1
|
Li J, Deng W, Zhou T, Zhang X, Hu L, Fan S, Zou H. Anemarchalconyn, a natural alkyne ketone compound, inhibits HCC cell growth by suppressing Polθ and inducing synthetic lethality in Homologous recombination deficiency cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156679. [PMID: 40215812 DOI: 10.1016/j.phymed.2025.156679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/28/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly aggressive liver cancer with limited treatment options. Dysfunction of DNA damage response (DDR) genes, including Polθ and BRCA1, is implicated in HCC development and progression, offering novel therapeutic targets. OBJECTIVE This study aimed to investigate the anticancer effects of anemarchalconyn (SL-001) on HCC and elucidate its underlying mechanisms. METHODS We leveraged The Cancer Genome Atlas (TCGA) data analysis to explore the potential of POLQ/BRCA1 as therapeutic targets in liver cancer, as well as their association with the prognostic clinicopathological features of hepatocellular carcinoma (LIHC). We have isolated SL-001 and then developed an innovative and efficient synthesis strategy for SL-001, a natural alkyne ketone compound isolated from Selaginella tamariscina, and assessed the anti-tumor effects of SL-001 through in vitro and in vivo studies. RESULTS TCGA analysis revealed significant upregulation of POLQ and BRCA1 in HCC tumors compared to normal tissues. Additionally, POLQ and BRCA1 expression demonstrated high accuracy in distinguishing tumor tissues and correlating with reduced overall survival. SL-001 exhibited robust anti-proliferative effects on hepatocellular carcinoma (HCC) cells, surpassing the efficacy of the current standard treatment, sorafenib. The anti-HCC effect of SL-001 was associated with downregulation of POLQ, a key protein involved in alternative DNA repair pathways. Importantly, SL-001 demonstrated enhanced inhibitory effects on Homologous recombination deficiency (HRD) HCC cells, suggesting a synthetic lethal interaction between SL-001 and HRD. CONCLUSION SL-001 represents a promising therapeutic candidate for HCC, particularly for patients with HRD tumors. Its mechanism involves inhibiting POLQ and disrupting DNA repair pathways, leading to increased DNA damage and cell death in HRD cells. This study provides a foundation for further investigation of SL-001 as a targeted therapy for HCC.
Collapse
Affiliation(s)
- Junnan Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha 410013, China
| | - Wenwen Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha 410013, China
| | - Tianjie Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha 410013, China
| | - Xinyang Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha 410013, China
| | - Liqing Hu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha 410013, China
| | - Shasha Fan
- Oncology Department, The first-affiliated hospital of Hunan normal university, Hunan Provincial People's Hospital, Changsha 410002, China; Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha 410013, China.
| | - Hui Zou
- Oncology Department, The first-affiliated hospital of Hunan normal university, Hunan Provincial People's Hospital, Changsha 410002, China; Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha 410013, China; Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
2
|
Gonzalez-Duran E, Kroop X, Schadach A, Bock R. Suppression of plastid-to-nucleus gene transfer by DNA double-strand break repair. NATURE PLANTS 2025:10.1038/s41477-025-02005-w. [PMID: 40379877 DOI: 10.1038/s41477-025-02005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 04/14/2025] [Indexed: 05/19/2025]
Abstract
Plant nuclear genomes contain thousands of genes of mitochondrial and plastid origin as the result of endosymbiotic gene transfer (EGT). EGT is a still-ongoing process, but the molecular mechanisms determining its frequency remain largely unknown. Here we demonstrate that nuclear double-strand break (DSB) repair is a strong suppressor of EGT. Through large-scale genetic screens in tobacco plants, we found that EGT from plastids to the nucleus occurs more frequently in somatic cells when individual DSB repair pathways are inactive. This effect is explained by the expected increase in the number and residence time of DSBs available as integration sites for organellar DNA. We also show that impaired DSB repair causes EGT to increase 5- to 20-fold in the male gametophyte. Together, our data (1) uncover DSB levels as a key determinant of EGT frequency, (2) reveal the strong mutagenic potential of organellar DNA and (3) suggest that changes in DNA repair capacity can impact EGT across evolutionary timescales.
Collapse
Affiliation(s)
| | - Xenia Kroop
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Anne Schadach
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
| |
Collapse
|
3
|
Blanch JR, Woodward N, Krishnamurthy M, McVey M. A non-tethering role for the Drosophila Pol θ linker domain in promoting damage resolution. Nucleic Acids Res 2025; 53:gkaf304. [PMID: 40275613 PMCID: PMC12021795 DOI: 10.1093/nar/gkaf304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
DNA polymerase theta (Pol θ) is an error-prone translesion polymerase that becomes crucial for DNA double-strand break repair when cells are deficient in homologous recombination or non-homologous end joining. In some organisms, Pol θ also promotes tolerance of DNA interstrand crosslinks. Due to its importance in DNA damage tolerance, Pol θ is an emerging target for treatment of cancer and disease. Prior work has characterized the functions of the Pol θ helicase-like and polymerase domains, but the roles of the linker domain are largely unknown. Here, we show that the Drosophila melanogaster Pol θ linker domain promotes proper egg development and is required for repair of DNA double-strand breaks and interstrand crosslink tolerance. While a linker domain with scrambled amino acid residues is sufficient for DNA repair, replacement of the linker with part of the Homo sapiens Pol θ linker or a disordered region from the FUS RNA-binding protein does not restore function. These results demonstrate that the linker domain is not simply a random tether between the catalytic domains and suggest that intrinsic amino acid residue properties, rather than protein interaction motifs, are more critical for Pol θ linker functions in DNA repair.
Collapse
Affiliation(s)
- Justin R Blanch
- Department of Biology, Tufts University, Medford, MA 02155, United States
| | - Nicholas Woodward
- Department of Biology, Tufts University, Medford, MA 02155, United States
| | | | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
4
|
Blanch JR, Krishnamurthy M, McVey M. A non-tethering role for the Drosophila Pol θ linker domain in promoting damage resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609911. [PMID: 39253446 PMCID: PMC11383001 DOI: 10.1101/2024.08.27.609911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
DNA polymerase theta ( Pol θ ) is an error-prone translesion polymerase that becomes crucial for DNA double-strand break repair when cells are deficient in homologous recombination or non-homologous end joining. In some organisms, Pol θ also promotes tolerance of DNA interstrand crosslinks. Due to its importance in DNA damage tolerance, Pol θ is an emerging target for treatment of cancer and disease. Prior work has characterized the functions of the Pol θ helicase-like and polymerase domains, but the roles of the linker domain are largely unknown. Here, we show that the Drosophila melanogaster Pol θ linker domain promotes egg development and is required for tolerance of DNA double-strand breaks and interstrand crosslinks. While a linker domain with scrambled amino acid residues is sufficient for DNA repair, replacement of the linker with part of the Homo sapiens Pol θ linker or a disordered region from the FUS RNA-binding protein does not restore function. These results demonstrate that the linker domain is not simply a random tether between the helicase-like and polymerase domains. Furthermore, they suggest that intrinsic amino acid residue properties, rather than protein interaction motifs, are more critical for Pol θ linker functions in DNA repair.
Collapse
Affiliation(s)
- Justin R Blanch
- Department of Biology, Tufts University, Medford, Massachusetts, 02155, United States of America
| | - Manan Krishnamurthy
- Department of Biology, Tufts University, Medford, Massachusetts, 02155, United States of America
- Icahn School of Medicine at Mount Sinai, New York City, New York, 10029, United States of America
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, 02155, United States of America
| |
Collapse
|
5
|
Vekariya U, Minakhin L, Chandramouly G, Tyagi M, Kent T, Sullivan-Reed K, Atkins J, Ralph D, Nieborowska-Skorska M, Kukuyan AM, Tang HY, Pomerantz RT, Skorski T. PARG is essential for Polθ-mediated DNA end-joining by removing repressive poly-ADP-ribose marks. Nat Commun 2024; 15:5822. [PMID: 38987289 PMCID: PMC11236980 DOI: 10.1038/s41467-024-50158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
DNA polymerase theta (Polθ)-mediated end-joining (TMEJ) repairs DNA double-strand breaks and confers resistance to genotoxic agents. How Polθ is regulated at the molecular level to exert TMEJ remains poorly characterized. We find that Polθ interacts with and is PARylated by PARP1 in a HPF1-independent manner. PARP1 recruits Polθ to the vicinity of DNA damage via PARylation dependent liquid demixing, however, PARylated Polθ cannot perform TMEJ due to its inability to bind DNA. PARG-mediated de-PARylation of Polθ reactivates its DNA binding and end-joining activities. Consistent with this, PARG is essential for TMEJ and the temporal recruitment of PARG to DNA damage corresponds with TMEJ activation and dissipation of PARP1 and PAR. In conclusion, we show a two-step spatiotemporal mechanism of TMEJ regulation. First, PARP1 PARylates Polθ and facilitates its recruitment to DNA damage sites in an inactivated state. PARG subsequently activates TMEJ by removing repressive PAR marks on Polθ.
Collapse
Affiliation(s)
- Umeshkumar Vekariya
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Leonid Minakhin
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Gurushankar Chandramouly
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Mrityunjay Tyagi
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Tatiana Kent
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Katherine Sullivan-Reed
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jessica Atkins
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Douglas Ralph
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Margaret Nieborowska-Skorska
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Anna-Mariya Kukuyan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Richard T Pomerantz
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA.
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Fijen C, Drogalis Beckham L, Terino D, Li Y, Ramsden DA, Wood RD, Doublié S, Rothenberg E. Sequential requirements for distinct Polθ domains during theta-mediated end joining. Mol Cell 2024; 84:1460-1474.e6. [PMID: 38640894 PMCID: PMC11031631 DOI: 10.1016/j.molcel.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/10/2024] [Accepted: 03/12/2024] [Indexed: 04/21/2024]
Abstract
DNA polymerase θ (Polθ) plays a central role in a DNA double-strand break repair pathway termed theta-mediated end joining (TMEJ). TMEJ functions by pairing short-sequence "microhomologies" (MHs) in single-stranded DNA at each end of a break and subsequently initiating DNA synthesis. It is not known how the Polθ helicase domain (HD) and polymerase domain (PD) operate to bring together MHs and facilitate repair. To resolve these transient processes in real time, we utilized in vitro single-molecule FRET approaches and biochemical analyses. We find that the Polθ-HD mediates the initial capture of two ssDNA strands, bringing them in close proximity. The Polθ-PD binds and stabilizes pre-annealed MHs to form a synaptic complex (SC) and initiate repair synthesis. Individual synthesis reactions show that Polθ is inherently non-processive, accounting for complex mutational patterns during TMEJ. Binding of Polθ-PD to stem-loop-forming sequences can substantially limit synapsis, depending on the available dNTPs and sequence context.
Collapse
Affiliation(s)
- Carel Fijen
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| | - Lea Drogalis Beckham
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Dante Terino
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yuzhen Li
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Dale A Ramsden
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
7
|
Konstantinopoulos PA, Matulonis UA. Clinical and translational advances in ovarian cancer therapy. NATURE CANCER 2023; 4:1239-1257. [PMID: 37653142 DOI: 10.1038/s43018-023-00617-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Ovarian cancer is an aggressive disease that is frequently detected at advanced stages and is initially very responsive to platinum-based chemotherapy. However, the majority of patients relapse following initial surgery and chemotherapy, highlighting the urgent need to develop new therapeutic strategies. In this Review, we outline the main therapeutic principles behind the management of newly diagnosed and recurrent epithelial ovarian cancer and discuss the current landscape of targeted and immune-based approaches.
Collapse
|
8
|
Miller JM, Prange S, Ji H, Rau AR, Khodaverdian VY, Li X, Patel A, Butova N, Lutter A, Chung H, Merigliano C, Rawal CC, Hanscom T, McVey M, Chiolo I. Alternative end-joining results in smaller deletions in heterochromatin relative to euchromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.03.531058. [PMID: 37645729 PMCID: PMC10461932 DOI: 10.1101/2023.03.03.531058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Pericentromeric heterochromatin is highly enriched for repetitive sequences prone to aberrant recombination. Previous studies showed that homologous recombination (HR) repair is uniquely regulated in this domain to enable 'safe' repair while preventing aberrant recombination. In Drosophila cells, DNA double-strand breaks (DSBs) relocalize to the nuclear periphery through nuclear actin-driven directed motions before recruiting the strand invasion protein Rad51 and completing HR repair. End-joining (EJ) repair also occurs with high frequency in heterochromatin of fly tissues, but how alternative EJ (alt-EJ) pathways operate in heterochromatin remains largely uncharacterized. Here, we induce DSBs in single euchromatic and heterochromatic sites using a new system that combines the DR- white reporter and I-SceI expression in spermatogonia of flies. Using this approach, we detect higher frequency of HR repair in heterochromatin, relative to euchromatin. Further, sequencing of mutagenic repair junctions reveals the preferential use of different EJ pathways across distinct euchromatic and heterochromatic sites. Interestingly, synthesis-dependent microhomology-mediated end joining (SD-MMEJ) appears differentially regulated in the two domains, with a preferential use of motifs close to the cut site in heterochromatin relative to euchromatin, resulting in smaller deletions. Together, these studies establish a new approach to study repair outcomes in fly tissues, and support the conclusion that heterochromatin uses more HR and less mutagenic EJ repair relative to euchromatin.
Collapse
|
9
|
Rodríguez R, Gaivão I, Aguado L, Espina M, García J, Martínez-Camblor P, Sierra LM. The Comet Assay in Drosophila: A Tool to Study Interactions between DNA Repair Systems in DNA Damage Responses In Vivo and Ex Vivo. Cells 2023; 12:1979. [PMID: 37566058 PMCID: PMC10417035 DOI: 10.3390/cells12151979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023] Open
Abstract
The comet assay in Drosophila has been used in the last few years to study DNA damage responses (DDR) in different repair-mutant strains and to compare them to analyze DNA repair. We have used this approach to study interactions between DNA repair pathways in vivo. Additionally, we have implemented an ex vivo comet assay, in which nucleoids from treated and untreated cells were incubated ex vivo with cell-free protein extracts from individuals with distinct repair capacities. Four strains were used: wild-type OregonK (OK), nucleotide excision repair mutant mus201, dmPolQ protein mutant mus308, and the double mutant mus201;mus308. Methyl methanesulfonate (MMS) was used as a genotoxic agent. Both approaches were performed with neuroblasts from third-instar larvae; they detected the effects of the NER and dmPolQ pathways on the DDR to MMS and that they act additively in this response. Additionally, the ex vivo approach quantified that mus201, mus308, and the double mutant mus201;mus308 strains presented, respectively, 21.5%, 52.9%, and 14.8% of OK strain activity over MMS-induced damage. Considering the homology between mammals and Drosophila in repair pathways, the detected additive effect might be extrapolated even to humans, demonstrating that Drosophila might be an excellent model to study interactions between repair pathways.
Collapse
Affiliation(s)
- Rubén Rodríguez
- Department of Functional Biology (Genetic Area), University of Oviedo, 33006 Oviedo, Spain; (R.R.)
- Oncology University Institute from Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
| | - Isabel Gaivão
- Department of Genetics and Biotechnology and CECAV, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Leticia Aguado
- Department of Functional Biology (Genetic Area), University of Oviedo, 33006 Oviedo, Spain; (R.R.)
- Oncology University Institute from Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
| | - Marta Espina
- Department of Functional Biology (Genetic Area), University of Oviedo, 33006 Oviedo, Spain; (R.R.)
- Oncology University Institute from Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
| | - Jorge García
- Department of Functional Biology (Genetic Area), University of Oviedo, 33006 Oviedo, Spain; (R.R.)
| | - Pablo Martínez-Camblor
- Department of Biomedical Data Science, Geisel Medical School at Dartmouth, Hanover, NH 03755, USA;
- Faculty of Health Sciences, Universidad Autónoma de Chile, Provedencia 7500912, Chile
| | - L. María Sierra
- Department of Functional Biology (Genetic Area), University of Oviedo, 33006 Oviedo, Spain; (R.R.)
- Oncology University Institute from Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Institute of Sanitary Research of the Principality of Asturias, Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain
| |
Collapse
|
10
|
Rogers CB, Kram RE, Lin K, Myers CL, Sobeck A, Hendrickson EA, Bielinsky AK. Fanconi anemia-associated chromosomal radial formation is dependent on POLθ-mediated alternative end joining. Cell Rep 2023; 42:112428. [PMID: 37086407 DOI: 10.1016/j.celrep.2023.112428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/25/2023] [Accepted: 04/07/2023] [Indexed: 04/23/2023] Open
Abstract
Activation of the Fanconi anemia (FA) pathway after treatment with mitomycin C (MMC) is essential for preventing chromosome translocations termed "radials." When replication forks stall at MMC-induced interstrand crosslinks (ICLs), the FA pathway is activated to orchestrate ICL unhooking and repair of the DNA break intermediates. However, in FA-deficient cells, how ICL-associated breaks are resolved in a manner that leads to radials is unclear. Here, we demonstrate that MMC-induced radials are dependent on DNA polymerase theta (POLθ)-mediated alternative end joining (A-EJ). Specifically, we show that radials observed in FANCD2-/- cells are dependent on POLθ and DNA ligase III and occur independently of classical non-homologous end joining. Furthermore, treatment of FANCD2-/- cells with POLθ inhibitors abolishes radials and leads to the accumulation of breaks co-localizing with common fragile sites. Uniformly, these observations implicate A-EJ in radial formation and provide mechanistic insights into the treatment of FA pathway-deficient cancers with POLθ inhibitors.
Collapse
Affiliation(s)
- Colette B Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rachel E Kram
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kevin Lin
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexandra Sobeck
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
11
|
Yi G, Sung Y, Kim C, Ra JS, Hirakawa H, Kato T, Fujimori A, Kim H, Takata KI. DNA polymerase θ-mediated repair of high LET radiation-induced complex DNA double-strand breaks. Nucleic Acids Res 2023; 51:2257-2269. [PMID: 36805268 PMCID: PMC10018357 DOI: 10.1093/nar/gkad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/22/2023] Open
Abstract
DNA polymerase θ (POLQ) is a unique DNA polymerase that is able to perform microhomology-mediated end-joining as well as translesion synthesis (TLS) across an abasic (AP) site and thymine glycol (Tg). However, the biological significance of the TLS activity is currently unknown. Herein we provide evidence that the TLS activity of POLQ plays a critical role in repairing complex DNA double-strand breaks (DSBs) induced by high linear energy transfer (LET) radiation. Radiotherapy with high LET radiation such as carbon ions leads to more deleterious biological effects than corresponding doses of low LET radiation such as X-rays. High LET-induced DSBs are considered to be complex, carrying additional DNA damage such as AP site and Tg in close proximity to the DSB sites. However, it is not clearly understood how complex DSBs are processed in mammalian cells. We demonstrated that genetic disruption of POLQ results in an increase of chromatid breaks and enhanced cellular sensitivity following treatment with high LET radiation. At the biochemical level, POLQ was able to bypass an AP site and Tg during end-joining and was able to anneal two single-stranded DNA tails when DNA lesions were located outside the microhomology. This study offers evidence that POLQ is directly involved in the repair of complex DSBs.
Collapse
Affiliation(s)
- Geunil Yi
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Yubin Sung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Chanwoo Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Hirokazu Hirakawa
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Chiba 263-8555, Japan
| | - Takamitsu A Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, Colorado 80523, USA
| | - Akira Fujimori
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Chiba 263-8555, Japan
| | - Hajin Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kei-ichi Takata
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
12
|
Abstract
DNA polymerase θ (Pol θ) is a DNA repair enzyme widely conserved in animals and plants. Pol θ uses short DNA sequence homologies to initiate repair of double-strand breaks by theta-mediated end joining. The DNA polymerase domain of Pol θ is at the C terminus and is connected to an N-terminal DNA helicase-like domain by a central linker. Pol θ is crucial for maintenance of damaged genomes during development, protects DNA against extensive deletions, and limits loss of heterozygosity. The cost of using Pol θ for genome protection is that a few nucleotides are usually deleted or added at the repair site. Inactivation of Pol θ often enhances the sensitivity of cells to DNA strand-breaking chemicals and radiation. Since some homologous recombination-defective cancers depend on Pol θ for growth, inhibitors of Pol θ may be useful in treating such tumors.
Collapse
Affiliation(s)
- Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, Texas, USA;
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA;
| |
Collapse
|
13
|
Liddiard K, Aston-Evans AN, Cleal K, Hendrickson E, Baird D. POLQ suppresses genome instability and alterations in DNA repeat tract lengths. NAR Cancer 2022; 4:zcac020. [PMID: 35774233 PMCID: PMC9241439 DOI: 10.1093/narcan/zcac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
DNA polymerase theta (POLQ) is a principal component of the alternative non-homologous end-joining (ANHEJ) DNA repair pathway that ligates DNA double-strand breaks. Utilizing independent models of POLQ insufficiency during telomere-driven crisis, we found that POLQ - /- cells are resistant to crisis-induced growth deceleration despite sustaining inter-chromosomal telomere fusion frequencies equivalent to wild-type (WT) cells. We recorded longer telomeres in POLQ - / - than WT cells pre- and post-crisis, notwithstanding elevated total telomere erosion and fusion rates. POLQ - /- cells emerging from crisis exhibited reduced incidence of clonal gross chromosomal abnormalities in accordance with increased genetic heterogeneity. High-throughput sequencing of telomere fusion amplicons from POLQ-deficient cells revealed significantly raised frequencies of inter-chromosomal fusions with correspondingly depreciated intra-chromosomal recombinations. Long-range interactions culminating in telomere fusions with centromere alpha-satellite repeats, as well as expansions in HSAT2 and HSAT3 satellite and contractions in ribosomal DNA repeats, were detected in POLQ - / - cells. In conjunction with the expanded telomere lengths of POLQ - /- cells, these results indicate a hitherto unrealized capacity of POLQ for regulation of repeat arrays within the genome. Our findings uncover novel considerations for the efficacy of POLQ inhibitors in clinical cancer interventions, where potential genome destabilizing consequences could drive clonal evolution and resistant disease.
Collapse
Affiliation(s)
- Kate Liddiard
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Alys N Aston-Evans
- Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Kez Cleal
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
14
|
Hanscom T, Woodward N, Batorsky R, Brown AJ, Roberts SA, McVey M. Characterization of sequence contexts that favor alternative end joining at Cas9-induced double-strand breaks. Nucleic Acids Res 2022; 50:7465-7478. [PMID: 35819195 PMCID: PMC9303309 DOI: 10.1093/nar/gkac575] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Alternative end joining (alt-EJ) mechanisms, such as polymerase theta-mediated end joining, are increasingly recognized as important contributors to inaccurate double-strand break repair. We previously proposed an alt-EJ model whereby short DNA repeats near a double-strand break anneal to form secondary structures that prime limited DNA synthesis. The nascent DNA then pairs with microhomologous sequences on the other break end. This synthesis-dependent microhomology-mediated end joining (SD-MMEJ) explains many of the alt-EJ repair products recovered following I-SceI nuclease cutting in Drosophila. However, sequence-specific factors that influence SD-MMEJ repair remain to be fully characterized. Here, we expand the utility of the SD-MMEJ model through computational analysis of repair products at Cas9-induced double-strand breaks for 1100 different sequence contexts. We find evidence at single nucleotide resolution for sequence characteristics that drive successful SD-MMEJ repair. These include optimal primer repeat length, distance of repeats from the break, flexibility of DNA sequence between primer repeats, and positioning of microhomology templates relative to preferred primer repeats. In addition, we show that DNA polymerase theta is necessary for most SD-MMEJ repair at Cas9 breaks. The analysis described here includes a computational pipeline that can be utilized to characterize preferred mechanisms of alt-EJ repair in any sequence context.
Collapse
Affiliation(s)
- Terrence Hanscom
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Nicholas Woodward
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Rebecca Batorsky
- Data Intensive Studies Center, Tufts University, 177 College Ave, Medford, MA 02155, USA
| | - Alexander J Brown
- School of Molecular Biosciences, Washington State University, P100 Dairy Road, Pullman, WA 99164, USA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, P100 Dairy Road, Pullman, WA 99164, USA
| | - Mitch McVey
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| |
Collapse
|
15
|
Drzewiecka M, Barszczewska-Pietraszek G, Czarny P, Skorski T, Śliwiński T. Synthetic Lethality Targeting Polθ. Genes (Basel) 2022; 13:genes13061101. [PMID: 35741863 PMCID: PMC9223150 DOI: 10.3390/genes13061101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 01/27/2023] Open
Abstract
Research studies regarding synthetic lethality (SL) in human cells are primarily motivated by the potential of this phenomenon to be an effective, but at the same time, safe to the patient's anti-cancer chemotherapy. Among the factors that are targets for the induction of the synthetic lethality effect, those involved in DNA repair seem to be the most relevant. Specifically, when mutation in one of the canonical DNA double-strand break (DSB) repair pathways occurs, which is a frequent event in cancer cells, the alternative pathways may be a promising target for the elimination of abnormal cells. Currently, inhibiting RAD52 and/or PARP1 in the tumor cells that are deficient in the canonical repair pathways has been the potential target for inducing the effect of synthetic lethality. Unfortunately, the development of resistance to commonly used PARP1 inhibitors (PARPi) represents the greatest obstacle to working out a successful treatment protocol. DNA polymerase theta (Polθ), encoded by the POLQ gene, plays a key role in an alternative DSB repair pathway-theta-mediated end joining (TMEJ). Thus, it is a promising target in the treatment of tumors harboring deficiencies in homologous recombination repair (HRR), where its inhibition can induce SL. In this review, the authors discuss the current state of knowledge on Polθ as a potential target for synthetic lethality-based anticancer therapies.
Collapse
Affiliation(s)
- Małgorzata Drzewiecka
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (M.D.); (G.B.-P.)
| | - Gabriela Barszczewska-Pietraszek
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (M.D.); (G.B.-P.)
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Departament of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Correspondence: (T.S.); (T.Ś.); Tel.: +1-215-707-9157 (T.S.); +48-42-635-44-86 (T.Ś.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (M.D.); (G.B.-P.)
- Correspondence: (T.S.); (T.Ś.); Tel.: +1-215-707-9157 (T.S.); +48-42-635-44-86 (T.Ś.)
| |
Collapse
|
16
|
Vanson S, Li Y, Wood RD, Doublié S. Probing the structure and function of polymerase θ helicase-like domain. DNA Repair (Amst) 2022; 116:103358. [PMID: 35753097 PMCID: PMC10329254 DOI: 10.1016/j.dnarep.2022.103358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022]
Abstract
DNA Polymerase θ is the key actuator of the recently identified double-strand break repair pathway, theta-mediated end joining (TMEJ). It is the only known polymerase to have a 3-domain architecture containing an independently functional family A DNA polymerase tethered by a long central region to an N-terminal helicase-like domain (HLD). Full-length polymerase θ and the isolated HLD hydrolyze ATP in the presence of DNA, but no processive DNA duplex unwinding has been observed. Based on sequence and structure conservation, the HLD is classified as a member of helicase superfamily II and, more specifically, the Ski2-like family. The specific subdomain composition and organization most closely resemble that of archaeal DNA repair helicases Hel308 and Hjm. The underlying structural basis as to why the HLD is not able to processively unwind duplex DNA, despite its similarity to bona fide helicases, remains elusive. Activities of the HLD include ATP hydrolysis, protein displacement, and annealing of complementary DNA. These observations have led to speculation about the role of the HLD within the context of double-strand break repair via TMEJ, such as removal of single-stranded DNA binding proteins like RPA and RAD51 and microhomology alignment. This review summarizes the structural classification and organization of the polymerase θ HLD and its homologs and explores emerging data on its biochemical activities. We conclude with a simple, speculative model for the HLD's role in TMEJ.
Collapse
Affiliation(s)
- Scott Vanson
- Department of Microbiology and Molecular Genetics, University of Vermont, 89 Beaumont Ave, Burlington, VT 05405, USA
| | - Yuzhen Li
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, TX 77230, USA
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, TX 77230, USA.
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, 89 Beaumont Ave, Burlington, VT 05405, USA.
| |
Collapse
|
17
|
Ramsden DA, Carvajal-Garcia J, Gupta GP. Mechanism, cellular functions and cancer roles of polymerase-theta-mediated DNA end joining. Nat Rev Mol Cell Biol 2022; 23:125-140. [PMID: 34522048 DOI: 10.1038/s41580-021-00405-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Abstract
Cellular pathways that repair chromosomal double-strand breaks (DSBs) have pivotal roles in cell growth, development and cancer. These DSB repair pathways have been the target of intensive investigation, but one pathway - alternative end joining (a-EJ) - has long resisted elucidation. In this Review, we highlight recent progress in our understanding of a-EJ, especially the assignment of DNA polymerase theta (Polθ) as the predominant mediator of a-EJ in most eukaryotes, and discuss a potential molecular mechanism by which Polθ-mediated end joining (TMEJ) occurs. We address possible cellular functions of TMEJ in resolving DSBs that are refractory to repair by non-homologous end joining (NHEJ), DSBs generated following replication fork collapse and DSBs present owing to stalling of repair by homologous recombination. We also discuss how these context-dependent cellular roles explain how TMEJ can both protect against and cause genome instability, and the emerging potential of Polθ as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Dale A Ramsden
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Juan Carvajal-Garcia
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
18
|
Clay DE, Bretscher HS, Jezuit EA, Bush KB, Fox DT. Persistent DNA damage signaling and DNA polymerase theta promote broken chromosome segregation. J Cell Biol 2021; 220:e202106116. [PMID: 34613334 PMCID: PMC8500225 DOI: 10.1083/jcb.202106116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023] Open
Abstract
Cycling cells must respond to DNA double-strand breaks (DSBs) to avoid genome instability. Missegregation of chromosomes with DSBs during mitosis results in micronuclei, aberrant structures linked to disease. How cells respond to DSBs during mitosis is incompletely understood. We previously showed that Drosophilamelanogaster papillar cells lack DSB checkpoints (as observed in many cancer cells). Here, we show that papillar cells still recruit early acting repair machinery (Mre11 and RPA3) and the Fanconi anemia (FA) protein Fancd2 to DSBs. These proteins persist as foci on DSBs as cells enter mitosis. Repair foci are resolved in a stepwise manner during mitosis. DSB repair kinetics depends on both monoubiquitination of Fancd2 and the alternative end-joining protein DNA polymerase θ. Disruption of either or both of these factors causes micronuclei after DNA damage, which disrupts intestinal organogenesis. This study reveals a mechanism for how cells with inactive DSB checkpoints can respond to DNA damage that persists into mitosis.
Collapse
Affiliation(s)
- Delisa E. Clay
- Department of Cell Biology, Duke University School of Medicine, Durham, NC
| | - Heidi S. Bretscher
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC
| | - Erin A. Jezuit
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC
| | - Korie B. Bush
- University Program in Genetics and Genomics, Duke University School of Medicine, Durham, NC
| | - Donald T. Fox
- Department of Cell Biology, Duke University School of Medicine, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC
- University Program in Genetics and Genomics, Duke University School of Medicine, Durham, NC
| |
Collapse
|
19
|
Clay DE, Fox DT. DNA Damage Responses during the Cell Cycle: Insights from Model Organisms and Beyond. Genes (Basel) 2021; 12:1882. [PMID: 34946831 PMCID: PMC8701014 DOI: 10.3390/genes12121882] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Genome damage is a threat to all organisms. To respond to such damage, DNA damage responses (DDRs) lead to cell cycle arrest, DNA repair, and cell death. Many DDR components are highly conserved, whereas others have adapted to specific organismal needs. Immense progress in this field has been driven by model genetic organism research. This review has two main purposes. First, we provide a survey of model organism-based efforts to study DDRs. Second, we highlight how model organism study has contributed to understanding how specific DDRs are influenced by cell cycle stage. We also look forward, with a discussion of how future study can be expanded beyond typical model genetic organisms to further illuminate how the genome is protected.
Collapse
Affiliation(s)
- Delisa E. Clay
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Donald T. Fox
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA;
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
20
|
Zahn KE, Jensen RB. Polymerase θ Coordinates Multiple Intrinsic Enzymatic Activities during DNA Repair. Genes (Basel) 2021; 12:1310. [PMID: 34573292 PMCID: PMC8470613 DOI: 10.3390/genes12091310] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
The POLQ gene encodes DNA polymerase θ, a 2590 amino acid protein product harboring DNA-dependent ATPase, template-dependent DNA polymerase, dNTP-dependent endonuclease, and 5'-dRP lyase functions. Polymerase θ participates at an essential step of a DNA double-strand break repair pathway able to join 5'-resected substrates by locating and pairing microhomologies present in 3'-overhanging single-stranded tails, cleaving the extraneous 3'-DNA by dNTP-dependent end-processing, before extending the nascent 3' end from the microhomology annealing site. Metazoans require polymerase θ for full resistance to DNA double-strand break inducing agents but can survive knockout of the POLQ gene. Cancer cells with compromised homologous recombination, or other DNA repair defects, over-utilize end-joining by polymerase θ and often over-express the POLQ gene. This dependency points to polymerase θ as an ideal drug target candidate and multiple drug-development programs are now preparing to enter clinical trials with small-molecule inhibitors. Specific inhibitors of polymerase θ would not only be predicted to treat BRCA-mutant cancers, but could thwart accumulated resistance to current standard-of-care cancer therapies and overcome PARP-inhibitor resistance in patients. This article will discuss synthetic lethal strategies targeting polymerase θ in DNA damage-response-deficient cancers and summarize data, describing molecular structures and enzymatic functions.
Collapse
Affiliation(s)
- Karl E. Zahn
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Repare Therapeutics, 7210 Rue Frederick Banting, Montreal, QC H4S 2A1, Canada
| | - Ryan B. Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
21
|
Zhou J, Gelot C, Pantelidou C, Li A, Yücel H, Davis RE, Farkkila A, Kochupurakkal B, Syed A, Shapiro GI, Tainer JA, Blagg BSJ, Ceccaldi R, D’Andrea AD. A first-in-class Polymerase Theta Inhibitor selectively targets Homologous-Recombination-Deficient Tumors. NATURE CANCER 2021; 2:598-610. [PMID: 34179826 PMCID: PMC8224818 DOI: 10.1038/s43018-021-00203-x] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA polymerase theta (POLθ) is synthetic lethal with Homologous Recombination (HR) deficiency and thus a candidate target for HR-deficient cancers. Through high-throughput small molecule screens we identified the antibiotic Novobiocin (NVB) as a specific POLθ inhibitor that selectively kills HR-deficient tumor cells in vitro and in vivo. NVB directly binds to the POLθ ATPase domain, inhibits its ATPase activity, and phenocopies POLθ depletion. NVB kills HR-deficient breast and ovarian tumors in GEMM, xenograft and PDX models. Increased POLθ levels predict NVB sensitivity, and BRCA-deficient tumor cells with acquired resistance to PARP inhibitors (PARPi) are sensitive to NVB in vitro and in vivo. Mechanistically, NVB-mediated cell death in PARPi-resistant cells arises from increased double-strand break end resection, leading to accumulation of single-strand DNA intermediates and non-functional RAD51 foci. Our results demonstrate that NVB may be useful alone or in combination with PARPi in treating HR-deficient tumors, including those with acquired PARPi resistance. (151/150).
Collapse
Affiliation(s)
- Jia Zhou
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Camille Gelot
- Inserm U830, PSL Research University, Institut Curie, 75005, Paris, France
| | - Constantia Pantelidou
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Adam Li
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Hatice Yücel
- Inserm U830, PSL Research University, Institut Curie, 75005, Paris, France
| | - Rachel E. Davis
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Anniina Farkkila
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Bose Kochupurakkal
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Aleem Syed
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John A. Tainer
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Brian S. J. Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Raphael Ceccaldi
- Inserm U830, PSL Research University, Institut Curie, 75005, Paris, France.,Corresponding authors: Alan D. D’Andrea, M.D., Director, Susan F. Smith Center for Women’s Cancers (SFSCWC), Director, Center for DNA Damage and Repair, Dana-Farber Cancer Institute, The Fuller-American Cancer Society Professor, Harvard Medical School, Phone: 617-632-2080, , Raphael Ceccaldi, Institut Curie, 75005, Paris, France, Phone: +33 (0)1 56 24 69 49,
| | - Alan D. D’Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, USA.,Susan F. Smith Center for Women’s Cancers, Dana-Farber Cancer Institute, Boston, MA, USA.,Corresponding authors: Alan D. D’Andrea, M.D., Director, Susan F. Smith Center for Women’s Cancers (SFSCWC), Director, Center for DNA Damage and Repair, Dana-Farber Cancer Institute, The Fuller-American Cancer Society Professor, Harvard Medical School, Phone: 617-632-2080, , Raphael Ceccaldi, Institut Curie, 75005, Paris, France, Phone: +33 (0)1 56 24 69 49,
| |
Collapse
|
22
|
Zahn KE, Jensen RB, Wood RD, Doublié S. RETRACTED: Human DNA polymerase θ harbors DNA end-trimming activity critical for DNA repair. Mol Cell 2021; 81:1534-1547.e4. [PMID: 33577776 PMCID: PMC8231307 DOI: 10.1016/j.molcel.2021.01.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/24/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Cancers with hereditary defects in homologous recombination rely on DNA polymerase θ (pol θ) for repair of DNA double-strand breaks. During end joining, pol θ aligns microhomology tracts internal to 5'-resected broken ends. An unidentified nuclease trims the 3' ends before synthesis can occur. Here we report that a nuclease activity, which differs from the proofreading activity often associated with DNA polymerases, is intrinsic to the polymerase domain of pol θ. Like the DNA synthesis activity, the nuclease activity requires conserved metal-binding residues, metal ions, and dNTPs and is inhibited by ddNTPs or chain-terminated DNA. Our data indicate that pol θ repurposes metal ions in the polymerase active site for endonucleolytic cleavage and that the polymerase-active and end-trimming conformations of the enzyme are distinct. We reveal a nimble strategy of substrate processing that allows pol θ to trim or extend DNA depending on the DNA repair context.
Collapse
Affiliation(s)
- Karl E Zahn
- Department of Microbiology and Molecular Genetics, University of Vermont, 89 Beaumont Ave., Burlington, VT 05405, USA; Department of Therapeutic Radiology, Yale University, New Haven, CT 06510, USA
| | - Ryan B Jensen
- Department of Therapeutic Radiology, Yale University, New Haven, CT 06510, USA
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 78957, USA.
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, 89 Beaumont Ave., Burlington, VT 05405, USA.
| |
Collapse
|
23
|
Carvajal-Garcia J, Crown KN, Ramsden DA, Sekelsky J. DNA polymerase theta suppresses mitotic crossing over. PLoS Genet 2021; 17:e1009267. [PMID: 33750946 PMCID: PMC8016270 DOI: 10.1371/journal.pgen.1009267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/01/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022] Open
Abstract
Polymerase theta-mediated end joining (TMEJ) is a chromosome break repair pathway that is able to rescue the lethality associated with the loss of proteins involved in early steps in homologous recombination (e.g., BRCA1/2). This is due to the ability of polymerase theta (Pol θ) to use resected, 3' single stranded DNA tails to repair chromosome breaks. These resected DNA tails are also the starting substrate for homologous recombination. However, it remains unknown if TMEJ can compensate for the loss of proteins involved in more downstream steps during homologous recombination. Here we show that the Holliday junction resolvases SLX4 and GEN1 are required for viability in the absence of Pol θ in Drosophila melanogaster, and lack of all three proteins results in high levels of apoptosis. Flies deficient in Pol θ and SLX4 are extremely sensitive to DNA damaging agents, and mammalian cells require either Pol θ or SLX4 to survive. Our results suggest that TMEJ and Holliday junction formation/resolution share a common DNA substrate, likely a homologous recombination intermediate, that when left unrepaired leads to cell death. One major consequence of Holliday junction resolution by SLX4 and GEN1 is cancer-causing loss of heterozygosity due to mitotic crossing over. We measured mitotic crossovers in flies after a Cas9-induced chromosome break, and observed that this mutagenic form of repair is increased in the absence of Pol θ. This demonstrates that TMEJ can function upstream of the Holiday junction resolvases to protect cells from loss of heterozygosity. Our work argues that Pol θ can thus compensate for the loss of the Holliday junction resolvases by using homologous recombination intermediates, suppressing mitotic crossing over and preserving the genomic stability of cells.
Collapse
Affiliation(s)
- Juan Carvajal-Garcia
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - K. Nicole Crown
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Dale A. Ramsden
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Integrative Program in Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
24
|
Schrempf A, Slyskova J, Loizou JI. Targeting the DNA Repair Enzyme Polymerase θ in Cancer Therapy. Trends Cancer 2021; 7:98-111. [PMID: 33109489 DOI: 10.1016/j.trecan.2020.09.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
Abstract
Targeted cancer therapies represent a milestone towards personalized treatment as they function via inhibition of cancer-specific alterations. Polymerase θ (POLQ), an error-prone translesion polymerase, also involved in DNA double-strand break (DSB) repair, is often upregulated in cancer. POLQ is synthetic lethal with various DNA repair genes, including known cancer drivers such as BRCA1/2, making it essential in homologous recombination-deficient cancers. Thus, POLQ represents a promising target in cancer therapy and efforts for the development of POLQ inhibitors are actively underway with first clinical trials due to start in 2021. This review summarizes the journey of POLQ from a backup DNA repair enzyme to a promising therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Anna Schrempf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Jana Slyskova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria.
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
25
|
Peralta-Castro A, García-Medel PL, Baruch-Torres N, Trasviña-Arenas CH, Juarez-Quintero V, Morales-Vazquez CM, Brieba LG. Plant Organellar DNA Polymerases Evolved Multifunctionality through the Acquisition of Novel Amino Acid Insertions. Genes (Basel) 2020; 11:genes11111370. [PMID: 33228188 PMCID: PMC7699545 DOI: 10.3390/genes11111370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
The majority of DNA polymerases (DNAPs) are specialized enzymes with specific roles in DNA replication, translesion DNA synthesis (TLS), or DNA repair. The enzymatic characteristics to perform accurate DNA replication are in apparent contradiction with TLS or DNA repair abilities. For instance, replicative DNAPs incorporate nucleotides with high fidelity and processivity, whereas TLS DNAPs are low-fidelity polymerases with distributive nucleotide incorporation. Plant organelles (mitochondria and chloroplast) are replicated by family-A DNA polymerases that are both replicative and TLS DNAPs. Furthermore, plant organellar DNA polymerases from the plant model Arabidopsis thaliana (AtPOLIs) execute repair of double-stranded breaks by microhomology-mediated end-joining and perform Base Excision Repair (BER) using lyase and strand-displacement activities. AtPOLIs harbor three unique insertions in their polymerization domain that are associated with TLS, microhomology-mediated end-joining (MMEJ), strand-displacement, and lyase activities. We postulate that AtPOLIs are able to execute those different functions through the acquisition of these novel amino acid insertions, making them multifunctional enzymes able to participate in DNA replication and DNA repair.
Collapse
Affiliation(s)
- Antolín Peralta-Castro
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Paola L. García-Medel
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Noe Baruch-Torres
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Carlos H. Trasviña-Arenas
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Víctor Juarez-Quintero
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Carlos M. Morales-Vazquez
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Luis G. Brieba
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
- Correspondence: ; Tel.: +52-462-1663007
| |
Collapse
|
26
|
Patterson-Fortin J, D'Andrea AD. Exploiting the Microhomology-Mediated End-Joining Pathway in Cancer Therapy. Cancer Res 2020; 80:4593-4600. [PMID: 32651257 PMCID: PMC7641946 DOI: 10.1158/0008-5472.can-20-1672] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 07/07/2020] [Indexed: 01/16/2023]
Abstract
Repair of DNA double-strand breaks (DSB) is performed by two major pathways, homology-dependent repair and classical nonhomologous end-joining. Recent studies have identified a third pathway, microhomology-mediated end-joining (MMEJ). MMEJ has similarities to homology-dependent repair, in that repair is initiated with end resection, leading to single-stranded 3' ends, which require microhomology upstream and downstream of the DSB. Importantly, the MMEJ pathway is commonly upregulated in cancers, especially in homologous recombination-deficient cancers, which display a distinctive mutational signature. Here, we review the molecular process of MMEJ as well as new targets and approaches exploiting the MMEJ pathway in cancer therapy.
Collapse
Affiliation(s)
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
27
|
Polymerase δ promotes chromosomal rearrangements and imprecise double-strand break repair. Proc Natl Acad Sci U S A 2020; 117:27566-27577. [PMID: 33077594 DOI: 10.1073/pnas.2014176117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent studies have implicated DNA polymerases θ (Pol θ) and β (Pol β) as mediators of alternative nonhomologous end-joining (Alt-NHEJ) events, including chromosomal translocations. Here we identify subunits of the replicative DNA polymerase δ (Pol δ) as promoters of Alt-NHEJ that results in more extensive intrachromosomal mutations at a single double-strand break (DSB) and more frequent translocations between two DSBs. Depletion of the Pol δ accessory subunit POLD2 destabilizes the complex, resulting in degradation of both POLD1 and POLD3 in human cells. POLD2 depletion markedly reduces the frequency of translocations with sequence modifications but does not affect the frequency of translocations with exact joins. Using separation-of-function mutants, we show that both the DNA synthesis and exonuclease activities of the POLD1 subunit contribute to translocations. As described in yeast and unlike Pol θ, Pol δ also promotes homology-directed repair. Codepletion of POLD2 with 53BP1 nearly eliminates translocations. POLD1 and POLD2 each colocalize with phosphorylated H2AX at ionizing radiation-induced DSBs but not with 53BP1. Codepletion of POLD2 with either ligase 3 (LIG3) or ligase 4 (LIG4) does not further reduce translocation frequency compared to POLD2 depletion alone. Together, these data support a model in which Pol δ promotes Alt-NHEJ in human cells at DSBs, including translocations.
Collapse
|
28
|
Bezalel-Buch R, Cheun YK, Roy U, Schärer OD, Burgers PM. Bypass of DNA interstrand crosslinks by a Rev1-DNA polymerase ζ complex. Nucleic Acids Res 2020; 48:8461-8473. [PMID: 32633759 PMCID: PMC7470978 DOI: 10.1093/nar/gkaa580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022] Open
Abstract
DNA polymerase ζ (Pol ζ) and Rev1 are essential for the repair of DNA interstrand crosslink (ICL) damage. We have used yeast DNA polymerases η, ζ and Rev1 to study translesion synthesis (TLS) past a nitrogen mustard-based interstrand crosslink (ICL) with an 8-atom linker between the crosslinked bases. The Rev1-Pol ζ complex was most efficient in complete bypass synthesis, by 2-3 fold, compared to Pol ζ alone or Pol η. Rev1 protein, but not its catalytic activity, was required for efficient TLS. A dCMP residue was faithfully inserted across the ICL-G by Pol η, Pol ζ, and Rev1-Pol ζ. Rev1-Pol ζ, and particularly Pol ζ alone showed a tendency to stall before the ICL, whereas Pol η stalled just after insertion across the ICL. The stalling of Pol η directly past the ICL is attributed to its autoinhibitory activity, caused by elongation of the short ICL-unhooked oligonucleotide (a six-mer in our study) by Pol η providing a barrier to further elongation of the correct primer. No stalling by Rev1-Pol ζ directly past the ICL was observed, suggesting that the proposed function of Pol ζ as an extender DNA polymerase is also required for ICL repair.
Collapse
Affiliation(s)
- Rachel Bezalel-Buch
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Young K Cheun
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Upasana Roy
- Department of Chemistry, Stony Brook University, Stony Book, NY 11794, USA.,Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
29
|
Hwang T, Reh S, Dunbayev Y, Zhong Y, Takata Y, Shen J, McBride KM, Murnane JP, Bhak J, Lee S, Wood RD, Takata KI. Defining the mutation signatures of DNA polymerase θ in cancer genomes. NAR Cancer 2020; 2:zcaa017. [PMID: 32885167 PMCID: PMC7454005 DOI: 10.1093/narcan/zcaa017] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 01/25/2023] Open
Abstract
DNA polymerase theta (POLQ)-mediated end joining (TMEJ) is a distinct pathway for mediating DNA double-strand break (DSB) repair. TMEJ is required for the viability of BRCA-mutated cancer cells. It is crucial to identify tumors that rely on POLQ activity for DSB repair, because such tumors are defective in other DSB repair pathways and have predicted sensitivity to POLQ inhibition and to cancer therapies that produce DSBs. We define here the POLQ-associated mutation signatures in human cancers, characterized by short insertions and deletions in a specific range of microhomologies. By analyzing 82 COSMIC (Catalogue of Somatic Mutations in Cancer) signatures, we found that BRCA-mutated cancers with a higher level of POLQ expression have a greatly enhanced representation of the small insertion and deletion signature 6, as well as single base substitution signature 3. Using human cancer cells with disruptions of POLQ, we further show that TMEJ dominates end joining of two separated DSBs (distal EJ). Templated insertions with microhomology are enriched in POLQ-dependent distal EJ. The use of this signature analysis will aid in identifying tumors relying on POLQ activity.
Collapse
Affiliation(s)
- Taejoo Hwang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Shelley Reh
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yerkin Dunbayev
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Yi Zhong
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yoko Takata
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jianjun Shen
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Kevin M McBride
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - John P Murnane
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jong Bhak
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Semin Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Kei-Ichi Takata
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
30
|
Hanscom T, McVey M. Regulation of Error-Prone DNA Double-Strand Break Repair and Its Impact on Genome Evolution. Cells 2020; 9:E1657. [PMID: 32660124 PMCID: PMC7407515 DOI: 10.3390/cells9071657] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Double-strand breaks are one of the most deleterious DNA lesions. Their repair via error-prone mechanisms can promote mutagenesis, loss of genetic information, and deregulation of the genome. These detrimental outcomes are significant drivers of human diseases, including many cancers. Mutagenic double-strand break repair also facilitates heritable genetic changes that drive organismal adaptation and evolution. In this review, we discuss the mechanisms of various error-prone DNA double-strand break repair processes and the cellular conditions that regulate them, with a focus on alternative end joining. We provide examples that illustrate how mutagenic double-strand break repair drives genome diversity and evolution. Finally, we discuss how error-prone break repair can be crucial to the induction and progression of diseases such as cancer.
Collapse
Affiliation(s)
| | - Mitch McVey
- Department. of Biology, Tufts University, Medford, MA 02155, USA;
| |
Collapse
|
31
|
Marygold SJ, Attrill H, Speretta E, Warner K, Magrane M, Berloco M, Cotterill S, McVey M, Rong Y, Yamaguchi M. The DNA polymerases of Drosophila melanogaster. Fly (Austin) 2020; 14:49-61. [PMID: 31933406 PMCID: PMC7714529 DOI: 10.1080/19336934.2019.1710076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/08/2022] Open
Abstract
DNA synthesis during replication or repair is a fundamental cellular process that is catalyzed by a set of evolutionary conserved polymerases. Despite a large body of research, the DNA polymerases of Drosophila melanogaster have not yet been systematically reviewed, leading to inconsistencies in their nomenclature, shortcomings in their functional (Gene Ontology, GO) annotations and an under-appreciation of the extent of their characterization. Here, we describe the complete set of DNA polymerases in D. melanogaster, applying nomenclature already in widespread use in other species, and improving their functional annotation. A total of 19 genes encode the proteins comprising three replicative polymerases (alpha-primase, delta, epsilon), five translesion/repair polymerases (zeta, eta, iota, Rev1, theta) and the mitochondrial polymerase (gamma). We also provide an overview of the biochemical and genetic characterization of these factors in D. melanogaster. This work, together with the incorporation of the improved nomenclature and GO annotation into key biological databases, including FlyBase and UniProtKB, will greatly facilitate access to information about these important proteins.
Collapse
Affiliation(s)
- Steven J. Marygold
- FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Helen Attrill
- FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Elena Speretta
- UniProt, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridgeshire, UK
| | - Kate Warner
- UniProt, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridgeshire, UK
| | - Michele Magrane
- UniProt, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridgeshire, UK
| | - Maria Berloco
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Sue Cotterill
- Department Basic Medical Sciences, St Georges University London, London, UK
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA, USA
| | - Yikang Rong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Masamitsu Yamaguchi
- Department of Applied Biology and Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
32
|
Kocak E, Dykstra S, Nemeth A, Coughlin CG, Rodgers K, McVey M. The Drosophila melanogaster PIF1 Helicase Promotes Survival During Replication Stress and Processive DNA Synthesis During Double-Strand Gap Repair. Genetics 2019; 213:835-847. [PMID: 31537623 PMCID: PMC6827366 DOI: 10.1534/genetics.119.302665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/18/2019] [Indexed: 11/18/2022] Open
Abstract
PIF1 is a 5' to 3' DNA helicase that can unwind double-stranded DNA and disrupt nucleic acid-protein complexes. In Saccharomyces cerevisiae, Pif1 plays important roles in mitochondrial and nuclear genome maintenance, telomere length regulation, unwinding of G-quadruplex structures, and DNA synthesis during break-induced replication. Some, but not all, of these functions are shared with other eukaryotes. To gain insight into the evolutionarily conserved functions of PIF1, we created pif1 null mutants in Drosophila melanogaster and assessed their phenotypes throughout development. We found that pif1 mutant larvae exposed to high concentrations of hydroxyurea, but not other DNA damaging agents, experience reduced survival to adulthood. Embryos lacking PIF1 fail to segregate their chromosomes efficiently during early nuclear divisions, consistent with a defect in DNA replication. Furthermore, loss of the BRCA2 protein, which is required for stabilization of stalled replication forks in metazoans, causes synthetic lethality in third instar larvae lacking either PIF1 or the polymerase delta subunit POL32. Interestingly, pif1 mutants have a reduced ability to synthesize DNA during repair of a double-stranded gap, but only in the absence of POL32. Together, these results support a model in which Drosophila PIF1 functions with POL32 during times of replication stress but acts independently of POL32 to promote synthesis during double-strand gap repair.
Collapse
Affiliation(s)
- Ece Kocak
- Department of Biology, Tufts University, Medford, Massachusetts 02155
| | - Sarah Dykstra
- Department of Biology, Tufts University, Medford, Massachusetts 02155
| | - Alexandra Nemeth
- Department of Biology, Tufts University, Medford, Massachusetts 02155
| | | | - Kasey Rodgers
- Department of Biology, Tufts University, Medford, Massachusetts 02155
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts 02155
| |
Collapse
|
33
|
Estep KN, Butler TJ, Ding J, Brosh RM. G4-Interacting DNA Helicases and Polymerases: Potential Therapeutic Targets. Curr Med Chem 2019; 26:2881-2897. [PMID: 29149833 DOI: 10.2174/0929867324666171116123345] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Guanine-rich DNA can fold into highly stable four-stranded DNA structures called G-quadruplexes (G4). In recent years, the G-quadruplex field has blossomed as new evidence strongly suggests that such alternately folded DNA structures are likely to exist in vivo. G4 DNA presents obstacles for the replication machinery, and both eukaryotic DNA helicases and polymerases have evolved to resolve and copy G4 DNA in vivo. In addition, G4-forming sequences are prevalent in gene promoters, suggesting that G4-resolving helicases act to modulate transcription. METHODS We have searched the PubMed database to compile an up-to-date and comprehensive assessment of the field's current knowledge to provide an overview of the molecular interactions of Gquadruplexes with DNA helicases and polymerases implicated in their resolution. RESULTS Novel computational tools and alternative strategies have emerged to detect G4-forming sequences and assess their biological consequences. Specialized DNA helicases and polymerases catalytically act upon G4-forming sequences to maintain normal replication and genomic stability as well as appropriate gene regulation and cellular homeostasis. G4 helicases also resolve telomeric repeats to maintain chromosomal DNA ends. Bypass of many G4-forming sequences is achieved by the action of translesion DNS polymerases or the PrimPol DNA polymerase. While the collective work has supported a role of G4 in nuclear DNA metabolism, an emerging field centers on G4 abundance in the mitochondrial genome. CONCLUSION Discovery of small molecules that specifically bind and modulate DNA helicases and polymerases or interact with the G4 DNA structure itself may be useful for the development of anticancer regimes.
Collapse
Affiliation(s)
- Katrina N Estep
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd Baltimore, MD 21224, United States
| | - Thomas J Butler
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd Baltimore, MD 21224, United States
| | - Jun Ding
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd Baltimore, MD 21224, United States
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd Baltimore, MD 21224, United States
| |
Collapse
|
34
|
García-Medel PL, Baruch-Torres N, Peralta-Castro A, Trasviña-Arenas CH, Torres-Larios A, Brieba LG. Plant organellar DNA polymerases repair double-stranded breaks by microhomology-mediated end-joining. Nucleic Acids Res 2019; 47:3028-3044. [PMID: 30698803 PMCID: PMC6451138 DOI: 10.1093/nar/gkz039] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/23/2018] [Accepted: 01/15/2019] [Indexed: 12/27/2022] Open
Abstract
Double-stranded breaks (DSBs) in plant organelles are repaired via genomic rearrangements characterized by microhomologous repeats. These microhomologous signatures predict the existence of an unidentified enzymatic machinery capable of repairing of DSBs via microhomology-mediated end-joining (MMEJ) in plant organelles. Here, we show that organellar DNA polymerases from Arabidopsis thaliana (AtPolIA and AtPolIB) perform MMEJ using microhomologous sequences as short as six nucleotides. AtPolIs execute MMEJ by virtue of two specialized amino acid insertions located in their thumb subdomains. Single-stranded binding proteins (SSBs) unique to plants, AtWhirly2 and organellar single-stranded binding proteins (AtOSBs), hinder MMEJ, whereas canonical mitochondrial SSBs (AtmtSSB1 and AtmtSSB2) do not interfere with MMEJ. Our data predict that organellar DNA rearrangements by MMEJ are a consequence of a competition for the 3'-OH of a DSBs. If AtWhirlies or AtOSBs gain access to the single-stranded DNA (ssDNA) region of a DSB, the reaction will shift towards high-fidelity routes like homologous recombination. Conversely MMEJ would be favored if AtPolIs or AtmtSSBs interact with the DSB. AtPolIs are not phylogenetically related to metazoan mitochondrial DNA polymerases, and the ability of AtPolIs to execute MMEJ may explain the abundance of DNA rearrangements in plant organelles in comparison to animal mitochondria.
Collapse
Affiliation(s)
- Paola L García-Medel
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| | - Noe Baruch-Torres
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| | - Antolín Peralta-Castro
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| | - Carlos H Trasviña-Arenas
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| | - Alfredo Torres-Larios
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Apartado postal 70-243, Mexico City 04510, México
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| |
Collapse
|
35
|
Black SJ, Ozdemir AY, Kashkina E, Kent T, Rusanov T, Ristic D, Shin Y, Suma A, Hoang T, Chandramouly G, Siddique LA, Borisonnik N, Sullivan-Reed K, Mallon JS, Skorski T, Carnevale V, Murakami KS, Wyman C, Pomerantz RT. Molecular basis of microhomology-mediated end-joining by purified full-length Polθ. Nat Commun 2019; 10:4423. [PMID: 31562312 PMCID: PMC6764996 DOI: 10.1038/s41467-019-12272-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/30/2019] [Indexed: 11/08/2022] Open
Abstract
DNA polymerase θ (Polθ) is a unique polymerase-helicase fusion protein that promotes microhomology-mediated end-joining (MMEJ) of DNA double-strand breaks (DSBs). How full-length human Polθ performs MMEJ at the molecular level remains unknown. Using a biochemical approach, we find that the helicase is essential for Polθ MMEJ of long ssDNA overhangs which model resected DSBs. Remarkably, Polθ MMEJ of ssDNA overhangs requires polymerase-helicase attachment, but not the disordered central domain, and occurs independently of helicase ATPase activity. Using single-particle microscopy and biophysical methods, we find that polymerase-helicase attachment promotes multimeric gel-like Polθ complexes that facilitate DNA accumulation, DNA synapsis, and MMEJ. We further find that the central domain regulates Polθ multimerization and governs its DNA substrate requirements for MMEJ. These studies identify unexpected functions for the helicase and central domain and demonstrate the importance of polymerase-helicase tethering in MMEJ and the structural organization of Polθ.
Collapse
Affiliation(s)
- Samuel J Black
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Ahmet Y Ozdemir
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Ekaterina Kashkina
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Tatiana Kent
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Timur Rusanov
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Dejan Ristic
- Department of Molecular Genetics and Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Yeonoh Shin
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Antonio Suma
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, USA
| | - Trung Hoang
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Gurushankar Chandramouly
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Labiba A Siddique
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Nikita Borisonnik
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Katherine Sullivan-Reed
- Fels Institute for Cancer Research, Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Joseph S Mallon
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Tomasz Skorski
- Fels Institute for Cancer Research, Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, USA
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Claire Wyman
- Department of Molecular Genetics and Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Richard T Pomerantz
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
36
|
Feng W, Simpson DA, Carvajal-Garcia J, Price BA, Kumar RJ, Mose LE, Wood RD, Rashid N, Purvis JE, Parker JS, Ramsden DA, Gupta GP. Genetic determinants of cellular addiction to DNA polymerase theta. Nat Commun 2019; 10:4286. [PMID: 31537809 PMCID: PMC6753077 DOI: 10.1038/s41467-019-12234-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Polymerase theta (Pol θ, gene name Polq) is a widely conserved DNA polymerase that mediates a microhomology-mediated, error-prone, double strand break (DSB) repair pathway, referred to as Theta Mediated End Joining (TMEJ). Cells with homologous recombination deficiency are reliant on TMEJ for DSB repair. It is unknown whether deficiencies in other components of the DNA damage response (DDR) also result in Pol θ addiction. Here we use a CRISPR genetic screen to uncover 140 Polq synthetic lethal (PolqSL) genes, the majority of which were previously unknown. Functional analyses indicate that Pol θ/TMEJ addiction is associated with increased levels of replication-associated DSBs, regardless of the initial source of damage. We further demonstrate that approximately 30% of TCGA breast cancers have genetic alterations in PolqSL genes and exhibit genomic scars of Pol θ/TMEJ hyperactivity, thereby substantially expanding the subset of human cancers for which Pol θ inhibition represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Wanjuan Feng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dennis A Simpson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Juan Carvajal-Garcia
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brandon A Price
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rashmi J Kumar
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lisle E Mose
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA
| | - Naim Rashid
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeremy E Purvis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dale A Ramsden
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
37
|
Schimmel J, van Schendel R, den Dunnen JT, Tijsterman M. Templated Insertions: A Smoking Gun for Polymerase Theta-Mediated End Joining. Trends Genet 2019; 35:632-644. [PMID: 31296341 DOI: 10.1016/j.tig.2019.06.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 01/23/2023]
Abstract
A recognized source of disease-causing genome alterations is erroneous repair of broken chromosomes, which can be executed by two distinct mechanisms: non-homologous end joining (NHEJ) and the recently discovered polymerase theta-mediated end joining (TMEJ) pathway. While TMEJ has previously been considered to act as an alternative mechanism backing up NHEJ, recent work points to a role for TMEJ in the repair of replication-associated DNA breaks that are excluded from repair through homologous recombination. Because of its mode of action, TMEJ is intrinsically mutagenic and sometimes leaves behind a recognizable genomic scar when joining chromosome break ends (i.e., 'templated insertions'). This review article focuses on the intriguing observation that this polymerase theta signature is frequently observed in disease alleles, arguing for a prominent role of this double-strand break repair pathway in genome diversification and disease-causing spontaneous mutagenesis in humans.
Collapse
Affiliation(s)
- Joost Schimmel
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Johan T den Dunnen
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
38
|
de Lima LP, Calderano SG, da Silva MS, de Araujo CB, Vasconcelos EJR, Iwai LK, Pereira CA, Fragoso SP, Elias MC. Ortholog of the polymerase theta helicase domain modulates DNA replication in Trypanosoma cruzi. Sci Rep 2019; 9:2888. [PMID: 30814563 PMCID: PMC6393585 DOI: 10.1038/s41598-019-39348-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/19/2018] [Indexed: 01/05/2023] Open
Abstract
DNA polymerase theta (Polθ), a member of the DNA polymerase family A, exhibits a polymerase C-terminal domain, a central domain, and an N-terminal helicase domain. Polθ plays important roles in DNA repair via its polymerase domain, regulating genome integrity. In addition, in mammals, Polθ modulates origin firing timing and MCM helicase recruitment to chromatin. In contrast, as a model eukaryote, Trypanosoma cruzi exhibits two individual putative orthologs of Polθ in different genomic loci; one ortholog is homologous to the Polθ C-terminal polymerase domain, and the other is homologous to the Polθ helicase domain, called Polθ-polymerase and Polθ-helicase, respectively. A pull-down assay using the T. cruzi component of the prereplication complex Orc1/Cdc6 as bait captured Polθ-helicase from the nuclear extract. Orc1/Cdc6 and Polθ-helicase directly interacted, and Polθ-helicase presented DNA unwinding and ATPase activities. A T. cruzi strain overexpressing the Polθ-helicase domain exhibited a significantly decreased amount of DNA-bound MCM7 and impaired replication origin firing. Taken together, these data suggest that Polθ-helicase modulates DNA replication by directly interacting with Orc1/Cdc6, which reduces the binding of MCM7 to DNA and thereby impairs the firing of replication origins.
Collapse
Affiliation(s)
- Loyze P de Lima
- Laboratorio Especial de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | | | - Marcelo S da Silva
- Laboratorio Especial de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Christiane B de Araujo
- Laboratorio Especial de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Elton J R Vasconcelos
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Leo K Iwai
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, Brazil
| | - Claudio A Pereira
- Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Combatientes de Malvinas, (C1427ARO) Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | | | - M Carolina Elias
- Laboratorio Especial de Ciclo Celular, Instituto Butantan, São Paulo, Brazil.
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
39
|
Liu Y, Fang Y, Liu Y, Wang Z, Lyu B, Hu Y, Zhou X. Opposite effects of Drosophila C3PO on gene silencing mediated by esi-2.1 and miRNA-bantam. Acta Biochim Biophys Sin (Shanghai) 2019; 51:131-138. [PMID: 30576408 DOI: 10.1093/abbs/gmy154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 11/14/2022] Open
Abstract
Translin/TRAX complex, also named as C3PO, is evolutionarily conserved and participates in diverse cellular processes in different organisms from yeast to human. C3PO plays a critical role in the activation of RNA-induced silencing complexes by promoting the unwinding and degradation of passenger strand of exogenous siRNAs (exo-siRNAs) in Drosophila and human. Moreover, human C3PO (hC3PO) has been found to broadly repress miRNAs by degrading miRNA precursors. However, the effect of Drosophila melanogaster C3PO (dmC3PO) on endogenous siRNA (endo-siRNA) and miRNA pathways remains unknown. Here, we found that the loss of dmC3PO promoted the accumulation of the passenger strand of esi-2.1 (hp-CG4068B), and resulted in the de-repression of the DNA-damage-response gene mutagensensitive 308 (mus308), which is an endogenous slicer target of esi-2.1 in Drosophila. Moreover, we also found that depletion of dmC3PO increased the accumulation of miR-bantam. Taken together, our findings indicated that dmC3PO not only involves in siRNA pathway triggered by dsRNA, but also regulates the abundance of certain endogenous small RNAs in Drosophila.
Collapse
Affiliation(s)
- Yujie Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuan Fang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yongxiang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhaowei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Bao Lyu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuanyang Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
40
|
Sakamoto AN. Translesion Synthesis in Plants: Ultraviolet Resistance and Beyond. FRONTIERS IN PLANT SCIENCE 2019; 10:1208. [PMID: 31649692 PMCID: PMC6794406 DOI: 10.3389/fpls.2019.01208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/03/2019] [Indexed: 05/06/2023]
Abstract
Plant genomes sustain various forms of DNA damage that stall replication forks. Translesion synthesis (TLS) is one of the pathways to overcome stalled replication in which specific polymerases (TLS polymerase) perform bypass synthesis across DNA damage. This article gives a brief overview of plant TLS polymerases. In Arabidopsis, DNA polymerase (Pol) ζ, η, κ, θ, and λ and Reversionless1 (Rev1) are shown to be involved in the TLS. For example, AtPolη bypasses ultraviolet (UV)-induced cyclobutane pyrimidine dimers in vitro. Disruption of AtPolζ or AtPolη increases root stem cell death after UV irradiation. These results suggest that AtPolζ and ATPolη bypass UV-induced damage, prevent replication arrest, and allow damaged cells to survive and grow. In general, TLS polymerases have low fidelity and often induce mutations. Accordingly, disruption of AtPolζ or AtRev1 reduces somatic mutation frequency, whereas disruption of AtPolη elevates it, suggesting that plants have both mutagenic and less mutagenic TLS activities. The stalled replication fork can be resolved by a strand switch pathway involving a DNA helicase Rad5. Disruption of both AtPolζ and AtRAD5a shows synergistic or additive effects in the sensitivity to DNA-damaging agents. Moreover, AtPolζ or AtRev1 disruption elevates homologous recombination frequencies in somatic tissues. These results suggest that the Rad5-dependent pathway and TLS are parallel. Plants grown in the presence of heat shock protein 90 (HSP90) inhibitor showed lower mutation frequencies, suggesting that HSP90 regulates mutagenic TLS in plants. Hypersensitivities of TLS-deficient plants to γ-ray and/or crosslink damage suggest that plant TLS polymerases have multiple roles, as reported in other organisms.
Collapse
|
41
|
Abstract
The number of DNA polymerases identified in each organism has mushroomed in the past two decades. Most newly found DNA polymerases specialize in translesion synthesis and DNA repair instead of replication. Although intrinsic error rates are higher for translesion and repair polymerases than for replicative polymerases, the specialized polymerases increase genome stability and reduce tumorigenesis. Reflecting the numerous types of DNA lesions and variations of broken DNA ends, translesion and repair polymerases differ in structure, mechanism, and function. Here, we review the unique and general features of polymerases specialized in lesion bypass, as well as in gap-filling and end-joining synthesis.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Yang Gao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
42
|
Abstract
The mechanistic understanding of how DNA double-strand breaks (DSB) are repaired is rapidly advancing in part due to the advent of inducible site-specific break model systems as well as the employment of next-generation sequencing (NGS) technologies to sequence repair junctions at high depth. Unfortunately, the sheer volume of data produced by these methods makes it difficult to analyze the structure of repair junctions manually or with other general-purpose software. Here, we describe methods to produce amplicon libraries of DSB repair junctions for sequencing, to map the sequencing reads, and then to use a robust, custom python script, Hi-FiBR, to analyze the sequence structure of mapped reads. The Hi-FiBR analysis processes large data sets quickly and provides information such as number and type of repair events, size of deletion, size of insertion and inserted sequence, microhomology usage, and whether mismatches are due to sequencing error or biological effect. The analysis also corrects for common alignment errors generated by sequencing read mapping tools, allowing high-throughput analysis of DSB break repair fidelity to be accurately conducted regardless of which suite of NGS analysis software is available.
Collapse
|
43
|
Affiliation(s)
- Judith L Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, California, USA
| | - Hongzhi Li
- City of Hope, Bioinformatics Department, Duarte, California, USA
| |
Collapse
|
44
|
Mateos-Gomez PA, Kent T, Deng SK, McDevitt S, Kashkina E, Hoang TM, Pomerantz RT, Sfeir A. The helicase domain of Polθ counteracts RPA to promote alt-NHEJ. Nat Struct Mol Biol 2017; 24:1116-1123. [PMID: 29058711 PMCID: PMC6047744 DOI: 10.1038/nsmb.3494] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/22/2017] [Indexed: 12/15/2022]
Abstract
Mammalian polymerase theta (Polθ) is a multifunctional enzyme that promotes error-prone DNA repair by alternative nonhomologous end joining (alt-NHEJ). Here we present structure-function analyses that reveal that, in addition to the polymerase domain, Polθ-helicase activity plays a central role during double-strand break (DSB) repair. Our results show that the helicase domain promotes chromosomal translocations by alt-NHEJ in mouse embryonic stem cells and also suppresses CRISPR-Cas9- mediated gene targeting by homologous recombination (HR). In vitro assays demonstrate that Polθ-helicase activity facilitates the removal of RPA from resected DSBs to allow their annealing and subsequent joining by alt-NHEJ. Consistent with an antagonistic role for RPA during alt-NHEJ, inhibition of RPA1 enhances end joining and suppresses recombination. Taken together, our results reveal that the balance between HR and alt-NHEJ is controlled by opposing activities of Polθ and RPA, providing further insight into the regulation of repair-pathway choice in mammalian cells.
Collapse
Affiliation(s)
- Pedro A. Mateos-Gomez
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, USA
- Department of Cell Biology, New York University School of Medicine, New York, USA
| | - Tatiana Kent
- Temple University Lewis Katz School of Medicine, Philadelphia, USA
| | - Sarah K. Deng
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, USA
- Department of Cell Biology, New York University School of Medicine, New York, USA
| | - Shane McDevitt
- Temple University Lewis Katz School of Medicine, Philadelphia, USA
| | | | - Trung M. Hoang
- Temple University Lewis Katz School of Medicine, Philadelphia, USA
| | | | - Agnel Sfeir
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, USA
- Department of Cell Biology, New York University School of Medicine, New York, USA
| |
Collapse
|
45
|
Malaby AW, Martin SK, Wood RD, Doublié S. Expression and Structural Analyses of Human DNA Polymerase θ (POLQ). Methods Enzymol 2017; 592:103-121. [PMID: 28668117 PMCID: PMC5624038 DOI: 10.1016/bs.mie.2017.03.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
DNA polymerase theta (pol θ) is an evolutionarily conserved protein encoded by the POLQ gene in mammalian genomes. Pol θ is the defining enzyme for a pathway of DSB repair termed "alternative end-joining" (altEJ) or "theta-mediated end-joining." This pathway contributes significantly to the radiation resistance of mammalian cells. It also modulates accuracy in repair of breaks that occur at stalled DNA replication forks, during diversification steps of the mammalian immune system, during repair of CRISPR-Cas9, and in many DNA integration events. Pol θ is a potentially important clinical target, particularly for cancers deficient in other break repair strategies. The enzyme is uniquely able to mediate joining of single-stranded 3' ends. Because of these unusual biochemical properties and its therapeutic importance, it is essential to study structures of pol θ bound to DNA. However, challenges for expression and purification are presented by the large size of pol θ (2590 residues in humans) and unusual juxtaposition of domains (a helicase-like domain and distinct DNA polymerase, separated by a region predicted to be largely disordered). Here we summarize work on the expression and purification of the full-length protein, and then focus on the design, expression, and purification of an active C-terminal polymerase fragment. The generation of this active construct was nontrivial and time consuming. Almost all published biochemical work to date has been performed with this domain fragment. Strategies to obtain and improve crystals of a ternary pol θ complex (enzyme:DNA:nucleotide) are also presented, along with key elements of the structure.
Collapse
Affiliation(s)
| | - Sara K Martin
- The University of Texas MD Anderson Cancer Center, Smithville, TX, United States; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Richard D Wood
- The University of Texas MD Anderson Cancer Center, Smithville, TX, United States; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | | |
Collapse
|