1
|
Baniulyte G, McCann AA, Woodstock DL, Sammons MA. Crosstalk between paralogs and isoforms influences p63-dependent regulatory element activity. Nucleic Acids Res 2024; 52:13812-13831. [PMID: 39565223 DOI: 10.1093/nar/gkae1143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/04/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
The p53 family of transcription factors (p53, p63 and p73) regulate diverse organismal processes including tumor suppression, maintenance of genome integrity and the development of skin and limbs. Crosstalk between transcription factors with highly similar DNA binding profiles, like those in the p53 family, can dramatically alter gene regulation. While p53 is primarily associated with transcriptional activation, p63 mediates both activation and repression. The specific mechanisms controlling p63-dependent gene regulatory activity are not well understood. Here, we use massively parallel reporter assays (MPRA) to investigate how local DNA sequence context influences p63-dependent transcriptional activity. Most regulatory elements with a p63 response element motif (p63RE) activate transcription, although binding of the p63 paralog, p53, drives a substantial proportion of that activity. p63RE sequence content and co-enrichment with other known activating and repressing transcription factors, including lineage-specific factors, correlates with differential p63RE-mediated activities. p63 isoforms dramatically alter transcriptional behavior, primarily shifting inactive regulatory elements towards high p63-dependent activity. Our analysis provides novel insight into how local sequence and cellular context influences p63-dependent behaviors and highlights the key, yet still understudied, role of transcription factor paralogs and isoforms in controlling gene regulatory element activity.
Collapse
Affiliation(s)
- Gabriele Baniulyte
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Abby A McCann
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Dana L Woodstock
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Morgan A Sammons
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| |
Collapse
|
2
|
Lu J, Peng B, Wang W, Zou Y. Epithelial-mesenchymal crosstalk: the scriptwriter of craniofacial morphogenesis. Front Cell Dev Biol 2024; 12:1497002. [PMID: 39583201 PMCID: PMC11582012 DOI: 10.3389/fcell.2024.1497002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Epithelial-mesenchymal interactions (EMI) are fundamental mechanisms in regulating development and organogenesis. Here we summarized the signaling mechanisms involved in EMI in the major developmental events during craniofacial morphogenesis, including neural crest cell induction, facial primordial growth as well as fusion processes. Regional specificity/polarity are demonstrated in the expression of most signaling molecules that usually act in a mutually synergistic/antagonistic manner. The underlying mechanisms of pathogenesis due to disrupted EMI was also discussed in this review.
Collapse
Affiliation(s)
- Junjie Lu
- School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Bo Peng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Wenyi Wang
- School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yi Zou
- School of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Caetano da Silva C, Macias Trevino C, Mitchell J, Murali H, Tsimbal C, Dalessandro E, Carroll SH, Kochhar S, Curtis SW, Cheng CHE, Wang F, Kutschera E, Carstens RP, Xing Y, Wang K, Leslie EJ, Liao EC. Functional analysis of ESRP1/2 gene variants and CTNND1 isoforms in orofacial cleft pathogenesis. Commun Biol 2024; 7:1040. [PMID: 39179789 PMCID: PMC11344038 DOI: 10.1038/s42003-024-06715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
Orofacial cleft (OFC) is a common human congenital anomaly. Epithelial-specific RNA splicing regulators ESRP1 and ESRP2 regulate craniofacial morphogenesis and their disruption result in OFC in zebrafish, mouse and humans. Using esrp1/2 mutant zebrafish and murine Py2T cell line models, we functionally tested the pathogenicity of human ESRP1/2 gene variants. We found that many variants predicted by in silico methods to be pathogenic were functionally benign. Esrp1 also regulates the alternative splicing of Ctnnd1 and these genes are co-expressed in the embryonic and oral epithelium. In fact, over-expression of ctnnd1 is sufficient to rescue morphogenesis of epithelial-derived structures in esrp1/2 zebrafish mutants. Additionally, we identified 13 CTNND1 variants from genome sequencing of OFC cohorts, confirming CTNND1 as a key gene in human OFC. This work highlights the importance of functional assessment of human gene variants and demonstrates the critical requirement of Esrp-Ctnnd1 acting in the embryonic epithelium to regulate palatogenesis.
Collapse
Affiliation(s)
- Caroline Caetano da Silva
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Hemma Murali
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Casey Tsimbal
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Eileen Dalessandro
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shannon H Carroll
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Simren Kochhar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ching Hsun Eric Cheng
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Feng Wang
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric Kutschera
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Russ P Carstens
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yi Xing
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric C Liao
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Harvard Medical School, Boston, MA, USA.
- Shriners Hospital for Children, Tampa, FL, USA.
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
4
|
da Silva CC, Trevino CM, Mitchell J, Murali H, Tsimbal C, Dalessandro E, Carroll SH, Kochhar S, Curtis SW, Cheng CHE, Wang F, Kutschera E, Carstens RP, Xing Y, Wang K, Leslie EJ, Liao EC. Functional analysis of ESRP1/2 gene variants and CTNND1 isoforms in orofacial cleft pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601574. [PMID: 39005284 PMCID: PMC11245018 DOI: 10.1101/2024.07.02.601574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Orofacial cleft (OFC) is a common human congenital anomaly. Epithelial-specific RNA splicing regulators ESRP1 and ESRP2 regulate craniofacial morphogenesis and their disruption result in OFC in zebrafish, mouse and humans. Using esrp1/2 mutant zebrafish and murine Py2T cell line models, we functionally tested the pathogenicity of human ESRP1/2 gene variants. We found that many variants predicted by in silico methods to be pathogenic were functionally benign. Esrp1 also regulates the alternative splicing of Ctnnd1 and these genes are co-expressed in the embryonic and oral epithelium. In fact, over-expression of ctnnd1 is sufficient to rescue morphogenesis of epithelial-derived structures in esrp1/2 zebrafish mutants. Additionally, we identified 13 CTNND1 variants from genome sequencing of OFC cohorts, confirming CTNND1 as a key gene in human OFC. This work highlights the importance of functional assessment of human gene variants and demonstrates the critical requirement of Esrp-Ctnnd1 acting in the embryonic epithelium to regulate palatogenesis.
Collapse
Affiliation(s)
- Caroline Caetano da Silva
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
| | | | | | - Hemma Murali
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Casey Tsimbal
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Eileen Dalessandro
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
| | - Shannon H. Carroll
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Simren Kochhar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah W. Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ching Hsun Eric Cheng
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
| | - Feng Wang
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, PA, USA
| | - Eric Kutschera
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, PA, USA
| | - Russ P. Carstens
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yi Xing
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth J. Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric C. Liao
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
- Harvard Medical School, Boston, MA, USA
- Shriners Hospital for Children, Tampa, FL, USA
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
5
|
McCann AA, Baniulyte G, Woodstock DL, Sammons MA. Context dependent activity of p63-bound gene regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593326. [PMID: 38766006 PMCID: PMC11100809 DOI: 10.1101/2024.05.09.593326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The p53 family of transcription factors regulate numerous organismal processes including the development of skin and limbs, ciliogenesis, and preservation of genetic integrity and tumor suppression. p53 family members control these processes and gene expression networks through engagement with DNA sequences within gene regulatory elements. Whereas p53 binding to its cognate recognition sequence is strongly associated with transcriptional activation, p63 can mediate both activation and repression. How the DNA sequence of p63-bound gene regulatory elements is linked to these varied activities is not yet understood. Here, we use massively parallel reporter assays (MPRA) in a range of cellular and genetic contexts to investigate the influence of DNA sequence on p63-mediated transcription. Most regulatory elements with a p63 response element motif (p63RE) activate transcription, with those sites bound by p63 more frequently or adhering closer to canonical p53 family response element sequences driving higher transcriptional output. The most active regulatory elements are those also capable of binding p53. Elements uniquely bound by p63 have varied activity, with p63RE-mediated repression associated with lower overall GC content in flanking sequences. Comparison of activity across cell lines suggests differential activity of elements may be regulated by a combination of p63 abundance or context-specific cofactors. Finally, changes in p63 isoform expression dramatically alters regulatory element activity, primarily shifting inactive elements towards a strong p63-dependent activity. Our analysis of p63-bound gene regulatory elements provides new insight into how sequence, cellular context, and other transcription factors influence p63-dependent transcription. These studies provide a framework for understanding how p63 genomic binding locally regulates transcription. Additionally, these results can be extended to investigate the influence of sequence content, genomic context, chromatin structure on the interplay between p63 isoforms and p53 family paralogs.
Collapse
Affiliation(s)
- Abby A. McCann
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York. 1400 washington Ave, Albany, NY 12222
| | - Gabriele Baniulyte
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York. 1400 washington Ave, Albany, NY 12222
| | - Dana L. Woodstock
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York. 1400 washington Ave, Albany, NY 12222
| | - Morgan A. Sammons
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York. 1400 washington Ave, Albany, NY 12222
| |
Collapse
|
6
|
Stanton E, Sheridan S, Urata M, Chai Y. From Bedside to Bench and Back: Advancing Our Understanding of the Pathophysiology of Cleft Palate and Implications for the Future. Cleft Palate Craniofac J 2024; 61:759-773. [PMID: 36457208 DOI: 10.1177/10556656221142098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE To provide a comprehensive understanding of the pathophysiology of cleft palate (CP) and future perspectives. DESIGN Literature review. SETTING Setting varied across studies by level of care and geographical locations. INTERVENTIONS No interventions were performed. MAIN OUTCOME MEASURE(S) Primary outcome measures were to summarize our current understanding of palatogenesis in humans and animal models, the pathophysiology of CP, and potential future treatment modalities. RESULTS Animal research has provided considerable insight into the pathophysiology, molecular and cellular mechanisms of CP that have allowed for the development of novel treatment strategies. However, much work has yet to be done to connect our mouse model investigations and discoveries to CP in humans. The success of innovative strategies for tissue regeneration in mice provides promise for an exciting new avenue for improved and more targeted management of cleft care with precision medicine in patients. However, significant barriers to clinical translation remain. Among the most notable challenges include the differences in some aspects of palatogenesis and tissue repair between mice and humans, suggesting that potential therapies that have worked in animal models may not provide similar benefits to humans. CONCLUSIONS Increased translation of pathophysiological and tissue regeneration studies to clinical trials will bridge a wide gap in knowledge between animal models and human disease. By enhancing interaction between basic scientists and clinicians, and employing our animal model findings of disease mechanisms in concert with what we glean in the clinic, we can generate a more targeted and improved treatment algorithm for patients with CP.
Collapse
Affiliation(s)
- Eloise Stanton
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Samuel Sheridan
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Mark Urata
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Wang B, Zhang Z, Zhao J, Ma Y, Wang Y, Yin N, Song T. Spatiotemporal Evolution of Developing Palate in Mice. J Dent Res 2024; 103:546-554. [PMID: 38619065 PMCID: PMC11145300 DOI: 10.1177/00220345241232317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
The intricate formation of the palate involves a series of complex events, yet its mechanistic basis remains uncertain. To explore major cell populations in the palate and their roles during development, we constructed a spatiotemporal transcription landscape of palatal cells. Palate samples from C57BL/6 J mice at embryonic days 12.5 (E12.5), 14.5 (E14.5), and 16.5 (E16.5) underwent single-cell RNA sequencing (scRNA-seq) to identify distinct cell subsets. In addition, spatial enhanced resolution omics-sequencing (stereo-seq) was used to characterize the spatial distribution of these subsets. Integrating scRNA-seq and stereo-seq with CellTrek annotated mesenchymal and epithelial cellular components of the palate during development. Furthermore, cellular communication networks between these cell subpopulations were analyzed to discover intercellular signaling during palate development. From the analysis of the middle palate, both mesenchymal and epithelial populations were spatially segregated into 3 domains. The middle palate mesenchymal subpopulations were associated with tooth formation, ossification, and tissue remodeling, with initial state cell populations located proximal to the dental lamina. The nasal epithelium of the palatal shelf exhibited richer humoral immune responses than the oral side. Specific enrichment of Tgfβ3 and Pthlh signals in the midline epithelial seam at E14.5 suggested a role in epithelial-mesenchymal transition. In summary, this study provides high-resolution transcriptomic information, contributing to a deeper mechanistic understanding of palate biology and pathophysiology.
Collapse
Affiliation(s)
- B. Wang
- Center for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Z. Zhang
- Center for Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - J. Zhao
- Center for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Y. Ma
- Center for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Y. Wang
- Center for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - N. Yin
- Center for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - T. Song
- Center for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Yoshida N, Inubushi T, Hirose T, Aoyama G, Kurosaka H, Yamashiro T. The roles of JAK2/STAT3 signaling in fusion of the secondary palate. Dis Model Mech 2023; 16:dmm050085. [PMID: 37846594 PMCID: PMC10602007 DOI: 10.1242/dmm.050085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023] Open
Abstract
Cleft palate has a multifactorial etiology. In palatal fusion, the contacting medial edge epithelium (MEE) forms the epithelial seam, which is subsequently removed with the reduction of p63. Failure in this process results in a cleft palate. We herein report the involvement of janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling in palatal fusion and that folic acid rescues the fusing defect by reactivating JAK2/STAT3. In closure of bilateral palatal shelves, STAT3 phosphorylation was activated at the fusing MEE and mesenchyme underlying the MEE. JAK2 inhibition by AG490 inhibited STAT3 phosphorylation and resulted in palatal fusion failure without removal of the epithelial seam, in which p63 and keratin 17 (K17) periderm markers were retained. Folic acid application restored STAT3 phosphorylation in AG490-treated palatal explants and rescued the fusion defect, in which the p63- and K17-positive epithelial seam were removed. The AG490-induced palatal defect was also rescued in p63 haploinsufficient explants. These findings suggest that JAK2/STAT3 signaling is involved in palatal fusion by suppressing p63 expression in MEE and that folate restores the fusion defect by reactivating JAK2/STAT3.
Collapse
Affiliation(s)
- Naoki Yoshida
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Takumi Hirose
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Gozo Aoyama
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Saroya GA, Siismets E, Hu M, Panaretos C, Rice A, Reynolds K, Zhou CJ, Kaartinen V. Canonical Wnt signaling is not required for Tgfb3 expression in the basal medial edge epithelium during palatogenesis. Front Physiol 2023; 14:704406. [PMID: 37250135 PMCID: PMC10213314 DOI: 10.3389/fphys.2023.704406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
The secondary palate forms from two lateral primordia called the palatal shelves which form a contact in the midline, become adherent at the fusing interface (medial edge epithelia, MEE) and subsequently fuse. The gene encoding transforming growth factor-ß3 (Tgfb3) is strongly and specifically expressed in MEE cells. Our previous study suggested that Tgfb3 expression is controlled via upstream cis-regulatory elements in and around the neighboring Ift43 gene. Another study suggested that the canonical Wnt signaling via ß-Catenin is responsible for the MEE-specific Tgfb3 gene expression, since deletion of the Ctnnb1 gene by a commonly used Keratin 14-Cre (K14Cre) mouse line almost completely abolished Tgfb3 expression in the MEE resulting in cleft palate. Here, we wanted to analyze whether Tcf/Lef consensus binding sites located in the previously identified regions of the Ift43 gene are responsible for the spatiotemporal control of Tgfb3 expression during palatogenesis. We show that contrary to the previous report, deletion of the Ctnnb1 gene in basal MEE cells by the K14Cre driver (the same K14Cre mouse line was used as in the previous study referenced above) does not affect the MEE-specific Tgfb3 expression or TGFß3-dependent palatal epithelial fusion. All mutant embryos showed a lack of palatal rugae accompanied by other craniofacial defects, e.g., a narrow snout and a small upper lip, while only a small subset (<5%) of Ctnnb1 mutants displayed a cleft palate. Moreover, the K14Cre:Ctnnb1 embryos showed reduced levels and altered patterns of Shh expression. Our present data imply that epithelial ß-catenin may not be required for MEE-specific Tgfb3 expression or palatal epithelial fusion.
Collapse
Affiliation(s)
- Ghazi-Abdullah Saroya
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Erica Siismets
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, United States
- Oral Health Sciences PhD Program, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Max Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, United States
- College of Literature, Sciences and the Arts, University of Michigan, Ann Arbor, MI, United States
| | - Christopher Panaretos
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Adam Rice
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Kurt Reynolds
- School of Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California, University of California at Davis, Sacramento, CA, United States
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA, United States
| | - Chengji J. Zhou
- School of Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California, University of California at Davis, Sacramento, CA, United States
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA, United States
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| |
Collapse
|
10
|
Saroya G, Hu J, Hu M, Panaretos C, Mann J, Kim S, Bush J, Kaartinen V. Periderm Fate during Palatogenesis: TGF-β and Periderm Dedifferentiation. J Dent Res 2023; 102:459-466. [PMID: 36751050 PMCID: PMC10041600 DOI: 10.1177/00220345221146454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Failure of palatogenesis results in cleft palate, one of the most common congenital disabilities in humans. During the final phases of palatogenesis, the protective function of the peridermal cell layer must be eliminated for the medial edge epithelia to adhere properly, which is a prerequisite for the successful fusion of the secondary palate. However, a deeper understanding of the role and fate of the periderm in palatal adherence and fusion has been hampered due to a lack of appropriate periderm-specific genetic tools to examine this cell type in vivo. Here we used the cytokeratin-6A (Krt-6a) locus to develop both constitutive (Krt6ai-Cre) and inducible (Krt6ai-CreERT2) periderm-specific Cre driver mouse lines. These novel lines allowed us to achieve both the spatial and temporal control needed to dissect the periderm fate on a cellular resolution during palatogenesis. Our studies suggest that, already before the opposing palatal shelves contact each other, at least some palatal periderm cells start to gradually lose their squamous periderm-like phenotype and dedifferentiate into cuboidal cells, reminiscent of the basal epithelial cells seen in the palatal midline seam. Moreover, we show that transforming growth factor-β (TGF-β) signaling plays a critical periderm-specific role in palatogenesis. Thirty-three percent of embryos lacking a gene encoding the TGF-β type I receptor (Tgfbr1) in the periderm display a complete cleft of the secondary palate. Our subsequent experiments demonstrated that Tgfbr1-deficient periderm fails to undergo appropriate dedifferentiation. These studies define the periderm cell fate during palatogenesis and reveal a novel, critical role for TGF-β signaling in periderm dedifferentiation, which is a prerequisite for appropriate palatal epithelial adhesion and fusion.
Collapse
Affiliation(s)
- G. Saroya
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - J. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - M. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - C. Panaretos
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - J. Mann
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - S. Kim
- Department of Cell and Tissue Biology and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, USA
| | - J.O. Bush
- Department of Cell and Tissue Biology and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, USA
| | - V. Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Xiao Y, Jiao S, He M, Lin D, Zuo H, Han J, Sun Y, Cao G, Chen Z, Liu H. Chromatin conformation of human oral epithelium can identify orofacial cleft missing functional variants. Int J Oral Sci 2022; 14:43. [PMID: 36008388 PMCID: PMC9411193 DOI: 10.1038/s41368-022-00194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 11/09/2022] Open
Abstract
Genome-wide association studies (GWASs) are the most widely used method to identify genetic risk loci associated with orofacial clefts (OFC). However, despite the increasing size of cohort, GWASs are still insufficient to detect all the heritability, suggesting there are more associations under the current stringent statistical threshold. In this study, we obtained an integrated epigenomic dataset based on the chromatin conformation of a human oral epithelial cell line (HIOEC) using RNA-seq, ATAC-seq, H3K27ac ChIP-seq, and DLO Hi-C. Presumably, this epigenomic dataset could reveal the missing functional variants located in the oral epithelial cell active enhancers/promoters along with their risk target genes, despite relatively less-stringent statistical association with OFC. Taken a non-syndromic cleft palate only (NSCPO) GWAS data of the Chinese Han population as an example, 3664 SNPs that cannot reach the strict significance threshold were subjected to this functional identification pipeline. In total, 254 potential risk SNPs residing in active cis-regulatory elements interacting with 1 718 promoters of oral epithelium-expressed genes were screened. Gapped k-mer machine learning based on enhancers interacting with epithelium-expressed genes along with in vivo and in vitro reporter assays were employed as functional validation. Among all the potential SNPs, we chose and confirmed that the risk alleles of rs560789 and rs174570 reduced the epithelial-specific enhancer activity by preventing the binding of transcription factors related to epithelial development. In summary, we established chromatin conformation datasets of human oral epithelial cells and provided a framework for testing and understanding how regulatory variants impart risk for clefts.
Collapse
Affiliation(s)
- Yao Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China.,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengbo Jiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Miao He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China
| | - Da Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Huanyan Zuo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China
| | - Jiahao Han
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China.
| | - Huan Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China. .,Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Hammond NL, Dixon MJ. Revisiting the embryogenesis of lip and palate development. Oral Dis 2022; 28:1306-1326. [PMID: 35226783 PMCID: PMC10234451 DOI: 10.1111/odi.14174] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
Clefts of the lip and palate (CLP), the major causes of congenital facial malformation globally, result from failure of fusion of the facial processes during embryogenesis. With a prevalence of 1 in 500-2500 live births, CLP causes major morbidity throughout life as a result of problems with facial appearance, feeding, speaking, obstructive apnoea, hearing and social adjustment and requires complex, multi-disciplinary care at considerable cost to healthcare systems worldwide. Long-term outcomes for affected individuals include increased mortality compared with their unaffected siblings. The frequent occurrence and major healthcare burden imposed by CLP highlight the importance of dissecting the molecular mechanisms driving facial development. Identification of the genetic mutations underlying syndromic forms of CLP, where CLP occurs in association with non-cleft clinical features, allied to developmental studies using appropriate animal models is central to our understanding of the molecular events underlying development of the lip and palate and, ultimately, how these are disturbed in CLP.
Collapse
Affiliation(s)
- Nigel L. Hammond
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Michael J. Dixon
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
13
|
Teng T, Teng CS, Kaartinen V, Bush JO. A unique form of collective epithelial migration is crucial for tissue fusion in the secondary palate and can overcome loss of epithelial apoptosis. Development 2022; 149:275520. [PMID: 35593401 PMCID: PMC9188751 DOI: 10.1242/dev.200181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
Abstract
Tissue fusion frequently requires the removal of an epithelium that intervenes distinct primordia to form one continuous structure. In the mammalian secondary palate, a midline epithelial seam (MES) forms between two palatal shelves and must be removed to allow mesenchymal confluence. Abundant apoptosis and cell extrusion support their importance in MES removal. However, genetically disrupting the intrinsic apoptotic regulators BAX and BAK within the MES results in complete loss of cell death and cell extrusion, but successful removal of the MES. Novel static- and live-imaging approaches reveal that the MES is removed through streaming migration of epithelial trails and islands to reach the oral and nasal epithelial surfaces. Epithelial trail cells that express the basal epithelial marker ΔNp63 begin to express periderm markers, suggesting that migration is concomitant with differentiation. Live imaging reveals anisotropic actomyosin contractility within epithelial trails, and genetic ablation of actomyosin contractility results in dispersion of epithelial collectives and failure of normal MES migration. These findings demonstrate redundancy between cellular mechanisms of morphogenesis, and reveal a crucial and unique form of collective epithelial migration during tissue fusion. Summary: Multiple cellular processes mediate secondary palate fusion, including a unique form of streaming collective epithelial migration driven by pulsatile actomyosin contractility.
Collapse
Affiliation(s)
- Teng Teng
- University of California San Francisco 1 Department of Cell and Tissue Biology , , San Francisco, CA 94143 , USA
- University of California San Francisco 2 Program in Craniofacial Biology , , San Francisco, CA 94143 , USA
- Institute for Human Genetics, University of California San Francisco 3 , San Francisco, CA 94143 , USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco 4 , San Francisco, CA 94143 , USA
| | - Camilla S. Teng
- University of California San Francisco 1 Department of Cell and Tissue Biology , , San Francisco, CA 94143 , USA
- University of California San Francisco 2 Program in Craniofacial Biology , , San Francisco, CA 94143 , USA
- Institute for Human Genetics, University of California San Francisco 3 , San Francisco, CA 94143 , USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco 4 , San Francisco, CA 94143 , USA
| | - Vesa Kaartinen
- University of Michigan School of Dentistry 5 Department of Biologic and Materials Sciences , , Ann Arbor, MI 48109 , USA
| | - Jeffrey O. Bush
- University of California San Francisco 1 Department of Cell and Tissue Biology , , San Francisco, CA 94143 , USA
- University of California San Francisco 2 Program in Craniofacial Biology , , San Francisco, CA 94143 , USA
- Institute for Human Genetics, University of California San Francisco 3 , San Francisco, CA 94143 , USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco 4 , San Francisco, CA 94143 , USA
| |
Collapse
|
14
|
Lan Y, Jiang R. Mouse models in palate development and orofacial cleft research: Understanding the crucial role and regulation of epithelial integrity in facial and palate morphogenesis. Curr Top Dev Biol 2022; 148:13-50. [PMID: 35461563 PMCID: PMC9060390 DOI: 10.1016/bs.ctdb.2021.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cleft lip and cleft palate are common birth defects resulting from genetic and/or environmental perturbations of facial development in utero. Facial morphogenesis commences during early embryogenesis, with cranial neural crest cells interacting with the surface ectoderm to form initially partly separate facial primordia consisting of the medial and lateral nasal prominences, and paired maxillary and mandibular processes. As these facial primordia grow around the primitive oral cavity and merge toward the ventral midline, the surface ectoderm undergoes a critical differentiation step to form an outer layer of flattened and tightly connected periderm cells with a non-stick apical surface that prevents epithelial adhesion. Formation of the upper lip and palate requires spatiotemporally regulated inter-epithelial adhesions and subsequent dissolution of the intervening epithelial seam between the maxillary and medial/lateral nasal processes and between the palatal shelves. Proper regulation of epithelial integrity plays a paramount role during human facial development, as mutations in genes encoding epithelial adhesion molecules and their regulators have been associated with syndromic and non-syndromic orofacial clefts. In this chapter, we summarize mouse genetic studies that have been instrumental in unraveling the mechanisms regulating epithelial integrity and periderm differentiation during facial and palate development. Since proper epithelial integrity also plays crucial roles in wound healing and cancer, understanding the mechanisms regulating epithelial integrity during facial development have direct implications for improvement in clinical care of craniofacial patients.
Collapse
Affiliation(s)
- Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
15
|
Fortugno P, Monetta R, Belli M, Botti E, Angelucci F, Palmerini MG, Annarita NS, De Luca C, Ceccarini M, Salvatore M, Bianchi L, Macioce P, Teson M, Ricci F, Network IUD, Macchiarelli G, Didona B, Costanzo A, Castiglia D, Brancati F. RIPK4 regulates cell–cell adhesion in epidermal development and homeostasis. Hum Mol Genet 2022; 31:2535-2547. [DOI: 10.1093/hmg/ddac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Epidermal development and maintenance are finely regulated events requiring a strict balance between proliferation and differentiation. Alterations in these processes give rise to human disorders such as cancer or syndromes with skin and annexes defects, known as ectodermal dysplasias (EDs). Here, we studied the functional effects of two novel receptor-interacting protein kinase 4 (RIPK4) missense mutations identified in siblings with an autosomal recessive ED with cutaneous syndactyly, palmoplantar hyperkeratosis and orofacial synechiae. Clinical overlap with distinct EDs caused by mutations in transcription factors (i.e. p63 and interferon regulatory factor 6, IRF6) or nectin adhesion molecules was noticed. Impaired activity of the RIPK4 kinase resulted both in altered epithelial differentiation and defective cell adhesion. We showed that mutant RIPK4 resulted in loss of PVRL4/nectin-4 expression in patient epidermis and primary keratinocytes, and demonstrated that PVRL4 is transcriptionally regulated by IRF6, a RIPK4 phosphorylation target. In addition, defective RIPK4 altered desmosome morphology through modulation of plakophilin-1 and desmoplakin. In conclusion, this work implicates RIPK4 kinase function in the p63-IRF6 regulatory loop that controls the proliferation/differentiation switch and cell adhesion, with implications in ectodermal development and cancer.
Collapse
Affiliation(s)
- Paola Fortugno
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Human Functional Genomics, IRCCS San Raffaele Roma, 00163 Rome, Italy
| | - Rosanna Monetta
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | | | - Elisabetta Botti
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Nottola Stefania Annarita
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00185 Rome, Italy
| | - Chiara De Luca
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Marina Ceccarini
- National Center Rare Diseases, Undiagnosed Rare Diseases Interdepartmental Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marco Salvatore
- National Center Rare Diseases, Undiagnosed Rare Diseases Interdepartmental Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Pompeo Macioce
- Department of Neurosciences & Undiagnosed Rare Diseases Interdepartmental Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Massimo Teson
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | - Francesco Ricci
- Department of Dermatology, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | | | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Biagio Didona
- Rare Skin Disease Center, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | - Antonio Costanzo
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Milan, Italy
- Skin Pathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | - Francesco Brancati
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Human Functional Genomics, IRCCS San Raffaele Roma, 00163 Rome, Italy
| |
Collapse
|
16
|
Inubushi T, Fujiwara A, Hirose T, Aoyama G, Uchihashi T, Yoshida N, Shiraishi Y, Usami Y, Kurosaka H, Toyosawa S, Tanaka S, Watabe T, Kogo M, Yamashiro T. Ras signaling and its effector RREB1 are required for the dissociation of MEE cells in palatogenesis. Dis Model Mech 2021; 15:273709. [PMID: 34897389 PMCID: PMC8862740 DOI: 10.1242/dmm.049093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/04/2021] [Indexed: 11/13/2022] Open
Abstract
Cleft palate is one of the major congenital craniofacial birth defects. The etiology underlying the pathogenesis of cleft palate has yet to be fully elucidated. Dissociation of the medial edge epithelium (MEE) at the contacting region of palatal shelves and subsequent migration or apoptosis of MEE cells is required for proper MEE removal. Ras-responsive element-binding protein 1 (RREB1), a RAS transcriptional effector, has recently been shown to play a crucial role in developmental epithelial–mesenchymal transition (EMT), in which loss of epithelial characteristics is an initial step, during mid-gastrulation of embryonic development. Interestingly, the involvement of RREB1 in cleft palate has been indicated in humans. Here, we demonstrated that pan-Ras inhibitor prevents the dissociation of MEE during murine palatal fusion. Rreb1 is expressed in the palatal epithelium during palatal fusion, and knockdown of Rreb1 in palatal organ culture resulted in palatal fusion defects by inhibiting the dissociation of MEE cells. Our present findings provide evidence that RREB1-mediated Ras signaling is required during palatal fusion. Aberrant RREB1-mediated Ras signaling might be involved in the pathogenesis of cleft palate. Summary: RREB1, a known transcriptional factor that acts downstream of Ras signaling, is expressed in the medial edge epithelium (MEE) region and required for the dissociation of MEE during palatal fusion.
Collapse
Affiliation(s)
- Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Ayaka Fujiwara
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Takumi Hirose
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Gozo Aoyama
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Toshihiro Uchihashi
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Naoki Yoshida
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yuki Shiraishi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yu Usami
- Department of Oral Pathology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satoru Toyosawa
- Department of Oral Pathology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Susumu Tanaka
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mikihiko Kogo
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
17
|
Compagnucci C, Martinus K, Griffin J, Depew MJ. Programmed Cell Death Not as Sledgehammer but as Chisel: Apoptosis in Normal and Abnormal Craniofacial Patterning and Development. Front Cell Dev Biol 2021; 9:717404. [PMID: 34692678 PMCID: PMC8531503 DOI: 10.3389/fcell.2021.717404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022] Open
Abstract
Coordination of craniofacial development involves an complex, intricate, genetically controlled and tightly regulated spatiotemporal series of reciprocal inductive and responsive interactions among the embryonic cephalic epithelia (both endodermal and ectodermal) and the cephalic mesenchyme — particularly the cranial neural crest (CNC). The coordinated regulation of these interactions is critical both ontogenetically and evolutionarily, and the clinical importance and mechanistic sensitivity to perturbation of this developmental system is reflected by the fact that one-third of all human congenital malformations affect the head and face. Here, we focus on one element of this elaborate process, apoptotic cell death, and its role in normal and abnormal craniofacial development. We highlight four themes in the temporospatial elaboration of craniofacial apoptosis during development, namely its occurrence at (1) positions of epithelial-epithelial apposition, (2) within intra-epithelial morphogenesis, (3) during epithelial compartmentalization, and (4) with CNC metameric organization. Using the genetic perturbation of Satb2, Pbx1/2, Fgf8, and Foxg1 as exemplars, we examine the role of apoptosis in the elaboration of jaw modules, the evolution and elaboration of the lambdoidal junction, the developmental integration at the mandibular arch hinge, and the control of upper jaw identity, patterning and development. Lastly, we posit that apoptosis uniquely acts during craniofacial development to control patterning cues emanating from core organizing centres.
Collapse
Affiliation(s)
- Claudia Compagnucci
- Institute for Cell and Neurobiology, Center for Anatomy, Charité Universitätsmedizin Berlin, CCO, Berlin, Germany.,Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy.,Department of Craniofacial Development, King's College London, London, United Kingdom
| | - Kira Martinus
- Institute for Cell and Neurobiology, Center for Anatomy, Charité Universitätsmedizin Berlin, CCO, Berlin, Germany
| | - John Griffin
- Department of Craniofacial Development, King's College London, London, United Kingdom.,School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Michael J Depew
- Institute for Cell and Neurobiology, Center for Anatomy, Charité Universitätsmedizin Berlin, CCO, Berlin, Germany.,Department of Craniofacial Development, King's College London, London, United Kingdom
| |
Collapse
|
18
|
Reynolds K, Zhang S, Sun B, Garland M, Ji Y, Zhou CJ. Genetics and signaling mechanisms of orofacial clefts. Birth Defects Res 2020; 112:1588-1634. [PMID: 32666711 PMCID: PMC7883771 DOI: 10.1002/bdr2.1754] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Craniofacial development involves several complex tissue movements including several fusion processes to form the frontonasal and maxillary structures, including the upper lip and palate. Each of these movements are controlled by many different factors that are tightly regulated by several integral morphogenetic signaling pathways. Subject to both genetic and environmental influences, interruption at nearly any stage can disrupt lip, nasal, or palate fusion and result in a cleft. Here, we discuss many of the genetic risk factors that may contribute to the presentation of orofacial clefts in patients, and several of the key signaling pathways and underlying cellular mechanisms that control lip and palate formation, as identified primarily through investigating equivalent processes in animal models, are examined.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Michael Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Chengji J. Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| |
Collapse
|
19
|
Transcriptional analysis of cleft palate in TGFβ3 mutant mice. Sci Rep 2020; 10:14940. [PMID: 32913205 PMCID: PMC7483747 DOI: 10.1038/s41598-020-71636-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/17/2020] [Indexed: 12/30/2022] Open
Abstract
Cleft palate (CP) is one of the most common craniofacial birth defects, impacting about 1 in 800 births in the USA. Tgf-β3 plays a critical role in regulating murine palate development, and Tgf-β3 null mutants develop cleft palate with 100% penetrance. In this study, we compared global palatal transcriptomes of wild type (WT) and Tgf-β3 −/− homozygous (HM) mouse embryos at the crucial palatogenesis stages of E14.5, and E16.5, using RNA-seq data. We found 1,809 and 2,127 differentially expressed genes at E16.5 vs. E14.5 in the WT and HM groups, respectively (adjusted p < 0.05; |fold change|> 2.0). We focused on the genes that were uniquely up/downregulated in WT or HM at E16.5 vs. E14.5 to identify genes associated with CP. Systems biology analysis relating to cell behaviors and function of WT and HM specific genes identified functional non-Smad pathways and preference of apoptosis to epithelial-mesenchymal transition. We identified 24 HM specific and 11 WT specific genes that are CP-related and/or involved in Tgf-β3 signaling. We validated the expression of 29 of the 35 genes using qRT-PCR and the trend of mRNA expression is similar to that of RNA-seq data . Our results enrich our understanding of genes associated with CP that are directly or indirectly regulated via TGF-β.
Collapse
|
20
|
Ji Y, Garland MA, Sun B, Zhang S, Reynolds K, McMahon M, Rajakumar R, Islam MS, Liu Y, Chen Y, Zhou CJ. Cellular and developmental basis of orofacial clefts. Birth Defects Res 2020; 112:1558-1587. [PMID: 32725806 DOI: 10.1002/bdr2.1768] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/21/2020] [Accepted: 06/27/2020] [Indexed: 12/11/2022]
Abstract
During craniofacial development, defective growth and fusion of the upper lip and/or palate can cause orofacial clefts (OFCs), which are among the most common structural birth defects in humans. The developmental basis of OFCs includes morphogenesis of the upper lip, primary palate, secondary palate, and other orofacial structures, each consisting of diverse cell types originating from all three germ layers: the ectoderm, mesoderm, and endoderm. Cranial neural crest cells and orofacial epithelial cells are two major cell types that interact with various cell lineages and play key roles in orofacial development. The cellular basis of OFCs involves defective execution in any one or several of the following processes: neural crest induction, epithelial-mesenchymal transition, migration, proliferation, differentiation, apoptosis, primary cilia formation and its signaling transduction, epithelial seam formation and disappearance, periderm formation and peeling, convergence and extrusion of palatal epithelial seam cells, cell adhesion, cytoskeleton dynamics, and extracellular matrix function. The latest cellular and developmental findings may provide a basis for better understanding of the underlying genetic, epigenetic, environmental, and molecular mechanisms of OFCs.
Collapse
Affiliation(s)
- Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| | - Michael A Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| | - Moira McMahon
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Ratheya Rajakumar
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Mohammad S Islam
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Yue Liu
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| |
Collapse
|
21
|
Freiberger K, Hemker S, McAnally R, King R, Meyers-Wallen VN, Schutte BC, Fyfe JC. Secondary Palate Development in the Dog ( Canis lupus familiaris). Cleft Palate Craniofac J 2020; 58:230-236. [PMID: 32705901 DOI: 10.1177/1055665620943771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE To investigate the gestational timing of morphologic events in normal canine secondary palate development as a baseline for studies in dog models of isolated cleft palate (CP). METHODS Beagle and beagle/cocker spaniel-hybrid fetal dogs were obtained by cesarean-section on various days of gestation, timed from the initial rise of serum progesterone concentration. Morphology of fetal heads was determined by examining serial coronal sections. RESULTS On gestational day 35 (d35), the palatal shelves pointed ventrally alongside the tongue. On d36, palatal shelves were elongated and elevated to a horizontal position above the tongue but were not touching. On d37, palatine shelves and vomer were touching, but the medial epithelial seam (MES) between the apposed shelves remained. Immunostaining with epithelial protein markers showed that the MES gradually dissolved and was replaced by mesenchyme during d37-d44, and palate fusion was complete by d44. Examination of remnant MES suggested that fusion of palatal shelves began in mid-palate and moved rostrally and caudally. CONCLUSION Palate development occurs in dogs in the steps described in humans and mice, but palate closure occurs at an intermediate time in gestation. These normative data will form the basis of future studies to determine pathophysiologic mechanisms in dog models of CP. Added clinical significance is the enhancement of dogs as a large animal model to test new approaches for palate repair, with the obvious advantage of achieving full maturity within 2 years rather than 2 decades.
Collapse
Affiliation(s)
- Katharina Freiberger
- Microbiology & Molecular Genetics, 3078Michigan State University, East Lansing, MI, USA
| | - Shelby Hemker
- Microbiology & Molecular Genetics, 3078Michigan State University, East Lansing, MI, USA
| | - Ryan McAnally
- Microbiology & Molecular Genetics, 3078Michigan State University, East Lansing, MI, USA
| | - Rachel King
- Microbiology & Molecular Genetics, 3078Michigan State University, East Lansing, MI, USA
| | | | - Brian C Schutte
- Microbiology & Molecular Genetics, 3078Michigan State University, East Lansing, MI, USA.,Pediatrics & Human Development, 3078Michigan State University, East Lansing, MI, USA
| | - John C Fyfe
- Microbiology & Molecular Genetics, 3078Michigan State University, East Lansing, MI, USA
| |
Collapse
|
22
|
Lough KJ, Spitzer DC, Bergman AJ, Wu JJ, Byrd KM, Williams SE. Disruption of the nectin-afadin complex recapitulates features of the human cleft lip/palate syndrome CLPED1. Development 2020; 147:dev.189241. [PMID: 32554531 DOI: 10.1242/dev.189241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/02/2020] [Indexed: 01/19/2023]
Abstract
Cleft palate (CP), one of the most common congenital conditions, arises from failures in secondary palatogenesis during embryonic development. Several human genetic syndromes featuring CP and ectodermal dysplasia have been linked to mutations in genes regulating cell-cell adhesion, yet mouse models have largely failed to recapitulate these findings. Here, we use in utero lentiviral-mediated genetic approaches in mice to provide the first direct evidence that the nectin-afadin axis is essential for proper palate shelf elevation and fusion. Using this technique, we demonstrate that palatal epithelial conditional loss of afadin (Afdn) - an obligate nectin- and actin-binding protein - induces a high penetrance of CP, not observed when Afdn is targeted later using Krt14-Cre We implicate Nectin1 and Nectin4 as being crucially involved, as loss of either induces a low penetrance of mild palate closure defects, while loss of both causes severe CP with a frequency similar to Afdn loss. Finally, expression of the human disease mutant NECTIN1W185X causes CP with greater penetrance than Nectin1 loss, suggesting this alteration may drive CP via a dominant interfering mechanism.
Collapse
Affiliation(s)
- Kendall J Lough
- Departments of Pathology & Laboratory Medicine and Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Danielle C Spitzer
- Departments of Pathology & Laboratory Medicine and Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Abby J Bergman
- Departments of Pathology & Laboratory Medicine and Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jessica J Wu
- Departments of Pathology & Laboratory Medicine and Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin M Byrd
- Departments of Pathology & Laboratory Medicine and Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Oral & Craniofacial Health Sciences, The University of North Carolina School of Dentistry, Chapel Hill, NC 27599, USA
| | - Scott E Williams
- Departments of Pathology & Laboratory Medicine and Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
23
|
Liu H, Duncan K, Helverson A, Kumari P, Mumm C, Xiao Y, Carlson JC, Darbellay F, Visel A, Leslie E, Breheny P, Erives AJ, Cornell RA. Analysis of zebrafish periderm enhancers facilitates identification of a regulatory variant near human KRT8/18. eLife 2020; 9:e51325. [PMID: 32031521 PMCID: PMC7039683 DOI: 10.7554/elife.51325] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/06/2020] [Indexed: 12/18/2022] Open
Abstract
Genome-wide association studies for non-syndromic orofacial clefting (OFC) have identified single nucleotide polymorphisms (SNPs) at loci where the presumed risk-relevant gene is expressed in oral periderm. The functional subsets of such SNPs are difficult to predict because the sequence underpinnings of periderm enhancers are unknown. We applied ATAC-seq to models of human palate periderm, including zebrafish periderm, mouse embryonic palate epithelia, and a human oral epithelium cell line, and to complementary mesenchymal cell types. We identified sets of enhancers specific to the epithelial cells and trained gapped-kmer support-vector-machine classifiers on these sets. We used the classifiers to predict the effects of 14 OFC-associated SNPs at 12q13 near KRT18. All the classifiers picked the same SNP as having the strongest effect, but the significance was highest with the classifier trained on zebrafish periderm. Reporter and deletion analyses support this SNP as lying within a periderm enhancer regulating KRT18/KRT8 expression.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan UniversityWuhanChina
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
- Department of Periodontology, School of Stomatology, Wuhan UniversityWuhanChina
| | - Kaylia Duncan
- Interdisciplinary Program in Molecular Medicine, University of IowaIowa CityUnited States
| | - Annika Helverson
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
| | - Priyanka Kumari
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
| | - Camille Mumm
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
| | - Yao Xiao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan UniversityWuhanChina
| | | | - Fabrice Darbellay
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley LaboratoriesBerkeleyUnited States
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley LaboratoriesBerkeleyUnited States
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley LaboratoriesBerkeleyUnited States
- University of California, MercedMercedUnited States
| | - Elizabeth Leslie
- Department of Human Genetics, Emory University School of MedicineAtlantaGeorgia
| | - Patrick Breheny
- Department of Biostatistics, University of IowaIowa CityUnited States
| | - Albert J Erives
- Department of Biology, University of IowaIowa CityUnited States
| | - Robert A Cornell
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
- Interdisciplinary Program in Molecular Medicine, University of IowaIowa CityUnited States
| |
Collapse
|
24
|
Belair DG, Wolf CJ, Moorefield SD, Wood C, Becker C, Abbott BD. A Three-Dimensional Organoid Culture Model to Assess the Influence of Chemicals on Morphogenetic Fusion. Toxicol Sci 2019; 166:394-408. [PMID: 30496568 DOI: 10.1093/toxsci/kfy207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Embryologic development involves cell differentiation and organization events that are unique to each tissue and organ and are susceptible to developmental toxicants. Animal models are the gold standard for identifying putative teratogens, but the limited throughput of developmental toxicological studies in animals coupled with the limited concordance between animal and human teratogenicity motivates a different approach. In vitro organoid models can mimic the three-dimensional (3D) morphogenesis of developing tissues and can thus be useful tools for studying developmental toxicology. Common themes during development like the involvement of epithelial-mesenchymal transition and tissue fusion present an opportunity to develop in vitro organoid models that capture key morphogenesis events that occur in the embryo. We previously described organoids composed of human stem and progenitor cells that recapitulated the cellular features of palate fusion, and here we further characterized the model by examining pharmacological inhibitors targeting known palatogenesis and epithelial morphogenesis pathways as well as 12 cleft palate teratogens identified from rodent models. Organoid survival was dependent on signaling through EGF, IGF, HGF, and FGF pathways, and organoid fusion was disrupted by inhibition of BMP signaling. We observed concordance between the effects of EGF, FGF, and BMP inhibitors on organoid fusion and epithelial cell migration in vitro, suggesting that organoid fusion is dependent on epithelial morphogenesis. Three of the 12 putative cleft palate teratogens studied here (theophylline, triamcinolone, and valproic acid) significantly disrupted in vitro organoid fusion, while tributyltin chloride and all-trans retinoic acid were cytotoxic to fusing organoids. The study herein demonstrates the utility of the in vitro fusion assay for identifying chemicals that disrupt human organoid morphogenesis in a scalable format amenable to toxicology screening.
Collapse
Affiliation(s)
- David G Belair
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US EPA, Research Triangle Park, North Carolina 27711
| | - Cynthia J Wolf
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US EPA, Research Triangle Park, North Carolina 27711
| | | | - Carmen Wood
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US EPA, Research Triangle Park, North Carolina 27711
| | - Carrie Becker
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830
| | - Barbara D Abbott
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US EPA, Research Triangle Park, North Carolina 27711
| |
Collapse
|
25
|
Dynamic mRNA Expression Analysis of the Secondary Palatal Morphogenesis in Miniature Pigs. Int J Mol Sci 2019; 20:ijms20174284. [PMID: 31480549 PMCID: PMC6747431 DOI: 10.3390/ijms20174284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022] Open
Abstract
Normal mammalian palatogenesis is a complex process that requires the occurrence of a tightly regulated series of specific and sequentially regulated cellular events. Cleft lip/palate (CLP), the most frequent craniofacial malformation birth defects, may occur if any of these events undergo abnormal interference. Such defects not only affect the patients, but also pose a financial risk for the families. In our recent study, the miniature pig was shown to be a valuable alternative large animal model for exploring human palate development by histology. However, few reports exist in the literature to document gene expression and function during swine palatogenesis. To better understand the genetic regulation of palate development, an mRNA expression profiling analysis was performed on miniature pigs, Sus scrofa. Five key developmental stages of miniature pigs from embryonic days (E) 30–50 were selected for transcriptome sequencing. Gene expression profiles in different palate development stages of miniature pigs were identified. Nine hundred twenty significant differentially expressed genes were identified, and the functional characteristics of these genes were determined by gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Some of these genes were associated with HH (hedgehog), WNT (wingless-type mouse mammary tumor virus integration site family), and MAPK (mitogen-activated protein kinase) signaling, etc., which were shown in the literature to affect palate development, while some genes, such as HIP (hedgehog interacting protein), WNT16, MAPK10, and LAMC2 (laminin subunit gamma 2), were additions to the current understanding of palate development. The present study provided a comprehensive analysis for understanding the dynamic gene regulation during palate development and provided potential ideas and resources to further study normal palate development and the etiology of cleft palate.
Collapse
|
26
|
Li H, Jones KL, Hooper JE, Williams T. The molecular anatomy of mammalian upper lip and primary palate fusion at single cell resolution. Development 2019; 146:dev.174888. [PMID: 31118233 DOI: 10.1242/dev.174888] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
The mammalian lip and primary palate form when coordinated growth and morphogenesis bring the nasal and maxillary processes into contact, and the epithelia co-mingle, remodel and clear from the fusion site to allow mesenchyme continuity. Although several genes required for fusion have been identified, an integrated molecular and cellular description of the overall process is lacking. Here, we employ single cell RNA sequencing of the developing mouse face to identify ectodermal, mesenchymal and endothelial populations associated with patterning and fusion of the facial prominences. This analysis indicates that key cell populations at the fusion site exist within the periderm, basal epithelial cells and adjacent mesenchyme. We describe the expression profiles that make each population unique, and the signals that potentially integrate their behaviour. Overall, these data provide a comprehensive high-resolution description of the various cell populations participating in fusion of the lip and primary palate, as well as formation of the nasolacrimal groove, and they furnish a powerful resource for those investigating the molecular genetics of facial development and facial clefting that can be mined for crucial mechanistic information concerning this prevalent human birth defect.
Collapse
Affiliation(s)
- Hong Li
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Joan E Hooper
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
27
|
Lin-Shiao E, Lan Y, Welzenbach J, Alexander KA, Zhang Z, Knapp M, Mangold E, Sammons M, Ludwig KU, Berger SL. p63 establishes epithelial enhancers at critical craniofacial development genes. SCIENCE ADVANCES 2019; 5:eaaw0946. [PMID: 31049400 PMCID: PMC6494499 DOI: 10.1126/sciadv.aaw0946] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/19/2019] [Indexed: 05/15/2023]
Abstract
The transcription factor p63 is a key mediator of epidermal development. Point mutations in p63 in patients lead to developmental defects, including orofacial clefting. To date, knowledge on how pivotal the role of p63 is in human craniofacial development is limited. Using an inducible transdifferentiation model, combined with epigenomic sequencing and multicohort meta-analysis of genome-wide association studies data, we show that p63 establishes enhancers at craniofacial development genes to modulate their transcription. Disease-specific substitution mutation in the DNA binding domain or sterile alpha motif protein interaction domain of p63, respectively, eliminates or reduces establishment of these enhancers. We show that enhancers established by p63 are highly enriched for single-nucleotide polymorphisms associated with nonsyndromic cleft lip ± cleft palate (CL/P). These orthogonal approaches indicate a strong molecular link between p63 enhancer function and CL/P, illuminating molecular mechanisms underlying this developmental defect and revealing vital regulatory elements and new candidate causative genes.
Collapse
Affiliation(s)
- Enrique Lin-Shiao
- Departments of Cell and Developmental Biology and Epigenetics Institute, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics, Biomedical Sciences Graduate Program, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yemin Lan
- Departments of Cell and Developmental Biology and Epigenetics Institute, Philadelphia, PA 19104, USA
| | - Julia Welzenbach
- Institute of Human Genetics, University Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Katherine A Alexander
- Departments of Cell and Developmental Biology and Epigenetics Institute, Philadelphia, PA 19104, USA
| | - Zhen Zhang
- Departments of Cell and Developmental Biology and Epigenetics Institute, Philadelphia, PA 19104, USA
| | - Michael Knapp
- Institute of Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Elisabeth Mangold
- Institute of Human Genetics, University Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Morgan Sammons
- Departments of Cell and Developmental Biology and Epigenetics Institute, Philadelphia, PA 19104, USA
| | - Kerstin U Ludwig
- Institute of Human Genetics, University Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Shelley L Berger
- Departments of Cell and Developmental Biology and Epigenetics Institute, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Rostampour N, Appelt CM, Abid A, Boughner JC. Expression of new genes in vertebrate tooth development and p63 signaling. Dev Dyn 2019; 248:744-755. [PMID: 30875130 DOI: 10.1002/dvdy.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/15/2019] [Accepted: 03/11/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND p63 is an evolutionarily ancient transcription factor essential to vertebrate tooth development. Our recent gene expression screen comparing wild-type and "toothless" p63-/- mouse embryos implicated in tooth development several new genes that we hypothesized act downstream of p63 in dental epithelium, where p63 is also expressed. RESULTS Via in situ hybridization and immunohistochemistry, we probed mouse embryos (embryonic days 10.5-14.5) and spotted gar fish embryos (14 days postfertilization) for these newly linked genes, Cbln1, Cldn23, Fermt1, Krt15, Pltp and Prss8, which were expressed in mouse and gar dental epithelium. Loss of p63 altered expression levels but not domains. Expression was comparable between murine upper and lower tooth organs, implying conserved gene functions in maxillary and mandibular dentitions. Our meta-analysis of gene expression databases supported that these genes act within a p63-driven gene regulatory network important to tooth development in mammals and more evolutionary ancient vertebrates (fish, amphibians). CONCLUSIONS Cbln1, Cldn23, Fermt1, Krt15, Pltp, and Prss8 were expressed in mouse and fish dental epithelium at placode, bud, and/or cap stages. We theorize that these genes participate in cell-cell adhesion, cell polarity, and extracellular matrix signaling to support dental epithelium integrity, folding, and epithelial-mesenchymal cross talk during tooth development.
Collapse
Affiliation(s)
- Nasim Rostampour
- Department of Anatomy & Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Cassy M Appelt
- Department of Anatomy & Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Aunum Abid
- Department of Anatomy & Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Julia C Boughner
- Department of Anatomy & Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
29
|
Maternal folic acid supplementation reduces the severity of cleft palate in Tgf-β 3 null mutant mice. Pediatr Res 2019; 85:566-573. [PMID: 30683931 DOI: 10.1038/s41390-018-0267-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 11/28/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cleft palate (CP) constitutes the most frequently seen orofacial cleft and is often associated with low folate status. Folate plays an essential role in the human body as a major coenzyme in one-carbon metabolism, including DNA synthesis, repair, and methylation. Whether the administration of isolated folic acid (FA) supplements prevents the CP caused by genetic mutations is unknown, as is its effect on the mechanisms leading to palate fusion. METHODS FA was administered to females from two different strains of transforming growth factor β3 heterozygous mice. Null mutant progeny of these mice exhibit CP in 100% of cases of varying severity. We measured cleft length, height of palatal shelf adhesion, and the number of proliferating mesenchymal cells. Immunohistochemistry was also carried for collagen IV, laminin, fibronectin, cytokeratin-17, and EGF. RESULTS FA supplementation significantly reduced CP severity and improved palatal shelf adhesion in both strains both in vivo and in vitro. Medial edge epithelium proliferation increased, and its differentiation was normalized as indicated by the presence and disposition of collagen IV, laminin, fibronectin, and cytokeratin-17. CONCLUSIONS A maternal FA supplementation reduces the CP appearance by improving the mechanisms leading to palatal shelf adhesion.
Collapse
|
30
|
Atypical GATA transcription factor TRPS1 represses gene expression by recruiting CHD4/NuRD(MTA2) and suppresses cell migration and invasion by repressing TP63 expression. Oncogenesis 2018; 7:96. [PMID: 30563971 PMCID: PMC6299095 DOI: 10.1038/s41389-018-0108-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/30/2018] [Accepted: 11/26/2018] [Indexed: 01/10/2023] Open
Abstract
Transcriptional repressor GATA binding 1 (TRPS1), an atypical GATA transcription factor, functions as a transcriptional repressor and is also implicated in human cancers. However, the underlying mechanism of TRPS1 contributing to malignancy remains obscure. In the current study, we report that TRPS1 recognizes both gene proximal and distal transcription start site (TSS) sequences to repress gene expression. Co-IP mass spectrometry and biochemical studies showed that TRPS1 binds to CHD4/NuRD(MTA2). Genome-wide and molecular studies revealed that CHD4/NuRD(MTA2) is required for TRPS1 transcriptional repression. Mechanically, TRPS1 and CHD4/NuRD(MTA2) form precision-guided transcriptional repression machinery in which TRPS1 guides the machinery to specific target sites by recognizing GATA elements, and CHD4/NuRD(MTA2) represses the transcription of target genes. Furthermore, TP63 was identified and validated to be a direct target of TRPS1-CHD4/NuRD(MTA2) complex, which represses TP63 expression by involving decommission of TP63 enhancer in the described precision-guided manner, leading to a reduction of the ΔNp63 level and contributing to migration and invasion of cancer cells.
Collapse
|
31
|
Phen A, Greer J, Uppal J, Der J, Boughner JC. Upper jaw development in the absence of teeth: New insights for craniodental evo-devo integration. Evol Dev 2018; 20:146-159. [PMID: 29998528 DOI: 10.1111/ede.12261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In p63-null mice (p63-/- ), teeth fail to form but the mandible forms normally; conversely, the upper jaw skeleton is malformed. Here we explored whether lack of dental tissues contributed to midfacial dysmorphologies in p63-/- mice by testing if facial prominence defects appeared before odontogenesis failed. We also investigated gene dose effects by testing if one wild type (WT) p63 allele (p63+/- ) was sufficient for normal upper jaw skeleton formation. We micro-CT scanned PFA-fixed p63-/- , p63+/- , and WT (p63+/+ ) adult and embryonic mice aged E10-E14. Next, we landmarked mandibular (MdP), maxillary (MxP) and nasal prominences (NPs), and facial bones. 3D landmark data were assessed using Principal Component, Canonical Variate, Partial Least Squares, and other statistical analyses. The p63-/- embryos showed MxP and NP malformations by E12, despite the presence of dental tissues. MdP shape was comparable among p63-/- , p63+/- , and p63+/+ embryos. Upper jaw shape was comparable between p63+/+ and p63+/- adults. The upper jaw and its dentition both require p63 signaling, but not each other's presence, to form properly. One WT p63 allele enables normal midfacial morphogenesis; gene dose may be a target for jaw macroevolution. Jaw-specific genetic mechanisms likely integrate the evo-devo of dentitions with upper versus lower jaws.
Collapse
Affiliation(s)
- Alyssa Phen
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Justine Greer
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jasmene Uppal
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jasmine Der
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Julia C Boughner
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
32
|
Li J, Yuan Y, He J, Feng J, Han X, Jing J, Ho TV, Xu J, Chai Y. Constitutive activation of hedgehog signaling adversely affects epithelial cell fate during palatal fusion. Dev Biol 2018; 441:191-203. [PMID: 29981310 DOI: 10.1016/j.ydbio.2018.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 02/05/2023]
Abstract
Cleft palate is one of the most common craniofacial congenital defects in humans. It is associated with multiple genetic and environmental risk factors, including mutations in the genes encoding signaling molecules in the sonic hedgehog (Shh) pathway, which are risk factors for cleft palate in both humans and mice. However, the function of Shh signaling in the palatal epithelium during palatal fusion remains largely unknown. Although components of the Shh pathway are localized in the palatal epithelium, specific inhibition of Shh signaling in palatal epithelium does not affect palatogenesis. We therefore utilized a hedgehog (Hh) signaling gain-of-function mouse model, K14-Cre;R26SmoM2, to uncover the role of Shh signaling in the palatal epithelium during palatal fusion. In this study, we discovered that constitutive activation of Hh signaling in the palatal epithelium results in submucous cleft palate and persistence of the medial edge epithelium (MEE). Further investigation revealed that precise downregulation of Shh signaling is required at a specific time point in the MEE during palatal fusion. Upregulation of Hh signaling in the palatal epithelium maintains the proliferation of MEE cells. This may be due to a dysfunctional p63/Irf6 regulatory loop. The resistance of MEE cells to apoptosis is likely conferred by enhancement of a cell adhesion network through the maintenance of p63 expression. Collectively, our data illustrate that persistent Hh signaling in the palatal epithelium contributes to the etiology and pathogenesis of submucous cleft palate through its interaction with a p63/Irf6-dependent biological regulatory loop and through a p63-induced cell adhesion network.
Collapse
Affiliation(s)
- Jingyuan Li
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA; Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, China
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA; Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA; Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA.
| |
Collapse
|
33
|
Weng M, Chen Z, Xiao Q, Li R, Chen Z. A review of FGF signaling in palate development. Biomed Pharmacother 2018; 103:240-247. [DOI: 10.1016/j.biopha.2018.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 11/25/2022] Open
|
34
|
Lough KJ, Byrd KM, Spitzer DC, Williams SE. Closing the Gap: Mouse Models to Study Adhesion in Secondary Palatogenesis. J Dent Res 2017; 96:1210-1220. [PMID: 28817360 DOI: 10.1177/0022034517726284] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Secondary palatogenesis occurs when the bilateral palatal shelves (PS), arising from maxillary prominences, fuse at the midline, forming the hard and soft palate. This embryonic phenomenon involves a complex array of morphogenetic events that require coordinated proliferation, apoptosis, migration, and adhesion in the PS epithelia and underlying mesenchyme. When the delicate process of craniofacial morphogenesis is disrupted, the result is orofacial clefting, including cleft lip and cleft palate (CL/P). Through human genetic and animal studies, there are now hundreds of known genetic alternations associated with orofacial clefts; so, it is not surprising that CL/P is among the most common of all birth defects. In recent years, in vitro cell-based assays, ex vivo palate cultures, and genetically engineered animal models have advanced our understanding of the developmental and cell biological pathways that contribute to palate closure. This is particularly true for the areas of PS patterning and growth as well as medial epithelial seam dissolution during palatal fusion. Here, we focus on epithelial cell-cell adhesion, a critical but understudied process in secondary palatogenesis, and provide a review of the available tools and mouse models to better understand this phenomenon.
Collapse
Affiliation(s)
- K J Lough
- 1 The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - K M Byrd
- 1 The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - D C Spitzer
- 1 The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - S E Williams
- 1 The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
35
|
Hammond NL, Dixon J, Dixon MJ. Periderm: Life-cycle and function during orofacial and epidermal development. Semin Cell Dev Biol 2017; 91:75-83. [PMID: 28803895 DOI: 10.1016/j.semcdb.2017.08.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/01/2017] [Accepted: 08/06/2017] [Indexed: 12/31/2022]
Abstract
Development of the secondary palate involves a complex series of embryonic events which, if disrupted, result in the common congenital anomaly cleft palate. The secondary palate forms from paired palatal shelves which grow initially vertically before elevating to a horizontal position above the tongue and fusing together in the midline via the medial edge epithelia. As the epithelia of the vertical palatal shelves are in contact with the mandibular and lingual epithelia, pathological fusions between the palate and the mandible and/or the tongue must be prevented. This function is mediated by the single cell layered periderm which forms in a distinct and reproducible pattern early in embryogenesis, exhibits highly polarised expression of adhesion complexes, and is shed from the outer surface as the epidermis acquires its barrier function. Disruption of periderm formation and/or function underlies a series of birth defects that exhibit multiple inter-epithelial adhesions including the autosomal dominant popliteal pterygium syndrome and the autosomal recessive cocoon syndrome and Bartsocas Papas syndrome. Genetic analyses of these conditions have shown that IRF6, IKKA, SFN, RIPK4 and GRHL3, all of which are under the transcriptional control of p63, play a key role in periderm formation. Despite these observations, the medial edge epithelia must rapidly acquire the capability to fuse if the palatal shelves are not to remain cleft. This process is driven by TGFβ3-mediated, down-regulation of p63 in the medial edge epithelia which allows periderm migration out of the midline epithelial seam and reduces the proliferative potential of the midline epithelial seam thereby preventing cleft palate. Together, these findings indicate that periderm plays a transient but fundamental role during embryogenesis in preventing pathological adhesion between intimately apposed, adhesion-competent epithelia.
Collapse
Affiliation(s)
- Nigel L Hammond
- Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Jill Dixon
- Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Michael J Dixon
- Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom.
| |
Collapse
|