Czech Republic.
| |
Collapse
|
24
|
Disatham J, Brennan L, Jiao X, Ma Z, Hejtmancik JF, Kantorow M. Changes in DNA methylation hallmark alterations in chromatin accessibility and gene expression for eye lens differentiation. Epigenetics Chromatin 2022; 15:8. [PMID: 35246225 PMCID: PMC8897925 DOI: 10.1186/s13072-022-00440-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Background Methylation at cytosines (mCG) is a well-known regulator of gene expression, but its requirements for cellular differentiation have yet to be fully elucidated. A well-studied cellular differentiation model system is the eye lens, consisting of a single anterior layer of epithelial cells that migrate laterally and differentiate into a core of fiber cells. Here, we explore the genome-wide relationships between mCG methylation, chromatin accessibility and gene expression during differentiation of eye lens epithelial cells into fiber cells. Results Whole genome bisulfite sequencing identified 7621 genomic loci exhibiting significant differences in mCG levels between lens epithelial and fiber cells. Changes in mCG levels were inversely correlated with the differentiation state-specific expression of 1285 genes preferentially expressed in either lens fiber or lens epithelial cells (Pearson correlation r = − 0.37, p < 1 × 10–42). mCG levels were inversely correlated with chromatin accessibility determined by assay for transposase-accessible sequencing (ATAC-seq) (Pearson correlation r = − 0.86, p < 1 × 10–300). Many of the genes exhibiting altered regions of DNA methylation, chromatin accessibility and gene expression levels in fiber cells relative to epithelial cells are associated with lens fiber cell structure, homeostasis and transparency. These include lens crystallins (CRYBA4, CRYBB1, CRYGN, CRYBB2), lens beaded filament proteins (BFSP1, BFSP2), transcription factors (HSF4, SOX2, HIF1A), and Notch signaling pathway members (NOTCH1, NOTCH2, HEY1, HES5). Analysis of regions exhibiting cell-type specific alterations in DNA methylation revealed an overrepresentation of consensus sequences of multiple transcription factors known to play key roles in lens cell differentiation including HIF1A, SOX2, and the MAF family of transcription factors. Conclusions Collectively, these results link DNA methylation with control of chromatin accessibility and gene expression changes required for eye lens differentiation. The results also point to a role for DNA methylation in the regulation of transcription factors previously identified to be important for lens cell differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-022-00440-z.
Collapse
Affiliation(s)
- Joshua Disatham
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Lisa Brennan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marc Kantorow
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
25
|
Okada H, Saga Y. Repurposing of the enhancer-promoter communication underlies the compensation of Mesp2 by Mesp1. PLoS Genet 2022; 18:e1010000. [PMID: 35025872 PMCID: PMC8791502 DOI: 10.1371/journal.pgen.1010000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/26/2022] [Accepted: 12/17/2021] [Indexed: 11/25/2022] Open
Abstract
Organisms are inherently equipped with buffering systems against genetic perturbations. Genetic compensation, the compensatory response by upregulating another gene or genes, is one such buffering mechanism. Recently, a well-conserved compensatory mechanism was proposed: transcriptional adaptation of homologs under the nonsense-mediated mRNA decay pathways. However, this model cannot explain the onset of all compensatory events. We report a novel genetic compensation mechanism operating over the Mesp gene locus. Mesp1 and Mesp2 are paralogs located adjacently in the genome. Mesp2 loss is partially rescued by Mesp1 upregulation in the presomitic mesoderm (PSM). Using a cultured PSM induction system, we reproduced the compensatory response in vitro and found that the Mesp2-enhancer is required to promote Mesp1. We revealed that the Mesp2-enhancer directly interacts with the Mesp1 promoter, thereby upregulating Mesp1 expression upon the loss of Mesp2. Of note, this interaction is established by genomic arrangement upon PSM development independently of Mesp2 disruption. We propose that the repurposing of this established enhancer-promoter communication is the mechanism underlying this compensatory response for the upregulation of the adjacent gene. Genetic compensation, the compensatory response by upregulating another gene or genes, is one of the inherent mechanisms against gene disruption to confer cellular fitness. However, the regulatory mechanisms are largely unknown. Nonsense-mediated mutant mRNA degradation was recently proposed as a conserved mechanism across species to upregulate homologous genes to compensate for a disrupted gene, but this cannot explain compensation events with no mutant mRNA. This study investigated the compensation mechanism operating over adjacent paralogs, Mesp1 and Mesp2, in the genome. Mesp genes encode essential transcription factors in the presomitic mesoderm for development. In general, an enhancer is considered to activate a target gene when it physically interacts with the target. The communication of the Mesp2-enhancer with the Mesp1 promoter is established upon differentiation of the presomitic mesoderm, but this communication activates Mesp1 only when Mesp2 is disrupted, leading to compensation. We revealed a novel compensation mechanism depending on the repurposing of this enhancer-promoter communication by gene disruption. Our study also provides new insight into transcriptional regulation by providing the concept that an enhancer changes its target even among its physically interacting genes in a context-dependent manner.
Collapse
Affiliation(s)
- Hajime Okada
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Yumiko Saga
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advised Studies (SOKENDAI), Mishima, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
26
|
No Need to Stick Together to Be Connected: Multiple Types of Enhancers' Networking. Cancers (Basel) 2021; 13:cancers13205201. [PMID: 34680347 PMCID: PMC8533737 DOI: 10.3390/cancers13205201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Transcription regulation programs require the functional interaction of distal and proximal regulatory regions, interacting by specific 3D chromatin configurations. Enhancers are cis-acting regulatory elements able to promote gene expression regardless their orientation and distance from the transcription starting site. Their systematic mapping by genome-wide chromatin profiling and chromosome conformation analysis, combined with the development of gene-editing approaches to modulate their function, revealed that many enhancers work together to fine-tune the expression of their target genes. This review aim to describe the functions of different types of enhancers and the modalities of enhancers’ interaction, focusing on their role in the regulation of complex biological processes like cancer development. Abstract The control of gene expression at a transcriptional level requires a widespread landscape of regulatory elements. Central to these regulatory circuits are enhancers (ENHs), which are defined as cis-acting DNA elements able to increase the transcription of a target gene in a distance- and orientation-independent manner. ENHs are not independent functional elements but work in a complex and dynamic cooperative network, constituting the building blocks of multimodular domains of gene expression regulation. The information from each of these elements converges on the target promoter, contributing to improving the precision and sharpness of gene modulation. ENHs’ interplay varies in its nature and extent, ranging from an additive to redundant effect depending on contexts. Moving from super-enhancers that drive the high expression levels of identity genes, to shadow-enhancers, whose redundant functions contribute to buffering the variation in gene expression, this review aims to describe the different modalities of ENHs’ interaction and their role in the regulation of complex biological processes like cancer development.
Collapse
|
27
|
Abstract
We developed dbCNS (http://yamasati.nig.ac.jp/dbcns), a new database for conserved noncoding sequences (CNSs). CNSs exist in many eukaryotes and are assumed to be involved in protein expression control. Version 1 of dbCNS, introduced here, includes a powerful and precise CNS identification pipeline for multiple vertebrate genomes. Mutations in CNSs may induce morphological changes and cause genetic diseases. For this reason, many vertebrate CNSs have been identified, with special reference to primate genomes. We integrated ∼6.9 million CNSs from many vertebrate genomes into dbCNS, which allows users to extract CNSs near genes of interest using keyword searches. In addition to CNSs, dbCNS contains published genome sequences of 161 species. With purposeful taxonomic sampling of genomes, users can employ CNSs as queries to reconstruct CNS alignments and phylogenetic trees, to evaluate CNS modifications, acquisitions, and losses, and to roughly identify species with CNSs having accelerated substitution rates. dbCNS also produces links to dbSNP for searching pathogenic single-nucleotide polymorphisms in human CNSs. Thus, dbCNS connects morphological changes with genetic diseases. A test analysis using 38 gnathostome genomes was accomplished within 30 s. dbCNS results can evaluate CNSs identified by other stand-alone programs using genome-scale data.
Collapse
Affiliation(s)
- Jun Inoue
- Population Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan.,Center for Earth Surface System Dynamics, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan
| | - Naruya Saitou
- Population Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan.,Department of Okinawa Bioinformation Bank, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
28
|
Abstract
Shadow enhancers are seemingly redundant transcriptional cis-regulatory elements that regulate the same gene and drive overlapping expression patterns. Recent studies have shown that shadow enhancers are remarkably abundant and control most developmental gene expression in both invertebrates and vertebrates, including mammals. Shadow enhancers might provide an important mechanism for buffering gene expression against mutations in non-coding regulatory regions of genes implicated in human disease. Technological advances in genome editing and live imaging have shed light on how shadow enhancers establish precise gene expression patterns and confer phenotypic robustness. Shadow enhancers can interact in complex ways and may also help to drive the formation of transcriptional hubs within the nucleus. Despite their apparent redundancy, the prevalence and evolutionary conservation of shadow enhancers underscore their key role in emerging metazoan gene regulatory networks.
Collapse
|
29
|
Abstract
The vertebrate eye is derived from the neuroepithelium, surface ectoderm, and extracellular mesenchyme. The neuroepithelium forms an optic cup in which the spatial separation of three domains is established, namely, the region of multipotent retinal progenitor cells (RPCs), the ciliary margin zone (CMZ)-which possesses both a neurogenic and nonneurogenic potential-and the optic disk (OD), the interface between the optic stalk and the neuroretina. Here, we show by genetic ablation in the developing optic cup that Meis1 and Meis2 homeobox genes function redundantly to maintain the retinal progenitor pool while they simultaneously suppress the expression of genes characteristic of CMZ and OD fates. Furthermore, we demonstrate that Meis transcription factors bind regulatory regions of RPC-, CMZ-, and OD-specific genes, thus providing a mechanistic insight into the Meis-dependent gene regulatory network. Our work uncovers the essential role of Meis1 and Meis2 as regulators of cell fate competence, which organize spatial territories in the vertebrate eye.
Collapse
|
30
|
Harder MJ, Hix J, Reeves WM, Veeman MT. Ciona Brachyury proximal and distal enhancers have different FGF dose-response relationships. PLoS Genet 2021; 17:e1009305. [PMID: 33465083 PMCID: PMC7846015 DOI: 10.1371/journal.pgen.1009305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/29/2021] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Many genes are regulated by two or more enhancers that drive similar expression patterns. Evolutionary theory suggests that these seemingly redundant enhancers must have functionally important differences. In the simple ascidian chordate Ciona, the transcription factor Brachyury is induced exclusively in the presumptive notochord downstream of lineage specific regulators and FGF-responsive Ets family transcription factors. Here we exploit the ability to finely titrate FGF signaling activity via the MAPK pathway using the MEK inhibitor U0126 to quantify the dependence of transcription driven by different Brachyury reporter constructs on this direct upstream regulator. We find that the more powerful promoter-adjacent proximal enhancer and a weaker distal enhancer have fundamentally different dose-response relationships to MAPK inhibition. The Distal enhancer is more sensitive to MAPK inhibition but shows a less cooperative response, whereas the Proximal enhancer is less sensitive and more cooperative. A longer construct containing both enhancers has a complex dose-response curve that supports the idea that the proximal and distal enhancers are moderately super-additive. We show that the overall expression loss from intermediate doses of U0126 is not only a function of the fraction of cells expressing these reporters, but also involves graded decreases in expression at the single-cell level. Expression of the endogenous gene shows a comparable dose-response relationship to the full length reporter, and we find that different notochord founder cells are differentially sensitive to MAPK inhibition. Together, these results indicate that although the two Brachyury enhancers have qualitatively similar expression patterns, they respond to FGF in quantitatively different ways and act together to drive high levels of Brachyury expression with a characteristic input/output relationship. This indicates that they are fundamentally not equivalent genetic elements.
Collapse
Affiliation(s)
- Matthew J. Harder
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Julie Hix
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Wendy M. Reeves
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Michael T. Veeman
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
31
|
Tsai A, Galupa R, Crocker J. Robust and efficient gene regulation through localized nuclear microenvironments. Development 2020; 147:147/19/dev161430. [PMID: 33020073 DOI: 10.1242/dev.161430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Developmental enhancers drive gene expression in specific cell types during animal development. They integrate signals from many different sources mediated through the binding of transcription factors, producing specific responses in gene expression. Transcription factors often bind low-affinity sequences for only short durations. How brief, low-affinity interactions drive efficient transcription and robust gene expression is a central question in developmental biology. Localized high concentrations of transcription factors have been suggested as a possible mechanism by which to use these enhancer sites effectively. Here, we discuss the evidence for such transcriptional microenvironments, mechanisms for their formation and the biological consequences of such sub-nuclear compartmentalization for developmental decisions and evolution.
Collapse
Affiliation(s)
- Albert Tsai
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Rafael Galupa
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Justin Crocker
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
32
|
Hoppe C, Bowles JR, Minchington TG, Sutcliffe C, Upadhyai P, Rattray M, Ashe HL. Modulation of the Promoter Activation Rate Dictates the Transcriptional Response to Graded BMP Signaling Levels in the Drosophila Embryo. Dev Cell 2020; 54:727-741.e7. [PMID: 32758422 PMCID: PMC7527239 DOI: 10.1016/j.devcel.2020.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/13/2020] [Accepted: 07/11/2020] [Indexed: 01/08/2023]
Abstract
Morphogen gradients specify cell fates during development, with a classic example being the bone morphogenetic protein (BMP) gradient's conserved role in embryonic dorsal-ventral axis patterning. Here, we elucidate how the BMP gradient is interpreted in the Drosophila embryo by combining live imaging with computational modeling to infer transcriptional burst parameters at single-cell resolution. By comparing burst kinetics in cells receiving different levels of BMP signaling, we show that BMP signaling controls burst frequency by regulating the promoter activation rate. We provide evidence that the promoter activation rate is influenced by both enhancer and promoter sequences, whereas Pol II loading rate is primarily modulated by the enhancer. Consistent with BMP-dependent regulation of burst frequency, the numbers of BMP target gene transcripts per cell are graded across their expression domains. We suggest that graded mRNA output is a general feature of morphogen gradient interpretation and discuss how this can impact on cell-fate decisions.
Collapse
Affiliation(s)
- Caroline Hoppe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jonathan R Bowles
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Thomas G Minchington
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Catherine Sutcliffe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Priyanka Upadhyai
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Magnus Rattray
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| | - Hilary L Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
33
|
Miesfeld JB, Ghiasvand NM, Marsh-Armstrong B, Marsh-Armstrong N, Miller EB, Zhang P, Manna SK, Zawadzki RJ, Brown NL, Glaser T. The Atoh7 remote enhancer provides transcriptional robustness during retinal ganglion cell development. Proc Natl Acad Sci U S A 2020; 117:21690-21700. [PMID: 32817515 PMCID: PMC7474671 DOI: 10.1073/pnas.2006888117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The retinal ganglion cell (RGC) competence factor ATOH7 is dynamically expressed during retinal histogenesis. ATOH7 transcription is controlled by a promoter-adjacent primary enhancer and a remote shadow enhancer (SE). Deletion of the ATOH7 human SE causes nonsyndromic congenital retinal nonattachment (NCRNA) disease, characterized by optic nerve aplasia and total blindness. We used genome editing to model NCRNA in mice. Deletion of the murine SE reduces Atoh7 messenger RNA (mRNA) fivefold but does not recapitulate optic nerve loss; however, SEdel/knockout (KO) trans heterozygotes have thin optic nerves. By analyzing Atoh7 mRNA and protein levels, RGC development and survival, and chromatin landscape effects, we show that the SE ensures robust Atoh7 transcriptional output. Combining SE deletion and KO and wild-type alleles in a genotypic series, we determined the amount of Atoh7 needed to produce a normal complement of adult RGCs, and the secondary consequences of graded reductions in Atoh7 dosage. Together, these data reveal the workings of an evolutionary fail-safe, a duplicate enhancer mechanism that is hard-wired in the machinery of vertebrate retinal ganglion cell genesis.
Collapse
Affiliation(s)
- Joel B Miesfeld
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616
| | - Noor M Ghiasvand
- Department of Biology, Grand Valley State University, Allendale, MI 49401
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Brennan Marsh-Armstrong
- Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Nicholas Marsh-Armstrong
- Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Eric B Miller
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616
| | - Pengfei Zhang
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616
| | - Suman K Manna
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616
| | - Robert J Zawadzki
- Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Nadean L Brown
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616
| | - Tom Glaser
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616;
| |
Collapse
|
34
|
Fabik J, Kovacova K, Kozmik Z, Machon O. Neural crest cells require Meis2 for patterning the mandibular arch via the Sonic hedgehog pathway. Biol Open 2020; 9:9/6/bio052043. [PMID: 32616504 PMCID: PMC7331463 DOI: 10.1242/bio.052043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cranial neural crest cells (cNCCs) originate in the anterior neural tube and populate pharyngeal arches in which they contribute to formation of bone and cartilage. This cell population also provides molecular signals for the development of tissues of non-neural crest origin, such as the tongue muscles, teeth enamel or gland epithelium. Here we show that the transcription factor Meis2 is expressed in the oral region of the first pharyngeal arch (PA1) and later in the tongue primordium. Conditional inactivation of Meis2 in cNCCs resulted in loss of Sonic hedgehog signalling in the oropharyngeal epithelium and impaired patterning of PA1 along the lateral-medial and oral-aboral axis. Failure of molecular specification of PA1, illustrated by altered expression of Hand1/2, Dlx5, Barx1, Gsc and other markers, led to hypoplastic tongue and ectopic ossification of the mandible. Meis2-mutant mice thus display craniofacial defects that are reminiscent of several human syndromes and patients with mutations in the Meis2 gene.
Collapse
Affiliation(s)
- Jaroslav Fabik
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, Praha, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Katarina Kovacova
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, Praha, Czech Republic
| | - Zbynek Kozmik
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Praha, Czech Republic
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, Praha, Czech Republic .,Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Praha, Czech Republic
| |
Collapse
|
35
|
Liu H, Barnes J, Pedrosa E, Herman NS, Salas F, Wang P, Zheng D, Lachman HM. Transcriptome analysis of neural progenitor cells derived from Lowe syndrome induced pluripotent stem cells: identification of candidate genes for the neurodevelopmental and eye manifestations. J Neurodev Disord 2020; 12:14. [PMID: 32393163 PMCID: PMC7212686 DOI: 10.1186/s11689-020-09317-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Lowe syndrome (LS) is caused by loss-of-function mutations in the X-linked gene OCRL, which codes for an inositol polyphosphate 5-phosphatase that plays a key role in endosome recycling, clathrin-coated pit formation, and actin polymerization. It is characterized by congenital cataracts, intellectual and developmental disability, and renal proximal tubular dysfunction. Patients are also at high risk for developing glaucoma and seizures. We recently developed induced pluripotent stem cell (iPSC) lines from three patients with LS who have hypomorphic variants affecting the 3' end of the gene, and their neurotypical brothers to serve as controls. METHODS In this study, we used RNA sequencing (RNA-seq) to obtain transcriptome profiles in LS and control neural progenitor cells (NPCs). RESULTS In a comparison of the patient and control NPCs (n = 3), we found 16 differentially expressed genes (DEGs) at the multiple test adjusted p value (padj) < 0.1, with nine at padj < 0.05. Using nominal p value < 0.05, 319 DEGs were detected. The relatively small number of DEGs could be due to the fact that OCRL is not a transcription factor per se, although it could have secondary effects on gene expression through several different mechanisms. Although the number of DEGs passing multiple test correction was small, those that were found are quite consistent with some of the known molecular effects of OCRL protein, and the clinical manifestations of LS. Furthermore, using gene set enrichment analysis (GSEA), we found that genes increased expression in the patient NPCs showed enrichments of several gene ontology (GO) terms (false discovery rate < 0.25): telencephalon development, pallium development, NPC proliferation, and cortex development, which are consistent with a condition characterized by intellectual disabilities and psychiatric manifestations. In addition, a significant enrichment among the nominal DEGs for genes implicated in autism spectrum disorder (ASD) was found (e.g., AFF2, DNER, DPP6, DPP10, RELN, CACNA1C), as well as several that are strong candidate genes for the development of eye problems found in LS, including glaucoma. The most notable example is EFEMP1, a well-known candidate gene for glaucoma and other eye pathologies. CONCLUSION Overall, the RNA-seq findings present several candidate genes that could help explain the underlying basis for the neurodevelopmental and eye problems seen in boys with LS.
Collapse
Affiliation(s)
- Hequn Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jesse Barnes
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nathaniel S. Herman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Franklin Salas
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Herbert M. Lachman
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
36
|
Lampreys, the jawless vertebrates, contain three Pax6 genes with distinct expression in eye, brain and pancreas. Sci Rep 2019; 9:19559. [PMID: 31863055 PMCID: PMC6925180 DOI: 10.1038/s41598-019-56085-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor Pax6 is crucial for the development of the central nervous system, eye, olfactory system and pancreas, and is implicated in human disease. While a single Pax6 gene exists in human and chicken, Pax6 occurs as a gene family in other vertebrates, with two members in elephant shark, Xenopus tropicalis and Anolis lizard and three members in teleost fish such as stickleback and medaka. However, the complement of Pax6 genes in jawless vertebrates (cyclostomes), the sister group of jawed vertebrates (gnathostomes), is unknown. Using a combination of BAC sequencing and genome analysis, we discovered three Pax6 genes in lampreys. Unlike the paired-less Pax6 present in some gnathostomes, all three lamprey Pax6 have a highly conserved full-length paired domain. All three Pax6 genes are expressed in the eye and brain, with variable expression in other tissues. Notably, lamprey Pax6α transcripts are found in the pancreas, a vertebrate-specific organ, indicating the involvement of Pax6 in development of the pancreas in the vertebrate ancestor. Multi-species sequence comparisons revealed only a single conserved non-coding element, in the lamprey Pax6β locus, with similarity to the PAX6 neuroretina enhancer. Using a transgenic zebrafish enhancer assay we demonstrate functional conservation of this element over 500 million years of vertebrate evolution.
Collapse
|
37
|
Lima Cunha D, Arno G, Corton M, Moosajee M. The Spectrum of PAX6 Mutations and Genotype-Phenotype Correlations in the Eye. Genes (Basel) 2019; 10:genes10121050. [PMID: 31861090 PMCID: PMC6947179 DOI: 10.3390/genes10121050] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
The transcription factor PAX6 is essential in ocular development in vertebrates, being considered the master regulator of the eye. During eye development, it is essential for the correct patterning and formation of the multi-layered optic cup and it is involved in the developing lens and corneal epithelium. In adulthood, it is mostly expressed in cornea, iris, and lens. PAX6 is a dosage-sensitive gene and it is highly regulated by several elements located upstream, downstream, and within the gene. There are more than 500 different mutations described to affect PAX6 and its regulatory regions, the majority of which lead to PAX6 haploinsufficiency, causing several ocular and systemic abnormalities. Aniridia is an autosomal dominant disorder that is marked by the complete or partial absence of the iris, foveal hypoplasia, and nystagmus, and is caused by heterozygous PAX6 mutations. Other ocular abnormalities have also been associated with PAX6 changes, and genotype-phenotype correlations are emerging. This review will cover recent advancements in PAX6 regulation, particularly the role of several enhancers that are known to regulate PAX6 during eye development and disease. We will also present an updated overview of the mutation spectrum, where an increasing number of mutations in the non-coding regions have been reported. Novel genotype-phenotype correlations will also be discussed.
Collapse
Affiliation(s)
| | - Gavin Arno
- Institute of Ophthalmology, UCL, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital—Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Mariya Moosajee
- Institute of Ophthalmology, UCL, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- Correspondence:
| |
Collapse
|
38
|
Schulte D, Geerts D. MEIS transcription factors in development and disease. Development 2019; 146:146/16/dev174706. [PMID: 31416930 DOI: 10.1242/dev.174706] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
MEIS transcription factors are key regulators of embryonic development and cancer. Research on MEIS genes in the embryo and in stem cell systems has revealed novel and surprising mechanisms by which these proteins control gene expression. This Primer summarizes recent findings about MEIS protein activity and regulation in development, and discusses new insights into the role of MEIS genes in disease, focusing on the pathogenesis of solid cancers.
Collapse
Affiliation(s)
- Dorothea Schulte
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany
| | - Dirk Geerts
- Department of Medical Biology L2-109, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
39
|
Tsai A, Alves MRP, Crocker J. Multi-enhancer transcriptional hubs confer phenotypic robustness. eLife 2019; 8:e45325. [PMID: 31294690 PMCID: PMC6650246 DOI: 10.7554/elife.45325] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/08/2019] [Indexed: 01/08/2023] Open
Abstract
We previously showed in Drosophila melanogaster embryos that low-affinity Ultrabithorax (Ubx)-responsive shavenbaby (svb) enhancers drive expression using localized transcriptional environments and that active svb enhancers on different chromosomes tended to colocalize (Tsai et al., 2017). Here, we test the hypothesis that these multi-enhancer 'hubs' improve phenotypic resilience to stress by buffering against decreases in transcription factor concentrations and transcriptional output. Deleting a redundant enhancer from the svb locus led to reduced trichome numbers in embryos raised at elevated temperatures. Using high-resolution fluorescence microscopy, we observed lower Ubx concentration and transcriptional output in this deletion allele. Transcription sites of the full svb cis-regulatory region inserted into a different chromosome colocalized with the svb locus, increasing Ubx concentration, the transcriptional output of svb, and partially rescuing the phenotype. Thus, multiple enhancers could reinforce a local transcriptional hub to buffer against environmental stresses and genetic perturbations, providing a mechanism for phenotypical robustness.
Collapse
Affiliation(s)
- Albert Tsai
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Mariana RP Alves
- European Molecular Biology LaboratoryHeidelbergGermany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of BiosciencesHeidelbergGermany
| | | |
Collapse
|
40
|
Zhao Y, Zheng D, Cvekl A. Profiling of chromatin accessibility and identification of general cis-regulatory mechanisms that control two ocular lens differentiation pathways. Epigenetics Chromatin 2019; 12:27. [PMID: 31053165 PMCID: PMC6498704 DOI: 10.1186/s13072-019-0272-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Promoters and enhancers are cis-regulatory DNA sequences that control specificity and quantity of transcription. Both are rich on clusters of cis-acting sites that interact with sequence-specific DNA-binding transcription factors (TFs). At the level of chromatin, these regions display increased nuclease sensitivity, reduced nucleosome density, including nucleosome-free regions, and specific combinations of posttranslational modifications of core histone proteins. Together, "open" and "closed" chromatins represent transcriptionally active and repressed states of individual genes, respectively. Cellular differentiation is marked by changes in local chromatin structure. Lens morphogenesis, regulated by TF Pax6, includes differentiation of epithelial precursor cells into lens fibers in parallel with differentiation of epithelial precursors into the mature lens epithelium. RESULTS Using ATAC-seq, we investigated dynamics of chromatin changes during mouse lens fibers and epithelium differentiation. Tissue-specific features of these processes are demonstrated via comparative studies of embryonic stem cells, forebrain, and liver chromatins. Unbiased analysis reveals cis-regulatory logic of lens differentiation through known (e.g., AP-1, Ets, Hsf4, Maf, and Pax6 sites) and novel (e.g., CTCF, Tead, and NF1) motifs. Twenty-six DNA-binding TFs, recognizing these cis-motifs, are markedly up-regulated in differentiating lens fibers. As specific examples, our ATAC-seq data uncovered both the regulatory regions and TF binding motifs in Foxe3, Prox1, and Mip loci that are consistent with previous, though incomplete, experimental data. A cross-examination of Pax6 binding with ATAC-seq data demonstrated that Pax6 bound to both open (H3K27ac and P300-enriched) and closed chromatin domains in lens and forebrain. CONCLUSIONS Our study has generated the first lens chromatin accessibility maps that support a general model of stage-specific chromatin changes associated with transcriptional activities of batteries of genes required for lens fiber cell formation. Analysis of active (or open) promoters and enhancers reveals important cis-DNA motifs that establish the molecular foundation for temporally and spatially regulated gene expression in lens. Together, our data and models open new avenues for the field to conduct mechanistic studies of transcriptional control regions, reconstruction of gene regulatory networks that govern lens morphogenesis, and identification of cataract-causing mutations in noncoding sequences.
Collapse
Affiliation(s)
- Yilin Zhao
- The Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Deyou Zheng
- The Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Ales Cvekl
- The Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
41
|
Sanz-Navarro M, Delgado I, Torres M, Mustonen T, Michon F, Rice DP. Dental Epithelial Stem Cells Express the Developmental Regulator Meis1. Front Physiol 2019; 10:249. [PMID: 30914971 PMCID: PMC6423187 DOI: 10.3389/fphys.2019.00249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/25/2019] [Indexed: 11/13/2022] Open
Abstract
MEIS1 is a key developmental regulator of several organs and participates in stem cell maintenance in different niches. However, despite the murine continuously growing incisor being a well described model for the study of adult stem cells, Meis1 has not been investigated in a dental context. Here, we uncover that Meis1 expression in the tooth is confined to the epithelial compartment. Its expression arises during morphogenesis and becomes restricted to the mouse incisor epithelial stem cell niche, the labial cervical loop. Meis1 is specifically expressed by Sox2+ stem cells, which give rise to all dental epithelial cell lineages. Also, we have found that Meis1 in the incisor is coexpressed with potential binding partner Pbx1 during both embryonic and adult stages. Interestingly, Meis2 is present in different areas of the forming tooth and it is not expressed by dental epithelial stem cells, suggesting different roles for these two largely homologous genes. Additionally, we have established the expression patterns of Meis1 and Meis2 during tongue, hair, salivary gland and palate formation. Finally, analysis of Meis1-null allele mice indicated that, similarly, to SOX2, MEIS1 is not essential for tooth initiation, but might have a role during adult incisor renewal.
Collapse
Affiliation(s)
- Maria Sanz-Navarro
- Helsinki Institute of Life Science, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Orthodontics, Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Irene Delgado
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Torres
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Tuija Mustonen
- Orthodontics, Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Frederic Michon
- Helsinki Institute of Life Science, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,The Institute for Neurosciences of Montpellier, Inserm UMR1051, University of Montpellier, Saint Eloi Hospital, Montpellier, France
| | - David P Rice
- Orthodontics, Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Orthodontics, Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
42
|
Liang CL, Hsu PY, Ngo CS, Seow WJ, Karnani N, Pan H, Saw SM, Juo SHH. HOXA9 is a novel myopia risk gene. BMC Ophthalmol 2019; 19:28. [PMID: 30674274 PMCID: PMC6343304 DOI: 10.1186/s12886-019-1038-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/15/2019] [Indexed: 11/10/2022] Open
Abstract
Purpose A recent meta-analysis revealed PAX6 as a risk gene for myopia. There is a link between PAX6 and HOXA9. Furthermore, HOXA9 has been reported to activate TGF-β that is a risk factor for myopia. We speculate HOXA9 may participate in myopia development. Methods The Singapore GUSTO birth cohort provides data on children’s cycloplegic refraction measured at age of 3 years and their methylation profile based on the umbilical cord DNA. The HOXA9 expression levels were measured in the eyes of mono-ocular form deprivation myopia in mice. The plasmid with the mouse HOXA9 cDNA was constructed and then transfected to mouse primary retinal pigment epithelial (RPE) cells. The expression levels of myopia-related genes and cell proliferation were measured in the HOXA9-overexpressed RPE cells. Results A total of 519 children had data on methylation profile and cycloplegic refraction. The mean spherical equivalent refraction (SE) was 0.90D. Among 8 SE outliers (worse than -2D), 7 children had HOXA9 hypomethylation. The HOXA9 levels in the retina of myopic eyes was 2.65-fold (p = 0.029; paired t-test) higher than the uncovered fellow eyes. When HOXA9 was over-expressed in the RPE cells, TGF-β, MMP2, FGF2 and IGF1R expression levels were dose-dependently increased by HOXA9. However, over-expression of HOXA9 had no significant influence on IGF1 or HGF expression. In addition, HOXA9 also increased RPE proliferation. Conclusion Based on the human, animal and cellular data, the transcription factor HOXA9 may promote the expression of pro-myopia genes and RPE proliferation, which eventually contribute to myopia development.
Collapse
Affiliation(s)
- Chung-Ling Liang
- Department of Ophthalmology, Asia University Hospital, Taichung, Taiwan.,Department of Optometry, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Center for Myopia and Eye Disease, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Bright-Eyes Clinic, Kaohsiung, Taiwan
| | - Po-Yuan Hsu
- Center for Myopia and Eye Disease, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Cheryl S Ngo
- Department of Ophthalmology, National University Hospital, Singapore, Singapore
| | - Wei Jie Seow
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore, Singapore
| | - Hong Pan
- Singapore Institute for Clinical Sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore, Singapore
| | - Seang-Mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore
| | - Suh-Hang H Juo
- Center for Myopia and Eye Disease, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan. .,The Ophthalmology & Visual Sciences Academic Clinical Program, DUKE-NUS Graduate Medical School, Singapore, Singapore. .,Graduate Institute of Biomedical Sciences, Singapore, Singapore. .,Institute of New Drug Development, Singapore, Singapore. .,Drug Development Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
43
|
McGreal-Estrada RS, Wolf LV, Cvekl A. Promoter-enhancer looping and shadow enhancers of the mouse αA-crystallin locus. Biol Open 2018; 7:bio.036897. [PMID: 30404901 PMCID: PMC6310886 DOI: 10.1242/bio.036897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Gene regulation by enhancers is important for precise temporal and spatial gene expression. Enhancers can drive gene expression regardless of their location, orientation or distance from the promoter. Changes in chromatin conformation and chromatin looping occur to bring the promoter and enhancers into close proximity. αA-crystallin ranks among one of the most abundantly expressed genes and proteins in the mammalian lens. The αA-crystallin locus is characterized by a 16 kb chromatin domain marked by two distal enhancers, 5′ DCR1 and 3′ DCR3. Here we used chromatin conformation capture (3C) analysis and transgenic approaches to analyze temporal control of the mouse αA-crystallin gene. We find that DCR1 is necessary, but not sufficient alone to drive expression at E10.5 in the mouse lens pit. Chromatin looping revealed interaction between the promoter and the region 3′ to DCR1, identifying a novel enhancer region in the αA-crystallin locus. We determined that this novel enhancer region, DCR1S, recapitulates the temporal control by DCR1. Acting as shadow enhancers, DCR1 and DCR1S are able to control expression in the lens vesicle at E11.5. It remains to be elucidated however, which region of the αA-crystallin locus is responsible for expression in the lens pit at E10.5. Summary: The αA-crystallin ranks amongst the most highly expressed tissue-specific genes. It is an advantageous model system to probe both promoter-enhancer looping and to identify distal enhancers and their temporal/spatial activities.
Collapse
Affiliation(s)
- Rebecca S McGreal-Estrada
- Departments Ophthalmology and Visual Sciences and Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Ullmann 123, Bronx, NY 10461, USA
| | - Louise V Wolf
- Departments Ophthalmology and Visual Sciences and Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Ullmann 123, Bronx, NY 10461, USA.,Office of Research Services (ORS), Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place - Box 1120, New York, NY 10029-6574
| | - Ales Cvekl
- Departments Ophthalmology and Visual Sciences and Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Ullmann 123, Bronx, NY 10461, USA
| |
Collapse
|
44
|
Xie H, Yu H, Tian S, Yang X, Wang X, Wang H, Guo Z. MEIS-1 level in unresectable hepatocellular carcinoma can predict the post-treatment outcomes of radiofrequency ablation. Oncotarget 2018; 9:15252-15265. [PMID: 29632641 PMCID: PMC5880601 DOI: 10.18632/oncotarget.24165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023] Open
Abstract
Radiofrequency ablation (RFA) is a local-ablative therapy for unresectable hepatocellular carcinoma (HCC). At present, there is no predictive marker for RFA treatment outcomes. This work aimed to valuate myeloid ecotropic viral integration site 1 (MEIS-1) in predicting post-RFA treatment outcomes of unresectable HCC patients. The time to progression (TTP) and overall survival (OS) of 81 HCC patients who received RFA treatment were measured. The protein level of MEIS-1 in tumor specimens was measured by western blot. The role of MEIS-1 in RFA-treating HCC in vivo growth nude mouse model was examined via PET/CT imaging. Higher level of MEIS-1 in tumor tissue is associated with better RFA treatment outcomes. The median TTP was 9.0 (95% confidence interval [CI]: 6.8-11.3) months in patients with high MEIS-1 expression (n = 43) versus 6.0 (95% CI: 4.6-7.4) months in patients with low MEIS-1 expression (n = 38). Moreover, in rodent HCC model we found overexpression of MEIS-1 enhanced the anti-tumor effect of RFA treatment. We conclude that high level of MEIS-1 expression predicts better RFA treatment outcome in HCC.
Collapse
Affiliation(s)
- Hui Xie
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Cancer Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300070, PR China
- Department of interventional therapy, 302 Hospital of People's Liberation Army, Beijing 100039, PR China
| | - Haipeng Yu
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Cancer Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300070, PR China
| | - Shengtao Tian
- Department of interventional therapy, 302 Hospital of People's Liberation Army, Beijing 100039, PR China
| | - Xueling Yang
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Cancer Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300070, PR China
| | - Ximing Wang
- Department of interventional therapy, 302 Hospital of People's Liberation Army, Beijing 100039, PR China
| | - Huaming Wang
- Department of interventional therapy, 302 Hospital of People's Liberation Army, Beijing 100039, PR China
| | - Zhi Guo
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Cancer Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300070, PR China
| |
Collapse
|
45
|
Enhancer redundancy provides phenotypic robustness in mammalian development. Nature 2018; 554:239-243. [PMID: 29420474 PMCID: PMC5808607 DOI: 10.1038/nature25461] [Citation(s) in RCA: 431] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 12/18/2017] [Indexed: 12/30/2022]
Abstract
Distant-acting tissue-specific enhancers vastly outnumber protein-coding genes in mammalian genomes, but the functional significance of this regulatory complexity remains insufficiently understood1,2. Here we show that the pervasive presence of multiple enhancers with similar activities near the same gene confers phenotypic robustness to loss-of-function mutations in individual enhancers. We used genome editing to create 23 mouse deletion lines and inter-crosses, including both single and combinatorial enhancer deletions at seven distinct loci required for limb development. Surprisingly, none of ten deletions of individual enhancers caused noticeable changes in limb morphology. In contrast, removal of pairs of limb enhancers near the same gene resulted in discernible phenotypes, indicating that enhancers function redundantly in establishing normal morphology. In a genetic background sensitized by reduced baseline expression of the target gene, even single enhancer deletions caused limb abnormalities, suggesting that functional redundancy is conferred by additive effects of enhancers on gene expression levels. A genome-wide analysis integrating epigenomic and transcriptomic data from 29 developmental mouse tissues revealed that mammalian genes are very commonly associated with multiple enhancers that have similar spatiotemporal activity. Systematic exploration of three representative developmental structures (limb, brain, heart) uncovered more than a thousand cases in which five or more enhancers with redundant activity patterns were found near the same gene. Taken together, our data indicate that enhancer redundancy is a remarkably widespread feature of mammalian genomes and provides an effective regulatory buffer preventing deleterious phenotypic consequences upon loss of individual enhancers.
Collapse
|
46
|
Enhancer adoption caused by genomic insertion elicits interdigital Shh expression and syndactyly in mouse. Proc Natl Acad Sci U S A 2017; 115:1021-1026. [PMID: 29255029 PMCID: PMC5798340 DOI: 10.1073/pnas.1713339115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this study, we reexamined an old mouse mutant named Hammer toe (Hm), which arose spontaneously almost a half century ago and exhibits a limb phenotype with webbing. We revealed that a 150-kb noncoding genomic fragment that was originally located in chromosome 14 has been inserted into a genomic region proximal to Sonic hedgehog (Shh), located in chromosome 5. This inserted fragment possesses enhancer activity to induce Shh expression in the interdigital regions in Hm, which in turn down-regulates bone morphogenetic protein signaling and eventually results in syndactyly and web formation. Since the donor fragment residing in chromosome 14 has enhancer activity to induce interdigital gene expression, the Hm mutation appears to be an archetypal case of enhancer adoption. Acquisition of new cis-regulatory elements (CREs) can cause alteration of developmental gene regulation and may introduce morphological novelty in evolution. Although structural variation in the genome generated by chromosomal rearrangement is one possible source of new CREs, only a few examples are known, except for cases of retrotransposition. In this study, we show the acquisition of novel regulatory sequences as a result of large genomic insertion in the spontaneous mouse mutation Hammer toe (Hm). Hm mice exhibit syndactyly with webbing, due to suppression of interdigital cell death in limb development. We reveal that, in the Hm genome, a 150-kb noncoding DNA fragment from chromosome 14 is inserted into the region upstream of the Sonic hedgehog (Shh) promoter in chromosome 5. Phenotyping of mouse embryos with a series of CRISPR/Cas9-aided partial deletion of the 150-kb insert clearly indicated that two different regions are necessary for the syndactyly phenotype of Hm. We found that each of the two regions contains at least one enhancer for interdigital regulation. These results show that a set of enhancers brought by the large genomic insertion elicits the interdigital Shh expression and the Hm phenotype. Transcriptome analysis indicates that ectopic expression of Shh up-regulates Chordin (Chrd) that antagonizes bone morphogenetic protein signaling in the interdigital region. Indeed, Chrd-overexpressing transgenic mice recapitulated syndactyly with webbing. Thus, the Hm mutation provides an insight into enhancer acquisition as a source of creation of novel gene regulation.
Collapse
|
47
|
Tsai A, Muthusamy AK, Alves MR, Lavis LD, Singer RH, Stern DL, Crocker J. Nuclear microenvironments modulate transcription from low-affinity enhancers. eLife 2017; 6:28975. [PMID: 29095143 PMCID: PMC5695909 DOI: 10.7554/elife.28975] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/29/2017] [Indexed: 02/07/2023] Open
Abstract
Transcription factors bind low-affinity DNA sequences for only short durations. It is not clear how brief, low-affinity interactions can drive efficient transcription. Here, we report that the transcription factor Ultrabithorax (Ubx) utilizes low-affinity binding sites in the Drosophila melanogaster shavenbaby (svb) locus and related enhancers in nuclear microenvironments of high Ubx concentrations. Related enhancers colocalize to the same microenvironments independently of their chromosomal location, suggesting that microenvironments are highly differentiated transcription domains. Manipulating the affinity of svb enhancers revealed an inverse relationship between enhancer affinity and Ubx concentration required for transcriptional activation. The Ubx cofactor, Homothorax (Hth), was co-enriched with Ubx near enhancers that require Hth, even though Ubx and Hth did not co-localize throughout the nucleus. Thus, microenvironments of high local transcription factor and cofactor concentrations could help low-affinity sites overcome their kinetic inefficiency. Mechanisms that generate these microenvironments could be a general feature of eukaryotic transcriptional regulation.
Collapse
Affiliation(s)
- Albert Tsai
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Anand K Muthusamy
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | | | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Robert H Singer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, United States
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Justin Crocker
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
48
|
Cvekl A, Zhang X. Signaling and Gene Regulatory Networks in Mammalian Lens Development. Trends Genet 2017; 33:677-702. [PMID: 28867048 DOI: 10.1016/j.tig.2017.08.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022]
Abstract
Ocular lens development represents an advantageous system in which to study regulatory mechanisms governing cell fate decisions, extracellular signaling, cell and tissue organization, and the underlying gene regulatory networks. Spatiotemporally regulated domains of BMP, FGF, and other signaling molecules in late gastrula-early neurula stage embryos generate the border region between the neural plate and non-neural ectoderm from which multiple cell types, including lens progenitor cells, emerge and undergo initial tissue formation. Extracellular signaling and DNA-binding transcription factors govern lens and optic cup morphogenesis. Pax6, c-Maf, Hsf4, Prox1, Sox1, and a few additional factors regulate the expression of the lens structural proteins, the crystallins. Extensive crosstalk between a diverse array of signaling pathways controls the complexity and order of lens morphogenetic processes and lens transparency.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|