1
|
Ghader A. Digest: Do weakly deleterious mutations exacerbate reproductive and health challenges in species with prolonged bottlenecks? Evolution 2025; 79:885-886. [PMID: 40089805 DOI: 10.1093/evolut/qpaf046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/13/2025] [Indexed: 03/17/2025]
Abstract
Do weakly deleterious mutations contribute to the reproductive and health challenges of bottlenecked species? Peers et al. (2025). investigated the role of prolonged low effective population size in cheetahs (A. jubatus) and its implications in the accumulation of pseudogenes. They identified 65 cheetah-specific premature termination codons, and four of which (DEFB116, ARL13A, CFAP119, and NT5DC4) were linked to male fertility and immune deficiencies. These findings reveal how pseudogenization may contribute to fertility challenges and reproductive health decline.
Collapse
Affiliation(s)
- Aryan Ghader
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
2
|
Kardos M, Keller LF, Funk WC. What Can Genome Sequence Data Reveal About Population Viability? Mol Ecol 2024:e17608. [PMID: 39681836 DOI: 10.1111/mec.17608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Biologists have long sought to understand the impacts of deleterious genetic variation on fitness and population viability. However, our understanding of these effects in the wild is incomplete, in part due to the rarity of sufficient genetic and demographic data needed to measure their impact. The genomics revolution is promising a potential solution by predicting the effects of deleterious genetic variants (genetic load) bioinformatically from genome sequences alone bypassing the need for costly demographic data. After a historical perspective on the theoretical and empirical basis of our understanding of the dynamics and fitness effects of deleterious genetic variation, we evaluate the potential for these new genomic measures of genetic load to predict population viability. We argue that current genomic analyses alone cannot reliably predict the effects of deleterious genetic variation on population growth, because these depend on demographic, ecological and genetic parameters that need more than just genome sequence data to be measured. Thus, while purely genomic analyses of genetic load promise to improve our understanding of the composition of the genetic load, they are currently of little use for evaluating population viability. Demographic data and ecological context remain crucial to our understanding of the consequences of deleterious genetic variation for population fitness. However, when combined with such demographic and ecological data, genomic information can offer important insights into genetic variation and inbreeding that are crucial for conservation decision making.
Collapse
Affiliation(s)
- Marty Kardos
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Lukas F Keller
- Department of Evolutionary Biology and Environmental Studies & Natural History Museum, University of Zurich, Zurich, Switzerland
| | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
Subramanian S. Purifying Selection Influences the Comparison of Heterozygosities between Populations. BIOLOGY 2024; 13:810. [PMID: 39452119 PMCID: PMC11505596 DOI: 10.3390/biology13100810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Heterozygosity is a fundamental measure routinely used to compare between populations to infer the level of genetic variation and their relative effective population sizes. However, such comparison is highly influenced by the magnitude of selection pressure on the genomic regions used. Using over 2 million Single Nucleotide Variants (SNVs) from chimpanzee and mouse populations, this study shows that the heterozygosities estimated using neutrally evolving sites of large populations were two times higher than those of small populations. However, this difference was only ~1.6 times for the heterozygosities estimated using nonsynonymous sites. This suggests an excess in the nonsynonymous heterozygosities due to the segregation of deleterious variants in small populations. This excess in the nonsynonymous heterozygosities of the small populations was estimated to be 23-31%. Further analysis revealed that the magnitude of the excess is modulated by effective population size (Ne) and selection intensity (s). Using chimpanzee populations, this investigation found that the excess in nonsynonymous diversity in the small population was little (6%) when the difference between the Ne values of large and small populations was small (2.4 times). Conversely, this was high (23%) when the difference in Ne was large (5.9 times). Analysis using mouse populations showed that the excess in the nonsynonymous diversity of highly constrained genes of the small population was much higher (38%) than that observed for the genes under relaxed selective constraints (21%). Similar results were observed when the expression levels of genes were used as a proxy for selection intensity. These results emphasize the use of neutral regions, less constrained genes, or lowly expressed genes when comparing the heterozygosities between populations.
Collapse
Affiliation(s)
- Sankar Subramanian
- Centre for Bioinnovation, School of Science, Technology, and Engineering, The University of the Sunshine Coast, Moreton Bay, QLD 4502, Australia
| |
Collapse
|
4
|
de-Dios T, Fontsere C, Renom P, Stiller J, Llovera L, Uliano-Silva M, Sánchez-Gracia A, Wright C, Lizano E, Caballero B, Navarro A, Civit S, Robbins RK, Blaxter M, Marquès T, Vila R, Lalueza-Fox C. Whole genomes from the extinct Xerces Blue butterfly can help identify declining insect species. eLife 2024; 12:RP87928. [PMID: 39365295 PMCID: PMC11466284 DOI: 10.7554/elife.87928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
The Xerces Blue (Glaucopsyche xerces) is considered to be the first butterfly to become extinct in historical times. It was notable for its chalky lavender wings with conspicuous white spots on the ventral wings. The last individuals were collected in their restricted habitat, in the dunes near the Presidio military base in San Francisco, in 1941. We sequenced the genomes of four 80- to 100-year-old Xerces Blue, and seven historical and one modern specimens of its closest relative, the Silvery Blue (Glaucopsyche lygdamus). We compared these to a novel annotated genome of the Green-Underside Blue (Glaucopsyche alexis). Phylogenetic relationships inferred from complete mitochondrial genomes indicate that Xerces Blue was a distinct species that diverged from the Silvery Blue lineage at least 850,000 years ago. Using nuclear genomes, both species experienced population growth during the Eemian interglacial period, but the Xerces Blue decreased to a very low effective population size subsequently, a trend opposite to that observed in the Silvery Blue. Runs of homozygosity and deleterious load in the former were significantly greater than in the later, suggesting a higher incidence of inbreeding. These signals of population decline observed in Xerces Blue could be used to identify and monitor other insects threatened by human activities, whose extinction patterns are still not well known.
Collapse
Affiliation(s)
- Toni de-Dios
- Institute of Evolutionary BiologyBarcelonaSpain
- Institute of Genomics, University of TartuTartuEstonia
| | - Claudia Fontsere
- Institute of Evolutionary BiologyBarcelonaSpain
- Section for Evolutionary Genomics, The Globe Institute, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Pere Renom
- Institute of Evolutionary BiologyBarcelonaSpain
| | - Josefin Stiller
- Centre for Biodiversity Genomics, University of CopenhagenCopenhagenDenmark
| | | | | | - Alejandro Sánchez-Gracia
- Departament of Genetics, Microbiology and Statistics-Institut de Recerca de la Biodiversitat (IRBio), Universitat de BarcelonaBarcelonaSpain
| | | | - Esther Lizano
- Institute of Evolutionary BiologyBarcelonaSpain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de BarcelonaBarcelonaSpain
| | | | - Arcadi Navarro
- Institute of Evolutionary BiologyBarcelonaSpain
- Catalan Institution of Research and Advanced Studies (ICREA)BarcelonaSpain
| | - Sergi Civit
- Departament of Genetics, Microbiology and Statistics-Institut de Recerca de la Biodiversitat (IRBio), Universitat de BarcelonaBarcelonaSpain
| | - Robert K Robbins
- Department of Entomology, National Museum of Natural History, Smithsonian InstitutionWashingtonUnited States
| | - Mark Blaxter
- Wellcome Sanger InstituteSaffron WaldenUnited Kingdom
| | - Tomàs Marquès
- Institute of Evolutionary BiologyBarcelonaSpain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de BarcelonaBarcelonaSpain
- Catalan Institution of Research and Advanced Studies (ICREA)BarcelonaSpain
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Roger Vila
- Institute of Evolutionary BiologyBarcelonaSpain
| | - Carles Lalueza-Fox
- Institute of Evolutionary BiologyBarcelonaSpain
- Museu de Ciències Naturals de BarcelonaBarcelonaSpain
| |
Collapse
|
5
|
Pan J, Liu X, Baca M, Calvière-Tonasso L, Schiavinato S, Chauvey L, Tressières G, Perdereau A, Aury JM, Oliveira PH, Wincker P, Abdykanova A, Arsuaga JL, Bayarsaikhan J, Belinskiy AB, Carbonell E, Davoudi H, Lira Garrido J, Gilbert AS, Hermes T, Warinner C, Kalmykov AA, Lordkipanidze D, Mackiewicz P, Mohaseb AF, Richter K, Sayfullaev N, Shapiro B, Shnaider S, Southon J, Stefaniak K, Summers GD, van Asperen EN, Vanishvili N, Hill EA, Kuznetsov P, Reinhold S, Hansen S, Mashkour M, Berthon R, Taylor WTT, Houle JL, Hekkala E, Popović D, Orlando L. Genome-wide population affinities and signatures of adaptation in hydruntines, sussemiones and Asian wild asses. Mol Ecol 2024; 33:e17527. [PMID: 39279684 DOI: 10.1111/mec.17527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/08/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
The extremely rich palaeontological record of the horse family, also known as equids, has provided many examples of macroevolutionary change over the last ~55 Mya. This family is also one of the most documented at the palaeogenomic level, with hundreds of ancient genomes sequenced. While these data have advanced understanding of the domestication history of horses and donkeys, the palaeogenomic record of other equids remains limited. In this study, we have generated genome-wide data for 25 ancient equid specimens spanning over 44 Ky and spread across Anatolia, the Caucasus, Central Asia and Mongolia. Our dataset includes the genomes from two extinct species, the European wild ass, Equus hydruntinus, and the sussemione Equus ovodovi. We document, for the first time, the presence of sussemiones in Mongolia and their survival around ~3.9 Kya, a finding that should be considered when discussing the timing of the first arrival of the domestic horse in the region. We also identify strong spatial differentiation within the historical ecological range of Asian wild asses, Equus hemionus, and incomplete reproductive isolation in several groups yet considered as different species. Finally, we find common selection signatures at ANTXR2 gene in European, Asian and African wild asses. This locus, which encodes a receptor for bacterial toxins, shows no selection signal in E. ovodovi, but a 5.4-kb deletion within intron 7. Whether such genetic modifications played any role in the sussemione extinction remains unknown.
Collapse
Affiliation(s)
- Jianfei Pan
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuexue Liu
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Mateusz Baca
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Laure Calvière-Tonasso
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Stéphanie Schiavinato
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Loreleï Chauvey
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Gaétan Tressières
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Aude Perdereau
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Pedro H Oliveira
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Aida Abdykanova
- Anthropology Department, American University of Central Asia, Bishkek, Kyrgyzstan
| | - Juan Luis Arsuaga
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain
- Departamento de Geodinámica, Estratigrafía y Paleontología. Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Jamsranjav Bayarsaikhan
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- National Museum of Mongolia, Ulaanbaatar, Mongolia
| | | | - Eudald Carbonell
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili, Tarragona, Spain
- Institut Català de Paleoecologia Humana I Evolució Social (IPHES-CERCA), Tarragona, Spain
| | - Hossein Davoudi
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, Tehran, Iran
| | - Jaime Lira Garrido
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Allan S Gilbert
- Department of Sociology and Anthropology, Fordham University, New York, New York, USA
| | - Taylor Hermes
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, Harvard University, Cambridge, Massachusetts, USA
| | | | - David Lordkipanidze
- Georgian National Museum, Tbilisi, Tbilisi, Georgia
- Tbilisi State University Tbilisi I. Chavchavadze Avenue 1, Tbilisi, Georgia
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Azadeh F Mohaseb
- UMR 7209 'Archéozoologie, Archéobotanique: sociétés, Pratiques et Environnements', CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Kristine Richter
- Department of Anthropology, Harvard University, Cambridge, Massachusetts, USA
| | - Nuritdin Sayfullaev
- Donish Institute of History, Archaeology and Ethnography, Dushanbe, Tajikistan
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Svetlana Shnaider
- International Laboratory "Archaeozoology in Siberia and Central Asia" ZooSCAn, IRL 2013, National Center for Scientific Research - Institute of Archeology and Ethnography SB RAS, Novosibirsk, Russia
| | - John Southon
- Earth System Science Department, University of California, Irvine, California, USA
| | | | - Geoffrey D Summers
- Ecole Nationale Supérieure d'Architecture de Nantes-Mauritius, Pierrefonds, Mauritius
- The Oriental Institute, Chicago University, Chicago, Illinois, USA
| | | | - Nikoloz Vanishvili
- Department of Vertebrate Paleontology, L. Davitashvili Institute of Paleobiology, Georgian National Museum, Tbilisi, Georgia
| | - Eden A Hill
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Pavel Kuznetsov
- The Museum of Archeology of the Volga Region Samara State University of Social Sciences and Education, Samara, Russia
| | - Sabine Reinhold
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Svend Hansen
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Marjan Mashkour
- UMR 7209 'Archéozoologie, Archéobotanique: sociétés, Pratiques et Environnements', CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Rémi Berthon
- UMR 7209 'Archéozoologie, Archéobotanique: sociétés, Pratiques et Environnements', CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - William Timothy Treal Taylor
- Museum of Natural History, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Anthropology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Jean-Luc Houle
- Department of Folk Studies and Anthropology, Western Kentucky University, Bowling Green, Kentucky, USA
| | - Evon Hekkala
- Department Biological Sciences, Fordham University, New York, New York, USA
| | - Danijela Popović
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Ludovic Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
6
|
Dehasque M, Morales HE, Díez-Del-Molino D, Pečnerová P, Chacón-Duque JC, Kanellidou F, Muller H, Plotnikov V, Protopopov A, Tikhonov A, Nikolskiy P, Danilov GK, Giannì M, van der Sluis L, Higham T, Heintzman PD, Oskolkov N, Gilbert MTP, Götherström A, van der Valk T, Vartanyan S, Dalén L. Temporal dynamics of woolly mammoth genome erosion prior to extinction. Cell 2024; 187:3531-3540.e13. [PMID: 38942016 DOI: 10.1016/j.cell.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/08/2024] [Accepted: 05/17/2024] [Indexed: 06/30/2024]
Abstract
A number of species have recently recovered from near-extinction. Although these species have avoided the immediate extinction threat, their long-term viability remains precarious due to the potential genetic consequences of population declines, which are poorly understood on a timescale beyond a few generations. Woolly mammoths (Mammuthus primigenius) became isolated on Wrangel Island around 10,000 years ago and persisted for over 200 generations before becoming extinct around 4,000 years ago. To study the evolutionary processes leading up to the mammoths' extinction, we analyzed 21 Siberian woolly mammoth genomes. Our results show that the population recovered quickly from a severe bottleneck and remained demographically stable during the ensuing six millennia. We find that mildly deleterious mutations gradually accumulated, whereas highly deleterious mutations were purged, suggesting ongoing inbreeding depression that lasted for hundreds of generations. The time-lag between demographic and genetic recovery has wide-ranging implications for conservation management of recently bottlenecked populations.
Collapse
Affiliation(s)
- Marianne Dehasque
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden.
| | - Hernán E Morales
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - David Díez-Del-Molino
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Patrícia Pečnerová
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden; Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - J Camilo Chacón-Duque
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, Lilla Frescativägen 7, 11418 Stockholm, Sweden
| | - Foteini Kanellidou
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Héloïse Muller
- Master de Biologie, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon I, Universite de Lyon, 69007 Lyon, France
| | - Valerii Plotnikov
- Academy of Sciences of Sakha Republic, Lenin Avenue 33, Yakutsk, Republic of Sakha (Yakutia), Russia
| | - Albert Protopopov
- Academy of Sciences of Sakha Republic, Lenin Avenue 33, Yakutsk, Republic of Sakha (Yakutia), Russia
| | - Alexei Tikhonov
- Zoological Institute of Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Pavel Nikolskiy
- Geological Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Gleb K Danilov
- Peter the Great Museum of Anthropology and Ethnography, Kunstkamera, Russian Academy of Sciences, 3 University Embankment, Box 199034, Saint-Petersburg, Russia
| | - Maddalena Giannì
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Laura van der Sluis
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Tom Higham
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Peter D Heintzman
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Geological Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Nikolay Oskolkov
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark; University Museum, NTNU, Trondheim, Norway
| | - Anders Götherström
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, Lilla Frescativägen 7, 11418 Stockholm, Sweden
| | - Tom van der Valk
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; SciLifeLab, Stockholm, Sweden
| | - Sergey Vartanyan
- North-East Interdisciplinary Scientific Research Institute N.A.N.A. Shilo, Far East Branch, Russian Academy of Sciences, Magadan, Russia
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
7
|
Özkan M, Gürün K, Yüncü E, Vural KB, Atağ G, Akbaba A, Fidan FR, Sağlıcan E, Altınışık EN, Koptekin D, Pawłowska K, Hodder I, Adcock SE, Arbuckle BS, Steadman SR, McMahon G, Erdal YS, Bilgin CC, Togan İ, Geigl EM, Götherström A, Grange T, Özer F, Somel M. The first complete genome of the extinct European wild ass (Equus hemionus hydruntinus). Mol Ecol 2024; 33:e17440. [PMID: 38946459 DOI: 10.1111/mec.17440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/17/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
We present palaeogenomes of three morphologically unidentified Anatolian equids dating to the first millennium BCE, sequenced to a coverage of 0.6-6.4×. Mitochondrial DNA haplotypes of the Anatolian individuals clustered with those of Equus hydruntinus (or Equus hemionus hydruntinus), the extinct European wild ass, secular name 'hydruntine'. Further, the Anatolian wild ass whole genome profiles fell outside the genomic diversity of other extant and past Asiatic wild ass (E. hemionus) lineages. These observations suggest that the three Anatolian wild asses represent hydruntines, making them the latest recorded survivors of this lineage, about a millennium later than the latest observations in the zooarchaeological record. Our mitogenomic and genomic analyses indicate that E. h. hydruntinus was a clade belonging to ancient and present-day E. hemionus lineages that radiated possibly between 0.6 and 0.8 Mya. We also find evidence consistent with recent gene flow between hydruntines and Middle Eastern wild asses. Analyses of genome-wide heterozygosity and runs of homozygosity suggest that the Anatolian wild ass population may have lost genetic diversity by the mid-first millennium BCE, a possible sign of its eventual demise.
Collapse
Affiliation(s)
- Mustafa Özkan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Kanat Gürün
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Eren Yüncü
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Gözde Atağ
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ali Akbaba
- Department of Anthropology, Ankara University, Ankara, Turkey
- Alparslan University, Muş, Turkey
| | - Fatma Rabia Fidan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Ekin Sağlıcan
- Department of Health Informatics, Middle East Technical University, Ankara, Turkey
| | - Ezgi N Altınışık
- Department of Anthropology, Human_G Laboratory, Hacettepe University, Ankara, Turkey
| | - Dilek Koptekin
- Department of Health Informatics, Middle East Technical University, Ankara, Turkey
| | - Kamilla Pawłowska
- Department of Palaeoenvironmental Research, Adam Mickiewicz University, Poznań, Poland
| | - Ian Hodder
- Department of Anthropology, Stanford University, Stanford, California, USA
| | - Sarah E Adcock
- Institute for the Study of the Ancient World, New York University, New York, New York, USA
| | - Benjamin S Arbuckle
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sharon R Steadman
- Department of Sociology/Anthropology, SUNY Cortland, Cortland, New York, USA
| | - Gregory McMahon
- Classics, Humanities and Italian Studies Department, University of New Hampshire, Durham, New Hampshire, USA
| | - Yılmaz Selim Erdal
- Department of Anthropology, Human_G Laboratory, Hacettepe University, Ankara, Turkey
| | - C Can Bilgin
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - İnci Togan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Eva-Maria Geigl
- Institut Jacques Monod, CNRS, Université de Paris, Paris, France
| | - Anders Götherström
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Thierry Grange
- Institut Jacques Monod, CNRS, Université de Paris, Paris, France
| | - Füsun Özer
- Department of Health Informatics, Middle East Technical University, Ankara, Turkey
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
8
|
Bourgeois Y, Warren BH, Augiron S. The burden of anthropogenic changes and mutation load in a critically endangered harrier from the Reunion biodiversity hotspot, Circus maillardi. Mol Ecol 2024; 33:e17300. [PMID: 38372440 DOI: 10.1111/mec.17300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024]
Abstract
Anthropogenic impact is causing the decline of a large proportion of species worldwide and reduces their genetic diversity. Island species typically have smaller ranges than continental species. As a consequence, island species are particularly liable to undergo population bottlenecks, giving rise to conservation challenges such as inbreeding and unmasking of deleterious genetic load. Such challenges call for more detailed assessments of the genetic make-up of threatened island populations. The Mascarene islands (Indian Ocean) present many prime examples, being unusual in having been pristine until first human arrival ~400 years ago, following which anthropogenic pressure was unusually intense. A threatened harrier (Circus maillardi) endemic to the westernmost island of the archipelago is a good example of the challenges faced by species that have declined to small population size following intense anthropogenic pressure. In this study, we use an extensive set of population genomic tools to quantify variation at near-neutral and coding loci, in order to test the historical impact of human activity on this species, and evaluate the species' (mal)adaptive potential. We observed low but significant genetic differentiation between populations on the West and North-East sides of the island, echoing observations in other endemic species. Inbreeding was significant, with a substantial fraction of samples being first or second-degree relatives. Historical effective population sizes have declined from ~3000 to 300 individuals in the past 1000 years, with a more recent drop ~100 years ago consistent with human activity. Based on our simulations and comparisons with a close relative (Circus melanoleucos), this demographic history may have allowed purging of the most deleterious variants but is unlikely to have allowed the purging of mildly deleterious variants. Our study shows how using relatively affordable methods can reveal the massive impact that human activity may have on the genetic diversity and adaptive potential of island populations, and calls for urgent action to closely monitor the reproductive success of such endemic populations, in association with genetic studies.
Collapse
Affiliation(s)
- Yann Bourgeois
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Ben H Warren
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, Paris, France
| | - Steve Augiron
- Société d'Études Ornithologiques de La Réunion, Saint-André, France
| |
Collapse
|
9
|
Kumar M, Conroy G, Ogbourne S, Cairns K, Borburgh L, Subramanian S. Genomic signatures of bottleneck and founder effects in dingoes. Ecol Evol 2023; 13:e10525. [PMID: 37732287 PMCID: PMC10508967 DOI: 10.1002/ece3.10525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/29/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023] Open
Abstract
Dingoes arrived in Australia during the mid-Holocene and are the top-order terrestrial predator on the continent. Although dingoes subsequently spread across the continent, the initial founding population(s) could have been small. We investigated this hypothesis by sequencing the whole genomes of three dingoes and also obtaining the genome data from nine additional dingoes and 56 canines, including wolves, village dogs and breed dogs, and examined the signatures of bottlenecks and founder effects. We found that the nucleotide diversity of dingoes was low, 36% less than highly inbred breed dogs and 3.3 times lower than wolves. The number of runs of homozygosity (RoH) segments in dingoes was 1.6-4.7 times higher than in other canines. While examining deleterious mutational load, we observed that dingoes carried elevated ratios of nonsynonymous-to-synonymous diversities, significantly higher numbers of homozygous deleterious Single Nucleotide Variants (SNVs), and increased numbers of loss of function SNVs, compared to breed dogs, village dogs, and wolves. Our findings can be explained by bottlenecks and founder effects during the establishment of dingoes in mainland Australia. These findings highlight the need for conservation-based management of dingoes and the need for wildlife managers to be cognisant of these findings when considering the use of lethal control measures across the landscape.
Collapse
Affiliation(s)
- Manoharan Kumar
- School of Science, Technology, and EngineeringThe University of the Sunshine CoastMoreton BayQueenslandAustralia
| | - Gabriel Conroy
- Centre for BioinnovationThe University of the Sunshine CoastSippy DownsQueenslandAustralia
- School of Science, Technology, and EngineeringThe University of the Sunshine CoastSippy DownsQueenslandAustralia
| | - Steven Ogbourne
- Centre for BioinnovationThe University of the Sunshine CoastSippy DownsQueenslandAustralia
| | - Kylie Cairns
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUNSW AustraliaSydneyNew South WalesAustralia
- Centre for Ecosystem Science, School of Biological, Earth and Environmental SciencesUNSW AustraliaSydneyNew South WalesAustralia
| | - Liesbeth Borburgh
- School of Science, Technology, and EngineeringThe University of the Sunshine CoastSippy DownsQueenslandAustralia
| | - Sankar Subramanian
- School of Science, Technology, and EngineeringThe University of the Sunshine CoastMoreton BayQueenslandAustralia
- Centre for BioinnovationThe University of the Sunshine CoastSippy DownsQueenslandAustralia
| |
Collapse
|
10
|
Gonçalves-Dias J, Singh A, Graf C, Stetter MG. Genetic Incompatibilities and Evolutionary Rescue by Wild Relatives Shaped Grain Amaranth Domestication. Mol Biol Evol 2023; 40:msad177. [PMID: 37552934 PMCID: PMC10439364 DOI: 10.1093/molbev/msad177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023] Open
Abstract
Crop domestication and the subsequent expansion of crops have long been thought of as a linear process from a wild ancestor to a domesticate. However, evidence of gene flow from locally adapted wild relatives that provided adaptive alleles into crops has been identified in multiple species. Yet, little is known about the evolutionary consequences of gene flow during domestication and the interaction of gene flow and genetic load in crop populations. We study the pseudo-cereal grain amaranth that has been domesticated three times in different geographic regions of the Americas. We quantify the amount and distribution of gene flow and genetic load along the genome of the three grain amaranth species and their two wild relatives. Our results show ample gene flow between crop species and between crops and their wild relatives. Gene flow from wild relatives decreased genetic load in the three crop species. This suggests that wild relatives could provide evolutionary rescue by replacing deleterious alleles in crops. We assess experimental hybrids between the three crop species and found genetic incompatibilities between one Central American grain amaranth and the other two crop species. These incompatibilities might have created recent reproductive barriers and maintained species integrity today. Together, our results show that gene flow played an important role in the domestication and expansion of grain amaranth, despite genetic species barriers. The domestication of plants was likely not linear and created a genomic mosaic by multiple contributors with varying fitness effects for today's crops.
Collapse
Affiliation(s)
| | - Akanksha Singh
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Corbinian Graf
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Markus G Stetter
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Díez-Del-Molino D, Dehasque M, Chacón-Duque JC, Pečnerová P, Tikhonov A, Protopopov A, Plotnikov V, Kanellidou F, Nikolskiy P, Mortensen P, Danilov GK, Vartanyan S, Gilbert MTP, Lister AM, Heintzman PD, van der Valk T, Dalén L. Genomics of adaptive evolution in the woolly mammoth. Curr Biol 2023; 33:1753-1764.e4. [PMID: 37030294 DOI: 10.1016/j.cub.2023.03.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/24/2023] [Accepted: 03/29/2023] [Indexed: 04/10/2023]
Abstract
Ancient genomes provide a tool to investigate the genetic basis of adaptations in extinct organisms. However, the identification of species-specific fixed genetic variants requires the analysis of genomes from multiple individuals. Moreover, the long-term scale of adaptive evolution coupled with the short-term nature of traditional time series data has made it difficult to assess when different adaptations evolved. Here, we analyze 23 woolly mammoth genomes, including one of the oldest known specimens at 700,000 years old, to identify fixed derived non-synonymous mutations unique to the species and to obtain estimates of when these mutations evolved. We find that at the time of its origin, the woolly mammoth had already acquired a broad spectrum of positively selected genes, including ones associated with hair and skin development, fat storage and metabolism, and immune system function. Our results also suggest that these phenotypes continued to evolve during the last 700,000 years, but through positive selection on different sets of genes. Finally, we also identify additional genes that underwent comparatively recent positive selection, including multiple genes related to skeletal morphology and body size, as well as one gene that may have contributed to the small ear size in Late Quaternary woolly mammoths.
Collapse
Affiliation(s)
- David Díez-Del-Molino
- Centre for Palaeogenetics, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden.
| | - Marianne Dehasque
- Centre for Palaeogenetics, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden
| | - J Camilo Chacón-Duque
- Centre for Palaeogenetics, 10691 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Patrícia Pečnerová
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden; Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alexei Tikhonov
- Zoological Institute of the Russian Academy of Sciences, 190121 Saint Petersburg, Russia
| | | | | | - Foteini Kanellidou
- Centre for Palaeogenetics, 10691 Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Clinical Genomics Facility, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Pavel Nikolskiy
- Geological Institute, Russian Academy of Sciences, 119017 Moscow, Russia
| | - Peter Mortensen
- Department of Zoology, Swedish Museum of Natural History, 10405 Stockholm, Sweden
| | - Gleb K Danilov
- Peter the Great Museum of Anthropology and Ethnography, Kunstkamera, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Sergey Vartanyan
- North-East Interdisciplinary Scientific Research Institute N.A. Shilo, Far East Branch, Russian Academy of Sciences (NEISRI FEB RAS), 685000 Magadan, Russia
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, 1353 Copenhagen, Denmark; University Museum NTNU, 7012 Trondheim, Norway
| | | | - Peter D Heintzman
- Centre for Palaeogenetics, 10691 Stockholm, Sweden; Department of Geological Sciences, Stockholm University, 11418 Stockholm, Sweden
| | - Tom van der Valk
- Centre for Palaeogenetics, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden; Science for Life Laboratory, 17165 Stockholm, Sweden
| | - Love Dalén
- Centre for Palaeogenetics, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden.
| |
Collapse
|
12
|
Subramanian S, Kumar M. Genomic footprints of bottleneck in landlocked salmon population. Sci Rep 2023; 13:6706. [PMID: 37185620 PMCID: PMC10130149 DOI: 10.1038/s41598-023-34076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
At the end of the last ice age, several Atlantic salmon populations got caught up in the lakes and ponds of the Northern Hemisphere. Occasionally, the populations also got locked when the flow of rivers terminated from reaching the sea due to land upheaval. Therefore, the pattern of evolution shaping the landlocked salmon populations is different from the other anadromous salmons, which migrate between the sea and rivers. According to the theories of population genetics, the effect of genetic drift is expected to be more pronounced in the former compared to the latter. Here we examined this using the whole genome data of landlocked and anadromous salmon populations of Norway. Our results showed a 50-80% reduction in the genomic heterozygosity in the landlocked compared to anadromous salmon populations. The number and total size of the runs of homozygosity (RoH) segments of landlocked salmons were two to eightfold higher than those of their anadromous counterparts. We found the former had a higher ratio of nonsynonymous-to-synonymous diversities than the latter. The investigation also revealed a significant elevation of homozygous deleterious Single Nucleotide Variants (SNVs) in the landlocked salmon compared to the anadromous populations. All these results point to a significant reduction in the population size of the landlocked salmons. This process of reduction might have started recently as the phylogeny revealed a recent separation of the landlocked from the anadromous population. Previous studies on terrestrial vertebrates observed similar signatures of a bottleneck when the populations from Island and the mainland were compared. Since landlocked waterbody such as ponds and lakes are geographically analogous to Islands for fish populations, the findings of this study suggest the similarity in the patterns of evolution between the two.
Collapse
Affiliation(s)
- Sankar Subramanian
- Centre for Bioinnovation, School of Science, Technology, and Engineering, The University of the Sunshine Coast, 1 Moreton Parade, Petrie, Moreton Bay, QLD, 4502, Australia.
| | - Manoharan Kumar
- Centre for Bioinnovation, School of Science, Technology, and Engineering, The University of the Sunshine Coast, 1 Moreton Parade, Petrie, Moreton Bay, QLD, 4502, Australia
| |
Collapse
|
13
|
Ramasamy U, Elizur A, Subramanian S. Deleterious mutation load in the admixed mice population. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1084502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Deleterious mutation loads are known to correlate negatively with effective population size (Ne). Due to this reason, previous studies observed a higher proportion of harmful mutations in small populations than that in large populations. However, the mutational load in an admixed population that derived from introgression between individuals from two populations with vastly different Ne is not known. We investigated this using the whole genome data from two subspecies of the mouse (Mus musculus castaneus and Mus musculus musculus) with significantly different Ne. We used the ratio of diversities at nonsynonymous and synonymous sites (dN/dS) to measure the harmful mutation load. Our results showed that this ratio observed for the admixed population was intermediate between those of the parental populations. The dN/dS ratio of the hybrid population was significantly higher than that of M. m. castaneus but lower than that of M. m. musculus. Our analysis revealed a significant positive correlation between the proportion of M. m. musculus ancestry in admixed individuals and their dN/dS ratio. This suggests that the admixed individuals with high proportions of M. m. musculus ancestry have large dN/dS ratios. We also used the proportion of deleterious nonsynonymous SNVs as a proxy for deleterious mutation load, which also produced similar results. The observed results were in concordance with those expected by theory. We also show a shift in the distribution of fitness effects of nonsynonymous SNVs in the admixed genomes compared to the parental populations. These findings suggest that the deleterious mutation load of the admixed population is determined by the proportion of the ancestries of the subspecies. Therefore, it is important to consider the status and the level of genetic admixture of the populations whilst estimating the mutation loads.
Collapse
|
14
|
Robinson J, Kyriazis CC, Yuan SC, Lohmueller KE. Deleterious Variation in Natural Populations and Implications for Conservation Genetics. Annu Rev Anim Biosci 2023; 11:93-114. [PMID: 36332644 PMCID: PMC9933137 DOI: 10.1146/annurev-animal-080522-093311] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Deleterious mutations decrease reproductive fitness and are ubiquitous in genomes. Given that many organisms face ongoing threats of extinction, there is interest in elucidating the impact of deleterious variation on extinction risk and optimizing management strategies accounting for such mutations. Quantifying deleterious variation and understanding the effects of population history on deleterious variation are complex endeavors because we do not know the strength of selection acting on each mutation. Further, the effect of demographic history on deleterious mutations depends on the strength of selection against the mutation and the degree of dominance. Here we clarify how deleterious variation can be quantified and studied in natural populations. We then discuss how different demographic factors, such as small population size, nonequilibrium population size changes, inbreeding, and gene flow, affect deleterious variation. Lastly, we provide guidance on studying deleterious variation in nonmodel populations of conservation concern.
Collapse
Affiliation(s)
- Jacqueline Robinson
- Institute for Human Genetics, University of California, San Francisco, California, USA;
| | - Christopher C Kyriazis
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , ,
| | - Stella C Yuan
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , ,
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , , .,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
15
|
Wootton E, Robert C, Taillon J, Côté SD, Shafer ABA. Genomic health is dependent on long-term population demographic history. Mol Ecol 2023; 32:1943-1954. [PMID: 36704858 DOI: 10.1111/mec.16863] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Current genetic methods of population assessment in conservation biology have been challenged by genome-scale analyses due to their quantitatively novel insights. These analyses include assessments of runs-of-homozygosity (ROH), genomic evolutionary rate profiling (GERP), and mutational load. Here, we aim to elucidate the relationships between these measures using three divergent ungulates: white-tailed deer, caribou, and mountain goat. The white-tailed deer is currently expanding, while caribou are in the midst of a significant decline. Mountain goats remain stable, having suffered a large historical bottleneck. We assessed genome-wide signatures of inbreeding using the inbreeding coefficient F and %ROH (FROH ) and identified evolutionarily constrained regions with GERP. Mutational load was estimated by identifying mutations in highly constrained elements (CEs) and sorting intolerant from tolerant (SIFT) mutations. Our results showed that F and FROH are higher in mountain goats than in caribou and white-tailed deer. Given the extended bottleneck and low Ne of the mountain goat, this supports the idea that the genome-wide effects of demographic change take time to accrue. Similarly, we found that mountain goats possess more highly constrained CEs and the lowest dN/dS values, both of which are indicative of greater purifying selection; this is also reflected by fewer mutations in CEs and deleterious mutations identified by SIFT. In contrast, white-tailed deer presented the highest mutational load with both metrics, in addition to dN/dS, while caribou were intermediate. Our results demonstrate that extended bottlenecks may lead to reduced diversity and increased FROH in ungulates, but not necessarily an increase in mutational load, probably due to the purging of deleterious alleles in small populations.
Collapse
Affiliation(s)
- Eric Wootton
- Biochemistry and Molecular Biology, Trent University, Peterborough, Ontario, Canada
| | - Claude Robert
- Département des Sciences Animales, Université Laval, Québec, Québec, Canada
| | - Joëlle Taillon
- Direction de l'Expertise sur la Faune Terrestre, l'Herpétofaune et l'Avifaune, Ministère des Forêts, de la Faune et des Parcs, Gouvernement du Québec, Québec, Québec, Canada
| | - Steeve D Côté
- Département de Biologie, Caribou Ungava and Centre d'Études Nordiques, Université Laval, Québec, Québec, Canada
| | - Aaron B A Shafer
- Environmental and Life Sciences Graduate Programme, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
16
|
Söylev A, Çokoglu SS, Koptekin D, Alkan C, Somel M. CONGA: Copy number variation genotyping in ancient genomes and low-coverage sequencing data. PLoS Comput Biol 2022; 18:e1010788. [PMID: 36516232 PMCID: PMC9873172 DOI: 10.1371/journal.pcbi.1010788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/24/2023] [Accepted: 12/03/2022] [Indexed: 12/15/2022] Open
Abstract
To date, ancient genome analyses have been largely confined to the study of single nucleotide polymorphisms (SNPs). Copy number variants (CNVs) are a major contributor of disease and of evolutionary adaptation, but identifying CNVs in ancient shotgun-sequenced genomes is hampered by typical low genome coverage (<1×) and short fragments (<80 bps), precluding standard CNV detection software to be effectively applied to ancient genomes. Here we present CONGA, tailored for genotyping CNVs at low coverage. Simulations and down-sampling experiments suggest that CONGA can genotype deletions >1 kbps with F-scores >0.75 at ≥1×, and distinguish between heterozygous and homozygous states. We used CONGA to genotype 10,002 outgroup-ascertained deletions across a heterogenous set of 71 ancient human genomes spanning the last 50,000 years, produced using variable experimental protocols. A fraction of these (21/71) display divergent deletion profiles unrelated to their population origin, but attributable to technical factors such as coverage and read length. The majority of the sample (50/71), despite originating from nine different laboratories and having coverages ranging from 0.44×-26× (median 4×) and average read lengths 52-121 bps (median 69), exhibit coherent deletion frequencies. Across these 50 genomes, inter-individual genetic diversity measured using SNPs and CONGA-genotyped deletions are highly correlated. CONGA-genotyped deletions also display purifying selection signatures, as expected. CONGA thus paves the way for systematic CNV analyses in ancient genomes, despite the technical challenges posed by low and variable genome coverage.
Collapse
Affiliation(s)
- Arda Söylev
- Department of Computer Engineering, Konya Food and Agriculture University, Konya, Turkey
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- * E-mail: (AS); (MS)
| | | | - Dilek Koptekin
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Can Alkan
- Department of Computer Engineering, Bilkent University, Ankara, Turkey
| | - Mehmet Somel
- Department of Biology, Middle East Technical University, Ankara, Turkey
- * E-mail: (AS); (MS)
| |
Collapse
|
17
|
Tian D, Patton AH, Turner BJ, Martin CH. Severe inbreeding, increased mutation load and gene loss-of-function in the critically endangered Devils Hole pupfish. Proc Biol Sci 2022; 289:20221561. [PMID: 36321496 PMCID: PMC9627712 DOI: 10.1098/rspb.2022.1561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Small populations with limited range are often threatened by inbreeding and reduced genetic diversity, which can reduce fitness and exacerbate population decline. One of the most extreme natural examples is the Devils Hole pupfish (Cyprinodon diabolis), an iconic and critically endangered species with the smallest known range of any vertebrate. This species has experienced severe declines in population size over the last 30 years and suffered major bottlenecks in 2007 and 2013, when the population shrunk to 38 and 35 individuals, respectively. Here, we analysed 30 resequenced genomes of desert pupfishes from Death Valley, Ash Meadows and surrounding areas to examine the genomic consequences of small population size. We found extremely high levels of inbreeding (FROH = 0.34-0.81) and an increased amount of potentially deleterious genetic variation in the Devils Hole pupfish as compared to other species, including unique, fixed loss-of-function alleles and deletions in genes associated with sperm motility and hypoxia. Additionally, we successfully resequenced a formalin-fixed museum specimen from 1980 and found that the population was already highly inbred prior to recent known bottlenecks. We thus document severe inbreeding and increased mutation load in the Devils Hole pupfish and identify candidate deleterious variants to inform management of this conservation icon.
Collapse
Affiliation(s)
- David Tian
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Austin H. Patton
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Bruce J. Turner
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Christopher H. Martin
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
18
|
Chen H, Huang M, Liu D, Tang H, Zheng S, Ouyang J, Zhang H, Wang L, Luo K, Gao Y, Wu Y, Wu Y, Xiong Y, Luo T, Huang Y, Xiong R, Ren J, Huang J, Yan X. Genomic signatures and evolutionary history of the endangered blue-crowned laughingthrush and other Garrulax species. BMC Biol 2022; 20:188. [PMID: 36002819 PMCID: PMC9400264 DOI: 10.1186/s12915-022-01390-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/12/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The blue-crowned laughingthrush (Garrulax courtoisi) is a critically endangered songbird endemic to Wuyuan, China, with population of ~323 individuals. It has attracted widespread attention, but the lack of a published genome has limited research and species protection. RESULTS We report two laughingthrush genome assemblies and reveal the taxonomic status of laughingthrush species among 25 common avian species according to the comparative genomic analysis. The blue-crowned laughingthrush, black-throated laughingthrush, masked laughingthrush, white-browed laughingthrush, and rusty laughingthrush showed a close genetic relationship, and they diverged from a common ancestor between ~2.81 and 12.31 million years ago estimated by the population structure and divergence analysis using 66 whole-genome sequencing birds from eight laughingthrush species and one out group (Cyanopica cyanus). Population inference revealed that the laughingthrush species experienced a rapid population decline during the last ice age and a serious bottleneck caused by a cold wave during the Chinese Song Dynasty (960-1279 AD). The blue-crowned laughingthrush is still in a bottleneck, which may be the result of a cold wave together with human exploitation. Interestingly, the existing blue-crowned laughingthrush exhibits extremely rich genetic diversity compared to other laughingthrushes. These genetic characteristics and demographic inference patterns suggest a genetic heritage of population abundance in the blue-crowned laughingthrush. The results also suggest that fewer deleterious mutations in the blue-crowned laughingthrush genomes have allowed them to thrive even with a small population size. We believe that cooperative breeding behavior and a long reproduction period may enable the blue-crowned laughingthrush to maintain genetic diversity and avoid inbreeding depression. We identified 43 short tandem repeats that can be used as markers to identify the sex of the blue-crowned laughingthrush and aid in its genetic conservation. CONCLUSIONS This study supplies the missing reference genome of laughingthrush, provides insight into the genetic variability, evolutionary potential, and molecular ecology of laughingthrush and provides a genomic resource for future research and conservation.
Collapse
Affiliation(s)
- Hao Chen
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Min Huang
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | | | - Hongbo Tang
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Sumei Zheng
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jing Ouyang
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Hui Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Luping Wang
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Keyi Luo
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Yuren Gao
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Yongfei Wu
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Yan Wu
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Yanpeng Xiong
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Tao Luo
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Yuxuan Huang
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Rui Xiong
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Jun Ren
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jianhua Huang
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China.
| | - Xueming Yan
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
19
|
van der Valk T, Dehasque M, Chacón-Duque JC, Oskolkov N, Vartanyan S, Heintzman PD, Pečnerová P, Díez-del-Molino D, Dalén L. Evolutionary consequences of genomic deletions and insertions in the woolly mammoth genome. iScience 2022; 25:104826. [PMID: 35992080 PMCID: PMC9382235 DOI: 10.1016/j.isci.2022.104826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/02/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Woolly mammoths had a set of adaptations that enabled them to thrive in the Arctic environment. Many mammoth-specific single nucleotide polymorphisms (SNPs) responsible for unique mammoth traits have been previously identified from ancient genomes. However, a multitude of other genetic variants likely contributed to woolly mammoth evolution. In this study, we sequenced two woolly mammoth genomes and combined these with previously sequenced mammoth and elephant genomes to conduct a survey of mammoth-specific deletions and indels. We find that deletions are highly enriched in non-coding regions, suggesting selection against structural variants that affect protein sequences. Nonetheless, at least 87 woolly mammoth genes contain deletions or indels that modify the coding sequence, including genes involved in skeletal morphology and hair growth. These results suggest that deletions and indels contributed to the unique phenotypic adaptations of the woolly mammoth, and were potentially critical to surviving in its natural environment. Two new high-quality woolly mammoth genomes have been generated A new method was used to identify deletions and insertions in woolly mammoths At least 87 genes have been affected by deletions or indels in the mammoth lineage Genes involved in skeletal morphology and hair growth are affected by deletions
Collapse
|
20
|
Yoth M, Jensen S, Brasset E. The Intricate Evolutionary Balance between Transposable Elements and Their Host: Who Will Kick at Goal and Convert the Next Try? BIOLOGY 2022; 11:710. [PMID: 35625438 PMCID: PMC9138309 DOI: 10.3390/biology11050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
Abstract
Transposable elements (TEs) are mobile DNA sequences that can jump from one genomic locus to another and that have colonized the genomes of all living organisms. TE mobilization and accumulation are an important source of genomic innovations that greatly contribute to the host species evolution. To ensure their maintenance and amplification, TE transposition must occur in the germ cell genome. As TE transposition is also a major threat to genome integrity, the outcome of TE mobility in germ cell genomes could be highly dangerous because such mutations are inheritable. Thus, organisms have developed specialized strategies to protect the genome integrity from TE transposition, particularly in germ cells. Such effective TE silencing, together with ongoing mutations and negative selection, should result in the complete elimination of functional TEs from genomes. However, TEs have developed efficient strategies for their maintenance and spreading in populations, particularly by using horizontal transfer to invade the genome of novel species. Here, we discuss how TEs manage to bypass the host's silencing machineries to propagate in its genome and how hosts engage in a fightback against TE invasion and propagation. This shows how TEs and their hosts have been evolving together to achieve a fine balance between transposition and repression.
Collapse
Affiliation(s)
| | | | - Emilie Brasset
- iGReD, CNRS, INSERM, Faculté de Médecine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (M.Y.); (S.J.)
| |
Collapse
|
21
|
Mularo AJ, Bernal XE, DeWoody JA. Dominance can increase genetic variance after a population bottleneck: a synthesis of the theoretical and empirical evidence. J Hered 2022; 113:257-271. [PMID: 35143665 DOI: 10.1093/jhered/esac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Drastic reductions in population size, or population bottlenecks, can lead to a reduction in additive genetic variance and adaptive potential. Genetic variance for some quantitative genetic traits, however, can increase after a population reduction. Empirical evaluations of quantitative traits following experimental bottlenecks indicate that non-additive genetic effects, including both allelic dominance at a given locus and epistatic interactions among loci, may impact the additive variance contributed by alleles that ultimately influences phenotypic expression and fitness. The dramatic effects of bottlenecks on overall genetic diversity have been well studied, but relatively little is known about how dominance and demographic events like bottlenecks can impact additive genetic variance. Herein, we critically examine how the degree of dominance among alleles affects additive genetic variance after a bottleneck. We first review and synthesize studies that document the impact of empirical bottlenecks on dominance variance. We then extend earlier work by elaborating on two theoretical models that illustrate the relationship between dominance and the potential increase in additive genetic variance immediately following a bottleneck. Furthermore, we investigate the parameters that influence the maximum level of genetic variation (associated with adaptive potential) after a bottleneck, including the number of founding individuals. Finally, we validated our methods using forward-time population genetic simulations of loci with varying dominance and selection levels. The fate of non-additive genetic variation following bottlenecks could have important implications for conservation and management efforts in a wide variety of taxa, and our work should help contextualize future studies (e.g., epistatic variance) in population genomics.
Collapse
Affiliation(s)
- Andrew J Mularo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Ximena E Bernal
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA.,Smithsonian Tropical Research Institute, Balboa, Republic of Panamá
| | - J Andrew DeWoody
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA.,Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN
| |
Collapse
|
22
|
Viluma A, Flagstad Ø, Åkesson M, Wikenros C, Sand H, Wabakken P, Ellegren H. Whole-genome resequencing of temporally stratified samples reveals substantial loss of haplotype diversity in the highly inbred Scandinavian wolf population. Genome Res 2022; 32:449-458. [PMID: 35135873 PMCID: PMC8896455 DOI: 10.1101/gr.276070.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022]
Abstract
Genetic drift can dramatically change allele frequencies in small populations and lead to reduced levels of genetic diversity, including loss of segregating variants. However, there is a shortage of quantitative studies of how genetic diversity changes over time in natural populations, especially on genome-wide scales. Here, we analyzed whole-genome sequences from 76 wolves of a highly inbred Scandinavian population, founded by only one female and two males, sampled over a period of 30 yr. We obtained chromosome-level haplotypes of all three founders and found that 10%–24% of their diploid genomes had become lost after about 20 yr of inbreeding (which approximately corresponds to five generations). Lost haplotypes spanned large genomic regions, as expected from the amount of recombination during this limited time period. Altogether, 160,000 SNP alleles became lost from the population, which may include adaptive variants as well as wild-type alleles masking recessively deleterious alleles. Although not sampled, we could indirectly infer that the two male founders had megabase-sized runs of homozygosity and that all three founders showed significant haplotype sharing, meaning that there were on average only 4.2 unique haplotypes in the six copies of each autosome that the founders brought into the population. This violates the assumption of unrelated founder haplotypes often made in conservation and management of endangered species. Our study provides a novel view of how whole-genome resequencing of temporally stratified samples can be used to visualize and directly quantify the consequences of genetic drift in a small inbred population.
Collapse
|
23
|
Genetic load: genomic estimates and applications in non-model animals. Nat Rev Genet 2022; 23:492-503. [PMID: 35136196 DOI: 10.1038/s41576-022-00448-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 12/11/2022]
Abstract
Genetic variation, which is generated by mutation, recombination and gene flow, can reduce the mean fitness of a population, both now and in the future. This 'genetic load' has been estimated in a wide range of animal taxa using various approaches. Advances in genome sequencing and computational techniques now enable us to estimate the genetic load in populations and individuals without direct fitness estimates. Here, we review the classic and contemporary literature of genetic load. We describe approaches to quantify the genetic load in whole-genome sequence data based on evolutionary conservation and annotations. We show that splitting the load into its two components - the realized load (or expressed load) and the masked load (or inbreeding load) - can improve our understanding of the population genetics of deleterious mutations.
Collapse
|
24
|
Tofanelli S, Bertoncini S, Donati G. Early Human Colonization, Climate Change and Megafaunal Extinction in Madagascar: The Contribution of Genetics in a Framework of Reciprocal Causations. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.708345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Xie HX, Liang XX, Chen ZQ, Li WM, Mi CR, Li M, Wu ZJ, Zhou XM, Du WG. Ancient demographics determine the effectiveness of genetic purging in endangered lizards. Mol Biol Evol 2021; 39:6468625. [PMID: 34919713 PMCID: PMC8788223 DOI: 10.1093/molbev/msab359] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The purging of deleterious alleles has been hypothesized to mitigate inbreeding depression, but its effectiveness in endangered species remains debatable. To understand how deleterious alleles are purged during population contractions, we analyzed genomes of the endangered Chinese crocodile lizard (Shinisaurus crocodilurus), which is the only surviving species of its family and currently isolated into small populations. Population genomic analyses revealed four genetically distinct conservation units and sharp declines in both effective population size and genetic diversity. By comparing the relative genetic load across populations and conducting genomic simulations, we discovered that seriously deleterious alleles were effectively purged during population contractions in this relict species, although inbreeding generally enhanced the genetic burden. However, despite with the initial purging, our simulations also predicted that seriously deleterious alleles will gradually accumulate under prolonged bottlenecking. Therefore, we emphasize the importance of maintaining a minimum population capacity and increasing the functional genetic diversity in conservation efforts to preserve populations of the crocodile lizard and other endangered species.
Collapse
Affiliation(s)
- Hong-Xin Xie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-Xi Liang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhi-Qiang Chen
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Wei-Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chun-Rong Mi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zheng-Jun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education (Guangxi Normal University, Guilin, 541004, China ).,Guangxi Key Laboratory of Rare and Endangered Animal Ecology, College of Life Science, Guangxi Normal University, Guilin, 541006, China
| | - Xu-Ming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
26
|
Wang Y, Pedersen MW, Alsos IG, De Sanctis B, Racimo F, Prohaska A, Coissac E, Owens HL, Merkel MKF, Fernandez-Guerra A, Rouillard A, Lammers Y, Alberti A, Denoeud F, Money D, Ruter AH, McColl H, Larsen NK, Cherezova AA, Edwards ME, Fedorov GB, Haile J, Orlando L, Vinner L, Korneliussen TS, Beilman DW, Bjørk AA, Cao J, Dockter C, Esdale J, Gusarova G, Kjeldsen KK, Mangerud J, Rasic JT, Skadhauge B, Svendsen JI, Tikhonov A, Wincker P, Xing Y, Zhang Y, Froese DG, Rahbek C, Bravo DN, Holden PB, Edwards NR, Durbin R, Meltzer DJ, Kjær KH, Möller P, Willerslev E. Late Quaternary dynamics of Arctic biota from ancient environmental genomics. Nature 2021; 600:86-92. [PMID: 34671161 PMCID: PMC8636272 DOI: 10.1038/s41586-021-04016-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 09/13/2021] [Indexed: 11/08/2022]
Abstract
During the last glacial-interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood1-8. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences. Our study provides several insights into the long-term dynamics of the Arctic biota at the circumpolar and regional scales. Our key findings include: (1) a relatively homogeneous steppe-tundra flora dominated the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene epoch; (2) certain grazing animals consistently co-occurred in space and time; (3) humans appear to have been a minor factor in driving animal distributions; (4) higher effective precipitation, as well as an increase in the proportion of wetland plants, show negative effects on animal diversity; (5) the persistence of the steppe-tundra vegetation in northern Siberia enabled the late survival of several now-extinct megafauna species, including the woolly mammoth until 3.9 ± 0.2 thousand years ago (ka) and the woolly rhinoceros until 9.8 ± 0.2 ka; and (6) phylogenetic analysis of mammoth environmental DNA reveals a previously unsampled mitochondrial lineage. Our findings highlight the power of ancient environmental metagenomics analyses to advance understanding of population histories and long-term ecological dynamics.
Collapse
Affiliation(s)
- Yucheng Wang
- Department of Zoology, University of Cambridge, Cambridge, UK
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Winther Pedersen
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Inger Greve Alsos
- The Arctic University Museum of Norway, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Bianca De Sanctis
- Department of Zoology, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Fernando Racimo
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ana Prohaska
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Eric Coissac
- The Arctic University Museum of Norway, UiT- The Arctic University of Norway, Tromsø, Norway
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Hannah Lois Owens
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Antonio Fernandez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alexandra Rouillard
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Geosciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Youri Lammers
- The Arctic University Museum of Norway, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Adriana Alberti
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - France Denoeud
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Daniel Money
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Anthony H Ruter
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Hugh McColl
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Nicolaj Krog Larsen
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Anna A Cherezova
- Institute of Earth Sciences, St Petersburg State University, St Petersburg, Russia
- Arctic and Antarctic Research Institute, St Petersburg, Russia
| | - Mary E Edwards
- School of Geography and Environmental Science, University of Southampton, Southampton, UK
- Alaska Quaternary Center, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Grigory B Fedorov
- Institute of Earth Sciences, St Petersburg State University, St Petersburg, Russia
- Arctic and Antarctic Research Institute, St Petersburg, Russia
| | - James Haile
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ludovic Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Faculté de Médecine Purpan, Toulouse, France
| | - Lasse Vinner
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Thorfinn Sand Korneliussen
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- National Research University, Higher School of Economics, Moscow, Russia
| | - David W Beilman
- Department of Geography and Environment, University of Hawaii, Honolulu, HI, USA
| | - Anders A Bjørk
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Jialu Cao
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Julie Esdale
- Center for Environmental Management of Military Lands, Colorado State University, Fort Collins, CO, USA
| | - Galina Gusarova
- The Arctic University Museum of Norway, UiT- The Arctic University of Norway, Tromsø, Norway
- Faculty of Biology, St Petersburg State University, St Petersburg, Russia
| | - Kristian K Kjeldsen
- Department of Glaciology and Climate, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| | - Jan Mangerud
- Department of Earth Science, University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, Bergen, Norway
| | - Jeffrey T Rasic
- US National Park Service, Gates of the Arctic National Park and Preserve, Fairbanks, AK, USA
| | | | - John Inge Svendsen
- Department of Earth Science, University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, Bergen, Norway
| | - Alexei Tikhonov
- Zoological Institute, , Russian Academy of Sciences, St Petersburg, Russia
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Yingchun Xing
- Resource and Environmental Research Center, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yubin Zhang
- College of Plant Science, Jilin University, Changchun, China
| | - Duane G Froese
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - David Nogues Bravo
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Philip B Holden
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK
| | - Neil R Edwards
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - David J Meltzer
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Anthropology, Southern Methodist University, Dallas, TX, USA
| | - Kurt H Kjær
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Per Möller
- Department of Geology, Quaternary Sciences, Lund University, Lund, Sweden
| | - Eske Willerslev
- Department of Zoology, University of Cambridge, Cambridge, UK.
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- MARUM, University of Bremen, Bremen, Germany.
| |
Collapse
|
27
|
Miao J, Farhat P, Wang W, Ruhsam M, Milne R, Yang H, Tso S, Li J, Xu J, Opgenoorth L, Miehe G, Mao K. Evolutionary history of two rare endemic conifer species from the eastern Qinghai-Tibet Plateau. ANNALS OF BOTANY 2021; 128:903-918. [PMID: 34472580 PMCID: PMC8577208 DOI: 10.1093/aob/mcab114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Understanding the population genetics and evolutionary history of endangered species is urgently needed in an era of accelerated biodiversity loss. This knowledge is most important for regions with high endemism that are ecologically vulnerable, such as the Qinghai-Tibet Plateau (QTP). METHODS The genetic variation of 84 juniper trees from six populations of Juniperus microsperma and one population of Juniperus erectopatens, two narrow-endemic junipers from the QTP that are sister to each other, was surveyed using RNA-sequencing data. Coalescent-based analyses were used to test speciation, migration and demographic scenarios. Furthermore, positively selected and climate-associated genes were identified, and the genetic load was assessed for both species. KEY RESULTS Analyses of 149 052 single nucleotide polymorphisms showed that the two species are well differentiated and monophyletic. They diverged around the late Pliocene, but interspecific gene flow continued until the Last Glacial Maximum. Demographic reconstruction by Stairway Plot detected two severe bottlenecks for J. microsperma but only one for J. erectopatens. The identified positively selected genes and climate-associated genes revealed habitat adaptation of the two species. Furthermore, although J. microsperma had a much wider geographical distribution than J. erectopatens, the former possesses lower genetic diversity and a higher genetic load than the latter. CONCLUSIONS This study sheds light on the evolution of two endemic juniper species from the QTP and their responses to Quaternary climate fluctuations. Our findings emphasize the importance of speciation and demographic history reconstructions in understanding the current distribution pattern and genetic diversity of threatened species in mountainous regions.
Collapse
Affiliation(s)
- Jibin Miao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
- College of Science, Tibet University, Lhasa 850000, PR China
| | - Perla Farhat
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
- CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Wentao Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Richard Milne
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3JH, UK
| | - Heng Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Sonam Tso
- College of Science, Tibet University, Lhasa 850000, PR China
| | - Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jingjing Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Lars Opgenoorth
- Faculty of Biology and Geology, University of Marburg, 35032 Marburg, Germany
| | - Georg Miehe
- Faculty of Biology and Geology, University of Marburg, 35032 Marburg, Germany
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
- College of Science, Tibet University, Lhasa 850000, PR China
| |
Collapse
|
28
|
Fordham DA, Brown SC, Akçakaya HR, Brook BW, Haythorne S, Manica A, Shoemaker KT, Austin JJ, Blonder B, Pilowsky J, Rahbek C, Nogues-Bravo D. Process-explicit models reveal pathway to extinction for woolly mammoth using pattern-oriented validation. Ecol Lett 2021; 25:125-137. [PMID: 34738712 DOI: 10.1111/ele.13911] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/18/2021] [Accepted: 10/05/2021] [Indexed: 12/01/2022]
Abstract
Pathways to extinction start long before the death of the last individual. However, causes of early stage population declines and the susceptibility of small residual populations to extirpation are typically studied in isolation. Using validated process-explicit models, we disentangle the ecological mechanisms and threats that were integral in the initial decline and later extinction of the woolly mammoth. We show that reconciling ancient DNA data on woolly mammoth population decline with fossil evidence of location and timing of extinction requires process-explicit models with specific demographic and niche constraints, and a constrained synergy of climatic change and human impacts. Validated models needed humans to hasten climate-driven population declines by many millennia, and to allow woolly mammoths to persist in mainland Arctic refugia until the mid-Holocene. Our results show that the role of humans in the extinction dynamics of woolly mammoth began well before the Holocene, exerting lasting effects on the spatial pattern and timing of its range-wide extinction.
Collapse
Affiliation(s)
- Damien A Fordham
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Stuart C Brown
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - H Reşit Akçakaya
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
| | - Barry W Brook
- School of Natural Sciences and ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania, Australia
| | - Sean Haythorne
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge, England
| | - Kevin T Shoemaker
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada, USA
| | - Jeremy J Austin
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Benjamin Blonder
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Julia Pilowsky
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Rahbek
- Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Life Sciences, Imperial College London, Ascot, England.,Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark.,Institute of Ecology, Peking University, Beijing, China
| | - David Nogues-Bravo
- Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Dussex N, van der Valk T, Morales HE, Wheat CW, Díez-del-Molino D, von Seth J, Foster Y, Kutschera VE, Guschanski K, Rhie A, Phillippy AM, Korlach J, Howe K, Chow W, Pelan S, Mendes Damas JD, Lewin HA, Hastie AR, Formenti G, Fedrigo O, Guhlin J, Harrop TW, Le Lec MF, Dearden PK, Haggerty L, Martin FJ, Kodali V, Thibaud-Nissen F, Iorns D, Knapp M, Gemmell NJ, Robertson F, Moorhouse R, Digby A, Eason D, Vercoe D, Howard J, Jarvis ED, Robertson BC, Dalén L. Population genomics of the critically endangered kākāpō. CELL GENOMICS 2021; 1:100002. [PMID: 36777713 PMCID: PMC9903828 DOI: 10.1016/j.xgen.2021.100002] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/23/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022]
Abstract
The kākāpō is a flightless parrot endemic to New Zealand. Once common in the archipelago, only 201 individuals remain today, most of them descending from an isolated island population. We report the first genome-wide analyses of the species, including a high-quality genome assembly for kākāpō, one of the first chromosome-level reference genomes sequenced by the Vertebrate Genomes Project (VGP). We also sequenced and analyzed 35 modern genomes from the sole surviving island population and 14 genomes from the extinct mainland population. While theory suggests that such a small population is likely to have accumulated deleterious mutations through genetic drift, our analyses on the impact of the long-term small population size in kākāpō indicate that present-day island kākāpō have a reduced number of harmful mutations compared to mainland individuals. We hypothesize that this reduced mutational load is due to the island population having been subjected to a combination of genetic drift and purging of deleterious mutations, through increased inbreeding and purifying selection, since its isolation from the mainland ∼10,000 years ago. Our results provide evidence that small populations can survive even when isolated for hundreds of generations. This work provides key insights into kākāpō breeding and recovery and more generally into the application of genetic tools in conservation efforts for endangered species.
Collapse
Affiliation(s)
- Nicolas Dussex
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden,Department of Zoology, Stockholm University, 10691 Stockholm, Sweden,Department of Anatomy, University of Otago, PO Box 913, Dunedin 9016, New Zealand,Corresponding author
| | - Tom van der Valk
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden
| | - Hernán E. Morales
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - David Díez-del-Molino
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden
| | - Johanna von Seth
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden,Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Yasmin Foster
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Verena E. Kutschera
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, 17121 Solna, Sweden
| | - Katerina Guschanski
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK,Department of Ecology and Genetics, Animal Ecology, Uppsala University, 75236 Uppsala, Sweden
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam M. Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonas Korlach
- Pacific Biosciences, 1305 O’Brien Drive, Menlo Park, CA 94025, USA
| | - Kerstin Howe
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - William Chow
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Sarah Pelan
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Joanna D. Mendes Damas
- Department of Evolution and Ecology and the UC Davis Genome Center, 4321 Genome and Biomedical Sciences Facility, University of California Davis, Davis, CA 95616, USA
| | - Harris A. Lewin
- Department of Evolution and Ecology and the UC Davis Genome Center, 4321 Genome and Biomedical Sciences Facility, University of California Davis, Davis, CA 95616, USA
| | - Alex R. Hastie
- Bionano Genomics, 9540 Towne Centre Drive, San Diego, CA 92121, USA
| | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY 10065, USA,Laboratory of Neurogenetics of Language, Box 54, The Rockefeller University, New York, NY 10065, USA,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY 10065, USA
| | - Joseph Guhlin
- Genomics Aotearoa and Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Thomas W.R. Harrop
- Genomics Aotearoa and Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Marissa F. Le Lec
- Genomics Aotearoa and Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Peter K. Dearden
- Genomics Aotearoa and Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Leanne Haggerty
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Fergal J. Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Vamsi Kodali
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - David Iorns
- The Genetic Rescue Foundation, Wellington, New Zealand
| | - Michael Knapp
- Department of Anatomy, University of Otago, PO Box 913, Dunedin 9016, New Zealand
| | - Neil J. Gemmell
- Department of Anatomy, University of Otago, PO Box 913, Dunedin 9016, New Zealand
| | - Fiona Robertson
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Ron Moorhouse
- Kākāpō Recovery, Department of Conservation, PO Box 743, Invercargill 9840, New Zealand
| | - Andrew Digby
- Kākāpō Recovery, Department of Conservation, PO Box 743, Invercargill 9840, New Zealand
| | - Daryl Eason
- Kākāpō Recovery, Department of Conservation, PO Box 743, Invercargill 9840, New Zealand
| | - Deidre Vercoe
- Kākāpō Recovery, Department of Conservation, PO Box 743, Invercargill 9840, New Zealand
| | - Jason Howard
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY 10065, USA,BioSkryb Genomics, 701 W Main Street, Suite 200, Durham, NC 27701, USA
| | - Erich D. Jarvis
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY 10065, USA,Laboratory of Neurogenetics of Language, Box 54, The Rockefeller University, New York, NY 10065, USA,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA,Corresponding author
| | - Bruce C. Robertson
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand,Corresponding author
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden,Department of Zoology, Stockholm University, 10691 Stockholm, Sweden,Corresponding author
| |
Collapse
|
30
|
Patil AB, Vijay N. Repetitive genomic regions and the inference of demographic history. Heredity (Edinb) 2021; 127:151-166. [PMID: 34002046 PMCID: PMC8322061 DOI: 10.1038/s41437-021-00443-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 02/03/2023] Open
Abstract
Inference of demographic histories using whole-genome datasets has provided insights into diversification, adaptation, hybridization, and plant-pathogen interactions, and stimulated debate on the impact of anthropogenic interventions and past climate on species demography. However, the impact of repetitive genomic regions on these inferences has mostly been ignored by masking of repeats. We use the Populus trichocarpa genome (Pop_tri_v3) to show that masking of repeat regions leads to lower estimates of effective population size (Ne) in the distant past in contrast to an increase in Ne estimates in recent times. However, in human datasets, masking of repeats resulted in lower estimates of Ne at all time points. We demonstrate that repeats affect demographic inferences using diverse methods like PSMC, MSMC, SMC++, and the Stairway plot. Our genomic analysis revealed that the biases in Ne estimates were dependent on the repeat class type and its abundance in each atomic interval. Notably, we observed a weak, yet consistently significant negative correlation between the repeat abundance of an atomic interval and the Ne estimates for that interval, which potentially reflects the recombination rate variation within the genome. The rationale for the masking of repeats has been that variants identified within these regions are erroneous. We find that polymorphisms in some repeat classes occur in callable regions and reflect reliable coalescence histories (e.g., LTR Gypsy, LTR Copia). The current demography inference methods do not handle repeats explicitly, and hence the effect of individual repeat classes needs careful consideration in comparative analysis. Deciphering the repeat demographic histories might provide a clear understanding of the processes involved in repeat accumulation.
Collapse
Affiliation(s)
- Ajinkya Bharatraj Patil
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.
| |
Collapse
|
31
|
Genetic structure and population history in two critically endangered Kaua‘i honeycreepers. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01382-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Mathur S, DeWoody JA. Genetic load has potential in large populations but is realized in small inbred populations. Evol Appl 2021; 14:1540-1557. [PMID: 34178103 PMCID: PMC8210801 DOI: 10.1111/eva.13216] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Populations with higher genetic diversity and larger effective sizes have greater evolutionary capacity (i.e., adaptive potential) to respond to ecological stressors. We are interested in how the variation captured in protein-coding genes fluctuates relative to overall genomic diversity and whether smaller populations suffer greater costs due to their genetic load of deleterious mutations compared with larger populations. We analyzed individual whole-genome sequences (N = 74) from three different populations of Montezuma quail (Cyrtonyx montezumae), a small ground-dwelling bird that is sustainably harvested in some portions of its range but is of conservation concern elsewhere. Our historical demographic results indicate that Montezuma quail populations in the United States exhibit low levels of genomic diversity due in large part to long-term declines in effective population sizes over nearly a million years. The smaller and more isolated Texas population is significantly more inbred than the large Arizona and the intermediate-sized New Mexico populations we surveyed. The Texas gene pool has a significantly smaller proportion of strongly deleterious variants segregating in the population compared with the larger Arizona gene pool. Our results demonstrate that even in small populations, highly deleterious mutations are effectively purged and/or lost due to drift. However, we find that in small populations the realized genetic load is elevated because of inbreeding coupled with a higher frequency of slightly deleterious mutations that are manifested in homozygotes. Overall, our study illustrates how population genomics can be used to proactively assess both neutral and functional aspects of contemporary genetic diversity in a conservation framework while simultaneously considering deeper demographic histories.
Collapse
Affiliation(s)
- Samarth Mathur
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Present address:
Department of Evolution, Ecology and Organismal BiologyThe Ohio State UniversityColumbusOhioUSA
| | - J. Andrew DeWoody
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
33
|
Louys J, Braje TJ, Chang CH, Cosgrove R, Fitzpatrick SM, Fujita M, Hawkins S, Ingicco T, Kawamura A, MacPhee RDE, McDowell MC, Meijer HJM, Piper PJ, Roberts P, Simmons AH, van den Bergh G, van der Geer A, Kealy S, O'Connor S. No evidence for widespread island extinctions after Pleistocene hominin arrival. Proc Natl Acad Sci U S A 2021; 118:e2023005118. [PMID: 33941645 PMCID: PMC8157961 DOI: 10.1073/pnas.2023005118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The arrival of modern humans into previously unoccupied island ecosystems is closely linked to widespread extinction, and a key reason cited for Pleistocene megafauna extinction is anthropogenic overhunting. A common assumption based on late Holocene records is that humans always negatively impact insular biotas, which requires an extrapolation of recent human behavior and technology into the archaeological past. Hominins have been on islands since at least the early Pleistocene and Homo sapiens for at least 50 thousand y (ka). Over such lengthy intervals it is scarcely surprising that significant evolutionary, behavioral, and cultural changes occurred. However, the deep-time link between human arrival and island extinctions has never been explored globally. Here, we examine archaeological and paleontological records of all Pleistocene islands with a documented hominin presence to examine whether humans have always been destructive agents. We show that extinctions at a global level cannot be associated with Pleistocene hominin arrival based on current data and are difficult to disentangle from records of environmental change. It is not until the Holocene that large-scale changes in technology, dispersal, demography, and human behavior visibly affect island ecosystems. The extinction acceleration we are currently experiencing is thus not inherent but rather part of a more recent cultural complex.
Collapse
Affiliation(s)
- Julien Louys
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, QLD 4111, Australia;
- Archaeology and Natural History, College of Asia and the Pacific, The Australian National University, Canberra, ACT 2601, Australia
| | - Todd J Braje
- Department of Anthropology, San Diego State University, San Diego, CA 5500
| | - Chun-Hsiang Chang
- Department of Geology, National Museum of Natural Science, 404 Taichung City, Taiwan
| | - Richard Cosgrove
- Department of Archaeology and History, La Trobe University, Melbourne, VIC 3086, Australia
| | - Scott M Fitzpatrick
- Department of Anthropology, University of Oregon, Eugene, OR 97403
- Museum of Natural and Cultural History, University of Oregon, Eugene, OR 97403
| | - Masaki Fujita
- Department of Zoology, National Museum of Nature and Science, 110-8718 Tokyo, Japan
| | - Stuart Hawkins
- Archaeology and Natural History, College of Asia and the Pacific, The Australian National University, Canberra, ACT 2601, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Ingicco
- Muséum national d'Histoire naturelle de Paris, UMR 7194, Département Homme et Environnement, Sorbonne Universités, 75005 Paris, France
| | - Ai Kawamura
- Faculty of Education, University of Toyama, 930-8555 Toyama, Japan
| | - Ross D E MacPhee
- Division of Vertebrate Zoology/Mammalogy, American Museum of Natural History, New York, NY 10024
| | - Matthew C McDowell
- College of Sciences and Engineering, University of Tasmania, Hobart, TAS 7005, Australia
- Field Museum of Natural History, Science and Education, Earth Sciences, Chicago, IL 60605
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, TAS 7001, Australia
| | - Hanneke J M Meijer
- University Museum of Bergen, Department of Natural History, University of Bergen, 5007 Bergen Norway
- Human Origins Program, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20002
| | - Philip J Piper
- School of Archaeology and Anthropology, The Australian National University, Canberra, ACT 0200, Australia
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
- School of Social Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alan H Simmons
- Department of Anthropology, University of Nevada and Desert Research Institute, Reno, NV 89512
| | - Gerrit van den Bergh
- Centre for Archaeological Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Alexandra van der Geer
- Vertebrate Evolution, Development and Ecology, Naturalis Biodiversity Center, 2333 CR Leiden, the Netherlands
| | - Shimona Kealy
- Archaeology and Natural History, College of Asia and the Pacific, The Australian National University, Canberra, ACT 2601, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Australian National University, Canberra, ACT 2601, Australia
| | - Sue O'Connor
- Archaeology and Natural History, College of Asia and the Pacific, The Australian National University, Canberra, ACT 2601, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
34
|
Rolland J, Schluter D, Romiguier J. Vulnerability to Fishing and Life History Traits Correlate with the Load of Deleterious Mutations in Teleosts. Mol Biol Evol 2021; 37:2192-2196. [PMID: 32163146 PMCID: PMC7403610 DOI: 10.1093/molbev/msaa067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding why some species accumulate more deleterious substitutions than others is an important question relevant in evolutionary biology and conservation sciences. Previous studies conducted in terrestrial taxa suggest that life history traits correlate with the efficiency of purifying selection and accumulation of deleterious mutations. Using a large genome data set of 76 species of teleostean fishes, we show that species with life history traits associated with vulnerability to fishing have an increased rate of deleterious mutation accumulation (measured via dN/dS, i.e., nonsynonymous over synonymous substitution rate). Our results, focusing on a large clade of aquatic species, generalize previous patterns found so far in few clades of terrestrial vertebrates. These results also show that vulnerable species to fishing inherently accumulate more deleterious substitutions than nonthreatened ones, which illustrates the potential links among population genetics, ecology, and fishing policies to prevent species extinction.
Collapse
Affiliation(s)
- Jonathan Rolland
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Dolph Schluter
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Jonathan Romiguier
- CNRS, UMR 5554 Institut des Sciences de l'Evolution, Université de Montpellier, Montpellier, France
| |
Collapse
|
35
|
Comeault AA, Wang J, Tittes S, Isbell K, Ingley S, Hurlbert AH, Matute DR. Genetic Diversity and Thermal Performance in Invasive and Native Populations of African Fig Flies. Mol Biol Evol 2021; 37:1893-1906. [PMID: 32109281 PMCID: PMC7306694 DOI: 10.1093/molbev/msaa050] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During biological invasions, invasive populations can suffer losses of genetic diversity that are predicted to negatively impact their fitness/performance. Despite examples of invasive populations harboring lower diversity than conspecific populations in their native range, few studies have linked this lower diversity to a decrease in fitness. Using genome sequences, we show that invasive populations of the African fig fly, Zaprionus indianus, have less genetic diversity than conspecific populations in their native range and that diversity is proportionally lower in regions of the genome experiencing low recombination rates. This result suggests that selection may have played a role in lowering diversity in the invasive populations. We next use interspecific comparisons to show that genetic diversity remains relatively high in invasive populations of Z. indianus when compared with other closely related species. By comparing genetic diversity in orthologous gene regions, we also show that the genome-wide landscape of genetic diversity differs between invasive and native populations of Z. indianus indicating that invasion not only affects amounts of genetic diversity but also how that diversity is distributed across the genome. Finally, we use parameter estimates from thermal performance curves for 13 species of Zaprionus to show that Z. indianus has the broadest thermal niche of measured species, and that performance does not differ between invasive and native populations. These results illustrate how aspects of genetic diversity in invasive species can be decoupled from measures of fitness, and that a broad thermal niche may have helped facilitate Z. indianus's range expansion.
Collapse
Affiliation(s)
- Aaron A Comeault
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Jeremy Wang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Silas Tittes
- Department of Evolution and Ecology, University of California, Davis, Davis, CA
| | - Kristin Isbell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Spencer Ingley
- Faculty of Sciences, Brigham Young University, Hawaii, Laie, HI
| | - Allen H Hurlbert
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Daniel R Matute
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
36
|
Island songbirds as windows into evolution in small populations. Curr Biol 2021; 31:1303-1310.e4. [PMID: 33476557 DOI: 10.1016/j.cub.2020.12.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/12/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022]
Abstract
Due to their limited ranges and inherent isolation, island species have long been recognized as crucial systems for tackling a range of evolutionary questions, including in the early study of speciation.1,2 Such species have been less studied in the understanding of the evolutionary forces driving DNA sequence evolution. Island species usually have lower census population sizes (N) than continental species and, supposedly, lower effective population sizes (Ne). Given that both the rates of change caused by genetic drift and by selection are dependent upon Ne, island species are theoretically expected to exhibit (1) lower genetic diversity, (2) less effective natural selection against slightly deleterious mutations,3,4 and (3) a lower rate of adaptive evolution.5-8 Here, we have used a large set of newly sequenced and published whole-genome sequences of Passerida species (14 insular and 11 continental) to test these predictions. We confirm that island species exhibit lower census size and Ne, supporting the hypothesis that the smaller area available on islands constrains the upper bound of Ne. In the insular species, we find lower nucleotide diversity in coding regions, higher ratios of non-synonymous to synonymous polymorphisms, and lower adaptive substitution rates. Our results provide robust evidence that the lower Ne experienced by island species has affected both the ability of natural selection to efficiently remove weakly deleterious mutations and also the adaptive potential of island species, therefore providing considerable empirical support for the nearly neutral theory. We discuss the implications for both evolutionary and conservation biology.
Collapse
|
37
|
Mitchell KJ, Rawlence NJ. Examining Natural History through the Lens of Palaeogenomics. Trends Ecol Evol 2021; 36:258-267. [PMID: 33455740 DOI: 10.1016/j.tree.2020.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
The many high-resolution tools that are uniquely applicable to specimens from the Quaternary period (the past ~2.5 Ma) provide an opportunity to cross-validate data and test hypotheses based on the morphology and distribution of fossils. Among these tools is palaeogenomics - the genome-scale sequencing of genetic material from ancient specimens - that can provide direct insight into ecology and evolution, potentially improving the accuracy of inferences about past ecological communities over longer timescales. Palaeogenomics has revealed instances of over- and underestimation of extinct diversity, detected cryptic faunal migration and turnover, allowed quantification of widespread sex biases and sexual dimorphism in the fossil record, revealed past hybridisation events and hybrid individuals, and has highlighted previously unrecognised routes of zoonotic disease transfer.
Collapse
Affiliation(s)
- Kieren J Mitchell
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia; Australian Research Council (ARC) Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Nicolas J Rawlence
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
38
|
Stetter MG. Limits and constraints to crop domestication. AMERICAN JOURNAL OF BOTANY 2020; 107:1617-1621. [PMID: 33325038 DOI: 10.1002/ajb2.1585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/08/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Markus G Stetter
- Department of Plant Sciences, University of Cologne, Cologne, Germany, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
39
|
Srivastava A, Murugaiyan J, Garcia JAL, De Corte D, Hoetzinger M, Eravci M, Weise C, Kumar Y, Roesler U, Hahn MW, Grossart HP. Combined Methylome, Transcriptome and Proteome Analyses Document Rapid Acclimatization of a Bacterium to Environmental Changes. Front Microbiol 2020; 11:544785. [PMID: 33042055 PMCID: PMC7522526 DOI: 10.3389/fmicb.2020.544785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
Polynucleobacter asymbioticus strain QLW-P1DMWA-1T represents a group of highly successful heterotrophic ultramicrobacteria that is frequently very abundant (up to 70% of total bacterioplankton) in freshwater habitats across all seven continents. This strain was originally isolated from a shallow Alpine pond characterized by rapid changes in water temperature and elevated UV radiation due to its location at an altitude of 1300 m. To elucidate the strain’s adjustment to fluctuating environmental conditions, we recorded changes occurring in its transcriptomic and proteomic profiles under contrasting experimental conditions by simulating thermal conditions in winter and summer as well as high UV irradiation. To analyze the potential connection between gene expression and regulation via methyl group modification of the genome, we also analyzed its methylome. The methylation pattern differed between the three treatments, pointing to its potential role in differential gene expression. An adaptive process due to evolutionary pressure in the genus was deduced by calculating the ratios of non-synonymous to synonymous substitution rates for 20 Polynucleobacter spp. genomes obtained from geographically diverse isolates. The results indicate purifying selection.
Collapse
Affiliation(s)
- Abhishek Srivastava
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany.,Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Jayaseelan Murugaiyan
- Centre for Infectious Medicine, Institute for Animal Health and Environmental Hygiene, Freie Universität Berlin, Berlin, Germany.,Department of Biotechnology, SRM University-AP, Guntur, India
| | - Juan A L Garcia
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Daniele De Corte
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Matthias Hoetzinger
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Murat Eravci
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Yadhu Kumar
- Eurofins Genomics Europe Sequencing GmbH, Konstanz, Germany
| | - Uwe Roesler
- Centre for Infectious Medicine, Institute for Animal Health and Environmental Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Martin W Hahn
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany.,Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany
| |
Collapse
|
40
|
Pre-extinction Demographic Stability and Genomic Signatures of Adaptation in the Woolly Rhinoceros. Curr Biol 2020; 30:3871-3879.e7. [PMID: 32795436 DOI: 10.1016/j.cub.2020.07.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/18/2020] [Accepted: 07/14/2020] [Indexed: 02/01/2023]
Abstract
Ancient DNA has significantly improved our understanding of the evolution and population history of extinct megafauna. However, few studies have used complete ancient genomes to examine species responses to climate change prior to extinction. The woolly rhinoceros (Coelodonta antiquitatis) was a cold-adapted megaherbivore widely distributed across northern Eurasia during the Late Pleistocene and became extinct approximately 14 thousand years before present (ka BP). While humans and climate change have been proposed as potential causes of extinction [1-3], knowledge is limited on how the woolly rhinoceros was impacted by human arrival and climatic fluctuations [2]. Here, we use one complete nuclear genome and 14 mitogenomes to investigate the demographic history of woolly rhinoceros leading up to its extinction. Unlike other northern megafauna, the effective population size of woolly rhinoceros likely increased at 29.7 ka BP and subsequently remained stable until close to the species' extinction. Analysis of the nuclear genome from a ∼18.5-ka-old specimen did not indicate any increased inbreeding or reduced genetic diversity, suggesting that the population size remained steady for more than 13 ka following the arrival of humans [4]. The population contraction leading to extinction of the woolly rhinoceros may have thus been sudden and mostly driven by rapid warming in the Bølling-Allerød interstadial. Furthermore, we identify woolly rhinoceros-specific adaptations to arctic climate, similar to those of the woolly mammoth. This study highlights how species respond differently to climatic fluctuations and further illustrates the potential of palaeogenomics to study the evolutionary history of extinct species.
Collapse
|
41
|
Stervander M, Dierickx EG, Thorley J, Brooke MDL, Westerdahl H. High MHC gene copy number maintains diversity despite homozygosity in a Critically Endangered single-island endemic bird, but no evidence of MHC-based mate choice. Mol Ecol 2020; 29:3578-3592. [PMID: 32416000 DOI: 10.1111/mec.15471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/14/2020] [Accepted: 05/04/2020] [Indexed: 12/30/2022]
Abstract
Small population sizes can, over time, put species at risk due to the loss of genetic variation and the deleterious effects of inbreeding. Losing diversity in the major histocompatibility complex (MHC) could be particularly harmful, given its key role in the immune system. Here, we assess MHC class I (MHC-I) diversity and its effects on mate choice and survival in the Critically Endangered Raso lark Alauda razae, a species restricted to the 7 km2 islet of Raso, Cape Verde, since ~1460, whose population size has dropped as low as 20 pairs. Exhaustively genotyping 122 individuals, we find no effect of MHC-I genotype/diversity on mate choice or survival. However, we demonstrate that MHC-I diversity has been maintained through extreme bottlenecks by retention of a high number of gene copies (at least 14), aided by cosegregation of multiple haplotypes comprising 2-8 linked MHC-I loci. Within-locus homozygosity is high, contributing to low population-wide diversity. Conversely, each individual had comparably many alleles, 6-16 (average 11), and the large and divergent haplotypes occur at high frequency in the population, resulting in high within-individual MHC-I diversity. This functional immune gene diversity will be of critical importance for this highly threatened species' adaptive potential.
Collapse
Affiliation(s)
- Martin Stervander
- Department of Biology, Lund University, Lund, Sweden.,Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden.,Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Elisa G Dierickx
- Department of Zoology, University of Cambridge, Cambridge, UK.,Fauna & Flora International, Cambridge, UK
| | - Jack Thorley
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - M de L Brooke
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
42
|
Dehasque M, Ávila‐Arcos MC, Díez‐del‐Molino D, Fumagalli M, Guschanski K, Lorenzen ED, Malaspinas A, Marques‐Bonet T, Martin MD, Murray GGR, Papadopulos AST, Therkildsen NO, Wegmann D, Dalén L, Foote AD. Inference of natural selection from ancient DNA. Evol Lett 2020; 4:94-108. [PMID: 32313686 PMCID: PMC7156104 DOI: 10.1002/evl3.165] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/13/2020] [Accepted: 02/02/2020] [Indexed: 01/01/2023] Open
Abstract
Evolutionary processes, including selection, can be indirectly inferred based on patterns of genomic variation among contemporary populations or species. However, this often requires unrealistic assumptions of ancestral demography and selective regimes. Sequencing ancient DNA from temporally spaced samples can inform about past selection processes, as time series data allow direct quantification of population parameters collected before, during, and after genetic changes driven by selection. In this Comment and Opinion, we advocate for the inclusion of temporal sampling and the generation of paleogenomic datasets in evolutionary biology, and highlight some of the recent advances that have yet to be broadly applied by evolutionary biologists. In doing so, we consider the expected signatures of balancing, purifying, and positive selection in time series data, and detail how this can advance our understanding of the chronology and tempo of genomic change driven by selection. However, we also recognize the limitations of such data, which can suffer from postmortem damage, fragmentation, low coverage, and typically low sample size. We therefore highlight the many assumptions and considerations associated with analyzing paleogenomic data and the assumptions associated with analytical methods.
Collapse
Affiliation(s)
- Marianne Dehasque
- Centre for Palaeogenetics10691StockholmSweden
- Department of Bioinformatics and GeneticsSwedish Museum of Natural History10405StockholmSweden
- Department of ZoologyStockholm University10691StockholmSweden
| | - María C. Ávila‐Arcos
- International Laboratory for Human Genome Research (LIIGH)UNAM JuriquillaQueretaro76230Mexico
| | - David Díez‐del‐Molino
- Centre for Palaeogenetics10691StockholmSweden
- Department of ZoologyStockholm University10691StockholmSweden
| | - Matteo Fumagalli
- Department of Life Sciences, Silwood Park CampusImperial College LondonAscotSL5 7PYUnited Kingdom
| | - Katerina Guschanski
- Animal Ecology, Department of Ecology and Genetics, Science for Life LaboratoryUppsala University75236UppsalaSweden
| | | | - Anna‐Sapfo Malaspinas
- Department of Computational BiologyUniversity of Lausanne1015LausanneSwitzerland
- SIB Swiss Institute of Bioinformatics1015LausanneSwitzerland
| | - Tomas Marques‐Bonet
- Institut de Biologia Evolutiva(CSIC‐Universitat Pompeu Fabra), Parc de Recerca Biomèdica de BarcelonaBarcelonaSpain
- National Centre for Genomic Analysis—Centre for Genomic RegulationBarcelona Institute of Science and Technology08028BarcelonaSpain
- Institucio Catalana de Recerca i Estudis Avançats08010BarcelonaSpain
- Institut Català de Paleontologia Miquel CrusafontUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | - Michael D. Martin
- Department of Natural History, NTNU University MuseumNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Gemma G. R. Murray
- Department of Veterinary MedicineUniversity of CambridgeCambridgeCB2 1TNUnited Kingdom
| | - Alexander S. T. Papadopulos
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological SciencesBangor UniversityBangorLL57 2UWUnited Kingdom
| | | | - Daniel Wegmann
- Department of BiologyUniversité de Fribourg1700FribourgSwitzerland
- Swiss Institute of BioinformaticsFribourgSwitzerland
| | - Love Dalén
- Centre for Palaeogenetics10691StockholmSweden
- Department of Bioinformatics and GeneticsSwedish Museum of Natural History10405StockholmSweden
| | - Andrew D. Foote
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological SciencesBangor UniversityBangorLL57 2UWUnited Kingdom
| |
Collapse
|
43
|
Fry E, Kim SK, Chigurapti S, Mika KM, Ratan A, Dammermann A, Mitchell BJ, Miller W, Lynch VJ. Functional Architecture of Deleterious Genetic Variants in the Genome of a Wrangel Island Mammoth. Genome Biol Evol 2020; 12:48-58. [PMID: 32031213 PMCID: PMC7094797 DOI: 10.1093/gbe/evz279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 12/21/2022] Open
Abstract
Woolly mammoths were among the most abundant cold-adapted species during the Pleistocene. Their once-large populations went extinct in two waves, an end-Pleistocene extinction of continental populations followed by the mid-Holocene extinction of relict populations on St. Paul Island ∼5,600 years ago and Wrangel Island ∼4,000 years ago. Wrangel Island mammoths experienced an episode of rapid demographic decline coincident with their isolation, leading to a small population, reduced genetic diversity, and the fixation of putatively deleterious alleles, but the functional consequences of these processes are unclear. Here, we show that a Wrangel Island mammoth genome had many putative deleterious mutations that are predicted to cause diverse behavioral and developmental defects. Resurrection and functional characterization of several genes from the Wrangel Island mammoth carrying putatively deleterious substitutions identified both loss and gain of function mutations in genes associated with developmental defects (HYLS1), oligozoospermia and reduced male fertility (NKD1), diabetes (NEUROG3), and the ability to detect floral scents (OR5A1). These data suggest that at least one Wrangel Island mammoth may have suffered adverse consequences from reduced population size and isolation.
Collapse
Affiliation(s)
- Erin Fry
- Department of Human Genetics, The University of Chicago
| | - Sun K Kim
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University
| | | | | | - Aakrosh Ratan
- Center for Public Health Genomics, University of Virginia
| | | | - Brian J Mitchell
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University
| | - Webb Miller
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University
| | - Vincent J Lynch
- Department of Biological Sciences, University at Buffalo, SUNY
| |
Collapse
|
44
|
Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex. Nat Commun 2020; 11:1001. [PMID: 32081890 PMCID: PMC7035315 DOI: 10.1038/s41467-020-14803-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Human activity has caused dramatic population declines in many wild species. The resulting bottlenecks have a profound impact on the genetic makeup of a species with unknown consequences for health. A key genetic factor for species survival is the evolution of deleterious mutation load, but how bottleneck strength and mutation load interact lacks empirical evidence. We analyze 60 complete genomes of six ibex species and the domestic goat. We show that historic bottlenecks rather than the current conservation status predict levels of genome-wide variation. By analyzing the exceptionally well-characterized population bottlenecks of the once nearly extinct Alpine ibex, we find genomic evidence of concurrent purging of highly deleterious mutations but accumulation of mildly deleterious mutations. This suggests that recolonization bottlenecks induced both relaxed selection and purging, thus reshaping the landscape of deleterious mutation load. Our findings highlight that even populations of ~1000 individuals can accumulate mildly deleterious mutations. Conservation efforts should focus on preventing population declines below such levels to ensure long-term survival of species. Although there is extensive theory predicting the effects of population bottlenecks on mutation load, there is little empirical evidence from recent bottlenecks. Here, Grossen et al. compare the consequences of population bottlenecks in six ibex species for genome-wide variation and mutation load.
Collapse
|
45
|
Williams RC, Blanco MB, Poelstra JW, Hunnicutt KE, Comeault AA, Yoder AD. Conservation genomic analysis reveals ancient introgression and declining levels of genetic diversity in Madagascar's hibernating dwarf lemurs. Heredity (Edinb) 2020; 124:236-251. [PMID: 31435007 PMCID: PMC6906314 DOI: 10.1038/s41437-019-0260-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/16/2022] Open
Abstract
Madagascar's biodiversity is notoriously threatened by deforestation and climate change. Many of these organisms are rare, cryptic, and severely threatened, making population-level sampling unrealistic. Such is the case with Madagascar's dwarf lemurs (genus Cheirogaleus), the only obligate hibernating primate. We here apply comparative genomic approaches to generate the first genome-wide estimates of genetic diversity within dwarf lemurs. We generate a reference genome for the fat-tailed dwarf lemur, Cheirogaleus medius, and use this resource to facilitate analyses of high-coverage (~30×) genome sequences for wild-caught individuals representing species: C. sp. cf. medius, C. major, C. crossleyi, and C. sibreei. This study represents the largest contribution to date of novel genomic resources for Madagascar's lemurs. We find concordant phylogenetic relationships among the four lineages of Cheirogaleus across most of the genome, and yet detect a number of discordant genomic regions consistent with ancient admixture. We hypothesized that these regions could have resulted from adaptive introgression related to hibernation, indeed finding that genes associated with hibernation are present, though most significantly, that gene ontology categories relating to transcription are over-represented. We estimate levels of heterozygosity and find particularly low levels in an individual sampled from an isolated population of C. medius that we refer to as C. sp. cf. medius. Results are consistent with a recent decline in effective population size, which is evident across species. Our study highlights the power of comparative genomic analysis for identifying species and populations of conservation concern, as well as for illuminating possible mechanisms of adaptive phenotypic evolution.
Collapse
Affiliation(s)
- Rachel C Williams
- Department of Biology, Duke University, Durham, NC, 27708, USA.
- Duke Lemur Center, Duke University, Durham, NC, 27705, USA.
| | - Marina B Blanco
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Duke Lemur Center, Duke University, Durham, NC, 27705, USA
| | | | - Kelsie E Hunnicutt
- Department of Biological Sciences, University of Denver, Denver, CO, 80208, USA
| | - Aaron A Comeault
- Biology Department, University of North Carolina, Chapel Hill, NC, 27599, USA
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Duke Lemur Center, Duke University, Durham, NC, 27705, USA
| |
Collapse
|
46
|
Chattopadhyay B, Garg KM, Soo YJ, Low GW, Frechette JL, Rheindt FE. Conservation genomics in the fight to help the recovery of the critically endangered Siamese crocodile Crocodylus siamensis. Mol Ecol 2019; 28:936-950. [PMID: 30659682 DOI: 10.1111/mec.15023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
Abstract
Endangered species are often characterized by low genetic diversity and it is imperative for conservation efforts to incorporate the knowledge obtained from genetic studies for effective management. However, despite the promise of technological advances in sequencing, application of genome-wide data to endangered populations remains uncommon. In the present study we pursued a holistic conservation-genomic approach to inform a field-based management programme of a Critically Endangered species, the Siamese crocodile Crocodylus siamensis. Using thousands of single nucleotide polymorphisms from throughout the genome, we revealed signals of introgression from two other crocodile species within our sample of both wild and captive-bred Siamese crocodiles from Cambodia. Our genetic screening of the Siamese crocodiles resulted in the subsequent re-introduction of 12 individuals into the wild as well as the selection of four individuals for captive breeding programmes. Comparison of intraspecific genetic diversity revealed an alarmingly low contemporary effective population size in the wild (<50) with evidence of a recent bottleneck around Tonle Sap Lake. We also projected a probable future extinction in the wild (within fewer than five generations) in this population in the absence of re-introduction efforts. However, an increase in the number of potential breeders through re-introductions, including the one resulting from this project, could counter this trend. Our results have been implemented in ongoing re-introduction and captive breeding programmes, with major implications for the conservation management of Siamese crocodiles, and provide a blueprint for the rescue effort of other "terminally ill" populations of critically endangered species.
Collapse
Affiliation(s)
- Balaji Chattopadhyay
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Kritika M Garg
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yun Jing Soo
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Gabriel W Low
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | | | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
47
|
Hasselgren M, Norén K. Inbreeding in natural mammal populations: historical perspectives and future challenges. Mamm Rev 2019. [DOI: 10.1111/mam.12169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Malin Hasselgren
- Department of Zoology Stockholm University 106 91 Stockholm Sweden
| | - Karin Norén
- Department of Zoology Stockholm University 106 91 Stockholm Sweden
| |
Collapse
|
48
|
Dussex N, von Seth J, Knapp M, Kardailsky O, Robertson BC, Dalén L. Complete genomes of two extinct New Zealand passerines show responses to climate fluctuations but no evidence for genomic erosion prior to extinction. Biol Lett 2019; 15:20190491. [PMID: 31480938 DOI: 10.1098/rsbl.2019.0491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human intervention, pre-human climate change (or a combination of both), as well as genetic effects, contribute to species extinctions. While many species from oceanic islands have gone extinct due to direct human impacts, the effects of pre-human climate change and human settlement on the genomic diversity of insular species and the role that loss of genomic diversity played in their extinctions remains largely unexplored. To address this question, we sequenced whole genomes of two extinct New Zealand passerines, the huia (Heteralocha acutirostris) and South Island kōkako (Callaeas cinereus). Both species showed similar demographic trajectories throughout the Pleistocene. However, the South Island kōkako continued to decline after the last glaciation, while the huia experienced some recovery. Moreover, there was no indication of inbreeding resulting from recent mating among closely related individuals in either species. This latter result indicates that population fragmentation associated with forest clearing by Maōri may not have been strong enough to lead to an increase in inbreeding and exposure to genomic erosion. While genomic erosion may not have directly contributed to their extinctions, further habitat fragmentation and the introduction of mammalian predators by Europeans may have been an important driver of extinction in huia and South Island kōkako.
Collapse
Affiliation(s)
- Nicolas Dussex
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, Stockholm 10405, Sweden.,Department of Anatomy, University of Otago, PO Box 913, Dunedin 9016, New Zealand
| | - Johanna von Seth
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, Stockholm 10405, Sweden.,Department of Zoology, Stockholm University, Stockholm 10691, Sweden
| | - Michael Knapp
- Department of Anatomy, University of Otago, PO Box 913, Dunedin 9016, New Zealand
| | - Olga Kardailsky
- Department of Anatomy, University of Otago, PO Box 913, Dunedin 9016, New Zealand
| | - Bruce C Robertson
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, Stockholm 10405, Sweden
| |
Collapse
|
49
|
Rivera-León VE, Urbán J, Mizroch S, Brownell RL, Oosting T, Hao W, Palsbøll PJ, Bérubé M. Long-term isolation at a low effective population size greatly reduced genetic diversity in Gulf of California fin whales. Sci Rep 2019; 9:12391. [PMID: 31455830 PMCID: PMC6712047 DOI: 10.1038/s41598-019-48700-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 08/06/2019] [Indexed: 11/09/2022] Open
Abstract
The Gulf of California, Mexico is home to many cetacean species, including a presumed resident population of fin whales, Balaenoptera physalus. Past studies reported very low levels of genetic diversity among Gulf of California fin whales and a significant level of genetic differentiation from con-specifics in the eastern North Pacific. The aim of the present study was to assess the degree and timing of the isolation of Gulf of California fin whales in a population genetic analysis of 18 nuclear microsatellite genotypes from 402 samples and 565 mitochondrial control region DNA sequences (including mitochondrial sequences retrieved from NCBI). The analyses revealed that the Gulf of California fin whale population was founded ~2.3 thousand years ago and has since remained at a low effective population size (~360) and isolated from the eastern North Pacific (Nem between 0.89-1.4). The low effective population size and high degree of isolation implied that Gulf of California fin whales are vulnerable to the negative effects of genetic drift, human-caused mortality and habitat change.
Collapse
Affiliation(s)
- Vania E Rivera-León
- Marine Evolution and Conservation, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| | - Jorge Urbán
- Departamento de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, Km 5.5 Carretera al Sur, 23081, La Paz, Baja California Sur, Mexico
| | - Sally Mizroch
- Blue Sea Research PO Box 15805, Seattle, WA, 98115, United States of America
| | - Robert L Brownell
- Southwest Fisheries Science Center, NOAA Fisheries, 34500 Highway 1, Monterey, CA, 93940, United States of America
| | - Tom Oosting
- Marine Evolution and Conservation, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Wensi Hao
- Marine Evolution and Conservation, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Per J Palsbøll
- Marine Evolution and Conservation, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
- Centre for Coastal Studies, 5 Holway Avenue, Provincetown, Massachusetts, 02657, United States of America.
| | - Martine Bérubé
- Marine Evolution and Conservation, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
- Centre for Coastal Studies, 5 Holway Avenue, Provincetown, Massachusetts, 02657, United States of America.
| |
Collapse
|
50
|
de Silva S, Leimgruber P. Demographic Tipping Points as Early Indicators of Vulnerability for Slow-Breeding Megafaunal Populations. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|